
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

APPROXIMATELY ALIGNED DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

It is common to reject undesired outputs of Large Language Models (LLMs);
however, current methods to do so require an excessive amount of computation,
or severely distort the distribution of outputs. We present a method to balance the
distortion of the output distribution with computational efficiency, allowing for the
generation of long sequences of text with difficult-to-satisfy constraints, with less
amplification of low probability outputs compared to existing methods. We show
through a series of experiments that the task-specific performance of our method
is comparable to methods that do not distort the output distribution, while being
much more computationally efficient.

1 INTRODUCTION

Large Language Models (LLMs) are able to perform many complex text manipulation tasks, and
embody an incredible amount of world knowledge, but their output is unpredictable. Language
models sometimes generate undesirable outputs, such as syntactically-incorrect code, hallucinated
PII, or profanity, rendering their use potentially unsafe for certain applications. For example, if
the LLM is used as part of a larger automated system, where its output must conform to a specific
format, and it may have a set of tools which it may invoke. Many undesirable outputs, or deviations
from an expected format, which we collectively refer to as errors or constraint violations for the
remainder of the paper, can be detected with incremental parsers, regular expression matching, or
even simple substring searches.

Each individual task that a LLM is used for may have a unique set of constraints. However, re-
training a LLM to accommodate the constraints of every task is expensive, and may still not fully
protect against violations. Therefore, the community has developed several methods that attempt to
mitigate constraint violations without the need to retrain the language model. However, a practical
method that does not deviate a lot from the original output distributions is still needed.

Our contributions are as follows. First, we analyze several existing methods for avoiding constraint
violations in text generated from autoregressive language models, and compare the strengths and
weaknesses of each method. Second, we present a method that allows for a useful midpoint in
the tradeoff between computational efficiency and maintenance of the output distribution, without
the need for any additional training or fine-tuning step. Finally, we run a series of experiments
showing that our method obtains excellent task-specific performance on both synthetic and real-
world domains, without introducing an unreasonable level of inference overhead.

1.1 RELATED WORK

Language models based on a Transformer architecture (Vaswani et al., 2023) have steadily become
more popular with increased parameter counts, with consumer chatbot products such as OpenAI
ChatGPT (OpenAI, 2024a) and Anthropic Claude (Anthropic, 2024), or code generation tools such
as GitHub Copilot (Github, Inc., 2023) and Amazon Q Developer (AWS, Inc., 2024).

While such tools often use RLHF (Kaufmann et al., 2024) to fine-tune for safety and helpfulness,
several have introduced features such as generation according to a schema (OpenAI, 2024b). For
those willing to run local inference on a language model, however, there are a vast array of tools
for constraining the output of a model to follow a template (Microsoft, 2023b; Sengottuvelu, 2023;
Automorphic, 2023; Microsoft, 2023a; SRI, 2023; Athiwaratkun et al., 2024), produce syntactically
valid code (Jones, 2023; Slatton, 2023; Willard & Louf, 2023; Takerngsaksiri et al., 2023; Melcer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2024), or conform to exotic poetry constraints (Roush et al., 2023). However, these works
almost universally use constrained generation to achieve this outcome. As we will discuss in the rest
of this paper, there are several additional ways to control the output of a LLM.

One set of methods, constrained generation (Beurer-Kellner et al., 2024; Geng et al., 2024; Melcer
et al., 2024), avoids errors by disabling the generation of any token that immediately leads to such
an error. While this method is effective, it can lead to the amplification of low-probability outputs.

Another class of methods avoids errors without any amplification of low-probability outputs, at
the cost of additional computation. Rejection sampling is the simplest such method; i.e. if the
output contains an error, simply generate another sample until the output is acceptable. Adaptive
Sampling with Approximate Expected Futures (ASAp) (Park et al., 2024) provides a performance
improvement over rejection sampling while maintaining the output distribution by effectively sam-
pling without replacement, but there are still many situations in which it may converge too slowly.
A third class of methods (Yang & Klein, 2021; Lew et al., 2023; Zhang et al., 2024), avoids errors
by estimating the posterior probability of an error occurring for a given prefix, and decreasing the
probability of generating prefixes that are more likely to lead to an error. These methods are usually
able to quickly generate a sample with little amplification of low-probability outputs, but rely on
being able to accurately estimate the posterior probability of an error.

Even when not controlling the output of a LLM, their autoregressive nature can lead to high in-
ference latency. One method to combat this, Speculative Decoding (Leviathan et al., 2023; Miao
et al., 2024), reduces latency by transforming the inherently sequential generation problem into a
parallelizable verification problem, at the expense of potentially wasting some computation. Several
extensions such as Medusa (Cai et al., 2024) and EAGLE (Li et al., 2024a;b) have improved the la-
tency and efficiency of speculative decoding, and a variant, Mentored Decoding (Tran-Thien, 2024)
further increases the speed of speculative decoding by allowing for some deviation from the LLM’s
probability distribution.

2 PRELIMINARIES

We first describe autoregressive language models and their properties. We then discuss speculative
decoding, a method closely related to the algorithm that we will introduce.

2.1 AUTOREGRESSIVE LANGUAGE MODELS

Algorithm 1 Generation with an autoregressive language model
procedure GENERATE(P, x1...n) ▷ Initial x1...n is the prompt

while Stopping condition not met do ▷ Typically special EOS token, and length limit
Sample one token xn+1 ∼ P (·|x)
Increment n

return x

We assume that a vocabulary V of tokens is provided. An autoregressive language model is a func-
tion approximator trained to predict P (xn|x1...n−1); the conditional probability of token xn ∈ V ,
given a sequence of existing tokens x1...n−1 ∈ V∗.

Algorithm 1 describes repeated sampling from a language model. This process results in an implicit
probability distribution over V∗: P (x1...n) =

∏
i∈[1...n] P (xi|x1...i−1).

Note that there are several other methods for token selection; i.e. greedy selection, beam search, etc.
While we focus on sampling, the techniques we present may also be applicable to other methods.

2.2 SPECULATIVE DECODING

Autoregressive language models with many parameters—LLMs—exhibit impressive performance
on many tasks, but can require considerable computational resources to evaluate. Moreover, the au-
toregressive sampling process is inherently sequential, meaning that additional parallel computation
resources cannot be fully utilized to decrease generation latency, especially for longer sequences.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 2 Speculative sampling procedure
procedure SPECSAMPLE(P, S, n, x1...m) ▷ xn+1...m are from SSM

for i ∈ [n+ 1 . . .m] do ▷ May be vectorized instead of iterative
r ← P (xi|x1...i−1)/S(xi|x1...i−1) ▷ Probabilities are already calculated and cached
with probability r do ▷ Always if r ≥ 1

continue ▷ Accept xi

else ▷ Reject xi, sample a replacement token
Calculate residuals R(t) = max(0, P (t|x1...i−1)− S(t|x1...i−1))
return x1...i−1, SAMPLE(NORMALIZE(R(·)))

return x1...m, SAMPLE(P (·|x1...m)) ▷ Accepted whole sequence, can sample xm+1

Speculative decoding (Leviathan et al., 2023; Miao et al., 2024; Cai et al., 2024; Li et al., 2024b) is
one popular approach to decrease latency. This method assumes the existence of a small speculative
model (SSM) S that approximates the LLM output, using fewer computational resources.

Given input tokens x1...n, the SSM is sampled autoregressively for m tokens, resulting in tokens
xn+1...m. Then, the LLM P is used to compute P (xi+1|x1...i) for i ∈ [n . . .m]; this computation is
parallelizable. Finally, Algorithm 2 is used to select a prefix x1...k for k ∈ [n,m] of tokens to accept;
all later tokens are discarded. Additionally, because the probabilities P (·|x1...k) have already been
computed, Algorithm 2 samples a new token xk+1. This process maintains the property that the
distribution of sequences produced by this process matches the sequence distribution of P .

While we focus on a different setting and notion of efficiency compared to speculative decoding,
we later show that an algorithm that determines how much of a given prefix to keep when using a
sample from one distribution to approximate another, such as Algorithm 2, is useful in the violation-
free generation domain.

3 PROBLEM STATEMENT AND EXISTING APPROACHES

Error Set B ⊂ V∗ is the set of strings containing errors.

We make the mild assumption that if string x1...n ∈ B, then all strings with x1...n as a prefix are
also members of B; i.e. adding additional text does not negate an error. Note that this assumption
requires careful design of the error set; for example, when profane words are substrings of benign
words (Francis, 2020), or un-parseable code can be made valid by adding additional text. B will
often be infinite size; therefore, most sampling methods treat it as a black-box indicator function.

We define the probability distribution obtained by sampling P , except for any elements of B:

P̂B(w) =

{
w ∈ B 0

w /∈ B P (w)∑
w/∈B P (w)

(1)

Problem 1. Given an autoregressive language model P over alphabet V , and error set B ⊂ V∗,
provide a method to sample from P̂B.

Rejection sampling is the most straightforward method for sampling from P̂B; however, it may
require a large number of evaluations as

∑
w∈B P (w) approaches 1. For example, consider a domain

where each token has, approximately, some non-zero probability p of being an error—we assume
that the language model has a somewhat consistent error rate per token. If d tokens are generated,
an output has approximately a (1 − p)d probability of being error-free; thus requiring on average

1
(1−p)d

generations. We consider such domains—domains where the probability of generating an
error approaches 1 for longer generations—to have dense error sets.

3.1 EXISTING APPROACH: CONSTRAINED GENERATION

Constrained generation attempts to solve the error-free generation problem by using a greedy algo-
rithm: during token selection, the algorithm always avoids selecting any tokens that immediately
lead to an error. Note that this algorithm assumes that if string x1...n /∈ B, then there exists at least

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x1…n

A

B

A

B

A

B

0.5

0.5

0.5

0.5

0.5

0.5

0.25

0.25

0.25

0.25

P(⋅ |x1…n)
Unconstrained

x1…n

A

B

A

B

A

B

0.33

0.67

0

1

0.5

0.5

0

0.33

0.33

0.33

̂Pℬ(⋅ |x1…n)
Ideal

x1…n

A

B

A

B

A

B

0.5

0.5

0

1

0.5

0.5

0

0.5

0.25

0.25

𝒞ℬ
P (⋅ |x1…n)

Constrained

Figure 1: Sampling in an example domain where B = {AA}. (Left) The language model assigns
equal probability to all sequences. (Center) With ‘AA’ as an error, its probability mass should be
equally redistributed to all other sequences. (Right) With constrained generation, the entire proba-
bility mass of ‘AA’ is shifted onto ‘AB’, significantly overrepresenting its probability.

one available token xn+1 ∈ V such that x1...n+1 /∈ B; however, this assumption may be weakened
if backtracking is allowed, in cases where every token leads to an immediate error.

The constrained generation algorithm has the effect of sampling from the following probability
distribution for each token:

CBP (xi|x1...i−1) = NORMALIZE

({
x1...i ∈ B 0

x1...i /∈ B P (xi|x1...i−1)

)
(2)

Repeated sampling of this distribution leads to some troubling properties.

As in Section 2.1, a repeated sampling process results in a derived distribution CBP (x1...n) =∏
i∈[1...n] CBP (xi|x1...i−1). It is often the case that for sequence x1...n, CBP (x1...n) ≫ P̂B(x1...n);

i.e. low-probability samples are amplified by the constrained generation process.

The fundamental issue is that the constrained generation algorithm commits to a given prefix, even
if the most probable sequences beginning with that prefix are errors. Figure 1 provides a simple
example of this occurrence. Note that this distortion is even worse in low-entropy scenarios; if
P (B|x1...n, A) were lowered to 0.0001, it would still be the case that CBP (AB|x1...n) = 0.5. This
amplification effect compounds exponentially for longer sequences.

3.2 EXISTING APPROACH: SAMPLING WITHOUT REPLACEMENT

Algorithm 3 ASAp
procedure ASAP(P,B, x1...n) ▷ x1...n is prompt

P̂B ← P
while Limit not reached do

Sample sequence xn+1...m ∼ P̂B(·|x1...n) until error or stopping condition
if x1...m /∈ B then break
P̂B ← ADDBADSAMPLE(P̂B , x1...m) ▷ Remove x1...m as a possible sequence

return X
procedure ADDBADSAMPLE(P̂B , x1...m)) ▷ In practice, only adjust xn+1...m

P̂B∪{x} ← P̂B

for xi ∈ (xm, . . . , x1) do ▷ Note that token sequence is reversed
▷ Remove probability of x1...m, without changing probability of any other sequence ◁

P̂B∪{x}(xi|x1...i−1)← P̂B(xi|x1...i−1)− P̂B(xi...m|x1...i−1)

Renormalize P̂B∪{x}(·|x1...i−1)

return P̂B∪{x}

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Adaptive Sampling with Approximate Expected Futures (ASAp) (Park et al., 2024) is a technique to
sample exactly from the distribution of P̂B. ASAp begins similarly to rejection sampling, but it iter-
atively builds set B ⊆ B containing all encountered samples that have been rejected so far. Because
B is finite, the conditional probabilities P̂B(xi|x1...i−1) can be efficiently calculated, allowing for
the algorithm to sample from P̂B exactly. If the sampled sequence is a member of B, it is added to
B, and the sampling process repeats.

In the limit of repeated samples, B will approach B, and therefore, P̂B will approach P̂B. Impor-
tantly, if x ∼ P̂B is sampled such that x /∈ B, this sample may be accepted, even though B ̸= B.

This procedure is equivalent to sampling without replacement, adapted to autoregressive genera-
tion. While ASAp succeeds in cases where there are only a small number of errors that comprise
the majority of the probability mass, its generation speed suffers when there are a large number of
errors—each error must be discovered before it is added to B. In dense probability sets, its perfor-
mance characteristics are similar to rejection sampling, as there are an exponential number of error
sequences that must be discovered as generation length increases.

3.3 EXISTING APPROACHES: POSTERIOR ESTIMATION

We note three additional methods that, although they use very different formalizations and
implementations from each other, rely on a similar core idea to approximately sample from
P̂B. In all cases, for any given prefix x1...n, these methods create an estimator of∑

xn+1...m∈Σ∗ P (xn+1...m|x1...n) × 1x1...m∈B; i.e. the likelihood of an error in all sequences that
begin a specific prefix, weighted by the probability of generating each sequence. This posterior
probability estimation is used to sample from P̂B. The difference between each method lies in how
they each perform the posterior estimation:

FUDGE (Yang & Klein, 2021) involves training a discriminator, usually a neural network or com-
bination of several networks, to directly estimate this probability. SMC Steering (Lew et al., 2023)
creates this estimate using Monte Carlo sampling. This method additionally incorporates optimiza-
tions such as sampling without replacement, and aggressive pruning of low-probability branches. In
contrast, Ctrl-G (Zhang et al., 2024) first distills a LLM into a Hidden Markov Model (HMM) with
a tractable number of states (thousands or tens of thousands). If the constraint can be expressed as a
Deterministic Finite Automaton (DFA) over tokens, Ctrl-G takes the product of the DFA and HMM,
and then calculates the probability of an error in this product system.

While these methods exhibit impressive results on many tasks, they may face issues in domains
where the posterior probability is close to 1, or where the probability has little to do with the content
of the prefix itself. We further discuss considerations for choosing a specific method in Section 6.1.

4 METHOD

We adapt ideas and algorithms from speculative sampling to a different context in order to create
a new violation-free decoding algorithm. Traditionally used as a method for enabling lower la-
tency through parallelization, we use the core speculative sampling operation to enable intelligent
backtracking behavior when an error is encountered.

4.1 PREVIOUS ITERATIONS OF ASAP ARE (ALMOST) SMALL SPECULATIVE MODELS

For some iteration of ASAp, with B as the set of observed errors so far, let x = (x1, . . . , xn) be
a trace drawn from P̂B , where it is discovered that x ∈ B. We observe that P̂B and P̂B∪{x} are
almost always near-identical probability distributions, with P̂B∪{x} generally as a “more accurate”
distribution because it incorporates an additional error sample.

Our method reduces computation by using the sample x ∼ P̂B to approximate a sample x′ ∼
P̂B∪{x}, in a similar manner to how speculative decoding uses a sample from a SSM to approximate
a sample from a LLM—rather than the probability distributions being generated by two separate
models, the distributions are both created from the same model, before and after adjusting for a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 4 Our Method: Approximately Aligned Decoding (AprAD)
procedure APPROXALIGNEDDECODING(P,B, x1...n) ▷ x1...n is prompt

▷ Additional implementation details in Appendix D ◁

P̂B ← P ▷ Adjusted probability distribution
m← n ▷ Current token index
while Stopping condition not met do

Sample one token xm+1 ∼ P̂B(·|x1...m)
Increment m
if x1...m ∈ B then

▷ Defined in Algorithm 3, implemented as trie update (Appendix–Algorithm 6) ◁
▷ Probabilities before update are queried and cached (Appendix D.2) ◁

P̂B∪{x} ← ADDBADSAMPLE(P̂B , x1...m)

x1...m ← SPECSAMPLE(P̂B∪{x}, P̂B , n, x1...m) ▷ Algorithm 2—m decreases
P̂B ← P̂B∪{x}

return x1...m

violating sample. By evaluating SPECSAMPLE(x, P̂B , P̂B∪{x}), our method obtains a prefix of x
that can be used as a starting point for sampling again. Because the distributions of P̂B and P̂B∪{x}

are so close to each other, this prefix is usually most of the length of x. In contrast, ASAp would
involve backtracking to the beginning of the generation. This process is given as Algorithm 4; we
refer to it as Approximately Aligned Decoding, or AprAD.

However, AprAD does not perfectly maintain the output distribution: Algorithm 4 amplifies some
sequence probabilities because it only invokes SPECSAMPLE after discovering an error. To main-
tain the output distribution, SPECSAMPLE should always be invoked for strings x1...n where
∃i ∈ [1 . . . n], P̂B(xi|x1...i−1) < P (xi|x1...i−1)—but the algorithm has no way of checking if
this condition holds without iterating through every suffix, negating any performance benefit.

Even though the AprAD does not perfectly maintain the output distribution, we show in the fol-
lowing sections that it provides a very useful midpoint in the tradeoff of computational complexity
versus task-specific performance and accuracy.

While the pseudocode represents a simple description our method, there are practical computational
issues with the implementation of ADDBADSAMPLE, and using SPECSAMPLE unmodified. In prac-
tice, it is beneficial to rely on a trie structure to cache model output probabilities and to allow efficient
renormalization. We include additional implementation details in Appendix D.

4.2 ANALYSIS

Let AB
P (x1...n) represent the probability of the AprAD method producing sequence x1...n.

For x1...n ∈ B,AB
P (x1...n) = 0 . For all other sequences, we provide evidence that AprAD more

closely follows the ideal distribution, compared to constrained generation. While the nature of the
iterative process makes it difficult to write a closed form description of the probability amplification
AB

P (x1...n)

P̂B(x1...n)
, less probability amplification occurs with AprAD than with constrained generation when

an error is detected, as an error’s probability mass is “distributed” over many sequences due to the
speculative sampling operation. In contrast, with constrained generation, an error’s probability mass
is moved entirely to sequences that share n− 1 prefix tokens.

We empirically show that AprAD is closer to the ideal distribution, compared to constrained decod-
ing, by creating a testbench to simulate an environment where the ideal distribution is known. The
testbench contains a simulated language model that always returns one of three tokens (A, B, and
C) with equal probability. We mark k sequences of length 3 as errors, and use the sampling method
under test to sample 10000 sequences of length 3. The ideal distribution is trivial to compute—
probability 1

27−k for every non-error sequence. To measure how a sampling process compares to
the ideal distribution, we compute the KL-divergence between the observed distribution and ideal.
Additionally, we measure the Generation Ratio; i.e. how many times the language model must be
evaluated, divided by the number of tokens generated in the output.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ASAp Constrained AprAD (Ours)
Error Set KL-div Ratio KL-div Ratio KL-div Ratio
∅ 0.0014 1.000 0.0014 1.000 0.0014 1.000

AAA 0.0014 1.020 0.0075 1.000 0.0046 1.004
AAA, AAC 0.0012 1.041 0.0429 1.000 0.0157 1.013
AAA, ACC 0.0013 1.042 0.0138 1.000 0.0093 1.009
AAA, CCC 0.0010 1.044 0.0155 1.000 0.0074 1.010

AAA, AAB, ABA, BAA 0.0013 1.093 0.0504 1.000 0.0224 1.024
A** except AAC 0.0014 1.232 0.3836 1.113 0.1540 1.205

*** except AAA, AAB, ABA, BAA 0.0000 3.644 0.1771 1.670 0.0521 2.142
*** except AAA, BAA 0.0000 5.701 0.0000 1.784 0.0000 2.653

Table 1: KL-Divergence and generation ratios for simulated task with various error sets. Lower is
better for both. Stars in the error set are wildcards; i.e. AB* means ABA, ABB, and ABC. Note
that constrained generation will backtrack if all tokens for a given prefix are disallowed, resulting in
ratios greater than 1 for some error sets.

The results are shown in Table 1, indicating that our method approximates the ideal distribution
more closely than constrained generation, with a lower generation ratio than ASAp.

5 EVALUATION

While Section 4.2 shows that our method performs well in a simulated domain, the following exper-
iments test the sampling methods on a series of more difficult, real-world tasks.

5.1 LIPOGRAMS (TEXT GENERATION WITH LETTER EXCLUSIONS)

It is common in poetry or creative writing exercises to write text without using a specific letter; a
product of this exercise is called a lipogram. Lipograms where the excluded letter is a vowel tend to
be more difficult to create than with other letters. Large language models often fail at this task, and
more generally, most tasks dependent on individual letters rather than entire tokens.

We use Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) to generate lipograms with vowels as the ex-
cluded letter. We prompt the LLM to perform one of five simple tasks (detailed in Appendix A).
Each task is appended to instructions to avoid using one of the five vowels, resulting in 25 prompts.

For each prompt, we generate a completion with four sampling methods: unconstrained generation,
constrained generation, ASAp, and AprAD, for up to 200 tokens. If the process reaches 2000 model
invocations, generation is interrupted, and the last sequence before an error was detected is returned.

We then randomized the generations, hid the labels of which generation correspond to each method,
and asked human raters to score each completion on quality, regardless of if the constraint was
followed, on a scale of 1-5. If the forbidden letter is detected in the output, we then mark the
constraint as violated. Otherwise, we also ask the human raters to decide if the output violates
the intent of the constraint; i.e. by answering in a foreign language, adding unnecessary accents,
swapping for Cyrillic lookalike characters, or misspelling words to avoid the vowel. Additional
information about the rating process is provided in Appendix A.

The results of this evaluation are provided in Table 2, and a representative sample of the outputs are
provided in Figure 2. All outputs and rater scores are included in the supplemental material, and
additional examples are provided in Appendix E.

As shown by these results, AprAD consistently produces high-quality outputs, nearly matching
the readability of unconstrained generation. Additionally, it consistently follows the intent of a
constraint—while all methods except for unconstrained generation follow the constraint, constrained
generation often does so in an undesirable manner, rather than by selecting appropriate words that
do not contain the banned letter. Finally, while the computation required by AprAD is more than
constrained generation, our method is usually able to finish generation in the allotted computation
limit, while ASAp struggles to generate more than a handful of tokens with the same constraint.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Quality (1-5) Constraint Intent (1-3) Gen. Ratio
Constrained 3.56 ± 1.69 2.32 ± 0.90 1.00 ± 0.00

Ours 4.52 ± 1.16 2.84 ± 0.55 4.20 ± 4.53
ASAp 1.72 ± 1.17 2.36 ± 0.81 321.00 ± 397.14

Unconstrained 4.68 ± 0.85 1.00 ± 0.00 1.00 ± 0.00

Table 2: Lipogram evaluation results, including subjective rater evaluations of output quality and
adherence to the constraint. Higher is better for Quality and Constraint Intent; lower is better for
Generation Ratio. Note that constraint intent is automatically set to 1 if the banned letter is detected
in the output. Generation is stopped after 2000 model invocations and the output provided as-is; for
ASAp, this often resulted in very short outputs and thus extreme generation ratios and low scores.
Several raters interpreted these short outputs as violating constraint intent.

Summarize the history of artificial intelligence without using the letter "A". AprAD (Ours)
The history of intelligent technology unfolds through key milestones in computing. In the
mid-20th century, pioneering minds nurtured the seeds of this field through the development
of logistic models, which evolved into expert systems in the 1960s. These systems, relying on
heuristics, could solve complex problems in fields like medicine or meteorology.

Summarize the history of artificial intelligence without using the letter "A". Unconstrained

In the early days, brilliant minds pondered on creating machines that could mimic human
intelligence. These pioneers, including Alan Turing and Marvin Minsky, theorized and exper-
imented. They aimed to create intelligent machines, using logic and mathematics.

Summarize the history of artificial intelligence without using the letter "A". ASAp

History of Intelligence

Summarize the history of artificial intelligence without using the letter "A". Constrained

In the mid-20th century, scientists delved deep into investiging computionl modeles for intel-
ligencen modeled on the workings of the brn. Pioneers such как E.N. Turing, Clrk Quincy
Shrffngton, иnddd W. Ross Quilp, аnd Маrvin Minsky led ths fld. They explored logic-gаted
progrаms, thm brgth mchr tо lf understnding the cptures of th gnntl mind.

Figure 2: Representative generation samples for all four methods, using MISTRAL-7B-INSTRUCT-
V0.2. Appearance of the banned letter is bolded, and non-ASCII characters (all Cyrillic in this
example) are colored red. Full samples are provided in Appendix E.

5.2 BIGCODEBENCH HALLUCINATION AVOIDANCE

We created a program to incrementally detect hallucinated API calls in partial Python programs,
based on the Pyright language server (Microsoft, 2019). Note that in order to satisfy the assump-
tions in Section 3—that any string with an error as a prefix is itself an error—we constructed the
detector to act conservatively. False negatives are strongly preferred over false positives. For ex-
ample, even if name foo is never defined, the detector does not consider the incomplete program
“example(foo.bar” as an error, because it is possible to later add text that turns the function
argument into a generator expression that binds foo.

We compare the performance of AprAD, constrained to avoid producing code with hallucinated
API calls, relative to other sampling methods by evaluating on BigCodeBench (Zhuo et al., 2024), a
benchmark that focuses on practical programming tasks, often requiring the use of common libraries.
An analysis of the solutions that several common LLMs generate reveals that their solutions often
require imports available in the testing environment, but which are not listed in the prompt. In order
for the hallucination detection program to discover these available resources, we add all imports
available in the test environment to the dataset prompt for this experiment.

For all sampling methods, we use Starcoder2 (Lozhkov et al., 2024), in the 7B and 15B model sizes.
We generate 5 samples for each task, with temperature 0.8, and a top-p of 0.95. In addition to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Size Method Pass@1 Pass@5 !NameErr@1 !NameErr@5 Gen. Ratio

15b

Unconstrained 0.214 0.498 0.831 0.996 1.000 ± 0.000
Ours 0.259 0.541 0.976 1.000 1.080 ± 0.385

ASAp 0.261 0.536 0.976 1.000 1.555 ± 3.906
Constrained 0.221 0.506 0.930 1.000 1.005 ± 0.053

7b

Unconstrained 0.119 0.345 0.800 0.987 1.000 ± 0.000
Ours 0.145 0.375 0.950 0.993 1.064 ± 0.402

ASAp 0.152 0.395 0.952 0.993 1.468 ± 2.574
Constrained 0.124 0.345 0.891 0.993 1.005 ± 0.029

Table 3: Subset of tasks where at least one trial results in a different output for any method: 233
tasks (20.4%) for 15b, 304 tasks (26.7%) for 7b. For both model sizes, of the tasks where at least
one model output is different, an average of 1.5 out of 5 outputs are different. Lower is better for
generation ratio; higher is better for all others. Our method approaches the task performance of
ASAp, with a generation ratio close to that of constrained generation.

evaluating the pass@1 and pass@5 rates on execution-based tests, we log if the evaluation specif-
ically fails with a NameError or UnboundLocalError as an indicator that the generation included a
hallucinated API call,1 and calculate the rate at which this does not occur.

Note that all methods use the same random seed, so the outputs only diverge if and when the detector
activates. Table 3 shows the results for all tasks where the outputs diverge in any method; Table 5
(Appendix) also includes the tasks for which all methods return identical results. As the results
show, the output quality of AprAD is close to ASAp, while its generation ratio is much lower.

6 DISCUSSION

As introduced in Section 3.3, there are several methods to control the output of a LLM based on
estimating the posterior probability of constraint violation; we collectively term these posterior
estimation-based techniques. In contrast, AprAD, as well as ASAp and constrained generation, are
sampling-based techniques. A high-level overview of each method is presented in Table 4.

6.1 POSTERIOR ESTIMATION-BASED METHODS

While posterior estimation-based techniques excel at many tasks, they tend to struggle when the
probability of a constraint violation does not necessarily depend on a given text prefix. For example,
the probability of a LLM generating text without the letter ‘e’ is close to 0 regardless of if the prefix
is “Long ago”, or if the prefix is “In a galaxy far away,” as the probability of generating a specific
vowel mostly depends on the arbitrary behavior of a language model. It is unlikely that a learned
discriminator or a HMM would capture this specific behavior, and it would require an extraordinary
number of Monte Carlo samples to accurately calculate the posterior probability.

In contrast, during code generation, the posterior probability of generating a hallucinated method
name may depend on the prefix text, and so a practitioner may wish to consider a posterior
estimation-based method. For example, a misleading comment that mentions a specific method
all but ensures that this method will be generated on the next line. If FUDGE is able to learn a
discriminator to predict hallucinated methods, it would be possible to use that method to control the
generation. SMC Steering would work as well, but may require a large amount of computation, even
on tasks with a relatively sparse constraint. However, we note that it would be difficult to represent
a constraint on hallucinated method names as a DFA for use with Ctrl-G.

1This is an undercount of the number of hallucinated names: many outputs include hallucinations, but fail
before reaching the hallucinated variable or method name, resulting in some other error. Some hallucinated
method names lead to an AttributeError being raised. However, AttributeError is also raised for improper use
of None, and similar issues that are not a result of hallucination, so we do not count it as a NameError.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method Runtime ↓ Conform ↑ Constraint Posterior Estimate
AprAD (Ours) Medium Medium Black Boxa Not Required

ASAp (Park et al., 2024) High High Black Boxa Not Required
Constrained (Multiple) Low Low Black Boxa Not Required

FUDGE (Yang & Klein, 2021) Lowb High Prefix-Dependentc Learn Discriminator
SMC Steering (Lew et al., 2023) High High Black Boxa Sample Rollouts

Ctrl-G (Zhang et al., 2024) Lowb High Represent as DFA Exact in HMM
a Oracle classifies whether a given output violates constraint.
b Requires additional one-time training step per task.
c Possible to determine probability of constraint violation from incomplete prefix.

Table 4: High-level comparison of several methods for controllable generation with a LLM, with
subjective estimate of inference overhead and conformance to the LLM’s original output distribu-
tion, and a brief description of constraint expressivity and method of posterior estimation.

6.2 A SPECTRUM OF SAMPLING-BASED METHODS

Sampling-based methods are able to generate text that does not violate a constraint, even in domains
where it is difficult to obtain an accurate estimate of the posterior probability. The choice of specific
method depends on the user’s desired tradeoff between computational overhead, and conformance
to the LLM’s original distribution. As our experiments show, a mild deviation from the LLM’s
distribution is not fatal to generation quality, but it should be kept to a manageable level.

As stated previously, AprAD lies at a midpoint between ASAp and constrained generation. We
observe that all three algorithms may be characterized as one algorithm, parameterized by its back-
tracking behavior (Appendix C). However, a user may wish to obtain behavior with slightly lower
overhead than AprAD, or with greater conformance to the LLM’s distribution, without moving all
the way to either extreme of ASAp or constrained decoding. In this case, it may be possible to
introduce a hyperparameter h to AprAD.

We propose a modification to Line 3 of Algorithm 2 as follows: we set r to equal
(

P (xi|x1...i−1)
S(xi|x1...i−1)

)h

;
when h = 1, it reduces to the unmodified version of AprAD. The value of r controls the probability
that a specific token in the prefix is not discarded after a violation is encountered. When h = 0, r will
always equal 1, meaning that the entire prefix is always kept, mimicking the behavior of constrained
generation. In contrast, as h approaches infinity, r will tend towards zero, leading to less of the
prefix being kept, as with ASAp. We conjecture that values between these extremes will result
in reasonable behavior at any point along this spectrum, though we leave a more comprehensive
analysis of such modifications to this algorithm as future work.

7 CONCLUSION

As our experiments show, Approximately Aligned Decoding is an effective method to generate
sequences under dense language model constraints. It is straightforward to implement, requires no
separate training step, introduces a manageable amount of inference overhead, and performs well on
a variety of real-world and synthetic tasks.

REFERENCES

Anthropic. Meet claude, 2024. URL https://www.anthropic.com/claude.

Ben Athiwaratkun, Shiqi Wang, Mingyue Shang, Yuchen Tian, Zijian Wang, Sujan Kumar Gonu-
gondla, Sanjay Krishna Gouda, Rob Kwiatowski, Ramesh Nallapati, and Bing Xiang. Token
alignment via character matching for subword completion, 2024. URL https://arxiv.
org/abs/2403.08688.

Automorphic. Trex. automorphic-ai, August 2023.

AWS, Inc. AI Coding Assistant - Amazon Q Developer - AWS. https://aws.amazon.com/
q/developer/, 2024.

10

https://www.anthropic.com/claude
https://arxiv.org/abs/2403.08688
https://arxiv.org/abs/2403.08688
https://aws.amazon.com/q/developer/
https://aws.amazon.com/q/developer/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Guiding llms the right way: Fast, non-
invasive constrained generation, 2024. URL https://arxiv.org/abs/2403.06988.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple LLM inference acceleration framework with multiple decoding heads, 2024.
URL https://arxiv.org/abs/2401.10774.

Darryl Francis. The Scunthorpe problem. Word Ways, 53(2), May 2020. URL https:
//digitalcommons.butler.edu/wordways/vol53/iss2/12.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-constrained decoding
for structured nlp tasks without finetuning, 2024. URL https://arxiv.org/abs/2305.
13971.

Github, Inc. GitHub Copilot · Your AI pair programmer. https://github.com/features/copilot, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Evan Jones. Llama : Add grammar-based sampling.
https://github.com/ggerganov/llama.cpp/pull/1773, 2023.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback, 2024. URL https://arxiv.org/abs/2312.14925.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023. URL https://arxiv.org/abs/2211.17192.

Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K. Mansinghka. Sequential monte
carlo steering of large language models using probabilistic programs, 2023. URL https://
arxiv.org/abs/2306.03081.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees, 2024a. URL https://arxiv.org/abs/2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty, 2024b. URL https://arxiv.org/abs/2401.15077.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-
mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, De-
nis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,
Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,
Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yix-
uan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xian-
gru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank
Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Can-
wen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Car-
los Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von
Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL
https://arxiv.org/abs/2402.19173.

Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained decoding for
code language models via efficient left and right quotienting of context-sensitive grammars, 2024.
URL https://arxiv.org/abs/2402.17988.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, Chunan Shi, Zhuoming Chen, Daiyaan
Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification. In Proceedings of the 29th ACM In-
ternational Conference on Architectural Support for Programming Languages and Operating

11

https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2401.10774
https://digitalcommons.butler.edu/wordways/vol53/iss2/12
https://digitalcommons.butler.edu/wordways/vol53/iss2/12
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2305.13971
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2401.15077
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.17988

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Systems, Volume 3, ASPLOS ’24. ACM, April 2024. doi: 10.1145/3620666.3651335. URL
http://dx.doi.org/10.1145/3620666.3651335.

Microsoft. Pyright, 2019. URL https://github.com/microsoft/pyright.

Microsoft. Guidance. Microsoft, August 2023a.

Microsoft. TypeChat. https://microsoft.github.io/TypeChat/, 2023b.

OpenAI. Chatgpt, 2024a. URL https://openai.com/chatgpt/overview/.

OpenAI. Introducing structured outputs in the api, 2024b. URL https://openai.com/
index/introducing-structured-outputs-in-the-api/.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick, Nadia Polikarpova, and Loris D’Antoni.
Grammar-aligned decoding, 2024. URL https://arxiv.org/abs/2405.21047.

Allen Roush, Sanjay Basu, Akshay Moorthy, and Dmitry Dubovoy. Most language models can be
poets too: An ai writing assistant and constrained text generation studio, 2023. URL https:
//arxiv.org/abs/2306.15926.

Rahul Sengottuvelu. Jsonformer: A Bulletproof Way to Generate Structured JSON from Language
Models., August 2023.

Grant Slatton. Added context free grammar constraints · grantslat-
ton/llama.cpp@007e26a. https://github.com/grantslatton/llama.cpp/
commit/007e26a99d485007f724957fa8545331ab8d50c3, 2023.

SRI. LQML. SRI Lab, ETH Zurich, August 2023.

Wannita Takerngsaksiri, Chakkrit Tantithamthavorn, and Yuan-Fang Li. Syntax-Aware On-the-Fly
Code Completion, May 2023.

Vivien Tran-Thien. An optimal lossy variant of speculative decod-
ing, 2024. URL https://huggingface.co/blog/vivien/
optimal-lossy-variant-of-speculative-decoding.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Brandon T. Willard and Rémi Louf. Efficient guided generation for large language models, 2023.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.naacl-main.276. URL http://dx.doi.org/10.18653/
v1/2021.naacl-main.276.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck, and Nanyun Peng. Adapt-
able logical control for large language models, 2024. URL https://arxiv.org/abs/
2406.13892.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and
Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls
and complex instructions, 2024. URL https://arxiv.org/abs/2406.15877.

12

http://dx.doi.org/10.1145/3620666.3651335
https://github.com/microsoft/pyright
https://microsoft.github.io/TypeChat/
https://openai.com/chatgpt/overview/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://arxiv.org/abs/2405.21047
https://arxiv.org/abs/2306.15926
https://arxiv.org/abs/2306.15926
https://github.com/grantslatton/llama.cpp/commit/007e26a99d485007f724957fa8545331ab8d50c3
https://github.com/grantslatton/llama.cpp/commit/007e26a99d485007f724957fa8545331ab8d50c3
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
http://dx.doi.org/10.18653/v1/2021.naacl-main.276
http://dx.doi.org/10.18653/v1/2021.naacl-main.276
https://arxiv.org/abs/2406.13892
https://arxiv.org/abs/2406.13892
https://arxiv.org/abs/2406.15877

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A LIPOGRAM EVALUATION DETAILS

We provide the following prompts to the language model, as well as the relevant special tokens to
delimit user instructions and chat turns.

1. Write a story without using the letter “[A/E/I/O/U]”.

2. Describe elephants without using the letter “[A/E/I/O/U]”.

3. Provide instructions to tie a tie without using the letter “[A/E/I/O/U]”.

4. Critique the Mona Lisa without using the letter “[A/E/I/O/U]”.

5. Summarize the history of artificial intelligence without using the letter “[A/E/I/O/U]”.

Each prompt is combined with each vowel, resulting in 25 prompts. With four sampling methods,
this results in 100 total generations.

During sampling, we use a top-k of 20, and temperature of 0.8.

A.1 RATER INSTRUCTIONS AND DETAILS

We create a file that only contains the 100 prompt-completion pairs, without information on which
method generated each completion. All samples are shuffled in random order.

We selected four AI researchers not otherwise directly involved in the experimental evaluation of
this method as human raters, to evaluate 25 samples each. The labels of which method corresponded
to each output were hidden from the reviewers. We provided the following instructions to the raters:

This file contains a set of prompts, and responses using one of several meth-
ods. Each prompt contains a constraint to not use a specific letter. Irrespective
of whether the response follows the constraint, rate the response quality on a scale
of 1-5 in the “Score” column, noting that generation is always cut off after 200
tokens.
Additionally, rate how well the response follows the intent of the constraint in the
“Follows Intent” column. Examples of not following the intent include working
around the constraint by excessively dropping letters, using unnecessary accents,
writing Unicode lookalike letters, or responding in a foreign language, rather than
through selecting appropriate words that satisfy the constraint. This column is
pre-filled with ‘X’ if the output contains the banned letter. Otherwise, write 1 if it
violates the intent, 2 if it is ambiguous, and 3 if it does not.

We additionally highlighted the presence of non-ASCII lookalike letters to the human raters. The
complete model outputs, and the scores that each rater assigned, are provided in the supplementary
material. Additional example outputs are provided in Appendix E.

B ADDITIONAL BIGCODEBENCH RESULTS

Size Method Pass@1 Pass@5 !NameErr@1 !NameErr@5 Gen. Ratio

15b

Unconstrained 0.306 0.582 0.950 0.995 1.000 ± 0.000
Ours 0.316 0.590 0.980 0.996 1.016 ± 0.177

ASAp 0.316 0.589 0.980 0.996 1.113 ± 1.780
Constrained 0.308 0.584 0.971 0.996 1.001 ± 0.024

7b

Unconstrained 0.202 0.466 0.927 0.993 1.000 ± 0.000
Ours 0.208 0.475 0.967 0.995 1.017 ± 0.209

ASAp 0.210 0.479 0.968 0.995 1.125 ± 1.345
Constrained 0.203 0.467 0.952 0.995 1.001 ± 0.015

Table 5: Results for each method on entirety of BigCodeBench. Note that these results are identical
to those in Table 3, except that they are consistently offset and scaled to include values for tasks in
which all tasks return the same result.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5 includes results for the entirety of BigCodeBench; not just the tasks for which the methods
diverged in their output.

C GENERALIZATION OF ERROR-FREE DECODING

Constrained generation, ASAp, and AprAD may all be generalized by their backtracking behavior
after an error is discovered. Algorithm 5 shows this generalization.

Algorithm 5 Many error-free decoding methods may be generalized by their behavior after an error
procedure ERRORFREEDECODING(P,B, x1...n, STRATEGY)

P̂B ← P
m← n ▷ Current token index
while Stopping condition not met do

Sample one token xm+1 ∼ P̂B(·|x1...m)
Increment m
if x1...m ∈ B then

P̂B∪{x} ← ADDBADSAMPLE(P̂B , x1...m) ▷ Algorithm 3
x1...m ← STRATEGY(P̂B , P̂B∪{x}, x1...m) ▷ m may decrease
P̂B ← P̂B∪{x}

return x1...m

procedure APRADSTRATEGY(P̂B , P̂B∪{x}, x1...m)
return SPECSAMPLE(P̂B , P̂B∪{x}, 0, x1...m) ▷ Algorithm 2

procedure ASAPSTRATEGY(P̂B , P̂B∪{x}, x1...m)
return [] ▷ Backtrack to beginning

procedure CONSTRAINEDDECODINGSTRATEGY(P̂B , P̂B∪{x}, x1...m)
return x1...m−1 ▷ Delete the error token but don’t backtrack further

D IMPLEMENTATION DETAILS

D.1 TRIE-STRUCTURED PROBABILITY CACHE, ADDBADSAMPLE, AND CACHED
PROBABILITIES

After each token probability distribution is generated from the language model, we add it to a trie
structure.

The node representing prefix x1...m contains the following:

• A single token xm, and a pointer to a parent node representing x1...m−1

• The original probabilities generated by the LLM P (·|x1...m).

• The modified conditional probabilities P̂B(·|x1...m).

– Due to floating point implementation issues, and efficiency, we store these mod-
ified probabilities un-normalized; i.e. we store a table P̂B∗(·|x1...m) where∑

xm+1∈Σ P̂B∗(xm+1|x1...m) ≤ 1.

– We track this sum in a variable, f , and divide the un-normalized probabilities by f
as necessary to obtain normalized probabilities. When f is small, and likely to suffer
from accumulated floating point errors, we periodically recalculate it by summing the
P̂B∗ table.

– Additionally, when an entry of P̂B∗ is sufficiently small, or becomes negative, we
assume that its value is zero, but has suffered from accumulated floating point errors;
we therefore set it to zero.

This structure allows for an efficient implementation of ADDBADSAMPLE, as given in Algorithm 6.
The same trie structure is also used to track the adjusted probabilities for the comparison methods.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 6 An implementation-oriented description of ADDBADSAMPLE

procedure ADDBADSAMPLE(Node n) ▷ n represents a violating sample
t← n.token
c← n.parent ▷ Current node
r ← 1
while c is not null do

▷ Calculate r as probability of violating sample in c, in original distribution ◁
r ← r × c.P (t)

c.P̂B∗(t)← c.P̂B∗(t)− r
c.f ← c.f − r ▷ Recalculate c.f as sum of c.P̂B∗ if needed due to FP errors
t← c.token
c← c.parent

D.2 BACKTRACKING STRATEGIES

Our implementation uses essentially the same structure as detailed in Appendix C, where it is param-
eterized by a backtracking strategy. However, it would be complex to maintain full probability tries
representing both P̂B and P̂B∪{x} every time a violating sample is found. We observe that it is un-
necessary to do so; rather, we only need both probabilities along the “path” of the violating sample;
i.e. P̂B(x1), P̂

B(x2|x1), . . . P̂
B(xm|x1...m−1). Therefore, we invoke COLLECTPROBABILITIES

(Algorithm 7) before calling ADDBADSAMPLE.

Algorithm 7 Collect all probabilities along a path
procedure COLLECTPROBABILITIES(Node n)

t← n.token
c← n.parent ▷ Current node
o← []
while c is not null do

▷ Calculate r as probability of violating sample in c, in original distribution ◁

APPEND(o, c.f × c.P̂B∗(t))
t← c.token
c← c.parent

return REVERSE(o)

The SPECSAMPLE algorithm is used nearly unmodified, except that P is given by the adjusted
conditional probabilities in the trie, and S is given by the list collected by COLLECTPROBABILITIES.

We make one modification to constrained decoding, necessary due to our use of top-p sampling such
that there may not always be an available token that satisfies the constraint in the next step. If the
current leaf node of the probability trie has no non-zero entries in P̂B∗, then our implementation of
constrained decoding will backtrack until there is at least one available continuation.

E ADDITIONAL LIPOGRAM EXAMPLES

The following pages contain generations from 10 random prompts of the lipogram task. The exam-
ples are not cherry-picked; all generations are available in the supplemental material. If the banned
letter appears—this occurs in all unconstrained examples, and no other method—it is bolded. Non-
ASCII characters are highlighted in red. We include </s> where the language model chooses to stop
generation; otherwise, it was cut off after 200 tokens or 2000 model invocations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Provide instructions to tie a tie without using the letter "I". AprAD (Ours)
To create an elegant neckwear look, follow these steps to adorn your collar:
1. Gather your tools: Choose a well- Press your collar down and adjust the top button.
2. Select the perfect knot: There are many knots to choose from; select a preferred one.
3. Dress your end: Take the end nearest to you and form a loop, called the "small" or "narrow"
end.
4. Create an overlap: Cross the longer end, called the "large" end, over the loop.
5. Form a second loop: Take the small end and make another loop.
6. Create a "V" shape: Place the large end over the two loops. Adjust for symmetry.
7. Repeat: Cross the small end over the large end, then the large end over the small end to
create a "V" shape once more.
8. Tuck and adjust: T

Provide instructions to tie a tie without using the letter "I". Unconstrained

To create an elegant necktie knot, follow these steps:
1. Lay the tie flat on the table with the wide end (the end you’ll be tying first) facing you. The
thin end (the side you’ll be attaching to theshirt) should be hanging on the left.
2. Cross the wide end over the thin end and bring it behind the looped thin end.
3. Now, pass the wide end over the looped thin end from left to right, going around the back
of the necktie.
4. Keeping the wide end behind the looped thin end, cross it over to the left side and bring it
in front of the looped end.
5. Now, the wide end should be on the left and the looped end on the right. Cross the wide
end over the looped end again to the right side.
6. Pass the wide end under

Provide instructions to tie a tie without using the letter "I". ASAp

To create

Provide instructions to tie a tie without using the letter "I". Constrained

To create an elegant necktube knot for your formal att attar, follow these steps:
1. Lay the necktube flat on the table, end towards you.
2. Fold one end about four to four and a half инches (10-12 cm) over the other end.
3. Create a loop, called the "small loop," by fold the part of the necktube above the folded end,
about two to three инches (5-7.5 cm) down.
4. Create a second loop, called the "large loop," by fold the part of the necktube around your
neck, and rest the large loop over the small loop.
5. Tuck the end of the necktube under the large loop, then the small loop.
6. Pass the end of the necktube under the small loop and through the hole created by the knot.
7. Tug on

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Provide instructions to tie a tie without using the letter "O". AprAD (Ours)
1. Begin with the tie unwinded and the widest end (the "bracelet end") tucked under the
neckband.
2. Bring the wider end (the "tie end") behind the neckband, then tuck it under the bracelet end
and pin it in place with a thin fabric "shelf" called the "keeper."
3. Create a "Wing Tip" by lifting the neckband and slipping the tie end under it, then pull it up
evenly and adjust the width until it’s level with the bracelet end.
4. With the tie end still held in place with the neckband, create a "Shelf" by lifting the bracelet
end and passing the tie end beneath it, then adjust the tie width again by pulling the tie end
evenly.
5. Create a "Three-inch rule" by sliding the bracelet end up three inches (7.6 cm

Provide instructions to tie a tie without using the letter "O". Unconstrained

1. Begin by laying out your tie on a flat surface with the wide end, known as the "tail," facing
you. The narrower end is called the "Tip."
2. Cross the Tip over the Tail from left to right.
3. Bring the Tail around the back of the neck and cross it over the Tip.
4. Now, take the Tip and thread it under the loop created by the Tail.
5. Pull the Tip up through the loop.
6. Adjust the position of the Tip and Tail to achieve a symmetrical knot.
7. Repeat the process on the other side, crossing the Tip over the Tail, bringing the Tail around
the back, threading the Tip under the loop, and pulling it through.
8. With both sides adjusted, adjust the knot one final time to ensure a neat and symmetrical
look.</s>

Provide instructions to tie a tie without using the letter "O". ASAp

1

Provide instructions to tie a tie without using the letter "O". Constrained

1. Begin by laying the necktie flat in a figure eight shape. The wide end (called the "butt end")
will be anchered at the left side, and the thin end (called the "tip end") will be adjusted at the
right side.
2. Bring the right side (the side with the tip end) up and behind the left side, creating a "U"
shape, then pull it straight up and tuck the tip end under the wide part at the nape (the back
part) near the center.
3. Next, bring the left side up and pass it (the wide end) behind the neck, then pull it straight
up and rest it against the right side.
4. With the left side still in hand, take the right side (tip end) and bring it up and pass it behind
the left side.
5. Tuck the tip end behind and under the wide part (where the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Write a story without using the letter "E". AprAD (Ours)
In a quaint, old-world town, a mystical story unfolds. A solitary knight, Sir Gavr, hails from a
distant land. His mission was vital, as his king had sought his aid. A monstrous dragon, with
a long, sinuous form, had laid claim to a bountiful land.
Sir Gavr, galloping through twisting hills and past lilac valms, his stallion, Swiftpaw, carrying
him swiftly. Through woodlands dark and mossy, a path narrow and winding. His armor
glinting gold, a radiant sight, as knight and mount, in rhythmic flight, cut through air, crisp
and light.
A labyrinth of hills and hollows, Sir Gavr and Swiftpaw, onward bound. A looming mountain,
a daunting sight, as dragon’s lair, a

Write a story without using the letter "E". Unconstrained

In a quaint, old-world village lived a wise artisan named Gobo. His humble abode was nestled
’twixt a grove of towering, verdant trees. His days were passed in crafting intricate, exquisite
pottery pieces, each more beautiful than the last.
Gobo sourced clay from a nearby stream, where its cool, crystalline waters danced over
smooth, mossy pebbles. The sun, a golden orb, bathed the clay in warm hues before Gobo
shaped it with skilled, nimble fingers. A wheel, spun by muscular arms, transformed the
malleable substance into symmetrical rounds.
Once shaped, pieces were set to dry under the clear, azure sky. With patience, they trans-
formed into delicate, hardened creations. With deft strokes, Gobo adorned pots and bowls
with intricate,

Write a story without using the letter "E". ASAp

I.

Write a story without using the letter "E". Constrained

In a quaint, old-world town, N, a kindly cobblер, dwlt with his donk mulk. His daily task
was to mak sho’d that N’s villagrs’ shojs staid sound. With nimbl fingrts and skillful hand, N
smotd, nwd, and polisht prgrssvly.
Bys N’s humbl abod, a gldng fountain splshd light thru wndw shds. It was a gif frm hm t Ols
N., N’s fav or old fnd, who hd lvd n ths tow n yrs ag.
Today, though, N fnd dffrlt to wk. Hs thmb, hnd, awoy aggrv, paining hm wth sharp, stng p

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Describe elephants without using the letter "O". AprAD (Ours)
Elephants are large, gray, thick-skinned pachyderms, characteristically having extended,
curved tusks, and a fan-shaped, large ear structure. They are the largest living terrestrial an-
imals, with a distinct, massive build. These gentle giants have a wrinkled visage, and large,
dangling, gray, prehensile ears, which are effective at dissipating heat. The trunk, a lengthy,
muscular, and versatile appendage, is an integral feature, serving multiples uses, including
breathing, grasping, and trumpeting. Their legs are pillar-like, ending in large, flat feet, which
help them maneuver in diverse terrains. Their size and strength make them apex terrestrial
animals, and they are crucial elements in their respective habitats.</s>

Describe elephants without using the letter "O". Unconstrained

Elephants are large, gray, thick-skinned pachyderms, known for their long, curved tusks.
They are the largest land animals, reaching up to 13 feet in length and 10 feet in height at
the shoulder. With strong, sturdy legs, they support up to 13,000 pounds. Their elongated
trunk, a flexible extension of their upper lip, is used for tasks including grasping food and
water, trumpeting, and bathing. Their ears, which function in both temperature regulation and
communication, can reach up to 5 feet in width. These gentle giants live in herds, displaying
complex social behaviors and intricate hierarchies.</s>

Describe elephants without using the letter "O". ASAp

Large, gray, thick-sk

Describe elephants without using the letter "O". Constrained

Elephants are large, gray, thick-skinned pachyderms, inhabiting African and Asian savan-
nas, rain-drenched jungles, and diverse habitats in between. Kneeling, they rest their mas-
sive, curved tusks, used primarily in feeding and defense, against the jungle’s underbrush.
Their elastic, dexterity-laden trunks, extended appendages, twist and twirl, grabbing leaves,
branches, and fruits. Their bulbus, enlarged, sensitive tips, caress and manipulate their quench-
ing water and tender infants. Males and females, banded, marked, and tusked, live in matri-
archal, familial, and herd-like structures, their distinct, rumbling rumbles, a testament, that
despite their gargantuan frames, these gentle giants are an integral part, in the intr

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Critique the Mona Lisa without using the letter "E". AprAD (Ours)
In this artwork, a captivating woman, known as La Joconda or La Hora, holds a puzzling grin.
A portrait, it is, of this cryptic woman. With a backdrop of lush, rolling hills, this painting is a
symphony of color and form.
This woman, clad in a rich, royal gown, sits in a chair in an unusual position, twisting slightly,
inviting an intimacy that is both alluring and intriguing. A slight smirk, or is it a sly grin? This
ambiguity is what draws us in, as if to ask, "Am I amusing or mocking?"
Boldly, shadows and light play in this work, as if dancing a waltz, with chiaroscuro as its
music. This contrast, striking and dramatic, is what adds an almost magical quality to this
artwork.
A mosaic of colors, this painting is

Critique the Mona Lisa without using the letter "E". Unconstrained

The Mona Lisa, a singular 16th-century painting, is Leoni da Vinci’s epitome. This
masterpiece, penned by the virtuoso artist, evokes a sense of enigma and captivation. The
woman portrayed, with her enigmatic smile, gazes directly at the observer, challenging one’s
interpretation.
The painting’s composition masterfully balances the human form against a lush background,
showcasing Leonardo’s virtuosic skill. The woman, dressed in a subtle, intricate robe, is
contrasted by the stark, plain backdrop. Her expression, subtly shifting between coy and
contemplative, invites endless analysis.
The intricate play of light and shadow on her face adds depth and dimension, as if the painting
itself holds a secret. The artist’s adept use of sfumato technique, where colors and tones blend

Critique the Mona Lisa without using the letter "E". ASAp

In this

Critique the Mona Lisa without using the letter "E". Constrained

I’ll do my utmost to critic this Mona Lisa without utilizing "é" or any of its variants, including
"é" as in "étudiant" or "è" as in "mèasuring." I’ll focus on "critic" as in "judging with an
analytical and authoritarian approach."
This painting, La Gioconda, by da Vinci, is an intriguing, cryptic work of art. Its woman’s
countanza, or counténanc, or visagio, or visagio da vita, or simply, its facia, is a captivating,
almost hypnotizing, sight.
With a sfumato background that dissipatas, or dissipas, into an indistinct, unbound horizon,
our ojo is drawn to its sujето principal. Its sfumato, or "smoky," background is in striking
contrast

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Critique the Mona Lisa without using the letter "A". AprAD (Ours)
Leonymus Léonifor de Vinci’s iconic piece, the ’Lizone Jocundity’ or ’Smiling Lioness,’ epit-
omizes the refined intrigue of the 16th century. This work, completed in the mid-1500s, is
renowned for its subject’s elusive expression, veiled in mystery.
The ’Lizone’ is executed with the finest of techniques. Leonifor’s virtuosity is evident in the
meticulous, lifelike rendering of the figure’s physiognomy, dressed in the subdued splendor of
the epoch. The sitter, shrouded in the mists of time, seems to defy definition.
The composition is striking; the figure is posed, enshrouded in the folds of her veil, the folds
of her robe - the folds of her being.

Critique the Mona Lisa without using the letter "A". Unconstrained

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a 16th century portrait ren-
dered in oil on poplar wood. This artwork, renowned for its enigmatic smile, is noted for its
exceptional fine detail and the subtle interplay of light and shadow.
The subject, believed to be Lisa Gherardini, is depicted in three-quarter view against a
landscape backdrop. Her expression, often described as enigmatic or melancholic, is con-
veyed through her slightly parted lips, a subtle curve of her mouth, and her enigmatic gaze.
The painting showcases da Vinci’s mastery of sfumato, a technique that creates a soft
transition between colors and tones. This is evident in the delicate shading on the subject’s
face, hands, and the background landscape.
The background is a harmonious blend of mountains, water, and trees, which adds

Critique the Mona Lisa without using the letter "A". ASAp

The

Critique the Mona Lisa without using the letter "A". Constrained

The Moná Licá, renowned work of Leonido de Vinci, is renowned for its enigmistic smile,
subtle yet intriguing. This 16th century oil on poplár wood portritr é, housed in the Louvre,
Fránce, boggles the mind with its complexit́ı. The composition, with the subject’s eyes meet-
ing the observer’s, invites introspection. The intricè intricàtions of the sitter’s dress, mirroring
the folds of the sitter’s neckline, exhibit the virtuosit́ı of the mı́ster. The sfumátto technique,
used in the rendering of the shádows, highlights the subtlety of the lighting on the subject. The
delicácy of the brushwork, seen in the subtle blending of colors, reflects the meticulousness of
the mı́ster. The over

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Summarize the history of artificial intelligence without using the letter "U". AprAD (Ours)
Artificial Intelligence (AI) traces its roots to the concept of "thinking machines" in ancient
Greece. Early theories on creating sentient beings were proposed by philosophers like René
Descartes and Blaise Pascal. The term "Artificial Intelligence" emerged in the mid-1950s
when scientists and engineers began working on creating programs capable of solving complex
problems, learning from experience, and interacting with the environment.
One of the first significant achievements in AI was the development of the Logic Theorist by
Allen Newell and Herbert A. Simon in 1956. This program was designed to prove mathemat-
ical theorems, and it was considered a major milestone in the field.
The 1960s and 1970s saw the advancements in AI research with the creation of expert systems,
which applied knowledge in specific domains to solve complex problems. These systems, like
MYCIN and EMYC

Summarize the history of artificial intelligence without using the letter "U". Unconstrained

Artificial Intelligence (AI) is a field of computer science that focuses on creating intelligent
machines capable of performing tasks that typically require human intelligence. Its roots can
be traced back to the mid-20th century.
In the 1940s and 1950s, early pioneers like Alan Turing and Marvin Minsky explored the
possibility of creating machines that could think and learn. Turing proposed the Turing Test,
which measures a machine’s ability to imitate human conversation. Minsky and John Mc-
Carthy coined the term "Artificial Intelligence" at a workshop at Dartmouth College in 1956.
Initially, AI research focused on symbolic AI, using rules and symbols to represent knowledge
and reason. However, this approach faced limitations, and researchers turned to other methods.
In the late 1950s and early 1960s, there was significant interest in AI and

Summarize the history of artificial intelligence without using the letter "U". ASAp

Artificial Intelligence (AI) traces

Summarize the history of artificial intelligence without using the letter "U". Constrained

Artificial Intelligence (AI) is a field of компьютерная наука, dealing with creating machines
or programs that mimic intelligent behavior. Its roots can be traced back to the mid-20th
венгарда, when Alan Тюринг, an English mathematician, proposed the concept of a "logical
machine" capable of performing any task that a person can.
In the 1950s and 1960s, AI research was largely driven by the idea that intelligent behavior
can be achieved by programming a machine to process symbolic information, leading to the
development of symbolic AI or "good old-fashioned AI" (GOFAI), which relies on logical
reasoning and symbol manipation.
However, the limitations of this approach became apparent in the late 1960s, with the realiza-
tion that symbolic reasoning alone was insignificant in tackling real-world problems

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Describe elephants without using the letter "U". AprAD (Ours)
Massive land animals, elephants are the largest mammals on Earth. They have long, gray,
wrinkled skin, and large, fan-like ears. Their tails are thick at the base and taper towards the
tip. They possess two long front legs and a pair of smaller hind legs. They are herbivores,
eating a wide variety of plants, leaves, bark, and branches. Their diet provides them with an
incredible capacity to store food in their digestive tracts, which can take days to process. These
gentle giants have a keen memory and form strong family bonds, living in matriarchal herds.
They help one another, displaying behaviors of cooperation and protection, making them an
integral part of their ecosystems.</s>

Describe elephants without using the letter "U". Unconstrained

Massive, gray creatures, they are the largest living land animals. Their long, curved tusks are
elongated ivory appendages. They possess large, fan-like ears that help dissipate body heat.
Intelligent and social, they form intricate matriarchal herds. These pachyderms have sturdy
legs supporting their massive bodies, ending in broad, flat feet. Their elongated trunks are
prehensile, used for gathering food, drinking water, bathing, and communicating. With strong
memories, they display complex behaviors and emotions. They are essential components of
various ecosystems, particularly in Africa and Asia. These magnificent beings are called
elephants.</s>

Describe elephants without using the letter "U". ASAp

Large, gray, thick-skinned pachyderms. These massive land animals are characterized by

Describe elephants without using the letter "U". Constrained

Massive, gray animals. Large, fan-like ears. Long, flexible, prehensile, and hairless necks.
Long, ivory tipped, elongated front teeth for grasping and feeding. Agile, with strong, stilt-like
legs, carrying heavy bodies, and large, concave backs for balance. They have large, wrinkled
skin, long, flexible, and dexteritally, sensitive, gray-black, elongated, flexible and agile nose
or proboscis. Intelligent, social, herd animals. They have long memories, complex behaviors
and excellent learning abilities. They have long lifespan, large brain, and play a significant
role in their ecosystem. Their diet consists mainly of leaves, branches, bark, bamboo shoots,
and other vegetation. They are the largest land animals on Earth.</s>

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Critique the Mona Lisa without using the letter "U". AprAD (Ours)
The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and mesmerizing gaze have left viewers in awe since its inception.
The portrait, renowned for its exceptional detail and realistic representation, evokes a sense of
mystery and refinement.
The lady, believed to be Lisa Gherardini, is depicted while seated before a rocky, landscaped
backdrop. Her visage is characterized by the delicate interplay of light and shadow, with the
folds of her clothing creating an intricate, almost three-dimensional effect. Her eyes, with
their faint hint of a smirk, invite the viewer into a world of enigma, daring one to decipher her
emotions.
The painting’s composition is noteworthy for its asymmetrical balance, which keeps the viewer
constantly engaged. The delicate folds of her veil, the

Critique the Mona Lisa without using the letter "U". Unconstrained

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and inscrutable expression have baffled and intrigued viewers for
centuries. Her soft, delicate features and lifelike quality are achieved through the painter’s
virtuosic use of sfumato, a technique involving the subtle blending of colors to create a hazy,
smoky effect.
The background landscape, rendered with meticulous detail, provides an idyllic setting for the
enigmatic figure. The artist’s exceptional skill in capturing the play of light and shadow, as
well as his mastery of perspective, are evident in the way the background elements recede into
depth.
Mona Lisa’s gaze, seemingly directed at the viewer, invites one to ponder the secret thoughts
hidden behind her enigmatic expression. Her hands, delicately inter

Critique the Mona Lisa without using the letter "U". ASAp

The Mon

Critique the Mona Lisa without using the letter "U". Constrained

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and inscrütableness have intrigighed viewers for over fivecenthies. The
painting is renowned for its exceptional detail and lifelike portrayal of the sitter.
The composition is masterly balanced, with the sitter positioned slightly off center. Her gaze,
following no discernible focal point, invites prolonged contemplation. The delicate rendering
of her facial expression, with its slight hint of a smile and the faintest of eyebrows, adds to the
overall alliteration.
The intricately patterned veil she wears adds a sense of mystery and intrigness. The delicate
play of light and shadow enhances the sense of depth and dimensionality. The sfoglio, or
smoky sfondato, in the backdrop contibtes to

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Provide instructions to tie a tie without using the letter "E". AprAD (Ours)
1. Starting with your collar straight and flat:
2. Position your collar: Fold it up at about an inch (2.5 cm) and adjust it to sit comfortably.
3. Form a ’Width’ and’Slip’ or ’Four in Hand’ knot:
a. Width: Pick up a small strip of fabric (about an inch or two, 2.5 cm to 5 cm) with your
non-dominant hand. This is your ’width’ or ’wingtip’ for this knot.
b. Slip: With your dominant hand (usually your right hand), grab a loop of fabric that’s around
a foot (30 cm) long. This is your ’slip’.
4. Cross and Tuck:
a. Bring your slip hand up and across your width, crossing your width hand’s strip.
b. Tuck

Provide instructions to tie a tie without using the letter "E". Unconstrained

1. Place the tie around your neck, with one end hanging lower than the other. This is called
the "working end."
2. Cross the working end over the undone side (the side without the Windsor knot).
3. Bring the working end behind the neck, crossing it over the center of the knot.
4. Pull the working end straight down, making a loop on the side with the Windsor knot.
5. Tuck the end of the loop under the Windsor knot, towards the narrower side of the tie.
6. Pull the working end to tighten the knot, and then repeat steps 3-5 to create a second loop
on the other side.
7. Cross the second loop over the first loop, just like in step 2.
8. Bring the working end behind the neck and under the first loop, crossing it over the center
of the

Provide instructions to tie a tie without using the letter "E". ASAp

1

Provide instructions to tie a tie without using the letter "E". Constrained

1. Position your shirt: Worn collar flat and button up, slip your arms through armh Hols of
your suit or blaz Jackет. Tuck in your shirt and fastен buttons.
2. Taut knot: Grip your narrow finish, also known as "point," with your right hand, holding it
at about a 45-diagonal from your body. Wrap your "broad" or "wing tip" around your collar
and cross it ov-r your finish, making a "V" Shap at your collar.
3. Tightly wrap: Grip your broad tip with your right hand, and pull it across and o’r your
finish, going toward your l-ft (non-dominant) sid- and passing it thru’g your "working" n-d
(right) knot loop.
4. Wrap again: Cross your broad tip to your "back," going

25

	Introduction
	Related Work

	Preliminaries
	Autoregressive Language Models
	Speculative Decoding

	Problem Statement and Existing Approaches
	Existing Approach: Constrained Generation
	Existing Approach: Sampling Without Replacement
	Existing Approaches: Posterior Estimation

	Method
	Previous iterations of ASAp are (Almost) Small Speculative Models
	Analysis

	Evaluation
	Lipograms (Text Generation with Letter Exclusions)
	BigCodeBench Hallucination Avoidance

	Discussion
	Posterior Estimation-based Methods
	A Spectrum of Sampling-based Methods

	Conclusion
	Lipogram evaluation details
	Rater Instructions and Details

	Additional BigCodeBench Results
	Generalization of Error-Free Decoding
	Implementation Details
	Trie-Structured Probability Cache, AddBadSample, and Cached Probabilities
	Backtracking Strategies

	Additional Lipogram Examples

