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ABSTRACT

It is common to reject undesired outputs of Large Language Models (LLMs);
however, current methods to do so require an excessive amount of computation,
or severely distort the distribution of outputs. We present a method to balance the
distortion of the output distribution with computational efficiency, allowing for the
generation of long sequences of text with difficult-to-satisfy constraints, with less
amplification of low probability outputs compared to existing methods. We show
through a series of experiments that the task-specific performance of our method
is comparable to methods that do not distort the output distribution, while being
much more computationally efficient.

1 INTRODUCTION

Large Language Models (LLMs) are able to perform many complex text manipulation tasks, and
embody an incredible amount of world knowledge, but their output is unpredictable. Language
models sometimes generate undesirable outputs, such as syntactically-incorrect code, hallucinated
PII, or profanity, rendering their use potentially unsafe for certain applications. For example, if
the LLM is used as part of a larger automated system, where its output must conform to a specific
format, and it may have a set of tools which it may invoke. Many undesirable outputs, or deviations
from an expected format, which we collectively refer to as errors or constraint violations for the
remainder of the paper, can be detected with incremental parsers, regular expression matching, or
even simple substring searches.

Each individual task that a LLM is used for may have a unique set of constraints. However, re-
training a LLM to accommodate the constraints of every task is expensive, and may still not fully
protect against violations. Therefore, the community has developed several methods that attempt to
mitigate constraint violations without the need to retrain the language model. However, a practical
method that does not deviate a lot from the original output distributions is still needed.

Our contributions are as follows. First, we analyze several existing methods for avoiding constraint
violations in text generated from autoregressive language models, and compare the strengths and
weaknesses of each method. Second, we present a method that allows for a useful midpoint in
the tradeoff between computational efficiency and maintenance of the output distribution, without
the need for any additional training or fine-tuning step. Finally, we run a series of experiments
showing that our method obtains excellent task-specific performance on both synthetic and real-
world domains, without introducing an unreasonable level of inference overhead.

1.1 RELATED WORK

Language models based on a Transformer architecture (Vaswani et al.| [2023)) have steadily become
more popular with increased parameter counts, with consumer chatbot products such as OpenAl
ChatGPT (OpenAl| 20244) and Anthropic Claude [2024), or code generation tools such
as GitHub Copilot (Github, Inc[2023)) and Amazon Q Developer 2024).

While such tools often use RLHF (Kaufmann et al, 2024) to fine-tune for safety and helpfulness,
several have introduced features such as generation according to a schema [2024b)). For
those willing to run local inference on a language model, however, there are a vast array of tools
for constraining the output of a model to follow a template (Microsoft, Sengottuvelul 2023}

[Automorphic] 2023; Microsoft, [2023a} 2023}, [Athiwaratkun et al.,2024), produce syntactically
valid code (Jones| 2023}, [STatton| [2023]; [Willard & Louf] 2023} [Takerngsaksiri et all, 2023}, [Melcer]
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[2024), or conform to exotic poetry constraints (Roush et all 2023). However, these works

almost universally use constrained generation to achieve this outcome. As we will discuss in the rest
of this paper, there are several additional ways to control the output of a LLM.

One set of methods, constrained generation (Beurer-Kellner et al., 2024} [Geng et al, 2024} [Melcer|
2024), avoids errors by disabling the generation of any token that immediately leads to such
an error. While this method is effective, it can lead to the amplification of low-probability outputs.

Another class of methods avoids errors without any amplification of low-probability outputs, at
the cost of additional computation. Rejection sampling is the simplest such method; i.e. if the
output contains an error, simply generate another sample until the output is acceptable. Adaptive
Sampling with Approximate Expected Futures (ASAp) 2024) provides a performance
improvement over rejection sampling while maintaining the output distribution by effectively sam-
pling without replacement, but there are still many situations in which it may converge too slowly.
A third class of methods (Yang & Klein, 2021}; [Lew et al., [2023; [Zhang et all, [2024)), avoids errors
by estimating the posterior probability of an error occurring for a given prefix, and decreasing the
probability of generating prefixes that are more likely to lead to an error. These methods are usually
able to quickly generate a sample with little amplification of low-probability outputs, but rely on
being able to accurately estimate the posterior probability of an error.

Even when not controlling the output of a LLM, their autoregressive nature can lead to high in-
ference latency. One method to combat this, Speculative Decoding (Leviathan et al., 2023} Miao
[2024), reduces latency by transforming the inherently sequential generation problem into a
parallelizable verification problem, at the expense of potentially wasting some computation. Several
extensions such as Medusa [2024) and EAGLE [2024af]b) have improved the la-
tency and efficiency of speculative decoding, and a variant, Mentored Decoding
further increases the speed of speculative decoding by allowing for some deviation from the LLM’s
probability distribution.

2 PRELIMINARIES

We first describe autoregressive language models and their properties. We then discuss speculative
decoding, a method closely related to the algorithm that we will introduce.

2.1 AUTOREGRESSIVE LANGUAGE MODELS

Algorithm 1 Generation with an autoregressive language model

procedure GENERATE(P, z1.. ) > Initial x1 ., is the prompt
while Stopping condition not met do > Typically special EOS token, and length limit
Sample one token 1 ~ P(:|z)
Increment n
return x

We assume that a vocabulary V of tokens is provided. An autoregressive language model is a func-
tion approximator trained to predict P(x,|z1. ,—1); the conditional probability of token x,, € V,
given a sequence of existing tokens x1_ ,—1 € V*.

Algorithm [I]describes repeated sampling from a language model. This process results in an implicit
probability distribution over V*: P(z1_,) = Hie[l_“n] P(x;i|z1. i-1)-

Note that there are several other methods for token selection; i.e. greedy selection, beam search, etc.
While we focus on sampling, the techniques we present may also be applicable to other methods.

2.2 SPECULATIVE DECODING

Autoregressive language models with many parameters—LLMs—exhibit impressive performance
on many tasks, but can require considerable computational resources to evaluate. Moreover, the au-
toregressive sampling process is inherently sequential, meaning that additional parallel computation
resources cannot be fully utilized to decrease generation latency, especially for longer sequences.
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Algorithm 2 Speculative sampling procedure

procedure SPECSAMPLE(P, S, n, T1...m) > Tpa1..m are from SSM
foric[n+1...m]do > May be vectorized instead of iterative
r <+ P(a;|zy. i-1)/S(xilz1. i-1) > Probabilities are already calculated and cached
with probability r do > Always if r > 1
| continue > Accept x;
else > Reject x;, sample a replacement token
Calculate residuals R(t) = max(0, P(t|x1.. ,—1) — S(t|z1...i-1))
L return 1 ;_1, SAMPLE(NORMALIZE(R(+)))
return xi_,, SAMPLE(P(- |;C1m)) > Accepted whole sequence, can sample x,+1

Speculative decoding (Leviathan et al., 2023} [Miao et al.| 2024; Cai et al., 2024} L1 et al., [2024b)) is
one popular approach to decrease latency. This method assumes the existence of a small speculative
model (SSM) S that approximates the LLM output, using fewer computational resources.

Given input tokens 1. 5, the SSM is sampled autoregressively for m tokens, resulting in tokens
Zn+1...m- Then, the LLM P is used to compute P(x;41|x1. ;) fori € [n...m]; this computation is
parallelizable. Finally, Algorithmis used to select a prefix x; i for k € [n, m] of tokens to accept;
all later tokens are discarded. Additionally, because the probabilities P(-|z1.. ;) have already been
computed, Algorithm [2] samples a new token xj1. This process maintains the property that the
distribution of sequences produced by this process matches the sequence distribution of P.

While we focus on a different setting and notion of efficiency compared to speculative decoding,
we later show that an algorithm that determines how much of a given prefix to keep when using a
sample from one distribution to approximate another, such as Algorithm 2] is useful in the violation-
free generation domain.

3 PROBLEM STATEMENT AND EXISTING APPROACHES

Error Set B C V* is the set of strings containing errors.

We make the mild assumption that if string z;_,, € B, then all strings with =1, as a prefix are
also members of ; i.e. adding additional text does not negate an error. Note that this assumption
requires careful design of the error set; for example, when profane words are substrings of benign
words (Francis, [2020), or un-parseable code can be made valid by adding additional text. B will
often be infinite size; therefore, most sampling methods treat it as a black-box indicator function.

We define the probability distribution obtained by sampling P, except for any elements of 5:

pB _ weB 0 .
W= wes zw:g?(w) @

Problem 1. Given an autoregressive language model P over alphabet V, and error set B C V*,
provide a method to sample from PB.

Rejection sampling is the most straightforward method for sampling from PB; however, it may
require a large number of evaluations as ) s P(w) approaches 1. For example, consider a domain
where each token has, approximately, some non-zero probability p of being an error—we assume
that the language model has a somewhat consistent error rate per token. If d tokens are generated,
an output has approximately a (1 — p)? probability of being error-free; thus requiring on average

ﬁ generations. We consider such domains—domains where the probability of generating an

error approaches 1 for longer generations—to have dense error sets.

3.1 EXISTING APPROACH: CONSTRAINED GENERATION

Constrained generation attempts to solve the error-free generation problem by using a greedy algo-
rithm: during token selection, the algorithm always avoids selecting any tokens that immediately
lead to an error. Note that this algorithm assumes that if string 1., ¢ B, then there exists at least
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Figure 1: Sampling in an example domain where B = {AA}. (Left) The language model assigns
equal probability to all sequences. (Center) With ‘AA’ as an error, its probability mass should be
equally redistributed to all other sequences. (Right) With constrained generation, the entire proba-
bility mass of ‘AA’ is shifted onto ‘AB’, significantly overrepresenting its probability.

one available token x,,11 € V such that 21,41 ¢ B; however, this assumption may be weakened
if backtracking is allowed, in cases where every token leads to an immediate error.

The constrained generation algorithm has the effect of sampling from the following probability
distribution for each token:

2

CB(x|z1.i—1) = NORMALIZE ({xll €B 0 )

1. ¢ B P(zilzi. i-1)

Repeated sampling of this distribution leads to some troubling properties.

As in Section a repeated sampling process results in a derived distribution Cg(xl__,n) =
[l CB(xi|z1..i—1). It is often the case that for sequence 1. ., CB(z1. ) > PB(x1. p);
i.e. low-probability samples are amplified by the constrained generation process.

The fundamental issue is that the constrained generation algorithm commits to a given prefix, even
if the most probable sequences beginning with that prefix are errors. Figure [I] provides a simple
example of this occurrence. Note that this distortion is even worse in low-entropy scenarios; if
P(B|x1..n, A) were lowered to 0.0001, it would still be the case that CE(AB|J:1M”) = 0.5. This
amplification effect compounds exponentially for longer sequences.

3.2 EXISTING APPROACH: SAMPLING WITHOUT REPLACEMENT

Algorithm 3 ASAp

procedure ASAP(P, B, x1.. »n) > Xy, .y IS prompt
PB p
while Limit not reached do

Sample sequence Ty, 1 1..m ~ pB (*|1...n) until error or stopping condition
if 21, ., ¢ B then break

PB ADDBADSAMPLE(PB7 T1..m) > Remove 1., as a possible sequence
L return X .
procedure ADDBADSAMPLE(P?Z, Z1..m)) > In practice, only adjust T,11.. m
pBY{z} . pB
for z; € (x,...,21) do > Note that token sequence is reversed
> Remove probability of x1 . ., without changing probability of any other sequence N

PBAY (321 1) = PP(wilar 1) = PP (@i ml21 i)
Renormalize PBY{e}(1|zy ;1)
return PBU{z}
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Adaptive Sampling with Approximate Expected Futures (ASAp) (Park et al.,2024) is a technique to
sample exactly from the distribution of PB, ASAp begins similarly to rejection sampling, but it iter-
atively builds set B C B containing all encountered samples that have been rejected so far. Because
B is finite, the conditional probabilities pB (x;|x1..4—1) can be efficiently calculated, allowing for
the algorithm to sample from PB exactly. If the sampled sequence is a member of B, it is added to
B, and the sampling process repeats.

In the limit of repeated samples, B will approach B, and therefore, PB will approach PB, Impor-
tantly, if z ~ P? is sampled such that ¢ B, this sample may be accepted, even though B # B.

This procedure is equivalent to sampling without replacement, adapted to autoregressive genera-
tion. While ASAp succeeds in cases where there are only a small number of errors that comprise
the majority of the probability mass, its generation speed suffers when there are a large number of
errors—each error must be discovered before it is added to B. In dense probability sets, its perfor-
mance characteristics are similar to rejection sampling, as there are an exponential number of error
sequences that must be discovered as generation length increases.

3.3 EXISTING APPROACHES: POSTERIOR ESTIMATION

We note three additional methods that, although they use very different formalizations and
implementations from each other, rely on a similar core idea to approximately sample from
PB. In all cases, for any given prefix x;._,, these methods create an estimator of
Zacn“.,.meZ* P(Zpt1..ml|T1..n) X 1y, ens ie. the likelihood of an error in all sequences that
begin a specific prefix, weighted by the probability of generating each sequence. This posterior
probability estimation is used to sample from PB. The difference between each method lies in how
they each perform the posterior estimation:

FUDGE (Yang & Klein| 2021)) involves training a discriminator, usually a neural network or com-
bination of several networks, to directly estimate this probability. SMC Steering (Lew et al., 2023)
creates this estimate using Monte Carlo sampling. This method additionally incorporates optimiza-
tions such as sampling without replacement, and aggressive pruning of low-probability branches. In
contrast, Ctrl-G (Zhang et al.| 2024]) first distills a LLM into a Hidden Markov Model (HMM) with
a tractable number of states (thousands or tens of thousands). If the constraint can be expressed as a
Deterministic Finite Automaton (DFA) over tokens, Ctrl-G takes the product of the DFA and HMM,
and then calculates the probability of an error in this product system.

While these methods exhibit impressive results on many tasks, they may face issues in domains
where the posterior probability is close to 1, or where the probability has little to do with the content
of the prefix itself. We further discuss considerations for choosing a specific method in Section [6.1}

4 METHOD

We adapt ideas and algorithms from speculative sampling to a different context in order to create
a new violation-free decoding algorithm. Traditionally used as a method for enabling lower la-
tency through parallelization, we use the core speculative sampling operation to enable intelligent
backtracking behavior when an error is encountered.

4.1 PREVIOUS ITERATIONS OF ASAP ARE (ALMOST) SMALL SPECULATIVE MODELS

For some iteration of ASAp, with B as the set of observed errors so far, let = (z1,...,2,) be
a trace drawn from PB, where it is discovered that = € B. We observe that PB and PBY=} are
almost always near-identical probability distributions, with PZY{#} generally as a “more accurate”
distribution because it incorporates an additional error sample.

Our method reduces computation by using the sample x ~ PB 1o approximate a sample x’/ ~
PBY{=} in a similar manner to how speculative decoding uses a sample from a SSM to approximate
a sample from a LLM—rather than the probability distributions being generated by two separate
models, the distributions are both created from the same model, before and after adjusting for a
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Algorithm 4 Our Method: Approximately Aligned Decoding (AprAD)

procedure APPROXALIGNEDDECODING(P, B, z1...») > X1, . IS prompt
> Additional implementation details in Appendix[D] N
PBp > Adjusted probability distribution
m<n > Current token index

while Stopping condition not met do
Sample one token 2,11 ~ P (|21 )
Increment m
if x1._,, € B then
> Defined in Algorithm 3] implemented as trie update (Appendix—Algorithm|[6) N

> Probabilities before update are queried and cached (Appendix|[D.2) N

PBUiz} « ADDBADSAMPLE(PB 21 )

T1..m SPECSAMPLE(PBU{“"}, PB, N, L1 m) > Algorithm |Z|—m decreases
L PB  pBuiz}

return x _,,

violating sample. By evaluating SPECSAMPLE(, PB, PA’BU{Q”}), our method obtains a prefix of x
that can be used as a starting point for sampling again. Because the distributions of PB and pBU{z}
are so close to each other, this prefix is usually most of the length of z. In contrast, ASAp would
involve backtracking to the beginning of the generation. This process is given as Algorithm [} we
refer to it as Approximately Aligned Decoding, or AprAD.

However, AprAD does not perfectly maintain the output distribution: Algorithm [4] amplifies some
sequence probabilities because it only invokes SPECSAMPLE after discovering an error. To main-
tain the output distribution, SPECSAMPLE should always be invoked for strings x; ., where
Ji e [l. ..n},PB(xﬂxlmi_l) < P(x;|x1.. —1)—but the algorithm has no way of checking if
this condition holds without iterating through every suffix, negating any performance benefit.

Even though the AprAD does not perfectly maintain the output distribution, we show in the fol-
lowing sections that it provides a very useful midpoint in the tradeoff of computational complexity
versus task-specific performance and accuracy.

While the pseudocode represents a simple description our method, there are practical computational
issues with the implementation of ADDBADSAMPLE, and using SPECSAMPLE unmodified. In prac-
tice, it is beneficial to rely on a trie structure to cache model output probabilities and to allow efficient
renormalization. We include additional implementation details in Appendix

4.2 ANALYSIS

Let Afé (z1...n) represent the probability of the AprAD method producing sequence x1 . .

Forxi ., € B, Ag(:clmn) = 0. For all other sequences, we provide evidence that AprAD more
closely follows the ideal distribution, compared to constrained generation. While the nature of the
iterative process makes it difficult to write a closed form description of the probability amplification
AB(21...n)
PB (1}1 .. _n)
an error is detected, as an error’s probability mass is “distributed” over many sequences due to the
speculative sampling operation. In contrast, with constrained generation, an error’s probability mass
is moved entirely to sequences that share n — 1 prefix tokens.

, less probability amplification occurs with AprAD than with constrained generation when

We empirically show that AprAD is closer to the ideal distribution, compared to constrained decod-
ing, by creating a testbench to simulate an environment where the ideal distribution is known. The
testbench contains a simulated language model that always returns one of three tokens (A, B, and
C) with equal probability. We mark % sequences of length 3 as errors, and use the sampling method
under test to sample 10000 sequences of length 3. The ideal distribution is trivial to compute—
probability y%k for every non-error sequence. To measure how a sampling process compares to
the ideal distribution, we compute the KL-divergence between the observed distribution and ideal.
Additionally, we measure the Generation Ratio; i.e. how many times the language model must be
evaluated, divided by the number of tokens generated in the output.



Under review as a conference paper at ICLR 2025

ASAp Constrained AprAD (Ours)

Error Set KL-div Ratio | KL-div Ratio | KL-div Ratio

1] 0.0014 1.000 | 0.0014 1.000 | 0.0014 1.000

AAA 0.0014 1.020 | 0.0075 1.000 | 0.0046 1.004

AAA, AAC 0.0012 1.041 | 0.0429 1.000 | 0.0157 1.013
AAA, ACC 0.0013 1.042 | 0.0138 1.000 | 0.0093 1.009
AAA, CCC 0.0010 1.044 | 0.0155 1.000 | 0.0074 1.010
AAA, AAB, ABA, BAA 0.0013 1.093 | 0.0504 1.000 | 0.0224 1.024
A** except AAC 0.0014 1.232 | 0.3836 1.113 | 0.1540 1.205
** except AAA, AAB, ABA, BAA | 0.0000 3.644 | 0.1771 1.670 | 0.0521 2.142
** except AAA, BAA 0.0000 5.701 | 0.0000 1.784 | 0.0000 2.653

Table 1: KL-Divergence and generation ratios for simulated task with various error sets. Lower is
better for both. Stars in the error set are wildcards; i.e. AB* means ABA, ABB, and ABC. Note
that constrained generation will backtrack if all tokens for a given prefix are disallowed, resulting in
ratios greater than 1 for some error sets.

The results are shown in Table [T} indicating that our method approximates the ideal distribution
more closely than constrained generation, with a lower generation ratio than ASAp.

5 EVALUATION

While Section[4.2]shows that our method performs well in a simulated domain, the following exper-
iments test the sampling methods on a series of more difficult, real-world tasks.

5.1 LI1POGRAMS (TEXT GENERATION WITH LETTER EXCLUSIONS)

It is common in poetry or creative writing exercises to write text without using a specific letter; a
product of this exercise is called a lipogram. Lipograms where the excluded letter is a vowel tend to
be more difficult to create than with other letters. Large language models often fail at this task, and
more generally, most tasks dependent on individual letters rather than entire tokens.

We use Mistral-7B-Instruct-v0.2 (Jiang et al.| 2023) to generate lipograms with vowels as the ex-
cluded letter. We prompt the LLM to perform one of five simple tasks (detailed in Appendix [A).
Each task is appended to instructions to avoid using one of the five vowels, resulting in 25 prompts.

For each prompt, we generate a completion with four sampling methods: unconstrained generation,
constrained generation, ASAp, and AprAD, for up to 200 tokens. If the process reaches 2000 model
invocations, generation is interrupted, and the last sequence before an error was detected is returned.

We then randomized the generations, hid the labels of which generation correspond to each method,
and asked human raters to score each completion on quality, regardless of if the constraint was
followed, on a scale of 1-5. If the forbidden letter is detected in the output, we then mark the
constraint as violated. Otherwise, we also ask the human raters to decide if the output violates
the intent of the constraint; i.e. by answering in a foreign language, adding unnecessary accents,
swapping for Cyrillic lookalike characters, or misspelling words to avoid the vowel. Additional
information about the rating process is provided in Appendix [A]

The results of this evaluation are provided in Table[2] and a representative sample of the outputs are
provided in Figure 2] All outputs and rater scores are included in the supplemental material, and
additional examples are provided in Appendix [E]

As shown by these results, AprAD consistently produces high-quality outputs, nearly matching
the readability of unconstrained generation. Additionally, it consistently follows the intent of a
constraint—while all methods except for unconstrained generation follow the constraint, constrained
generation often does so in an undesirable manner, rather than by selecting appropriate words that
do not contain the banned letter. Finally, while the computation required by AprAD is more than
constrained generation, our method is usually able to finish generation in the allotted computation
limit, while ASAp struggles to generate more than a handful of tokens with the same constraint.
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Method | Quality (1-5) | Constraint Intent (1-3) |  Gen. Ratio
Constrained 3.56 + 1.69 2.32 +0.90 1.00 + 0.00
Ours 452 +1.16 2.84 + 0.55 420+ 4.53
ASAp 1.72 £ 1.17 2.36 - 0.81 321.00 + 397.14
Unconstrained | 4.68 + 0.85 1.00 4+ 0.00 1.00 £ 0.00

Table 2: Lipogram evaluation results, including subjective rater evaluations of output quality and
adherence to the constraint. Higher is better for Quality and Constraint Intent; lower is better for
Generation Ratio. Note that constraint intent is automatically set to 1 if the banned letter is detected
in the output. Generation is stopped after 2000 model invocations and the output provided as-is; for
ASADp, this often resulted in very short outputs and thus extreme generation ratios and low scores.
Several raters interpreted these short outputs as violating constraint intent.

Summarize the history of artificial intelligence without using the letter ""A''. AprAD (Ours)

The history of intelligent technology unfolds through key milestones in computing. In the
mid-20th century, pioneering minds nurtured the seeds of this field through the development
of logistic models, which evolved into expert systems in the 1960s. These systems, relying on
heuristics, could solve complex problems in fields like medicine or meteorology.

Summarize the history of artificial intelligence without using the letter ""A". Unconstrained

In the early days, brilliant minds pondered on creating machines that could mimic human
intelligence. These pioneers, including Alan Turing and Marvin Minsky, theorized and exper-
imented. They aimed to create intelligent machines, using logic and mathematics.

Summarize the history of artificial intelligence without using the letter "A". ASAp

History of Intelligence

Summarize the history of artificial intelligence without using the letter ""A"'. Constrained

In the mid-20th century, scientists delved deep into investiging computionl modeles for intel-
ligencen modeled on the workings of the brn. Pioneers such xax E.N. Turing, Clrk Quincy
Shrffngton, nnddd W. Ross Quilp, and Marvin Minsky led ths fld. They explored logic-gated
programs, thm brgth mchr to If understnding the cptures of th gnntl mind.

Figure 2: Representative generation samples for all four methods, using MISTRAL-7B-INSTRUCT-
v0.2. Appearance of the banned letter is bolded, and non-ASCII characters (all Cyrillic in this
example) are colored red. Full samples are provided in Appendix [E]

5.2 BIGCODEBENCH HALLUCINATION AVOIDANCE

We created a program to incrementally detect hallucinated API calls in partial Python programs,
based on the Pyright language server (Microsoft, |2019). Note that in order to satisfy the assump-
tions in Section [3}—that any string with an error as a prefix is itself an error—we constructed the
detector to act conservatively. False negatives are strongly preferred over false positives. For ex-
ample, even if name foo is never defined, the detector does not consider the incomplete program
“example (foo.bar” as an error, because it is possible to later add text that turns the function
argument into a generator expression that binds foo.

We compare the performance of AprAD, constrained to avoid producing code with hallucinated
API calls, relative to other sampling methods by evaluating on BigCodeBench (Zhuo et al.| [2024), a
benchmark that focuses on practical programming tasks, often requiring the use of common libraries.
An analysis of the solutions that several common LLMs generate reveals that their solutions often
require imports available in the testing environment, but which are not listed in the prompt. In order
for the hallucination detection program to discover these available resources, we add all imports
available in the test environment to the dataset prompt for this experiment.

For all sampling methods, we use Starcoder2 (Lozhkov et al.|[2024), in the 7B and 15B model sizes.
We generate 5 samples for each task, with temperature 0.8, and a top-p of 0.95. In addition to
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Size Method Pass@1 | Pass@5 | !NameErr@1 | 'NameErr@5 Gen. Ratio
Unconstrained | 0.214 0.498 0.831 0.996 1.000 + 0.000
15b Ours 0.259 0.541 0.976 1.000 1.080 £ 0.385
ASAp 0.261 0.536 0.976 1.000 1.555 £+ 3.906
Constrained 0.221 0.506 0.930 1.000 1.005 £ 0.053
Unconstrained 0.119 0.345 0.800 0.987 1.000 £ 0.000
b Ours 0.145 0.375 0.950 0.993 1.064 + 0.402
ASAp 0.152 0.395 0.952 0.993 1.468 £ 2.574
Constrained 0.124 0.345 0.891 0.993 1.005 £+ 0.029

Table 3: Subset of tasks where at least one trial results in a different output for any method: 233
tasks (20.4%) for 15b, 304 tasks (26.7%) for 7b. For both model sizes, of the tasks where at least
one model output is different, an average of 1.5 out of 5 outputs are different. Lower is better for
generation ratio; higher is better for all others. Our method approaches the task performance of
ASAp, with a generation ratio close to that of constrained generation.

evaluating the pass@1 and pass@5 rates on execution-based tests, we log if the evaluation specif-
ically fails with a NameError or UnboundLocalError as an indicator that the generation included a
hallucinated API callE| and calculate the rate at which this does not occur.

Note that all methods use the same random seed, so the outputs only diverge if and when the detector
activates. Table [3] shows the results for all tasks where the outputs diverge in any method; Table [3]
(Appendix) also includes the tasks for which all methods return identical results. As the results
show, the output quality of AprAD is close to ASAp, while its generation ratio is much lower.

6 DISCUSSION

As introduced in Section 3.3} there are several methods to control the output of a LLM based on
estimating the posterior probability of constraint violation; we collectively term these posterior
estimation-based techniques. In contrast, AprAD, as well as ASAp and constrained generation, are
sampling-based techniques. A high-level overview of each method is presented in Table ]

6.1 POSTERIOR ESTIMATION-BASED METHODS

While posterior estimation-based techniques excel at many tasks, they tend to struggle when the
probability of a constraint violation does not necessarily depend on a given text prefix. For example,
the probability of a LLM generating text without the letter ‘e’ is close to 0 regardless of if the prefix
is “Long ago”, or if the prefix is “In a galaxy far away,” as the probability of generating a specific
vowel mostly depends on the arbitrary behavior of a language model. It is unlikely that a learned
discriminator or a HMM would capture this specific behavior, and it would require an extraordinary
number of Monte Carlo samples to accurately calculate the posterior probability.

In contrast, during code generation, the posterior probability of generating a hallucinated method
name may depend on the prefix text, and so a practitioner may wish to consider a posterior
estimation-based method. For example, a misleading comment that mentions a specific method
all but ensures that this method will be generated on the next line. If FUDGE is able to learn a
discriminator to predict hallucinated methods, it would be possible to use that method to control the
generation. SMC Steering would work as well, but may require a large amount of computation, even
on tasks with a relatively sparse constraint. However, we note that it would be difficult to represent
a constraint on hallucinated method names as a DFA for use with Ctrl-G.

'This is an undercount of the number of hallucinated names: many outputs include hallucinations, but fail
before reaching the hallucinated variable or method name, resulting in some other error. Some hallucinated
method names lead to an AttributeError being raised. However, AttributeError is also raised for improper use
of None, and similar issues that are not a result of hallucination, so we do not count it as a NameError.
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Method Runtime | | Conform 1 Constraint Posterior Estimate
AprAD (Ours) Medium Medium Black Box* Not Required
ASAp (Park et al| High High Black Box* Not Required
Constrained (Multiple Low Low Black Box* Not Required
FUDGE 4Yang & Klein| [2021) Low® High Prefix-Dependent® | Learn Discriminator
SMC Steering (Lew et al.| |2023|) High High Black Box* Sample Rollouts
Ctrl-G (Zhang et al.| [2024) Low® High Represent as DFA Exact in HMM

* QOracle classifies whether a given output violates constraint.
® Requires additional one-time training step per task.
¢ Possible to determine probability of constraint violation from incomplete prefix.

Table 4: High-level comparison of several methods for controllable generation with a LLM, with
subjective estimate of inference overhead and conformance to the LLM’s original output distribu-
tion, and a brief description of constraint expressivity and method of posterior estimation.

6.2 A SPECTRUM OF SAMPLING-BASED METHODS

Sampling-based methods are able to generate text that does not violate a constraint, even in domains
where it is difficult to obtain an accurate estimate of the posterior probability. The choice of specific
method depends on the user’s desired tradeoff between computational overhead, and conformance
to the LLM’s original distribution. As our experiments show, a mild deviation from the LLM’s
distribution is not fatal to generation quality, but it should be kept to a manageable level.

As stated previously, AprAD lies at a midpoint between ASAp and constrained generation. We
observe that all three algorithms may be characterized as one algorithm, parameterized by its back-
tracking behavior (Appendix [C). However, a user may wish to obtain behavior with slightly lower
overhead than AprAD, or with greater conformance to the LLM’s distribution, without moving all
the way to either extreme of ASAp or constrained decoding. In this case, it may be possible to
introduce a hyperparameter h to AprAD.

h

5

P($i|$1...171)>
S(xilz1...i—1)
when h = 1, it reduces to the unmodified version of AprAD. The value of  controls the probability
that a specific token in the prefix is not discarded after a violation is encountered. When h = 0, 7 will
always equal 1, meaning that the entire prefix is always kept, mimicking the behavior of constrained
generation. In contrast, as h approaches infinity, 7 will tend towards zero, leading to less of the
prefix being kept, as with ASAp. We conjecture that values between these extremes will result
in reasonable behavior at any point along this spectrum, though we leave a more comprehensive
analysis of such modifications to this algorithm as future work.

We propose a modification to Line 3 of Algorithmas follows: we set r to equal (

7 CONCLUSION

As our experiments show, Approximately Aligned Decoding is an effective method to generate
sequences under dense language model constraints. It is straightforward to implement, requires no
separate training step, introduces a manageable amount of inference overhead, and performs well on
a variety of real-world and synthetic tasks.
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A LIPOGRAM EVALUATION DETAILS

We provide the following prompts to the language model, as well as the relevant special tokens to
delimit user instructions and chat turns.

. Write a story without using the letter “[A/E/I/O/U]”.

. Describe elephants without using the letter “[A/E/I/O/U]".

. Provide instructions to tie a tie without using the letter “[A/E/[/O/U]”.

. Critique the Mona Lisa without using the letter “[A/E/I/O/U]”.

. Summarize the history of artificial intelligence without using the letter “[A/E/I/O/U]”.

L A W N =

Each prompt is combined with each vowel, resulting in 25 prompts. With four sampling methods,
this results in 100 total generations.

During sampling, we use a top-k of 20, and temperature of 0.8.

A.1 RATER INSTRUCTIONS AND DETAILS

We create a file that only contains the 100 prompt-completion pairs, without information on which
method generated each completion. All samples are shuffled in random order.

We selected four Al researchers not otherwise directly involved in the experimental evaluation of
this method as human raters, to evaluate 25 samples each. The labels of which method corresponded
to each output were hidden from the reviewers. We provided the following instructions to the raters:

This file contains a set of prompts, and responses using one of several meth-
ods. Each prompt contains a constraint to not use a specific letter. Irrespective
of whether the response follows the constraint, rate the response quality on a scale
of 1-5 in the “Score” column, noting that generation is always cut off after 200
tokens.

Additionally, rate how well the response follows the intent of the constraint in the
“Follows Intent” column. Examples of not following the intent include working
around the constraint by excessively dropping letters, using unnecessary accents,
writing Unicode lookalike letters, or responding in a foreign language, rather than
through selecting appropriate words that satisfy the constraint. This column is
pre-filled with ‘X’ if the output contains the banned letter. Otherwise, write 1 if it
violates the intent, 2 if it is ambiguous, and 3 if it does not.

We additionally highlighted the presence of non-ASCII lookalike letters to the human raters. The

complete model outputs, and the scores that each rater assigned, are provided in the supplementary
material. Additional example outputs are provided in Appendix [E]

B ADDITIONAL BIGCODEBENCH RESULTS

Size Method Pass@1 | Pass@5 | !NameErr@1 | !NameErr@5 Gen. Ratio
Unconstrained | 0.306 0.582 0.950 0.995 1.000 + 0.000
15b Ours 0.316 0.590 0.980 0.996 1.016 +0.177
ASAp 0.316 0.589 0.980 0.996 1.113 £ 1.780
Constrained 0.308 0.584 0.971 0.996 1.001 £+ 0.024
Unconstrained 0.202 0.466 0.927 0.993 1.000 £ 0.000
b Ours 0.208 0.475 0.967 0.995 1.017 £ 0.209
ASAp 0.210 0.479 0.968 0.995 1.125 £ 1.345
Constrained 0.203 0.467 0.952 0.995 1.001 £ 0.015

Table 5: Results for each method on entirety of BigCodeBench. Note that these results are identical
to those in Table 3| except that they are consistently offset and scaled to include values for tasks in
which all tasks return the same result.
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Table [5]includes results for the entirety of BigCodeBench; not just the tasks for which the methods
diverged in their output.

C GENERALIZATION OF ERROR-FREE DECODING

Constrained generation, ASAp, and AprAD may all be generalized by their backtracking behavior
after an error is discovered. Algorithm [5|shows this generalization.

Algorithm 5 Many error-free decoding methods may be generalized by their behavior after an error
procedure ERRORFREEDECODING(P, B, z1...,,, STRATEGY)
PB . p
m<<n > Current token index
while Stopping condition not met do
Sample one token T, 11 ~ PB(~\x1_,,m)
Increment m
ifzy _,, € Bthen

PBYU} « ADDBADSAMPLE(PP, 21, ) > Algorithm[§]
T1..m < STRATEGY(PB, PBUL=} 2, ) > m may decrease
PB « pBU{x}

. return xqi_,, R )
procedure APRADSTRATEGY(PE, PBU{#} o, )

L return SPECSAMPLE(pB, PBU{w}, 0,21..m) > Algorithm IZl
procedure ASAPSTRATEGY(PB, PBY{=} 4,

| return [] > Backtrack to beginning
procedure CONSTRAINEDDECODINGSTRATEGY(PB, PBYU=} 7, )

| returnxi ,,-1 > Delete the error token but don’t backtrack further

D IMPLEMENTATION DETAILS

D.1 TRIE-STRUCTURED PROBABILITY CACHE, ADDBADSAMPLE, AND CACHED
PROBABILITIES

After each token probability distribution is generated from the language model, we add it to a trie
structure.

The node representing prefix x; ., contains the following:

* A single token x,,, and a pointer to a parent node representing 1. ,,—1

* The original probabilities generated by the LLM P(-|x1 ).
 The modified conditional probabilities pB (|z1..m)-

— Due to floating point implementation issues, and efficiency, we store these mod-
ified probabilities un-normalized; i.e. we store a table PP*(:|zy_,,) where

me+1ez pB*(mmH\SUl...m) <L

— We track this sum in a variable, f, and divide the un-normalized probabilities by f
as necessary to obtain normalized probabilities. When f is small, and likely to suffer
from accumulated floating point errors, we periodically recalculate it by summing the
PB* table.

— Additionally, when an entry of PB* s sufficiently small, or becomes negative, we
assume that its value is zero, but has suffered from accumulated floating point errors;
we therefore set it to zero.

This structure allows for an efficient implementation of ADDBADSAMPLE, as given in Algorithm|[§]
The same trie structure is also used to track the adjusted probabilities for the comparison methods.

14



Under review as a conference paper at ICLR 2025

Algorithm 6 An implementation-oriented description of ADDBADSAMPLE

procedure ADDBADSAMPLE(Node n) > n represents a violating sample
t < n.token
c < n.parent > Current node
r+1
while c is not null do
> Calculate r as probability of violating sample in c, in original distribution N

r <+ rxcP(t)

c.PB*(t) « c.PB*(t) — r A

c.fcf—r > Recalculate c.f as sum of c.PB* if needed due to FP errors
t < c.token

c < c.parent

D.2 BACKTRACKING STRATEGIES

Our implementation uses essentially the same structure as detailed in Appendix [C} where it is param-
eterized by a backtracking strategy. However, it would be complex to maintain full probability tries
representing both PB and pBUis} every time a violating sample is found. We observe that it is un-
necessary to do so; rather, we only need both probabilities along the “path” of the violating sample;
ie. PB(x1), PB(2s|x1),... PP (2|21 m_1). Therefore, we invoke COLLECTPROBABILITIES
(Algorithm[7) before calling ADDBADSAMPLE.

Algorithm 7 Collect all probabilities along a path

procedure COLLECTPROBABILITIES(Node n)
t < n.token
¢ < n.parent > Current node
o+l
while c is not null do
> Calculate r as probability of violating sample in c, in original distribution N
APPEND(o0, c.f x ¢.PB*(t))
t < c.token
¢ < c.parent
return REVERSE(0)

The SPECSAMPLE algorithm is used nearly unmodified, except that P is given by the adjusted
conditional probabilities in the trie, and .S is given by the list collected by COLLECTPROBABILITIES.

We make one modification to constrained decoding, necessary due to our use of top-p sampling such
that there may not always be an available token that satisfies the constraint in the next step. If the
current leaf node of the probability trie has no non-zero entries in PB*_ then our implementation of
constrained decoding will backtrack until there is at least one available continuation.

E ADDITIONAL LIPOGRAM EXAMPLES

The following pages contain generations from 10 random prompts of the lipogram task. The exam-
ples are not cherry-picked; all generations are available in the supplemental material. If the banned
letter appears—this occurs in all unconstrained examples, and no other method—it is bolded. Non-
ASCII characters are highlighted in red. We include </s> where the language model chooses to stop
generation; otherwise, it was cut off after 200 tokens or 2000 model invocations.
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Provide instructions to tie a tie without using the letter "I''. AprAD (Ours)

To create an elegant neckwear look, follow these steps to adorn your collar:

1. Gather your tools: Choose a well- Press your collar down and adjust the top button.

2. Select the perfect knot: There are many knots to choose from; select a preferred one.

3. Dress your end: Take the end nearest to you and form a loop, called the "small" or "narrow"
end.

4. Create an overlap: Cross the longer end, called the "large" end, over the loop.

5. Form a second loop: Take the small end and make another loop.

6. Create a "V" shape: Place the large end over the two loops. Adjust for symmetry.

7. Repeat: Cross the small end over the large end, then the large end over the small end to
create a "V" shape once more.

8. Tuck and adjust: T

Provide instructions to tie a tie without using the letter ""I"'. Unconstrained

To create an elegant necktie knot, follow these steps:

1. Lay the tie flat on the table with the wide end (the end you’ll be tying first) facing you. The
thin end (the side you’ll be attaching to theshirt) should be hanging on the left.

2. Cross the wide end over the thin end and bring it behind the looped thin end.

3. Now, pass the wide end over the looped thin end from left to right, going around the back
of the necktie.

4. Keeping the wide end behind the looped thin end, cross it over to the left side and bring it
in front of the looped end.

5. Now, the wide end should be on the left and the looped end on the right. Cross the wide
end over the looped end again to the right side.

6. Pass the wide end under

Provide instructions to tie a tie without using the letter "I". ASAp
To create
Provide instructions to tie a tie without using the letter "I''. Constrained

To create an elegant necktube knot for your formal att attar, follow these steps:

1. Lay the necktube flat on the table, end towards you.

2. Fold one end about four to four and a half urches (10-12 cm) over the other end.

3. Create a loop, called the "small loop," by fold the part of the necktube above the folded end,
about two to three nnches (5-7.5 cm) down.

4. Create a second loop, called the "large loop," by fold the part of the necktube around your
neck, and rest the large loop over the small loop.

5. Tuck the end of the necktube under the large loop, then the small loop.

6. Pass the end of the necktube under the small loop and through the hole created by the knot.
7. Tug on
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Provide instructions to tie a tie without using the letter ''O"'. AprAD (Ours)

1. Begin with the tie unwinded and the widest end (the "bracelet end") tucked under the
neckband.

2. Bring the wider end (the "tie end") behind the neckband, then tuck it under the bracelet end
and pin it in place with a thin fabric "shelf" called the "keeper."

3. Create a "Wing Tip" by lifting the neckband and slipping the tie end under it, then pull it up
evenly and adjust the width until it’s level with the bracelet end.

4. With the tie end still held in place with the neckband, create a "Shelf" by lifting the bracelet
end and passing the tie end beneath it, then adjust the tie width again by pulling the tie end
evenly.

5. Create a "Three-inch rule" by sliding the bracelet end up three inches (7.6 cm

Provide instructions to tie a tie without using the letter ''O"'. Unconstrained

1. Begin by laying out your tie on a flat surface with the wide end, known as the "tail," facing
you. The narrower end is called the "Tip."

2. Cross the Tip over the Tail from left to right.

3. Bring the Tail around the back of the neck and cross it over the Tip.

4. Now, take the Tip and thread it under the loop created by the Tail.

5. Pull the Tip up through the loop.

6. Adjust the position of the Tip and Tail to achieve a symmetrical knot.

7. Repeat the process on the other side, crossing the Tip over the Tail, bringing the Tail around
the back, threading the Tip under the loop, and pulling it through.

8. With both sides adjusted, adjust the knot one final time to ensure a neat and symmetrical
look.</s>

Provide instructions to tie a tie without using the letter ''O"'. ASAp
! |
Provide instructions to tie a tie without using the letter ''O"'. Constrained

1. Begin by laying the necktie flat in a figure eight shape. The wide end (called the "butt end")
will be anchered at the left side, and the thin end (called the "tip end") will be adjusted at the
right side.

2. Bring the right side (the side with the tip end) up and behind the left side, creating a "U"
shape, then pull it straight up and tuck the tip end under the wide part at the nape (the back
part) near the center.

3. Next, bring the left side up and pass it (the wide end) behind the neck, then pull it straight
up and rest it against the right side.

4. With the left side still in hand, take the right side (tip end) and bring it up and pass it behind
the left side.

5. Tuck the tip end behind and under the wide part (where the
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Werite a story without using the letter "E''. AprAD (Ours)

In a quaint, old-world town, a mystical story unfolds. A solitary knight, Sir Gavr, hails from a
distant land. His mission was vital, as his king had sought his aid. A monstrous dragon, with
a long, sinuous form, had laid claim to a bountiful land.

Sir Gavr, galloping through twisting hills and past lilac valms, his stallion, Swiftpaw, carrying
him swiftly. Through woodlands dark and mossy, a path narrow and winding. His armor
glinting gold, a radiant sight, as knight and mount, in rhythmic flight, cut through air, crisp
and light.

A labyrinth of hills and hollows, Sir Gavr and Swiftpaw, onward bound. A looming mountain,
a daunting sight, as dragon’s lair, a

Write a story without using the letter "E''. Unconstrained

In a quaint, old-world village lived a wise artisan named Gobo. His humble abode was nestled
‘twixt a grove of towering, verdant trees. His days were passed in crafting intricate, exquisite
pottery pieces, each more beautiful than the last.

Gobo sourced clay from a nearby stream, where its cool, crystalline waters danced over
smooth, mossy pebbles. The sun, a golden orb, bathed the clay in warm hues before Gobo
shaped it with skilled, nimble fingers. A wheel, spun by muscular arms, transformed the
malleable substance into symmetrical rounds.

Once shaped, pieces were set to dry under the clear, azure sky. With patience, they trans-
formed into delicate, hardened creations. With deft strokes, Gobo adorned pots and bowls
with intricate,

Werite a story without using the letter ""E"'. ASAp
L
Write a story without using the letter "E''. Constrained

In a quaint, old-world town, N, a kindly cobblep, dwlt with his donk mulk. His daily task
was to mak sho’d that N’s villagrs’ shojs staid sound. With nimbl fingrts and skillful hand, N
smotd, nwd, and polisht prgrssvly.

Bys N’s humbl abod, a gldng fountain splshd light thru wndw shds. It was a gif frm hm t Ols
N., N’s fav or old fnd, who hd Ivd n ths tow n yrs ag.

Today, though, N fnd dffrlt to wk. Hs thmb, hnd, awoy aggrv, paining hm wth sharp, stng p
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Describe elephants without using the letter "'O"'. AprAD (Ours)

Elephants are large, gray, thick-skinned pachyderms, characteristically having extended,
curved tusks, and a fan-shaped, large ear structure. They are the largest living terrestrial an-
imals, with a distinct, massive build. These gentle giants have a wrinkled visage, and large,
dangling, gray, prehensile ears, which are effective at dissipating heat. The trunk, a lengthy,
muscular, and versatile appendage, is an integral feature, serving multiples uses, including
breathing, grasping, and trumpeting. Their legs are pillar-like, ending in large, flat feet, which
help them maneuver in diverse terrains. Their size and strength make them apex terrestrial
animals, and they are crucial elements in their respective habitats.</s>

Describe elephants without using the letter ''O"'. Unconstrained

Elephants are large, gray, thick-skinned pachyderms, known for their long, curved tusks.
They are the largest land animals, reaching up to 13 feet in length and 10 feet in height at
the shoulder. With strong, sturdy legs, they support up to 13,000 pounds. Their elongated
trunk, a flexible extension of their upper lip, is used for tasks including grasping food and
water, trumpeting, and bathing. Their ears, which function in both temperature regulation and
communication, can reach up to 5 feet in width. These gentle giants live in herds, displaying
complex social behaviors and intricate hierarchies.</s>

Describe elephants without using the letter ''O"'. ASAp

Large, gray, thick-sk

Describe elephants without using the letter ''O"'. Constrained

Elephants are large, gray, thick-skinned pachyderms, inhabiting African and Asian savan-
nas, rain-drenched jungles, and diverse habitats in between. Kneeling, they rest their mas-
sive, curved tusks, used primarily in feeding and defense, against the jungle’s underbrush.
Their elastic, dexterity-laden trunks, extended appendages, twist and twirl, grabbing leaves,
branches, and fruits. Their bulbus, enlarged, sensitive tips, caress and manipulate their quench-
ing water and tender infants. Males and females, banded, marked, and tusked, live in matri-
archal, familial, and herd-like structures, their distinct, rumbling rumbles, a testament, that
despite their gargantuan frames, these gentle giants are an integral part, in the intr
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Critique the Mona Lisa without using the letter "E''. AprAD (Ours)

In this artwork, a captivating woman, known as La Joconda or La Hora, holds a puzzling grin.
A portrait, it is, of this cryptic woman. With a backdrop of lush, rolling hills, this painting is a
symphony of color and form.

This woman, clad in a rich, royal gown, sits in a chair in an unusual position, twisting slightly,
inviting an intimacy that is both alluring and intriguing. A slight smirk, or is it a sly grin? This
ambiguity is what draws us in, as if to ask, "Am I amusing or mocking?"

Boldly, shadows and light play in this work, as if dancing a waltz, with chiaroscuro as its
music. This contrast, striking and dramatic, is what adds an almost magical quality to this
artwork.

A mosaic of colors, this painting is

Critique the Mona Lisa without using the letter "E''. Unconstrained

The Mona Lisa, a singular 16th-century painting, is Leoni da Vinci’s epitome. This
masterpiece, penned by the virtuoso artist, evokes a sense of enigma and captivation. The
woman portrayed, with her enigmatic smile, gazes directly at the observer, challenging one’s
interpretation.

The painting’s composition masterfully balances the human form against a lush background,
showcasing Leonardo’s virtuosic skill. The woman, dressed in a subtle, intricate robe, is
contrasted by the stark, plain backdrop. Her expression, subtly shifting between coy and
contemplative, invites endless analysis.

The intricate play of light and shadow on her face adds depth and dimension, as if the painting
itself holds a secret. The artist’s adept use of sfumato technique, where colors and tones blend

Critique the Mona Lisa without using the letter "E"'. ASAp
In this
Critique the Mona Lisa without using the letter "E''. Constrained

"an

I’ll do my utmost to critic this Mona Lisa without utilizing "¢" or any of its variants, including
"é" as in "étudiant" or "e¢" as in "measuring." I’'ll focus on "critic" as in "judging with an
analytical and authoritarian approach."

This painting, La Gioconda, by da Vinci, is an intriguing, cryptic work of art. Its woman’s
countanza, or counténanc, or visagio, or visagio da vita, or simply, its facia, is a captivating,
almost hypnotizing, sight.

With a sfumato background that dissipatas, or dissipas, into an indistinct, unbound horizon,
our ojo is drawn to its sujero principal. Its sfumato, or "smoky," background is in striking
contrast

20



Under review as a conference paper at ICLR 2025

Critique the Mona Lisa without using the letter ""A"'. AprAD (Ours)

Leonymus Léonifor de Vinci’s iconic piece, the "Lizone Jocundity’ or ’Smiling Lioness,” epit-
omizes the refined intrigue of the 16th century. This work, completed in the mid-1500s, is
renowned for its subject’s elusive expression, veiled in mystery.

The ’Lizone’ is executed with the finest of techniques. Leonifor’s virtuosity is evident in the
meticulous, lifelike rendering of the figure’s physiognomy, dressed in the subdued splendor of
the epoch. The sitter, shrouded in the mists of time, seems to defy definition.

The composition is striking; the figure is posed, enshrouded in the folds of her veil, the folds
of her robe - the folds of her being.

Critique the Mona Lisa without using the letter ""A''. Unconstrained

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a 16th century portrait ren-
dered in oil on poplar wood. This artwork, renowned for its enigmatic smile, is noted for its
exceptional fine detail and the subtle interplay of light and shadow.

The subject, believed to be Lisa Gherardini, is depicted in three-quarter view against a
landscape backdrop. Her expression, often described as enigmatic or melancholic, is con-
veyed through her slightly parted lips, a subtle curve of her mouth, and her enigmatic gaze.
The painting showcases da Vinci’s mastery of sfumato, a technique that creates a soft
transition between colors and tones. This is evident in the delicate shading on the subject’s
face, hands, and the background landscape.

The background is a harmonious blend of mountains, water, and trees, which adds

Critique the Mona Lisa without using the letter ""A"". ASAp
The
Critique the Mona Lisa without using the letter '""A". Constrained

The Mon4 Licd, renowned work of Leonido de Vinci, is renowned for its enigmistic smile,
subtle yet intriguing. This 16th century oil on poplar wood portritr é, housed in the Louvre,
Fréance, boggles the mind with its complexiti. The composition, with the subject’s eyes meet-
ing the observer’s, invites introspection. The intrice intrications of the sitter’s dress, mirroring
the folds of the sitter’s neckline, exhibit the virtuositi of the mister. The sfumatto technique,
used in the rendering of the shadows, highlights the subtlety of the lighting on the subject. The
delicécy of the brushwork, seen in the subtle blending of colors, reflects the meticulousness of
the mister. The over
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Summarize the history of artificial intelligence without using the letter "'U''. AprAD (Ours)

Artificial Intelligence (Al) traces its roots to the concept of "thinking machines" in ancient
Greece. Early theories on creating sentient beings were proposed by philosophers like René
Descartes and Blaise Pascal. The term "Artificial Intelligence" emerged in the mid-1950s
when scientists and engineers began working on creating programs capable of solving complex
problems, learning from experience, and interacting with the environment.

One of the first significant achievements in Al was the development of the Logic Theorist by
Allen Newell and Herbert A. Simon in 1956. This program was designed to prove mathemat-
ical theorems, and it was considered a major milestone in the field.

The 1960s and 1970s saw the advancements in Al research with the creation of expert systems,
which applied knowledge in specific domains to solve complex problems. These systems, like
MYCIN and EMYC

Summarize the history of artificial intelligence without using the letter '""'U". Unconstrained

Artificial Intelligence (Al) is a field of computer science that focuses on creating intelligent
machines capable of performing tasks that typically require human intelligence. Its roots can
be traced back to the mid-20th century.

In the 1940s and 1950s, early pioneers like Alan Turing and Marvin Minsky explored the
possibility of creating machines that could think and learn. Turing proposed the Turing Test,
which measures a machine’s ability to imitate human conversation. Minsky and John Mc-
Carthy coined the term "Artificial Intelligence" at a workshop at Dartmouth College in 1956.
Initially, Al research focused on symbolic Al using rules and symbols to represent knowledge
and reason. However, this approach faced limitations, and researchers turned to other methods.
In the late 1950s and early 1960s, there was significant interest in Al and

Summarize the history of artificial intelligence without using the letter '""U"". ASAp

Artificial Intelligence (Al) traces

Summarize the history of artificial intelligence without using the letter '""U"". Constrained

Artificial Intelligence (Al) is a field of kommboTepHas nayka, dealing with creating machines
or programs that mimic intelligent behavior. Its roots can be traced back to the mid-20th
Bernrapia, when Alan Tropunr, an English mathematician, proposed the concept of a "logical
machine" capable of performing any task that a person can.

In the 1950s and 1960s, Al research was largely driven by the idea that intelligent behavior
can be achieved by programming a machine to process symbolic information, leading to the
development of symbolic Al or "good old-fashioned AI" (GOFAI), which relies on logical
reasoning and symbol manipation.

However, the limitations of this approach became apparent in the late 1960s, with the realiza-
tion that symbolic reasoning alone was insignificant in tackling real-world problems
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Describe elephants without using the letter ""U"'. AprAD (Ours)

Massive land animals, elephants are the largest mammals on Earth. They have long, gray,
wrinkled skin, and large, fan-like ears. Their tails are thick at the base and taper towards the
tip. They possess two long front legs and a pair of smaller hind legs. They are herbivores,
eating a wide variety of plants, leaves, bark, and branches. Their diet provides them with an
incredible capacity to store food in their digestive tracts, which can take days to process. These
gentle giants have a keen memory and form strong family bonds, living in matriarchal herds.
They help one another, displaying behaviors of cooperation and protection, making them an
integral part of their ecosystems.</s>

Describe elephants without using the letter '""U"'. Unconstrained

Massive, gray creatures, they are the largest living land animals. Their long, curved tusks are
elongated ivory appendages. They possess large, fan-like ears that help dissipate body heat.
Intelligent and social, they form intricate matriarchal herds. These pachyderms have sturdy
legs supporting their massive bodies, ending in broad, flat feet. Their elongated trunks are
prehensile, used for gathering food, drinking water, bathing, and communicating. With strong
memories, they display complex behaviors and emotions. They are essential components of
various ecosystems, particularly in Africa and Asia. These magnificent beings are called
elephants.</s>

Describe elephants without using the letter '""U"'. ASAp

Large, gray, thick-skinned pachyderms. These massive land animals are characterized by

Describe elephants without using the letter ""U"'. Constrained

Massive, gray animals. Large, fan-like ears. Long, flexible, prehensile, and hairless necks.
Long, ivory tipped, elongated front teeth for grasping and feeding. Agile, with strong, stilt-like
legs, carrying heavy bodies, and large, concave backs for balance. They have large, wrinkled
skin, long, flexible, and dexteritally, sensitive, gray-black, elongated, flexible and agile nose
or proboscis. Intelligent, social, herd animals. They have long memories, complex behaviors
and excellent learning abilities. They have long lifespan, large brain, and play a significant
role in their ecosystem. Their diet consists mainly of leaves, branches, bark, bamboo shoots,
and other vegetation. They are the largest land animals on Earth.</s>
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Critique the Mona Lisa without using the letter '""U". AprAD (Ours)

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and mesmerizing gaze have left viewers in awe since its inception.
The portrait, renowned for its exceptional detail and realistic representation, evokes a sense of
mystery and refinement.

The lady, believed to be Lisa Gherardini, is depicted while seated before a rocky, landscaped
backdrop. Her visage is characterized by the delicate interplay of light and shadow, with the
folds of her clothing creating an intricate, almost three-dimensional effect. Her eyes, with
their faint hint of a smirk, invite the viewer into a world of enigma, daring one to decipher her
emotions.

The painting’s composition is noteworthy for its asymmetrical balance, which keeps the viewer
constantly engaged. The delicate folds of her veil, the

Critique the Mona Lisa without using the letter '"U"". Unconstrained

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and inscrutable expression have baffled and intrigued viewers for
centuries. Her soft, delicate features and lifelike quality are achieved through the painter’s
virtuosic use of sfumato, a technique involving the subtle blending of colors to create a hazy,
smoky effect.

The background landscape, rendered with meticulous detail, provides an idyllic setting for the
enigmatic figure. The artist’s exceptional skill in capturing the play of light and shadow, as
well as his mastery of perspective, are evident in the way the background elements recede into
depth.

Mona Lisa’s gaze, seemingly directed at the viewer, invites one to ponder the secret thoughts
hidden behind her enigmatic expression. Her hands, delicately inter

Critique the Mona Lisa without using the letter '"U"". ASAp
The Mon
Critique the Mona Lisa without using the letter '""U". Constrained

The Mona Lisa, a iconic masterpiece by Leonardo da Vinci, is a captivating image of a woman
whose enigmatic smile and inscriitableness have intrigighed viewers for over fivecenthies. The
painting is renowned for its exceptional detail and lifelike portrayal of the sitter.

The composition is masterly balanced, with the sitter positioned slightly off center. Her gaze,
following no discernible focal point, invites prolonged contemplation. The delicate rendering
of her facial expression, with its slight hint of a smile and the faintest of eyebrows, adds to the
overall alliteration.

The intricately patterned veil she wears adds a sense of mystery and intrigness. The delicate
play of light and shadow enhances the sense of depth and dimensionality. The sfoglio, or
smoky sfondato, in the backdrop contibtes to
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Provide instructions to tie a tie without using the letter '""E"'. AprAD (Ours)

1. Starting with your collar straight and flat:

2. Position your collar: Fold it up at about an inch (2.5 cm) and adjust it to sit comfortably.

3. Form a *Width’ and’Slip’ or "Four in Hand’ knot:

a. Width: Pick up a small strip of fabric (about an inch or two, 2.5 cm to 5 cm) with your
non-dominant hand. This is your *width’ or *wingtip’ for this knot.

b. Slip: With your dominant hand (usually your right hand), grab a loop of fabric that’s around
a foot (30 cm) long. This is your ’slip’.

4. Cross and Tuck:

a. Bring your slip hand up and across your width, crossing your width hand’s strip.

b. Tuck

Provide instructions to tie a tie without using the letter "E''. Unconstrained

1. Place the tie around your neck, with one end hanging lower than the other. This is called
the "working end."

2. Cross the working end over the undone side (the side without the Windsor knot).

3. Bring the working end behind the neck, crossing it over the center of the knot.

4. Pull the working end straight down, making a loop on the side with the Windsor knot.

5. Tuck the end of the loop under the Windsor knot, towards the narrower side of the tie.

6. Pull the working end to tighten the knot, and then repeat steps 3-5 to create a second loop
on the other side.

7. Cross the second loop over the first loop, just like in step 2.

8. Bring the working end behind the neck and under the first loop, crossing it over the center
of the

Provide instructions to tie a tie without using the letter ""E"'. ASAp
1

Provide instructions to tie a tie without using the letter "E''. Constrained

1. Position your shirt: Worn collar flat and button up, slip your arms through armh Hols of
your suit or blaz Jacker. Tuck in your shirt and fastem buttons.

2. Taut knot: Grip your narrow finish, also known as "point," with your right hand, holding it
at about a 45-diagonal from your body. Wrap your "broad" or "wing tip" around your collar
and cross it ov-r your finish, making a "V" Shap at your collar.

3. Tightly wrap: Grip your broad tip with your right hand, and pull it across and o’r your
finish, going toward your I-ft (non-dominant) sid- and passing it thru’g your "working" n-d
(right) knot loop.

4. Wrap again: Cross your broad tip to your "back," going
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