
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODEL-AGNOSTIC KNOWLEDGE GUIDED CORREC-
TION FOR IMPROVED NEURAL SURROGATE ROLLOUT

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling the evolution of physical systems is critical to many applications in
science and engineering. As the evolution of these systems is predominantly gov-
erned by partial differential equations (PDEs), there are a number of sophisticated
computational simulations which resolve these systems with high accuracy. How-
ever, as these simulations incur high computational costs, they are infeasible to be
employed for large-scale analysis. A popular alternative to simulators are neural
network surrogates which are trained in a data-driven manner and are much more
computationally efficient. However, these surrogate models suffer from high roll-
out error when used autoregressively, especially when confronted with training
data paucity (i.e., a small number of trajectories to learn from). Existing work
proposes to improve surrogate rollout error by either including physical loss terms
directly in the optimization of the model or incorporating computational simula-
tors as ‘differentiable layers’ in the neural network. Both of these approaches have
their challenges, with physical loss functions suffering from slow convergence for
stiff PDEs and simulator layers requiring gradients which are not always available,
especially in legacy simulators. We propose the Hybrid PDE Predictor with Re-
inforcement Learning (HyPER) model: a model-agnostic, RL based, cost-aware
model which combines a neural surrogate, RL decision model, and a physics sim-
ulator (with or without gradients) to reduce surrogate rollout error significantly.
In addition to reducing rollout error by 34%-96% we show that HyPER learns an
intelligent policy that is adaptable to changing physical conditions and resistant to
noise corruption.

1 INTRODUCTION

Scientific simulations have long been the workhorse enabling novel discoveries across many scien-
tific disciplines. However, executing fine-grained simulations of a scientific process of interest is
a costly undertaking requiring large computational resources and long execution times. In the past
decade, the advent of low-cost, efficient GPU architectures has enabled the re-emergence of a pow-
erful function approximation paradigm called deep learning (DL). These powerful DL models, with
the ability to represent highly non-linear functions can be leveraged as surrogates to costly scientific
simulations. Recently, the rapid progress of DL has greatly impacted scientific machine learning
(SciML) with the development of neural surrogates in numerous application domains. Some highly-
impactful applications include protein structure prediction, molecular discovery Schauperl & Denny
(2022); Smith et al. (2018) and domains governed by partial differential equations (PDE) Brunton
& Kutz (2024); Raissi et al. (2019); Lu et al. (2021b). Neural surrogates have also been successfully
employed for modeling fluid dynamics in laminar regimes like modeling blood flow in cardiovascu-
lar systems Kissas et al. (2020) and for modeling turbulent Duraisamy et al. (2019) and multi-phase
flows Muralidhar et al. (2021); Raj et al. (2023); Siddani et al. (2021).

Neural Surrogates are Data Hungry. Although neural surrogates are effective at modeling com-
plex functions, this ability is usually conditioned upon learning from a large trove of representative
data. This data-hungry nature of popular neural surrogates (like neural operators Li et al. (2020); Lu
et al. (2021a)) is well known Tripura et al. (2024); Howard et al. (2023); Lu et al. (2022). However,
many scientific applications suffer from data paucity due to the high cost of the data collection pro-
cess (i.e., primarily due to high cost of scientific simulations). Hence, neural surrogates employed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to model a scientific process of interest, need to address the data paucity bottleneck by learning
effectively with a low volume of training data.

Rollout Errors in Neural Surrogates. Although computational simulations have been designed
for modeling various types of physical systems, those exhibiting transient dynamics are espe-
cially challenging to model. Solutions to systems exhibiting transient dynamics are usually

Figure 1: Cumulative MSE depicting rollout
error for a single trajectory of HyPER vs sur-
rogate only methods. X’s mark the timesteps
during the trajectory where our RL policy calls
the simulator.

obtained by discrete-time evolution of the dynam-
ics. Simulators used to model such systems are in-
voked autoregressively and thereby encounter nu-
merical instability and error buildup over long es-
timation horizons. Such error buildup during au-
toregressive invocation is termed rollout error. Ef-
fective techniques have been developed to reduce
rollout error of computational simulations and in-
crease their numerical stability over long rollouts.
Although autoregressive rollout of neural surro-
gates is also affected by rollout error, solutions to
minimize this error buildup have not been widely
investigated. Recently, (Margazoglou & Magri,
2023) has inspected the stability of echo-state net-
works during autoregressive rollout and List et al.
(2024); Carey et al. (2024); Lippe et al. (2024) has
characterized rollout errors in more general neu-
ral surrogates. However, a systematic solution to
effectively alleviate rollout errors in neural surro-
gates for modeling transient dynamics is still lack-
ing.

Knowledge-Guided Neural Surrogates. One popular method of addressing errors due to data
paucity, in neural surrogates is to leverage knowledge of the theoretical model governing the scien-
tific process. Previous efforts have incorporated domain knowledge (in the form of ODEs, PDEs)
while training the DL surrogate to develop knowledge-guided learning pipelines (Raissi et al., 2019;
Karpatne et al., 2022; Rackauckas et al., 2020; Gao et al., 2021). Most of these approaches incor-
porate the ODE or PDE governing the system dynamics as soft regularizers (i.e., loss term) while
training the neural surrogates. A majority of such approaches have been found to exhibit slow con-
vergence and sometimes catastrophic failures in challenging / stiff PDE conditions (Krishnapriyan
et al., 2021; Wang et al., 2022).

Hybrid-Modeling All approaches discussed thus far are so-called surrogate-only (SUG) ap-
proaches. Here, the computational simulator is employed only as a means of generating data to train
the (possibly knowledge-guided) neural surrogate and discarded post the training. SUG approaches
employ only the pre-trained neural surrogate during inference. Although SUG provide instanta-
neous responses relative to computational simulations, they generally have limited generalization
ability outside the domain of the training data. An effective complement to SUG approaches are
hybrid-modeling approaches (Kurz et al., 2022; Karpatne et al., 2022), that jointly resolve a query
by incorporating surrogates in conjunction with computational solvers. Otherwise stated, hybrid-
modeling pipelines employ a ‘solver-in-the-loop’ (Um et al., 2020) approach. In addition to neural
surrogates, there exist a number of classical hybrid modeling techniques which combine a full order
model (FOM) with a reduced order model (ROM) such as proper orthogonal decomposition (Will-
cox & Peraire, 2002), dynamic model decomposition (Kutz et al., 2016), and multi-scale methods.
While these methods are used to accelerate scientific simulations, they are often limited in expressiv-
ity, especially in modeling complex non-linear dynamics. Recent hybrid models (Suh et al., 2023)
generally have a static coupling between the components in the model and require a static interac-
tion/transition between the full order model (FOM) and the reduced order model (ROM), while our
method proposes an adaptable and learnable interaction between the neural surrogate and the sim-
ulator. Our proposed method allows dynamic integration of an FOM (fine-grained simulator) with
ROM (e.g., neural surrogate or proper orthogonal decomposition) using reinforcement learning.

Knowledge-Guidance with Hybrid-Modeling. Hybrid-modeling approaches are inherently
knowledge-guided. A majority of the recent hybrid-modeling approaches are based on directly
incorporating PDE solvers as additional layers in the deep learning architecture of neural surro-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

!! "" !

HyPER
Rollout

HyPER
Rollout Errors

!! !! !! """"
Initial State

Invoke
Simulator

Invoke
Surrogate

Invoke
Surrogate

Invoke
Surrogate

!! = −ΔError − ΔComputation

Rollout error reduction due to
Knowledge-guided correction.

!!
""
!

HyPER Components

Decision Function

Neural Surrogate

PDE Simulator

Figure 2: Overview of Hybrid PDE Predictor with RL (HyPER) with example rollout. Here πθ is
the decision model, fϕ is the surrogate, and S is the simulator. At t = 9.0 in the above trajectory,
the decision policy invokes the simulator, correcting the trajectory to reduce rollout error. The effect
of this knowledge-guided correction can be observed by a reduction in absolute error (dotted green
circle) in the figure.

gates (Chen et al., 2018; Belbute-Peres et al., 2020; Donti et al., 2021; Pachalieva et al., 2022).
While such approaches address the issues of large errors under data paucity and during rollout,
inherent in SUG approaches, they impose the crippling restriction of differentiability on the com-
putational solvers to be incorporated as part of the DL pipeline. Most solvers and computational
simulations are NOT differentiable out-of-the-box and hence imposing such differentiability con-
straints drastically curtails the applicability of current hybrid-modeling approaches.

To address the existing challenges with surrogate-only and hybrid modeling approaches, we propose
the Hybrid PDE Predictor with RL (HyPER) framework. HyPER is a model-agnostic, simulator-
agnostic framework that learns to invoke the costly computational simulator (in a cost-aware man-
ner) as knowledge-guided correction to alleviate the effects of rollout errors in surrogates trained
with low volumes of training data. Fig. 2 depicts the proposed HyPER framework. Our contribu-
tions are as follows.

• HyPER is a first of its kind knowledge-guided correction mechanism that incorporates simulators
in the loop without the requirement of the simulators to be differentiable.

• HyPER is model agnostic (i.e., functions with any neural surrogate, scientific simulator) and
trained in a cost-aware manner, to intelligently invoke the simulator to correct the rollout error of
the neural surrogates, only when necessary.

•We demonstrate through rigorous experimentation on in-distribution, out-of-distribution and noisy
data that HyPER significantly reduces rollout error relative to SUG approaches by comparing with
state-of-the-art neural surrogates.

2 METHOD

2.1 PDE PREDICTION

We aim to solve PDEs involving spatial dimensions x = [x1, x2, . . . , xm] ∈ Rm and scalar time t ∈
[0, T]. These PDEs relate solution function u(x, t) : [0, T]×Rm → Rn to its partial derivatives over
the domain. We assume we have initial conditions u(x, t = 0) and boundary conditions uB(x =
xB , t) which define the field values at time 0 and at the boundaries of the domain respectively. These
time-dependent PDEs can be generally defined as:

∂u

∂t
= F(x, t,u,

∂u

∂x
,
∂2u

∂x2
, . . .) (1)

We focus on autoregressive rollout of these PDEs over time, which can be defined with an function
g taking current state and time as inputs and producing the next state:

u(x, t+∆t) = g(u(x, t),∆t) (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Note that the equation above can be applied autoregressively over any number of timesteps ∆t to
unroll a PDE trajectory. The cumulative error of this autoregressive process is defined as the rollout
error, which we aim to minimize.

2.2 HYPER COMPONENTS

Surrogate ML Model We begin with a machine learning model fϕ(u, t), which we denote as the
surrogate. This model can be any deep learning model with parameters ϕ that predicts next state
u(x, t+∆t) given starting state and time u(x, t).

Simulator We also define a PDE simulator S(u, t,∆t) which numerically solves the PDE to find
the next state u(x, t+∆t). Crucially, this simulator is only required to return the next state without
any gradient information both during training and inference.

Decision Model Finally, we have a decision model dθ(u, z, t) which takes current state, condi-
tional features z, and current time t and outputs a next action: either call the surrogate fϕ or the
simulator S. In HyPER we implement our decision model as a learned policy πθ which we train
using reinforcement learning (RL).

We formalize our decision model using a Markov Decision Process (MDP) which is a tuple
(S,A, P, r). Our states S consist of current state u, conditional features z, and current time t. Our
action space is binary at each timestep and defined as a : {0 = call surrogate, 1 = call simulator}.
Our reward function for a single time-step is:

rt = −ℓ(û(x, t),u(x, t))− c(λ, k, τ) (3)

Here ℓ represents an error function (mean squared error in our case) while c(λ, k, τ) is a cost func-
tion. τ is the length of the trajectory, û(x, t) is the prediction of our model, u(x, t) is the ground
truth. The cost function c is computed according to hyperparameter λ, trajectory length τ and num-
ber of simulator calls k. The hyperparameter λ is set by the user to specify what percentage of the
trajectory to call the simulator. For example, if λ = 0.5 then the cost function will penalize the
reward if the simulator is not called 50% of the time. Our cost function is defined as:

c(λ, k, τ) =

∣∣∣∣kτ − λ

∣∣∣∣ (4)

Intuitively, reward function 3 optimizes the RL decision model to minimize mean squared error
while calling the simulator for λ proportion of the trajectory. To learn a policy πθ(a|u, z, t) we use
the REINFORCE policy gradient algorithm (Sutton et al., 1999) with a baseline in the loss:

Lpolicy = Et[− log πθ(at|û(x, t),z, t)sg(rt − bt)] (5)

Above sg(·) is stop gradient and bt is a baseline function which calculates the reward of uniform
random actions across the trajectory. The baseline function stabilizes the loss values and leads to
better policy learning. This loss increases the probability of actions that have higher advantage when
comparing our learned policy to a uniform random policy. For full training details of HyPER see
Appendix A.1.

2.3 EXPERIMENTS

2D Navier Stokes Dataset. We create a 2D incompressible Navier Stokes fluid flow dataset using
PhiFlow (Holl & Thuerey, 2024). We generate 1,000 trajectories of 20 timesteps each with a grid
size of 64x64. The Navier-Stokes equations in vector velocity form are detailed in Eq. 6.

∂v

∂t
= −v · ∇v + µ∇2v −∇p+ f ; ∇ · v = 0 (6)

Eq. 6 comprises a convection term −v · ∇v, diffusion term µ∇2v where µ indicates kinematic
viscosity, a pressure term∇p, and external force term f . The velocity divergence term ∇ · v = 0
enforces conservation of mass. For our experiments, we generate our dataset with ∆t = 1.5s,
buoyancy force f = [0.0, 0.5], and diffusion coefficient µ = 0.01. We set our velocity boundary
condition to v = 0 (Dirichlet boundary) and our density boundary condition to a Neumann boundary
condition ∂ρ/∂x = 0. We generate the trajectory for 20 timesteps at 1.5 seconds per timestep, for a
total time of 30 seconds. We split our 1000 trajectories into 4 sets: 400 for surrogate training, 400
for RL training, and 200 for testing.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Subsurface Flow Dataset. To evaluate HyPER’s ability to work with different PDEs and problem
scales, we generate a subsurface flow dataset using the Julia-based DPFEHM (Pachalieva et al.,
2022) simulator. We use DPFEHM to generate a 2D dataset of underground permeability fields with
fluid flow modeled by the Richards equation as described below.

∂θ

∂t
= ∇ ·K(h)(∇h−∇z)− T−1 (7)

This equation models the movement of fluid underground in an unsaturated medium. θ represents
the volumetric fluid content, K(h) is the unsaturated hydraulic conductivity, h is the pressure head,
∇z is the geodetic head gradient, and T−1 is the fluid sink term. We generate 500 trajectories of 100
timesteps each with a grid size of 50x50 and timestep size of 10 seconds. Out of the 500 trajectories,
200 are used for surrogate training, 200 are used for RL training, and 100 are used for testing. We
use Dirchlet boundary conditions (0) for volumetric flux on all sides of our domain but inject fluid
at the top center of the domain at a rate of 0.01m/s which is pulled down by the force of gravity
over time.

3 RESULTS AND DISCUSSION

In this section, we investigate the effectiveness of HyPER to model transient PDE systems effi-
ciently and with minimal rollout error compared to surrogate-only (SUG) rollout. We compare with
state-of-the-art neural surrogates like U-Net and Fourier Neural Operator (FNO). Specifically, we
investigate the effectiveness of HyPER rollouts under changing PDE dynamics and in noisy data set-
tings. Further, we also demonstrate the surrogate-agnostic and simulator-agnostic nature of HyPER.
Our experiments seek to answer the following research questions:

• RQ1: How effective are HyPER rollouts compared to SUG rollouts for transient PDE systems?

• RQ2: Are HyPER rollouts effective under changed physical conditions?

• RQ3: Are HyPER rollouts effective under noisy data conditions?

• RQ4: How crucial is the intelligent decision model for effective HyPER rollouts?

•RQ5: What is the error/efficiency trade-off between SUG, HyPER, and simulator-only paradigms?

3.1 RQ1: HYPER ROLLOUTS VS SUG

We begin by comparing HyPER to six SUG baselines: UNet, FNO, UNet-Multistep, MPP-ZS, MPP,
and PDE-Refiner. All baselines except UNet-Multistep are trained in a one-step-ahead manner i.e.,
given the current state of the resolved field they are trained to predict the next state. Mean squared
error (MSE) loss is used to train all surrogates over the full resolution trajectory. Note that all these
baselines except MPP-ZS are trained with the same dataset that HyPER is trained with. For full
training details see Appendix A.1 and for baseline details see Appendix A.4.

Table 1: 2D Navier-Stokes results with best results in bold. Notice that HyPER rollout incurs
significantly lower rollout (cumulative) error compared to SUG models.

2D Navier-Stokes UNet FNO UNet-Multistep MPP-ZS MPP PDE-Refiner HyPER

Final MSE 0.022 0.078 0.016 0.221 0.036 0.023 0.01
Cumulative MSE 0.4 1.564 0.273 4.495 0.747 0.406 0.179

The UNet model is based on the modern UNet architecture in PDEArena (Gupta & Brandstetter,
2022) while the FNO model is built with the neuraloperator library (Kovachki et al., 2021; Li
et al., 2020). UNet-Multistep is trained in a scheduled manner to specialize for rollout trajectory
prediction, i.e. it minimizes MSE for 1-step ahead prediction, then 2-steps ahead, and so on, up to
the full trajectory length. MPP-ZS (zero-shot) and MPP (McCabe et al., 2023) are large transformer
based multi-task models which have been pretrained on a variety of fluid prediction tasks. MPP-ZS
is the off-the-shelf pretrained model, while MPP is finetuned on our data. PDE-Refiner (Lippe et al.,
2024) is a modern diffusion based model which both predicts the next timestep while adding a multi-
step noising/denoising process and has been shown to reduce rollout error. Table 1 shows the MSE

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Predictions and absolute error snapshots of HyPER rollout for two distinct trajectories.

of the final trajectory state (Final MSE) as well as the aggregated MSE (Cumulative MSE) over all
trajectory states in a rollout. Both metrics are calculated as an average across 200 test trajectories
for both SUG and HyPER rollouts. HyPER outperforms all baselines significantly, with an average
improvements in cumulative rollout errors (i.e., cumulative MSE) of 67.70%. By incorporating the
simulator, HyPER yields significantly lower cumulative rollout error (relative to SUG approaches)
while only invoking the simulator during 30% of the trajectory for knowledge-guided correction of
surrogate rollout.

In Figure 1 we plot the rollout MSE performance of HyPER versus the surrogate only (SUG) meth-
ods for a single sample trajectory. Note that HyPER outperforms both SUG models by a large
margin while only invoking the simulator six times in the 20-step trajectory. Also see Figures 3(a)
and 3(b) which depict qualitative snapshots from two distinct HyPER rollouts.

3.2 RQ2: HYPER ROLLOUTS WITH CHANGING PHYSICAL CONDITIONS

Pre-trained neural surrogates are often confronted with modeling contexts with similar PDE dynam-
ics but varied initial / boundary conditions. Effective rollouts under changing physical conditions
is hence a crucial requirement for the effective use of neural surrogates in computational science.
To this end, we inspect rollout errors of SUG and HyPER, under changing boundary conditions.
Specifically, to test the adaptability of HyPER, we investigate HyPER rollouts with changing bound-
ary conditions in our Navier-Stokes experiment. We generate a separate Navier-Stokes dataset (NS
changing boundary) which follows the same initial conditions of our previous experiment, but com-
prises a different velocity boundary condition at the top boundary of the domain. Specifically, the
velocity at the top boundary of the domain is increased from 0.0 to 0.5 m/s (imposing an intermittent
external forcing effect causing the fluid to escape from the top of the domain) for four intermediate
time-steps of the trajectory (timesteps 12-16). Following this, the boundary condition is reverted
back to 0.0 for the rest of the trajectory. This results in the fluid escaping out of the top during these
time steps changing the PDE dynamics significantly.

Table 2: Results depicting rollout error for 2D Navier-Stokes with changing boundary condi-
tions. We notice that HyPER once again accumulates significantly lower rollout error compared
to SUG approaches. This is due to the ability of HyPER to parsimoniously invoke the simulator for
knowledge-guided correction to minimize surrogate rollout error propagation, due to the changed
boundary condition.

Changing Boundary UNet-Only FNO-Only UNet-FT FNO-FT HyPER

Final MSE 0.356 0.541 0.04 0.038 0.024
Cumulative MSE 1.859 3.504 1.056 3.453 0.499

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In this case, surrogates UNet-Only and FNO-Only are not re-trained with the changed boundary
condition and hence show poor performance accumulating significant rollout errors. UNet-FT and
FNO-FT are fine-tuned on the changing boundary data but still suffer from poor rollout error. We
train our HyPER with the intelligent RL policy, a pre-trained surrogate (not trained on to the changed
boundary setting) and a simulator (fully aware of the changed boundary condition). The RL policy
of HyPER is trained with 400 of these changed trajectories to learn the optimal policy of (frugally)
invoking the simulator to apply knowledge-guided correction to reduce surrogate rollout errors. As
shown in Table 2, HyPER reduces cumulative error in this scenario by 73.16% and 85.76% relative
to UNet-Only and FNO-Only rollout errors respectively. Even when compared to fine-tuned surro-
gates UNet-FT and FNO-FT, HyPER reduces rollout error by 52.75% and 85.54% respectively. In
Figure 4a we demonstrate that HyPER has much lower rollout error than the UNet-Only and FNO-
Only models. Figure 4b shows sample qualitative predictions of HyPER and SUG rollouts under
the changing boundary scenario of interest, to further reinforce our point. As illustrated, our model
prediction is much closer to the ground truth after the boundary condition has changed and fluid has
escaped the box owing to the appropriately invoked knowledge-guided correction by the learned RL
policy in response to increasing surrogate rollout error. Fig. 4a shows the significantly lower rollout
error for HyPER rollout relative to UNet-Only and FNO-Only models.

(a) (b)

(i)

(ii) (iii) (iv)

(v) (vi) (vii)

Figure 4: Predictions and absolute error of HyPER vs UNet-Only and FNO-Only for a single trajec-
tory and timestep. Fig. 4a shows the rollout error accumulation over the trajectory with ”X” marking
the times the simulator is called. Fig. 4b shows the resolved system state for a the same trajectory at
a single timestep. Fig. 4b(i) shows the ground truth field while Fig. 4b(ii)-(iv) indicate the result of
UNet-Only, FNO-Only and HyPER rollouts respectively. Fig. 4b(v)-(vii) depict the corresponding
absolute errors. We notice that only HyPER rollouts capture the correct characteristics relative to the
ground truth owing to the knowledge-guided correction while SUG models as well as the random
policy rollout are unable to faithfully resolve the trajectory under changing physical conditions.

3.3 RQ3: HYPER ROLLOUTS WITH NOISY DATA

Neural surrogates, in addition to being data hungry and accumulating rollout error, have also been
known to exhibit catastrophic failures in challenging PDE conditions (e.g., stiff PDEs) Krish-
napriyan et al. (2021). As neural surrogates are a crucial part of HyPER rollouts, it is imperative
to investigate whether HyPER is capable of adapting to such failures by invoking the knowledge-
guided correction (i.e., the simulator) to minimize the propagation (and accumulation) of such local
failures over the remaining trajectory rollout. Further, another crucial property to investigate is the
robustness of the intelligent decision mechanism in HyPER, to noisy, low-quality surrogate predic-
tions. To jointly investigate both goals, we consider a simple (contrived) context with noisy inputs
supplied to the HyPER RL policy. This additive noise, injected at specific steps to corrupt the surro-
gate output in the trajectory, serves to mimic low-quality surrogate predictions. Hence, experiments
with such noisy inputs help characterize the ability of HyPER to adapt to sudden local changes
during rollout (like catastrophic surrogate failure) in addition to demonstrating its ability for robust
decision-making under noisy data conditions.

To carry out this investigation, we add random Gaussian noise with mean 0 at four separate variance
(σ2) scales at fixed timesteps of our trajectory. The surrogate models are never trained with this
noisy data and therefore perform poorly when encountering it. We train the RL policy of HyPER

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Results depicting rollout error for the 2D-Navier-Stokes experiment, with random Gaussian
noise added to inputs, at timesteps 12-16. σ2 is the scale of the noise. The percentage reduction of
cumulative MSE rollout error by HyPER, over the best performing SUG model is in parentheses.

Experiment Final MSE Cumulative MSE
UNet-Only FNO-Only HyPER UNet-Only FNO-Only HyPER

Unimodal σ2 = 1.0 0.278 0.178 0.075 2.537 3.445 1.164 (54.12%)
Unimodal σ2 = 0.75 0.151 0.161 0.05 1.653 2.798 0.756 (54.27%)
Unimodal σ2 = 0.5 0.075 0.145 0.033 1.023 2.319 0.465 (54.54%)
Unimodal σ2 = 0.25 0.044 0.134 0.02 0.664 2.016 0.275 (58.58%)

with a small set (400) of these noisy trajectories while keeping our surrogate model static. We test
two different noise corruption scenarios added to a 20 step trajectory rollout. (i) unimodal noise:
a case where noise is added at timesteps [12-16] and (ii) bimodal noise: a more sophisticated case
where noise is added at two different time windows of [2-4] and [15-16]. The unimodal noise
results are presented in Table 3, where we see that HyPER rollouts outperform both state-of-the-art
SUG approaches. In this case we notice a reduction in cumulative MSE by 54.12%-58.58% across
the four noise scales. We can further see that unlike SUG approaches, HyPER rollouts degrade
gracefully with increasing noise scale. This is only possible due to HyPER appropriately invoking
the simulator for knowledge-guided correction exactly at (or very close to) the regions in the rollout
subjected to data corruption. Note that as the noise scale σ2 decreases, the gap between HyPER
and the baselines decreases, but even in the lowest noise case of σ2 = 0.25, HyPER significantly
reduces rollout MSE by an average of 58.58%.

We see a similar behavior in the case of bimodal noise (See. Appendix A.2 for bimodal noise
results) with a reduction in cumulative MSE error of 44.01%-76.49% across the four noise scales.
We believe this improved performance in a more complex noise distribution is a result of our RL
policy learning the more complex error distribution while SUG methods accumulate larger error
over the two different noise windows.

3.4 RQ4: INVESTIGATING HYPER ROLLOUTS VS. RANDOM POLICY ROLLOUTS

To evaluate whether HyPER learns an effective RL policy, we compare it to a Random Policy base-
line. This baseline is designed to invoke the simulator the same number of times as the HyPER
RL policy for a particular rollout, but with uniform random probability over each timestep. By
comparing the HyPER policy rollout to a Random Policy rollout with the same budget, we show
that HyPER learns a superior performing policy in our experimental scenarios and that learning an
intelligent RL policy is indeed necessary.

Table 4: HyPER versus a random policy which calls the simulator the same number of times.

Experiment Final MSE Cumulative MSE Cumulative Wins %
Random Policy HyPER Random Policy HyPER HyPER

Noise Free 0.011 0.01 0.189 0.179 56.00%
Bimodal σ2 = 1.0 0.222 0.103 2.768 1.972 69.70%
Bimodal σ2 = 0.75 0.067 0.042 1.431 1.038 72.60%
Bimodal σ2 = 0.5 0.029 0.016 0.716 0.443 79.00%
Bimodal σ2 = 0.25 0.021 0.019 0.482 0.433 56.25%
Changing Boundary 0.147 0.024 0.854 0.499 77.35%

We summarize these results in Table 4, which also shows the percentage of trajectories over which
HyPER reduces MSE compared to Random Policy (Cumulative Wins %). A ‘win’ is charactereized
by a HyPER rollout that yields a lower cumulative MSE than the corresponding Random Policy roll-
out. In the ‘Noise Free’ trajectories, HyPER only wins for 56% of the trajectories because the MSEs
at each timestep in the Noise Free case have low variance, so a uniform Random Policy performs
fairly well. This is also true in the bimodal noise σ = 0.25 experiment as lower-noise scales lead to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

relatively slower rollout error accumulation and hence invoking the simulator uniformly somewhere
around the corrupted time windows ([2-4], [15-16]) suffices to correct the errors, resulting in reason-
ably good performance for the Random Policy. However, in the higher bimodal noise scales (with
fast and large rollout error accumulation), precise invocation of the simulator for knowledge-guided
correction is imperative to prevent error accumulation. Hence, we see HyPER owing to its intelli-
gent (RL-based) decision policy, has a higher percentage of wins (≈ 70%) and significantly lower
cumulative MSE at higher noise scales. We also see the strength of HyPER’s learned policy when
considering the changing boundary condition experiment which has a 77.35 win percentage over
Random Policy and reduces cumulative MSE by 41.57%. This result demonstrates the effectiveness
of HyPER in realistic physical scenarios and noisy conditions.

3.5 RQ5: COST VERSUS ACCURACY TRADE-OFF

Figure 5: Figure 5(a) shows the average time of PDE prediction of a full trajectory for each method.
Figure 5(b) illustrates the error per unit time (lower is better) for each method. We do not show the
Sim-Only case here as we assume error is effectively zero for the simulator.

A natural question to ask is how much of a cost we pay in wall clock time when utilizing HyPER
compared to baselines? We evaluate this by measuring the average time of each method on our
200 test trajectories and show results in Figure 5(a). While the wall clock time of SUG methods
is lower than HyPER, our method has much lower rollout error, which we illustrate in Figure 5(b).
Here we show the error per unit time (lower is better) and we see that HyPER has lower rollout
error per second by a large margin in comparison to the baselines (note this plot is on a log scale).
While calling the simulator incurs a time cost, the user can specify the λ parameter to adjust to their
requirements allowing HyPER to be flexible in varying settings.

3.6 SURROGATE-AGNOSTIC AND SIMULATOR-AGNOSTIC DESIGN OF HYPER

To demonstrate the model-agnostic capability of HyPER, we train it on the subsurface flow task
(dataset details in Sec. 2.3), comprising longer (i.e., 100 step) trajectories. In this case, we train Hy-
PER using the Julia simulator DPFEHM, which simulates underground fluid flow in porous media.
As we see in Table 5, HyPER outperforms both SUG baselines by a cumulative MSE per timestep

Table 5: 2D Subsurface flow experiment results for a 100 timestep trajectory.

Experiment Cumulative MSE per timestep
UNet-Only FNO-Only HyPER

Subsurface 4.345 10.938 0.271

reduction of 93.76% and 97.52%. The integration of a distinct Julia-based simulator in a scenario
with larger physical scales and times, shows that HyPER is surrogate and simulator agnostic and can
perform well and reduce rollout error in multiple problem settings.

4 RELATED WORK

Deep learning (DL) surrogates have been broadly employed in two paradigms to accelerate scientific
discovery namely, surrogate-only (SUG) and hybrid-modeling paradigms.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

SUG approaches fully circumvent the use of computational simulations during inference and only
employ simulations to generate training data. The popular U-Net (Ronneberger et al., 2015) model
owing to its ability to capture spatial and temporal dynamics at multiple scales is a notable SUG
architecture. The U-net model has recently (Gupta & Brandstetter, 2022) demonstrated state of the
art performance on various fluid dynamics benchmarks. Operator learning (Kovachki et al., 2021)
approaches that learn function families of PDEs rather than single PDE instances have also been
investigated to be effective neural surrogates. Two notable operator learning models are the deep
operator network (Lu et al., 2021a) and the Fourier neural operator (FNO) (Li et al., 2020) models.
Multiple investigations have been carried out employing operator learning techniques including ex-
tending them to multi-resolution (Howard et al., 2023; Lu et al., 2022) settings. Recently Takamoto
et al. (2022) have also demonstrated that FNOs yield state-of-the-art results on benchmark tasks.

Knowledge-guided SUG approaches like the popular Physics-informed neural network
(PINN) (Raissi et al., 2019; Jagtap & Karniadakis, 2020; Cuomo et al., 2022) have also been
effectively employed for improved generalization. A related paradigm of Universal Differential
Equations (Rackauckas et al., 2020) utilizes surrogates to estimate (in a data-driven manner) fo-
cused sub-components of governing equations for better process modeling. Such approaches as-
sume end-to-end gradient based training in a physics-informed manner and are known to converge
slowly and converge to trivial solutions under data paucity and stiff PDE conditions Krishnapriyan
et al. (2021) owing to catastrophic gradient imbalance Wang et al. (2021) between data-driven and
physics-guided loss terms.

SUG for Transient PDE Dynamics. All SUG approaches struggle to model transient PDE systems
in an autoregressive manner and incur rollout error (Carey et al., 2024). In the work of Lippe et al.
(2024), it is demonstrated how the spectral bias of traditional neural surrogates leads to significant
error accumulation and they propose an initial refinement solution inspired by the process in diffu-
sion modeling. Separately, List et al. (2024) have conducted a characterization of SUG rollout error
and comment about the significant improvement obtainable by incorporating simulators in-the-loop.

Hybrid-modeling for Transient PDE Dynamics. Complementary to SUG approaches, hybrid-
modeling approaches retain the simulation and resolve each query employing the neural surrogate
and the simulator ‘in-the-loop’. However, a major drawback with such approaches (Chen et al.,
2018; Belbute-Peres et al., 2020; Um et al., 2020; Donti et al., 2021; Pachalieva et al., 2022) is that
they require the simulators to be differentiable as they are mostly employed as additional layers in
the neural network architectures to be trained end-to-end with the neural surrogates.
5 CONCLUSION AND FUTURE WORK
This work presents a first of its kind knowledge-guided correction mechanism to reduce rollout
errors in neural surrogates that model transient PDE systems. Specifically, our proposed method
Hybrid PDE Predictor with RL (HyPER) learns reinforcement learning based cost-aware control
policies to parsimoniously invoke (costly) simulation steps to correct erroneous surrogate predic-
tions. In contrast to existing approaches that employ simulators ‘in-the-loop‘ with neural surrogates,
HyPER does not impose any differentiablity restrictions on the computational simulations. Further,
HyPER is surrogate and simulator agnostic and is designed to be applicable to any neural surrogate
and off-the-shelf simulator capable of resolving transient PDE systems.

We have demonstrated the effectiveness of our proposed HyPER model in traditional in-distribution
rollouts, under changing physical conditions and under noisy data conditions. In each case, we
demonstrate that HyPER yields significantly lower rollout errors (with parsimonious invocation of
the costly simulation step), than surrogate-only rollouts of state-of-the-art neural surrogates. Overall
HyPER yields significant improvements of cumulative rollout error over state-of-the-art surrogate-
only approaches with 67.70% improvement for in-distribution rollouts, 79.46% improvement for
rollouts under changing physical conditions and 58.28% improvement for rollouts under noisy data
conditions. In the future, we will investigate more sophisticated RL policies based in the actor-critic
paradigm to further improve the sample efficiency of HyPER. We will also explore extensions of
HyPER to more challenging problems in multi-physics contexts as well as multi-phase flows.

REFERENCES

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable pde
solvers and graph neural networks for fluid flow prediction. In international conference on ma-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

chine learning, pp. 2402–2411. PMLR, 2020.

Steven L Brunton and J Nathan Kutz. Promising directions of machine learning for partial differen-
tial equations. Nature Computational Science, 4(7):483–494, 2024.

N Carey, L Zanisi, S Pamela, V Gopakumar, J Omotani, J Buchanan, and J Brandstetter. Data
efficiency and long term prediction capabilities for neural operator surrogate models of core and
edge plasma codes. arXiv preprint arXiv:2402.08561, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
hard constraints. arXiv preprint arXiv:2104.12225, 2021.

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in the age of data.
Annual review of fluid mechanics, 51(1):357–377, 2019.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convo-
lutional neural networks for solving parameterized steady-state pdes on irregular domain. Journal
of Computational Physics, 428:110079, 2021.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Philipp Holl and Nils Thuerey. Φflow (PhiFlow): Differentiable simulations for pytorch, tensorflow
and jax. In International Conference on Machine Learning. PMLR, 2024.

Amanda A Howard, Mauro Perego, George Em Karniadakis, and Panos Stinis. Multifidelity deep
operator networks for data-driven and physics-informed problems. Journal of Computational
Physics, 493:112462, 2023.

Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 28(5), 2020.

Anuj Karpatne, Ramakrishnan Kannan, and Vipin Kumar. Knowledge Guided Machine Learning:
Accelerating Discovery Using Scientific Knowledge and Data. CRC Press, 2022.

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris Perdikaris.
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-
invasive 4d flow mri data using physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 358:112623, 2020.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural infor-
mation processing systems, 34:26548–26560, 2021.

Stefan Kurz, Herbert De Gersem, Armin Galetzka, Andreas Klaedtke, Melvin Liebsch, Dimitrios
Loukrezis, Stephan Russenschuck, and Manuel Schmidt. Hybrid modeling: towards the next level
of scientific computing in engineering. Journal of Mathematics in Industry, 12(1):8, 2022.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode decom-
position: data-driven modeling of complex systems. SIAM, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-refiner:
Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Bjoern List, Li-Wei Chen, Kartik Bali, and Nils Thuerey. How temporal unrolling supports neural
physics simulators. arXiv preprint arXiv:2402.12971, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021b.

Lu Lu, Raphaël Pestourie, Steven G Johnson, and Giuseppe Romano. Multifidelity deep neural
operators for efficient learning of partial differential equations with application to fast inverse
design of nanoscale heat transport. Physical Review Research, 4(2):023210, 2022.

Georgios Margazoglou and Luca Magri. Stability analysis of chaotic systems from data. Nonlinear
Dynamics, 111(9):8799–8819, 2023.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Nikhil Muralidhar, Jie Bu, Ze Cao, Neil Raj, Naren Ramakrishnan, Danesh Tafti, and Anuj Karpatne.
Phyflow: Physics-guided deep learning for generating interpretable 3d flow fields. In 2021 IEEE
International Conference on Data Mining (ICDM), pp. 1246–1251. IEEE, 2021.

Aleksandra Pachalieva, Daniel O’Malley, Dylan Robert Harp, and Hari Viswanathan. Physics-
informed machine learning with differentiable programming for heterogeneous underground
reservoir pressure management. Scientific Reports, 12(1):18734, 2022.

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations for scien-
tific machine learning. arXiv preprint arXiv:2001.04385, 2020.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Neil Ashwin Raj, Danesh Tafti, and Nikhil Muralidhar. Comparison of reduced order models based
on dynamic mode decomposition and deep learning for predicting chaotic flow in a random ar-
rangement of cylinders. Physics of Fluids, 35(7), 2023.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Michael Schauperl and Rajiah Aldrin Denny. Ai-based protein structure prediction in drug discov-
ery: Impacts and challenges. Journal of Chemical Information and Modeling, 62(13):3142–3156,
2022.

Bhargav Siddani, S Balachandar, William C Moore, Yunchao Yang, and Ruogu Fang. Machine
learning for physics-informed generation of dispersed multiphase flow using generative adversar-
ial networks. Theoretical and Computational Fluid Dynamics, 35:807–830, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Justin S Smith, Adrian E Roitberg, and Olexandr Isayev. Transforming computational drug discov-
ery with machine learning and ai, 2018.

Seung Won Suh, Seung Whan Chung, Peer-Timo Bremer, and Youngsoo Choi. Accelerating flow
simulations using online dynamic mode decomposition. arXiv preprint arXiv:2311.18715, 2023.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Tapas Tripura, Akshay Thakur, and Souvik Chakraborty. Multi-fidelity wavelet neural operator
surrogate model for time-independent and time-dependent reliability analysis. Probabilistic En-
gineering Mechanics, 77:103672, 2024.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Karen Willcox and Jaime Peraire. Balanced model reduction via the proper orthogonal decomposi-
tion. AIAA journal, 40(11):2323–2330, 2002.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 HYPER TRAINING PROCEDURE

Below we detail the RL training procedure of HyPER.

Algorithm 1 HyPER Training Algorithm

Require: Dataset: D, Pretrained Surrogate Model: fϕ, Simulator: S, Decision Model: dθ,
Trajectory length: τ , Simulator proportion hyperparameter: λ, Learning rate: η,
Error function (MSE in our case): ℓ, Cost function: c

1: for u, z ∈ D do ▷ For every trajectory in dataset, get field u and conditional features z
2: k ← 0 ▷ Initialize number of simulator calls
3: Rd ← [] ▷ Initialize decision model rewards list
4: Rb ← [] ▷ Initialize baseline rewards list
5: L← [] ▷ List to store log probabilities of each action
6: û(x,−1)← 0 ▷ Set initial field prediction to 0
7: for t ∈ [0, τ] do ▷ For every time-step in trajectory
8: p← dθ(û(x, t− 1), z, t) ▷ Get RL model probabilities for next action
9: a ∼ Bernoulli(p) ▷ Sample next action

10: L += a log(p) + (1− a) log(1− p) ▷ Store log probability of action
11: if a = 0 then
12: û(x, t)← fϕ(û(x, t− 1), t) ▷ Call surrogate for next step prediction
13: else if a = 1 then
14: û(x, t)← S(û(x, t− 1), t) ▷ Call simulator for next step prediction
15: k += 1 ▷ Track number of times simulator called
16: end if
17: Rd += −ℓ(û(x, t),u(x, t))− c(λ, k, τ) ▷ Store policy reward based on MSE and

cost function
18: end for
19: I ∼ UniformWithoutReplacement([0, τ], k) ▷ Sample k times between [0, τ] without

replacement, this list will contain the time-
steps at which the random baseline will call
the simulator

20: for t ∈ [0, τ] do ▷ Run random baseline for trajectory
21: if t /∈ I then
22: û(x, t)← fϕ(û(x, t− 1), t) ▷ Call surrogate for next step prediction
23: else if t ∈ I then
24: û(x, t)← S(û(x, t− 1), t) ▷ Call simulator for next step prediction
25: end if
26: Rb += −ℓ(û(x, t),u(x, t))− c(λ, k, τ) ▷ Store baseline reward using MSE

and cost function
27: end for
28: ∇θJ ← −∇θL · StopGradient(Rd −Rb) ▷ Calculate policy gradient, this is done

element-wise and then summed
29: θ ← θ − η∇θJ ▷ Update RL decision model parameters
30: end for

A.2 RQ3: HYPER ROLLOUTS WITH NOISE DATA: BIMODAL NOISE EXPERIMENTS

Table 6 depicts the performance of HyPER in the bimodal noise case. We notice results similar to the
unimodal noise case, with a reduction in cumulative MSE error of 44.01%-76.49%. We believe this
improved performance in a more complex noise distribution is a result of our RL policy learning the
more complex error distribution while the SUG methods accumulate larger error over two different
noise windows.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 6: Results depicting rollout error for the 2D-Navier-Stokes experiment with random Gaussian
noise added at timesteps 2-4, 15-16. σ2 is the scale of the noise. The percentage reduction of
cumulative MSE rollout error by HyPER, over the best performing SUG model is in parentheses.

Experiment Final MSE Cumulative MSE
UNet-Only FNO-Only HyPER UNet-Only FNO-Only HyPER

Bimodal σ2 = 1.0 4.954 0.154 0.103 16.663 3.522 1.972 (44.01%)
Bimodal σ2 = 0.75 0.869 0.142 0.042 4.739 2.812 1.038 (63.09%)
Bimodal σ2 = 0.5 0.095 0.136 0.016 1.884 2.309 0.443 (76.49%)
Bimodal σ2 = 0.25 0.045 0.129 0.019 1.114 2.0 0.433 (61.13%)

Figure 6: Average Cumulative MSE over all test trajectories of HyPER vs. UNet-Only and FNO-
Only.

A.3 HYPER AVERAGE PERFORMANCE

Figure 6 shows the rollout error of HyPER vs SUG methods over all 200 Navier-Stokes test trajec-
tories. This demonstrates that HyPER is effective in reducing rollout error significantly over a large
set of unseen test trajectories.

A.4 MODEL ARCHITECTURES AND PARAMETERS

A.4.1 MODEL TRAINING DETAILS

We build and train all our neural surrogate models using the PyTorch library on a single Nvidia RTX
A6000 GPU. The PhiFlow simulator used in the Navier-Stokes experiment runs on the same GPU.
The DPFEHM Julia simulator runs using multi-threading on an Intel(R) Xeon(R) Platinum 8358
CPU @ 2.60GHz.

The UNet, FNO, UNet-FT, FNO-FT, UNet-Multistep, MPP, and PDE-Refiner baselines are trained
with same number of samples as HyPER for the sake of fair comparison. The UNet-Only and
FNO-Only baseline models are trained with a smaller dataset of 400 trajectories which are separate
from the 400 trajectories HyPER’s RL policy is trained with. UNet-Multistep, MPP, and PDE-
Refiner are trained for 200 epochs so we could compare with strong surrogate baselines while UNet,
FNO, UNet-Only, FNO-Only, UNet-FT, FNO-FT were trained for 50 epochs to evaluate results for
simpler models.

We only train the HyPER RL ResNet model for 30 epochs to demonstrate that HyPER does not
require extensive training to outperform the baselines.

• UNet-Only: 1.05 hours (50 epochs, 400 trajectories)

15

https://github.com/tum-pbs/PhiFlow
https://github.com/OrchardLANL/DPFEHM.jl

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• FNO-Only: 0.50 hours (50 epochs, 400 trajectories)
• UNet: 2.12 hours (50 epochs, 800 trajectories)
• FNO: 0.89 hours (50 epochs, 800 trajectories)
• UNet-Multistep: 9.0 hours (200 epochs, 800 trajectories)
• MPP: 9.58 hours (200 epochs, 800 trajectories)
• PDE-Refiner: 3.66 hours (200 epochs, 800 trajectories)
• HyPER: 5.21 hours (30 epochs)

A.4.2 MODEL PARAMETERS

Our UNet model is built on top of the PDEArena modern UNet architecture with wide residual
blocks and training parameters in Table 7.

Table 7: UNet parameters.

Parameter Value
Model Size (# parameters) 12,295,233
Hidden Channels 64
Activation Function GELU
Channel Multipliers [1, 2, 2]
Num Residual Blocks Per Channel 2
Sinusoidal Time Embedding Yes
Learning Rate 1e-4
Optimizer Adam
Loss Function MSE
Epochs 50

Our FNO model is built using the neuraloperator library and is constructed to have a similar number
of parameters as our UNet for a fair comparison. See Table 8 for details.

Table 8: FNO parameters.

Parameter Value
Model Size (# parameters) 12,437,057
Number of Fourier Modes 27
Hidden Channels 64
Lifting Channels 256
Projection Channels 256
Learning Rate 1e-5
Optimizer Adam
Loss Function MSE
Epochs 50

The HyPER RL model is a lightly modified version of the ResNet34 model from the Torchvision
library. See Table 9 for parameters.

The Multiple Physics Pretrained model (MPP) is adapted from MPP github. Note that we train this
model for 200 epochs while UNet and FNO are only trained for 50. See Table 10 for details.

The PDE-Refiner model was adapted from PDE-Refiner to work with our UNet model. Note that
we train this model for 200 epochs while UNet and FNO are only trained for 50. See Table 11 for
details.

16

https://github.com/pdearena/pdearena
https://neuraloperator.github.io/dev/index.html
https://github.com/pytorch/vision
https://github.com/PolymathicAI/multiple_physics_pretraining
https://phlippe.github.io/PDERefiner/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: RL ResNet parameters.

Parameter Value
Model Size (# parameters) 11,751,300
Number of Layers [3, 4, 6, 3]
Hidden Channels 64
Sinusoidal. Time Embedding Yes
Activation Function ReLU
Learning Rate 1e-5
Optimizer Adam
Reward Function Equation 3
Epochs 30

Table 10: Multiple Physics Pretraining parameters.

Parameter Value
Model Size (# parameters) 28,979,436
Patch Size 16x16
Embedding Dimension 384
Number of Axial Attention Heads 6
Number of Transformer Blocks 12
Epochs 200

Table 11: PDE-Refiner parameters.

Parameter Value
Model Size (# parameters) 12,378,241
Number of Refinement/Denoising Steps 3
Minimum Noise Scale 4e-7
Hidden Channels 64
Activation Function GELU
Channel Multipliers [1, 2, 2]
Num Residual Blocks Per Channel 2
Sinusoidal Time Embedding Yes
Learning Rate 1e-4
Optimizer Adam
Loss Function MSE
Epochs 200

17

	Introduction
	Method
	PDE Prediction
	HyPER Components
	Experiments

	Results and Discussion
	RQ1: HyPER rollouts vs SUG
	RQ2: HyPER rollouts with Changing Physical Conditions
	RQ3: HyPER rollouts with Noisy Data
	RQ4: Investigating HyPER Rollouts vs. Random Policy Rollouts
	RQ5: Cost versus Accuracy Trade-Off
	Surrogate-Agnostic and Simulator-Agnostic Design of HyPER

	Related Work
	Conclusion and Future Work
	Appendix
	HyPER Training Procedure
	RQ3: HyPER Rollouts with Noise Data: Bimodal Noise Experiments
	HyPER Average Performance
	Model Architectures and Parameters
	Model Training Details
	Model Parameters

