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ABSTRACT

Modeling the evolution of physical systems is critical to many applications in
science and engineering. As the evolution of these systems is predominantly gov-
erned by partial differential equations (PDEs), there are a number of sophisticated
computational simulations which resolve these systems with high accuracy. How-
ever, as these simulations incur high computational costs, they are infeasible to be
employed for large-scale analysis. A popular alternative to simulators are neural
network surrogates which are trained in a data-driven manner and are much more
computationally efficient. However, these surrogate models suffer from high roll-
out error when used autoregressively, especially when confronted with training
data paucity (i.e., a small number of trajectories to learn from). Existing work
proposes to improve surrogate rollout error by either including physical loss terms
directly in the optimization of the model or incorporating computational simula-
tors as ‘differentiable layers’ in the neural network. Both of these approaches have
their challenges, with physical loss functions suffering from slow convergence for
stiff PDEs and simulator layers requiring gradients which are not always available,
especially in legacy simulators. We propose the Hybrid PDE Predictor with Re-
inforcement Learning (HyPER) model: a model-agnostic, RL based, cost-aware
model which combines a neural surrogate, RL decision model, and a physics sim-
ulator (with or without gradients) to reduce surrogate rollout error significantly.
In addition to reducing rollout error by 34%-96% we show that HyPER learns an
intelligent policy that is adaptable to changing physical conditions and resistant to
noise corruption.

1 INTRODUCTION

Scientific simulations have long been the workhorse enabling novel discoveries across many scien-
tific disciplines. However, executing fine-grained simulations of a scientific process of interest is
a costly undertaking requiring large computational resources and long execution times. In the past
decade, the advent of low-cost, efficient GPU architectures has enabled the re-emergence of a pow-
erful function approximation paradigm called deep learning (DL). These powerful DL models, with
the ability to represent highly non-linear functions can be leveraged as surrogates to costly scientific
simulations. Recently, the rapid progress of DL has greatly impacted scientific machine learning
(SciML) with the development of neural surrogates in numerous application domains. Some highly-
impactful applications include protein structure prediction, molecular discovery Schauperl & Denny
(2022); Smith et al. (2018) and domains governed by partial differential equations (PDE) Brunton
& Kutz (2024); Raissi et al. (2019); Lu et al. (2021b). Neural surrogates have also been successfully
employed for modeling fluid dynamics in laminar regimes like modeling blood flow in cardiovascu-
lar systems Kissas et al. (2020) and for modeling turbulent Duraisamy et al. (2019) and multi-phase
flows Muralidhar et al. (2021); Raj et al. (2023); Siddani et al. (2021).

Neural Surrogates are Data Hungry. Although neural surrogates are effective at modeling com-
plex functions, this ability is usually conditioned upon learning from a large trove of representative
data. This data-hungry nature of popular neural surrogates (like neural operators Li et al. (2020); Lu
et al. (2021a)) is well known Tripura et al. (2024); Howard et al. (2023); Lu et al. (2022). However,
many scientific applications suffer from data paucity due to the high cost of the data collection pro-
cess (i.e., primarily due to high cost of scientific simulations). Hence, neural surrogates employed
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to model a scientific process of interest, need to address the data paucity bottleneck by learning
effectively with a low volume of training data.

Rollout Errors in Neural Surrogates. Although computational simulations have been designed
for modeling various types of physical systems, those exhibiting transient dynamics are espe-
cially challenging to model. Solutions to systems exhibiting transient dynamics are usually

Figure 1: Cumulative MSE depicting rollout
error for a single trajectory of HyPER vs sur-
rogate only methods. X’s mark the timesteps
during the trajectory where our RL policy calls
the simulator.

obtained by discrete-time evolution of the dynam-
ics. Simulators used to model such systems are in-
voked autoregressively and thereby encounter nu-
merical instability and error buildup over long es-
timation horizons. Such error buildup during au-
toregressive invocation is termed rollout error. Ef-
fective techniques have been developed to reduce
rollout error of computational simulations and in-
crease their numerical stability over long rollouts.
Although autoregressive rollout of neural surro-
gates is also affected by rollout error, solutions to
minimize this error buildup have not been widely
investigated. Recently, (Margazoglou & Magri,
2023) has inspected the stability of echo-state net-
works during autoregressive rollout and List et al.
(2024); Carey et al. (2024); Lippe et al. (2024) has
characterized rollout errors in more general neu-
ral surrogates. However, a systematic solution to
effectively alleviate rollout errors in neural surro-
gates for modeling transient dynamics is still lack-
ing.

Knowledge-Guided Neural Surrogates. One popular method of addressing errors due to data
paucity, in neural surrogates is to leverage knowledge of the theoretical model governing the scien-
tific process. Previous efforts have incorporated domain knowledge (in the form of ODEs, PDEs)
while training the DL surrogate to develop knowledge-guided learning pipelines (Raissi et al., 2019;
Karpatne et al., 2022; Rackauckas et al., 2020; Gao et al., 2021). Most of these approaches incor-
porate the ODE or PDE governing the system dynamics as soft regularizers (i.e., loss term) while
training the neural surrogates. A majority of such approaches have been found to exhibit slow con-
vergence and sometimes catastrophic failures in challenging / stiff PDE conditions (Krishnapriyan
et al., 2021; Wang et al., 2022).

Hybrid-Modeling All approaches discussed thus far are so-called surrogate-only (SUG) ap-
proaches. Here, the computational simulator is employed only as a means of generating data to train
the (possibly knowledge-guided) neural surrogate and discarded post the training. SUG approaches
employ only the pre-trained neural surrogate during inference. Although SUG provide instanta-
neous responses relative to computational simulations, they generally have limited generalization
ability outside the domain of the training data. An effective complement to SUG approaches are
hybrid-modeling approaches (Kurz et al., 2022; Karpatne et al., 2022), that jointly resolve a query
by incorporating surrogates in conjunction with computational solvers. Otherwise stated, hybrid-
modeling pipelines employ a ‘solver-in-the-loop’ (Um et al., 2020) approach. In addition to neural
surrogates, there exist a number of classical hybrid modeling techniques which combine a full order
model (FOM) with a reduced order model (ROM) such as proper orthogonal decomposition (Will-
cox & Peraire, 2002), dynamic model decomposition (Kutz et al., 2016), and multi-scale methods.
While these methods are used to accelerate scientific simulations, they are often limited in expressiv-
ity, especially in modeling complex non-linear dynamics. Recent hybrid models (Suh et al., 2023)
generally have a static coupling between the components in the model and require a static interac-
tion/transition between the full order model (FOM) and the reduced order model (ROM), while our
method proposes an adaptable and learnable interaction between the neural surrogate and the sim-
ulator. Our proposed method allows dynamic integration of an FOM (fine-grained simulator) with
ROM (e.g., neural surrogate or proper orthogonal decomposition) using reinforcement learning.

Knowledge-Guidance with Hybrid-Modeling. Hybrid-modeling approaches are inherently
knowledge-guided. A majority of the recent hybrid-modeling approaches are based on directly
incorporating PDE solvers as additional layers in the deep learning architecture of neural surro-
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Figure 2: Overview of Hybrid PDE Predictor with RL (HyPER) with example rollout. Here πθ is
the decision model, fϕ is the surrogate, and S is the simulator. At t = 9.0 in the above trajectory,
the decision policy invokes the simulator, correcting the trajectory to reduce rollout error. The effect
of this knowledge-guided correction can be observed by a reduction in absolute error (dotted green
circle) in the figure.

gates (Chen et al., 2018; Belbute-Peres et al., 2020; Donti et al., 2021; Pachalieva et al., 2022).
While such approaches address the issues of large errors under data paucity and during rollout,
inherent in SUG approaches, they impose the crippling restriction of differentiability on the com-
putational solvers to be incorporated as part of the DL pipeline. Most solvers and computational
simulations are NOT differentiable out-of-the-box and hence imposing such differentiability con-
straints drastically curtails the applicability of current hybrid-modeling approaches.

To address the existing challenges with surrogate-only and hybrid modeling approaches, we propose
the Hybrid PDE Predictor with RL (HyPER) framework. HyPER is a model-agnostic, simulator-
agnostic framework that learns to invoke the costly computational simulator (in a cost-aware man-
ner) as knowledge-guided correction to alleviate the effects of rollout errors in surrogates trained
with low volumes of training data. Fig. 2 depicts the proposed HyPER framework. Our contribu-
tions are as follows.

• HyPER is a first of its kind knowledge-guided correction mechanism that incorporates simulators
in the loop without the requirement of the simulators to be differentiable.

• HyPER is model agnostic (i.e., functions with any neural surrogate, scientific simulator) and
trained in a cost-aware manner, to intelligently invoke the simulator to correct the rollout error of
the neural surrogates, only when necessary.

•We demonstrate through rigorous experimentation on in-distribution, out-of-distribution and noisy
data that HyPER significantly reduces rollout error relative to SUG approaches by comparing with
state-of-the-art neural surrogates.

2 METHOD

2.1 PDE PREDICTION

We aim to solve PDEs involving spatial dimensions x = [x1, x2, . . . , xm] ∈ Rm and scalar time t ∈
[0, T ]. These PDEs relate solution function u(x, t) : [0, T ]×Rm → Rn to its partial derivatives over
the domain. We assume we have initial conditions u(x, t = 0) and boundary conditions uB(x =
xB , t) which define the field values at time 0 and at the boundaries of the domain respectively. These
time-dependent PDEs can be generally defined as:

∂u

∂t
= F(x, t,u,

∂u

∂x
,
∂2u

∂x2
, . . .) (1)

We focus on autoregressive rollout of these PDEs over time, which can be defined with an function
g taking current state and time as inputs and producing the next state:

u(x, t+∆t) = g(u(x, t),∆t) (2)
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Note that the equation above can be applied autoregressively over any number of timesteps ∆t to
unroll a PDE trajectory. The cumulative error of this autoregressive process is defined as the rollout
error, which we aim to minimize.

2.2 HYPER COMPONENTS

Surrogate ML Model We begin with a machine learning model fϕ(u, t), which we denote as the
surrogate. This model can be any deep learning model with parameters ϕ that predicts next state
u(x, t+∆t) given starting state and time u(x, t).

Simulator We also define a PDE simulator S(u, t,∆t) which numerically solves the PDE to find
the next state u(x, t+∆t). Crucially, this simulator is only required to return the next state without
any gradient information both during training and inference.

Decision Model Finally, we have a decision model dθ(u, z, t) which takes current state, condi-
tional features z, and current time t and outputs a next action: either call the surrogate fϕ or the
simulator S. In HyPER we implement our decision model as a learned policy πθ which we train
using reinforcement learning (RL).

We formalize our decision model using a Markov Decision Process (MDP) which is a tuple
(S,A, P, r). Our states S consist of current state u, conditional features z, and current time t. Our
action space is binary at each timestep and defined as a : {0 = call surrogate, 1 = call simulator}.
Our reward function for a single time-step is:

rt = −ℓ(û(x, t),u(x, t))− c(λ, k, τ) (3)

Here ℓ represents an error function (mean squared error in our case) while c(λ, k, τ) is a cost func-
tion. τ is the length of the trajectory, û(x, t) is the prediction of our model, u(x, t) is the ground
truth. The cost function c is computed according to hyperparameter λ, trajectory length τ and num-
ber of simulator calls k. The hyperparameter λ is set by the user to specify what percentage of the
trajectory to call the simulator. For example, if λ = 0.5 then the cost function will penalize the
reward if the simulator is not called 50% of the time. Our cost function is defined as:

c(λ, k, τ) =

∣∣∣∣kτ − λ

∣∣∣∣ (4)

Intuitively, reward function 3 optimizes the RL decision model to minimize mean squared error
while calling the simulator for λ proportion of the trajectory. To learn a policy πθ(a|u, z, t) we use
the REINFORCE policy gradient algorithm (Sutton et al., 1999) with a baseline in the loss:

Lpolicy = Et[− log πθ(at|û(x, t),z, t)sg(rt − bt)] (5)

Above sg(·) is stop gradient and bt is a baseline function which calculates the reward of uniform
random actions across the trajectory. The baseline function stabilizes the loss values and leads to
better policy learning. This loss increases the probability of actions that have higher advantage when
comparing our learned policy to a uniform random policy. For full training details of HyPER see
Appendix A.1.

2.3 EXPERIMENTS

2D Navier Stokes Dataset. We create a 2D incompressible Navier Stokes fluid flow dataset using
PhiFlow (Holl & Thuerey, 2024). We generate 1,000 trajectories of 20 timesteps each with a grid
size of 64x64. The Navier-Stokes equations in vector velocity form are detailed in Eq. 6.

∂v

∂t
= −v · ∇v + µ∇2v −∇p+ f ; ∇ · v = 0 (6)

Eq. 6 comprises a convection term −v · ∇v, diffusion term µ∇2v where µ indicates kinematic
viscosity, a pressure term∇p, and external force term f . The velocity divergence term ∇ · v = 0
enforces conservation of mass. For our experiments, we generate our dataset with ∆t = 1.5s,
buoyancy force f = [0.0, 0.5], and diffusion coefficient µ = 0.01. We set our velocity boundary
condition to v = 0 (Dirichlet boundary) and our density boundary condition to a Neumann boundary
condition ∂ρ/∂x = 0. We generate the trajectory for 20 timesteps at 1.5 seconds per timestep, for a
total time of 30 seconds. We split our 1000 trajectories into 4 sets: 400 for surrogate training, 400
for RL training, and 200 for testing.

4
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Subsurface Flow Dataset. To evaluate HyPER’s ability to work with different PDEs and problem
scales, we generate a subsurface flow dataset using the Julia-based DPFEHM (Pachalieva et al.,
2022) simulator. We use DPFEHM to generate a 2D dataset of underground permeability fields with
fluid flow modeled by the Richards equation as described below.

∂θ

∂t
= ∇ ·K(h)(∇h−∇z)− T−1 (7)

This equation models the movement of fluid underground in an unsaturated medium. θ represents
the volumetric fluid content, K(h) is the unsaturated hydraulic conductivity, h is the pressure head,
∇z is the geodetic head gradient, and T−1 is the fluid sink term. We generate 500 trajectories of 100
timesteps each with a grid size of 50x50 and timestep size of 10 seconds. Out of the 500 trajectories,
200 are used for surrogate training, 200 are used for RL training, and 100 are used for testing. We
use Dirchlet boundary conditions (0) for volumetric flux on all sides of our domain but inject fluid
at the top center of the domain at a rate of 0.01m/s which is pulled down by the force of gravity
over time.

3 RESULTS AND DISCUSSION

In this section, we investigate the effectiveness of HyPER to model transient PDE systems effi-
ciently and with minimal rollout error compared to surrogate-only (SUG) rollout. We compare with
state-of-the-art neural surrogates like U-Net and Fourier Neural Operator (FNO). Specifically, we
investigate the effectiveness of HyPER rollouts under changing PDE dynamics and in noisy data set-
tings. Further, we also demonstrate the surrogate-agnostic and simulator-agnostic nature of HyPER.
Our experiments seek to answer the following research questions:

• RQ1: How effective are HyPER rollouts compared to SUG rollouts for transient PDE systems?

• RQ2: Are HyPER rollouts effective under changed physical conditions?

• RQ3: Are HyPER rollouts effective under noisy data conditions?

• RQ4: How crucial is the intelligent decision model for effective HyPER rollouts?

•RQ5: What is the error/efficiency trade-off between SUG, HyPER, and simulator-only paradigms?

3.1 RQ1: HYPER ROLLOUTS VS SUG

We begin by comparing HyPER to six SUG baselines: UNet, FNO, UNet-Multistep, MPP-ZS, MPP,
and PDE-Refiner. All baselines except UNet-Multistep are trained in a one-step-ahead manner i.e.,
given the current state of the resolved field they are trained to predict the next state. Mean squared
error (MSE) loss is used to train all surrogates over the full resolution trajectory. Note that all these
baselines except MPP-ZS are trained with the same dataset that HyPER is trained with. For full
training details see Appendix A.1 and for baseline details see Appendix A.4.

Table 1: 2D Navier-Stokes results with best results in bold. Notice that HyPER rollout incurs
significantly lower rollout (cumulative) error compared to SUG models.

2D Navier-Stokes UNet FNO UNet-Multistep MPP-ZS MPP PDE-Refiner HyPER

Final MSE 0.022 0.078 0.016 0.221 0.036 0.023 0.01
Cumulative MSE 0.4 1.564 0.273 4.495 0.747 0.406 0.179

The UNet model is based on the modern UNet architecture in PDEArena (Gupta & Brandstetter,
2022) while the FNO model is built with the neuraloperator library (Kovachki et al., 2021; Li
et al., 2020). UNet-Multistep is trained in a scheduled manner to specialize for rollout trajectory
prediction, i.e. it minimizes MSE for 1-step ahead prediction, then 2-steps ahead, and so on, up to
the full trajectory length. MPP-ZS (zero-shot) and MPP (McCabe et al., 2023) are large transformer
based multi-task models which have been pretrained on a variety of fluid prediction tasks. MPP-ZS
is the off-the-shelf pretrained model, while MPP is finetuned on our data. PDE-Refiner (Lippe et al.,
2024) is a modern diffusion based model which both predicts the next timestep while adding a multi-
step noising/denoising process and has been shown to reduce rollout error. Table 1 shows the MSE
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Figure 3: Predictions and absolute error snapshots of HyPER rollout for two distinct trajectories.

of the final trajectory state (Final MSE) as well as the aggregated MSE (Cumulative MSE) over all
trajectory states in a rollout. Both metrics are calculated as an average across 200 test trajectories
for both SUG and HyPER rollouts. HyPER outperforms all baselines significantly, with an average
improvements in cumulative rollout errors (i.e., cumulative MSE) of 67.70%. By incorporating the
simulator, HyPER yields significantly lower cumulative rollout error (relative to SUG approaches)
while only invoking the simulator during 30% of the trajectory for knowledge-guided correction of
surrogate rollout.

In Figure 1 we plot the rollout MSE performance of HyPER versus the surrogate only (SUG) meth-
ods for a single sample trajectory. Note that HyPER outperforms both SUG models by a large
margin while only invoking the simulator six times in the 20-step trajectory. Also see Figures 3(a)
and 3(b) which depict qualitative snapshots from two distinct HyPER rollouts.

3.2 RQ2: HYPER ROLLOUTS WITH CHANGING PHYSICAL CONDITIONS

Pre-trained neural surrogates are often confronted with modeling contexts with similar PDE dynam-
ics but varied initial / boundary conditions. Effective rollouts under changing physical conditions
is hence a crucial requirement for the effective use of neural surrogates in computational science.
To this end, we inspect rollout errors of SUG and HyPER, under changing boundary conditions.
Specifically, to test the adaptability of HyPER, we investigate HyPER rollouts with changing bound-
ary conditions in our Navier-Stokes experiment. We generate a separate Navier-Stokes dataset (NS
changing boundary) which follows the same initial conditions of our previous experiment, but com-
prises a different velocity boundary condition at the top boundary of the domain. Specifically, the
velocity at the top boundary of the domain is increased from 0.0 to 0.5 m/s (imposing an intermittent
external forcing effect causing the fluid to escape from the top of the domain) for four intermediate
time-steps of the trajectory (timesteps 12-16). Following this, the boundary condition is reverted
back to 0.0 for the rest of the trajectory. This results in the fluid escaping out of the top during these
time steps changing the PDE dynamics significantly.

Table 2: Results depicting rollout error for 2D Navier-Stokes with changing boundary condi-
tions. We notice that HyPER once again accumulates significantly lower rollout error compared
to SUG approaches. This is due to the ability of HyPER to parsimoniously invoke the simulator for
knowledge-guided correction to minimize surrogate rollout error propagation, due to the changed
boundary condition.

Changing Boundary UNet-Only FNO-Only UNet-FT FNO-FT HyPER

Final MSE 0.356 0.541 0.04 0.038 0.024
Cumulative MSE 1.859 3.504 1.056 3.453 0.499

6
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In this case, surrogates UNet-Only and FNO-Only are not re-trained with the changed boundary
condition and hence show poor performance accumulating significant rollout errors. UNet-FT and
FNO-FT are fine-tuned on the changing boundary data but still suffer from poor rollout error. We
train our HyPER with the intelligent RL policy, a pre-trained surrogate (not trained on to the changed
boundary setting) and a simulator (fully aware of the changed boundary condition). The RL policy
of HyPER is trained with 400 of these changed trajectories to learn the optimal policy of (frugally)
invoking the simulator to apply knowledge-guided correction to reduce surrogate rollout errors. As
shown in Table 2, HyPER reduces cumulative error in this scenario by 73.16% and 85.76% relative
to UNet-Only and FNO-Only rollout errors respectively. Even when compared to fine-tuned surro-
gates UNet-FT and FNO-FT, HyPER reduces rollout error by 52.75% and 85.54% respectively. In
Figure 4a we demonstrate that HyPER has much lower rollout error than the UNet-Only and FNO-
Only models. Figure 4b shows sample qualitative predictions of HyPER and SUG rollouts under
the changing boundary scenario of interest, to further reinforce our point. As illustrated, our model
prediction is much closer to the ground truth after the boundary condition has changed and fluid has
escaped the box owing to the appropriately invoked knowledge-guided correction by the learned RL
policy in response to increasing surrogate rollout error. Fig. 4a shows the significantly lower rollout
error for HyPER rollout relative to UNet-Only and FNO-Only models.

(a) (b)

(i) 

(ii) (iii) (iv) 

(v) (vi) (vii) 

Figure 4: Predictions and absolute error of HyPER vs UNet-Only and FNO-Only for a single trajec-
tory and timestep. Fig. 4a shows the rollout error accumulation over the trajectory with ”X” marking
the times the simulator is called. Fig. 4b shows the resolved system state for a the same trajectory at
a single timestep. Fig. 4b(i) shows the ground truth field while Fig. 4b(ii)-(iv) indicate the result of
UNet-Only, FNO-Only and HyPER rollouts respectively. Fig. 4b(v)-(vii) depict the corresponding
absolute errors. We notice that only HyPER rollouts capture the correct characteristics relative to the
ground truth owing to the knowledge-guided correction while SUG models as well as the random
policy rollout are unable to faithfully resolve the trajectory under changing physical conditions.

3.3 RQ3: HYPER ROLLOUTS WITH NOISY DATA

Neural surrogates, in addition to being data hungry and accumulating rollout error, have also been
known to exhibit catastrophic failures in challenging PDE conditions (e.g., stiff PDEs) Krish-
napriyan et al. (2021). As neural surrogates are a crucial part of HyPER rollouts, it is imperative
to investigate whether HyPER is capable of adapting to such failures by invoking the knowledge-
guided correction (i.e., the simulator) to minimize the propagation (and accumulation) of such local
failures over the remaining trajectory rollout. Further, another crucial property to investigate is the
robustness of the intelligent decision mechanism in HyPER, to noisy, low-quality surrogate predic-
tions. To jointly investigate both goals, we consider a simple (contrived) context with noisy inputs
supplied to the HyPER RL policy. This additive noise, injected at specific steps to corrupt the surro-
gate output in the trajectory, serves to mimic low-quality surrogate predictions. Hence, experiments
with such noisy inputs help characterize the ability of HyPER to adapt to sudden local changes
during rollout (like catastrophic surrogate failure) in addition to demonstrating its ability for robust
decision-making under noisy data conditions.

To carry out this investigation, we add random Gaussian noise with mean 0 at four separate variance
(σ2) scales at fixed timesteps of our trajectory. The surrogate models are never trained with this
noisy data and therefore perform poorly when encountering it. We train the RL policy of HyPER
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Table 3: Results depicting rollout error for the 2D-Navier-Stokes experiment, with random Gaussian
noise added to inputs, at timesteps 12-16. σ2 is the scale of the noise. The percentage reduction of
cumulative MSE rollout error by HyPER, over the best performing SUG model is in parentheses.

Experiment Final MSE Cumulative MSE
UNet-Only FNO-Only HyPER UNet-Only FNO-Only HyPER

Unimodal σ2 = 1.0 0.278 0.178 0.075 2.537 3.445 1.164 (54.12%)
Unimodal σ2 = 0.75 0.151 0.161 0.05 1.653 2.798 0.756 (54.27%)
Unimodal σ2 = 0.5 0.075 0.145 0.033 1.023 2.319 0.465 (54.54%)
Unimodal σ2 = 0.25 0.044 0.134 0.02 0.664 2.016 0.275 (58.58%)

with a small set (400) of these noisy trajectories while keeping our surrogate model static. We test
two different noise corruption scenarios added to a 20 step trajectory rollout. (i) unimodal noise:
a case where noise is added at timesteps [12-16] and (ii) bimodal noise: a more sophisticated case
where noise is added at two different time windows of [2-4] and [15-16]. The unimodal noise
results are presented in Table 3, where we see that HyPER rollouts outperform both state-of-the-art
SUG approaches. In this case we notice a reduction in cumulative MSE by 54.12%-58.58% across
the four noise scales. We can further see that unlike SUG approaches, HyPER rollouts degrade
gracefully with increasing noise scale. This is only possible due to HyPER appropriately invoking
the simulator for knowledge-guided correction exactly at (or very close to) the regions in the rollout
subjected to data corruption. Note that as the noise scale σ2 decreases, the gap between HyPER
and the baselines decreases, but even in the lowest noise case of σ2 = 0.25, HyPER significantly
reduces rollout MSE by an average of 58.58%.

We see a similar behavior in the case of bimodal noise (See. Appendix A.2 for bimodal noise
results) with a reduction in cumulative MSE error of 44.01%-76.49% across the four noise scales.
We believe this improved performance in a more complex noise distribution is a result of our RL
policy learning the more complex error distribution while SUG methods accumulate larger error
over the two different noise windows.

3.4 RQ4: INVESTIGATING HYPER ROLLOUTS VS. RANDOM POLICY ROLLOUTS

To evaluate whether HyPER learns an effective RL policy, we compare it to a Random Policy base-
line. This baseline is designed to invoke the simulator the same number of times as the HyPER
RL policy for a particular rollout, but with uniform random probability over each timestep. By
comparing the HyPER policy rollout to a Random Policy rollout with the same budget, we show
that HyPER learns a superior performing policy in our experimental scenarios and that learning an
intelligent RL policy is indeed necessary.

Table 4: HyPER versus a random policy which calls the simulator the same number of times.

Experiment Final MSE Cumulative MSE Cumulative Wins %
Random Policy HyPER Random Policy HyPER HyPER

Noise Free 0.011 0.01 0.189 0.179 56.00%
Bimodal σ2 = 1.0 0.222 0.103 2.768 1.972 69.70%
Bimodal σ2 = 0.75 0.067 0.042 1.431 1.038 72.60%
Bimodal σ2 = 0.5 0.029 0.016 0.716 0.443 79.00%
Bimodal σ2 = 0.25 0.021 0.019 0.482 0.433 56.25%
Changing Boundary 0.147 0.024 0.854 0.499 77.35%

We summarize these results in Table 4, which also shows the percentage of trajectories over which
HyPER reduces MSE compared to Random Policy (Cumulative Wins %). A ‘win’ is charactereized
by a HyPER rollout that yields a lower cumulative MSE than the corresponding Random Policy roll-
out. In the ‘Noise Free’ trajectories, HyPER only wins for 56% of the trajectories because the MSEs
at each timestep in the Noise Free case have low variance, so a uniform Random Policy performs
fairly well. This is also true in the bimodal noise σ = 0.25 experiment as lower-noise scales lead to
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relatively slower rollout error accumulation and hence invoking the simulator uniformly somewhere
around the corrupted time windows ([2-4], [15-16]) suffices to correct the errors, resulting in reason-
ably good performance for the Random Policy. However, in the higher bimodal noise scales (with
fast and large rollout error accumulation), precise invocation of the simulator for knowledge-guided
correction is imperative to prevent error accumulation. Hence, we see HyPER owing to its intelli-
gent (RL-based) decision policy, has a higher percentage of wins (≈ 70%) and significantly lower
cumulative MSE at higher noise scales. We also see the strength of HyPER’s learned policy when
considering the changing boundary condition experiment which has a 77.35 win percentage over
Random Policy and reduces cumulative MSE by 41.57%. This result demonstrates the effectiveness
of HyPER in realistic physical scenarios and noisy conditions.

3.5 RQ5: COST VERSUS ACCURACY TRADE-OFF

Figure 5: Figure 5(a) shows the average time of PDE prediction of a full trajectory for each method.
Figure 5(b) illustrates the error per unit time (lower is better) for each method. We do not show the
Sim-Only case here as we assume error is effectively zero for the simulator.

A natural question to ask is how much of a cost we pay in wall clock time when utilizing HyPER
compared to baselines? We evaluate this by measuring the average time of each method on our
200 test trajectories and show results in Figure 5(a). While the wall clock time of SUG methods
is lower than HyPER, our method has much lower rollout error, which we illustrate in Figure 5(b).
Here we show the error per unit time (lower is better) and we see that HyPER has lower rollout
error per second by a large margin in comparison to the baselines (note this plot is on a log scale).
While calling the simulator incurs a time cost, the user can specify the λ parameter to adjust to their
requirements allowing HyPER to be flexible in varying settings.

3.6 SURROGATE-AGNOSTIC AND SIMULATOR-AGNOSTIC DESIGN OF HYPER

To demonstrate the model-agnostic capability of HyPER, we train it on the subsurface flow task
(dataset details in Sec. 2.3), comprising longer (i.e., 100 step) trajectories. In this case, we train Hy-
PER using the Julia simulator DPFEHM, which simulates underground fluid flow in porous media.
As we see in Table 5, HyPER outperforms both SUG baselines by a cumulative MSE per timestep

Table 5: 2D Subsurface flow experiment results for a 100 timestep trajectory.

Experiment Cumulative MSE per timestep
UNet-Only FNO-Only HyPER

Subsurface 4.345 10.938 0.271

reduction of 93.76% and 97.52%. The integration of a distinct Julia-based simulator in a scenario
with larger physical scales and times, shows that HyPER is surrogate and simulator agnostic and can
perform well and reduce rollout error in multiple problem settings.

4 RELATED WORK

Deep learning (DL) surrogates have been broadly employed in two paradigms to accelerate scientific
discovery namely, surrogate-only (SUG) and hybrid-modeling paradigms.

9
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SUG approaches fully circumvent the use of computational simulations during inference and only
employ simulations to generate training data. The popular U-Net (Ronneberger et al., 2015) model
owing to its ability to capture spatial and temporal dynamics at multiple scales is a notable SUG
architecture. The U-net model has recently (Gupta & Brandstetter, 2022) demonstrated state of the
art performance on various fluid dynamics benchmarks. Operator learning (Kovachki et al., 2021)
approaches that learn function families of PDEs rather than single PDE instances have also been
investigated to be effective neural surrogates. Two notable operator learning models are the deep
operator network (Lu et al., 2021a) and the Fourier neural operator (FNO) (Li et al., 2020) models.
Multiple investigations have been carried out employing operator learning techniques including ex-
tending them to multi-resolution (Howard et al., 2023; Lu et al., 2022) settings. Recently Takamoto
et al. (2022) have also demonstrated that FNOs yield state-of-the-art results on benchmark tasks.

Knowledge-guided SUG approaches like the popular Physics-informed neural network
(PINN) (Raissi et al., 2019; Jagtap & Karniadakis, 2020; Cuomo et al., 2022) have also been
effectively employed for improved generalization. A related paradigm of Universal Differential
Equations (Rackauckas et al., 2020) utilizes surrogates to estimate (in a data-driven manner) fo-
cused sub-components of governing equations for better process modeling. Such approaches as-
sume end-to-end gradient based training in a physics-informed manner and are known to converge
slowly and converge to trivial solutions under data paucity and stiff PDE conditions Krishnapriyan
et al. (2021) owing to catastrophic gradient imbalance Wang et al. (2021) between data-driven and
physics-guided loss terms.

SUG for Transient PDE Dynamics. All SUG approaches struggle to model transient PDE systems
in an autoregressive manner and incur rollout error (Carey et al., 2024). In the work of Lippe et al.
(2024), it is demonstrated how the spectral bias of traditional neural surrogates leads to significant
error accumulation and they propose an initial refinement solution inspired by the process in diffu-
sion modeling. Separately, List et al. (2024) have conducted a characterization of SUG rollout error
and comment about the significant improvement obtainable by incorporating simulators in-the-loop.

Hybrid-modeling for Transient PDE Dynamics. Complementary to SUG approaches, hybrid-
modeling approaches retain the simulation and resolve each query employing the neural surrogate
and the simulator ‘in-the-loop’. However, a major drawback with such approaches (Chen et al.,
2018; Belbute-Peres et al., 2020; Um et al., 2020; Donti et al., 2021; Pachalieva et al., 2022) is that
they require the simulators to be differentiable as they are mostly employed as additional layers in
the neural network architectures to be trained end-to-end with the neural surrogates.
5 CONCLUSION AND FUTURE WORK
This work presents a first of its kind knowledge-guided correction mechanism to reduce rollout
errors in neural surrogates that model transient PDE systems. Specifically, our proposed method
Hybrid PDE Predictor with RL (HyPER) learns reinforcement learning based cost-aware control
policies to parsimoniously invoke (costly) simulation steps to correct erroneous surrogate predic-
tions. In contrast to existing approaches that employ simulators ‘in-the-loop‘ with neural surrogates,
HyPER does not impose any differentiablity restrictions on the computational simulations. Further,
HyPER is surrogate and simulator agnostic and is designed to be applicable to any neural surrogate
and off-the-shelf simulator capable of resolving transient PDE systems.

We have demonstrated the effectiveness of our proposed HyPER model in traditional in-distribution
rollouts, under changing physical conditions and under noisy data conditions. In each case, we
demonstrate that HyPER yields significantly lower rollout errors (with parsimonious invocation of
the costly simulation step), than surrogate-only rollouts of state-of-the-art neural surrogates. Overall
HyPER yields significant improvements of cumulative rollout error over state-of-the-art surrogate-
only approaches with 67.70% improvement for in-distribution rollouts, 79.46% improvement for
rollouts under changing physical conditions and 58.28% improvement for rollouts under noisy data
conditions. In the future, we will investigate more sophisticated RL policies based in the actor-critic
paradigm to further improve the sample efficiency of HyPER. We will also explore extensions of
HyPER to more challenging problems in multi-physics contexts as well as multi-phase flows.
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A APPENDIX

A.1 HYPER TRAINING PROCEDURE

Below we detail the RL training procedure of HyPER.

Algorithm 1 HyPER Training Algorithm

Require: Dataset: D, Pretrained Surrogate Model: fϕ, Simulator: S, Decision Model: dθ,
Trajectory length: τ , Simulator proportion hyperparameter: λ, Learning rate: η,
Error function (MSE in our case): ℓ, Cost function: c

1: for u, z ∈ D do ▷ For every trajectory in dataset, get field u and conditional features z
2: k ← 0 ▷ Initialize number of simulator calls
3: Rd ← [ ] ▷ Initialize decision model rewards list
4: Rb ← [ ] ▷ Initialize baseline rewards list
5: L← [ ] ▷ List to store log probabilities of each action
6: û(x,−1)← 0 ▷ Set initial field prediction to 0
7: for t ∈ [0, τ ] do ▷ For every time-step in trajectory
8: p← dθ(û(x, t− 1), z, t) ▷ Get RL model probabilities for next action
9: a ∼ Bernoulli(p) ▷ Sample next action

10: L += a log(p) + (1− a) log(1− p) ▷ Store log probability of action
11: if a = 0 then
12: û(x, t)← fϕ(û(x, t− 1), t) ▷ Call surrogate for next step prediction
13: else if a = 1 then
14: û(x, t)← S(û(x, t− 1), t) ▷ Call simulator for next step prediction
15: k += 1 ▷ Track number of times simulator called
16: end if
17: Rd += −ℓ(û(x, t),u(x, t))− c(λ, k, τ) ▷ Store policy reward based on MSE and

cost function
18: end for
19: I ∼ UniformWithoutReplacement([0, τ ], k) ▷ Sample k times between [0, τ ] without

replacement, this list will contain the time-
steps at which the random baseline will call
the simulator

20: for t ∈ [0, τ ] do ▷ Run random baseline for trajectory
21: if t /∈ I then
22: û(x, t)← fϕ(û(x, t− 1), t) ▷ Call surrogate for next step prediction
23: else if t ∈ I then
24: û(x, t)← S(û(x, t− 1), t) ▷ Call simulator for next step prediction
25: end if
26: Rb += −ℓ(û(x, t),u(x, t))− c(λ, k, τ) ▷ Store baseline reward using MSE

and cost function
27: end for
28: ∇θJ ← −∇θL · StopGradient(Rd −Rb) ▷ Calculate policy gradient, this is done

element-wise and then summed
29: θ ← θ − η∇θJ ▷ Update RL decision model parameters
30: end for

A.2 RQ3: HYPER ROLLOUTS WITH NOISE DATA: BIMODAL NOISE EXPERIMENTS

Table 6 depicts the performance of HyPER in the bimodal noise case. We notice results similar to the
unimodal noise case, with a reduction in cumulative MSE error of 44.01%-76.49%. We believe this
improved performance in a more complex noise distribution is a result of our RL policy learning the
more complex error distribution while the SUG methods accumulate larger error over two different
noise windows.
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Table 6: Results depicting rollout error for the 2D-Navier-Stokes experiment with random Gaussian
noise added at timesteps 2-4, 15-16. σ2 is the scale of the noise. The percentage reduction of
cumulative MSE rollout error by HyPER, over the best performing SUG model is in parentheses.

Experiment Final MSE Cumulative MSE
UNet-Only FNO-Only HyPER UNet-Only FNO-Only HyPER

Bimodal σ2 = 1.0 4.954 0.154 0.103 16.663 3.522 1.972 (44.01%)
Bimodal σ2 = 0.75 0.869 0.142 0.042 4.739 2.812 1.038 (63.09%)
Bimodal σ2 = 0.5 0.095 0.136 0.016 1.884 2.309 0.443 (76.49%)
Bimodal σ2 = 0.25 0.045 0.129 0.019 1.114 2.0 0.433 (61.13%)

Figure 6: Average Cumulative MSE over all test trajectories of HyPER vs. UNet-Only and FNO-
Only.

A.3 HYPER AVERAGE PERFORMANCE

Figure 6 shows the rollout error of HyPER vs SUG methods over all 200 Navier-Stokes test trajec-
tories. This demonstrates that HyPER is effective in reducing rollout error significantly over a large
set of unseen test trajectories.

A.4 MODEL ARCHITECTURES AND PARAMETERS

A.4.1 MODEL TRAINING DETAILS

We build and train all our neural surrogate models using the PyTorch library on a single Nvidia RTX
A6000 GPU. The PhiFlow simulator used in the Navier-Stokes experiment runs on the same GPU.
The DPFEHM Julia simulator runs using multi-threading on an Intel(R) Xeon(R) Platinum 8358
CPU @ 2.60GHz.

The UNet, FNO, UNet-FT, FNO-FT, UNet-Multistep, MPP, and PDE-Refiner baselines are trained
with same number of samples as HyPER for the sake of fair comparison. The UNet-Only and
FNO-Only baseline models are trained with a smaller dataset of 400 trajectories which are separate
from the 400 trajectories HyPER’s RL policy is trained with. UNet-Multistep, MPP, and PDE-
Refiner are trained for 200 epochs so we could compare with strong surrogate baselines while UNet,
FNO, UNet-Only, FNO-Only, UNet-FT, FNO-FT were trained for 50 epochs to evaluate results for
simpler models.

We only train the HyPER RL ResNet model for 30 epochs to demonstrate that HyPER does not
require extensive training to outperform the baselines.

• UNet-Only: 1.05 hours (50 epochs, 400 trajectories)
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• FNO-Only: 0.50 hours (50 epochs, 400 trajectories)
• UNet: 2.12 hours (50 epochs, 800 trajectories)
• FNO: 0.89 hours (50 epochs, 800 trajectories)
• UNet-Multistep: 9.0 hours (200 epochs, 800 trajectories)
• MPP: 9.58 hours (200 epochs, 800 trajectories)
• PDE-Refiner: 3.66 hours (200 epochs, 800 trajectories)
• HyPER: 5.21 hours (30 epochs)

A.4.2 MODEL PARAMETERS

Our UNet model is built on top of the PDEArena modern UNet architecture with wide residual
blocks and training parameters in Table 7.

Table 7: UNet parameters.

Parameter Value
Model Size (# parameters) 12,295,233
Hidden Channels 64
Activation Function GELU
Channel Multipliers [1, 2, 2]
Num Residual Blocks Per Channel 2
Sinusoidal Time Embedding Yes
Learning Rate 1e-4
Optimizer Adam
Loss Function MSE
Epochs 50

Our FNO model is built using the neuraloperator library and is constructed to have a similar number
of parameters as our UNet for a fair comparison. See Table 8 for details.

Table 8: FNO parameters.

Parameter Value
Model Size (# parameters) 12,437,057
Number of Fourier Modes 27
Hidden Channels 64
Lifting Channels 256
Projection Channels 256
Learning Rate 1e-5
Optimizer Adam
Loss Function MSE
Epochs 50

The HyPER RL model is a lightly modified version of the ResNet34 model from the Torchvision
library. See Table 9 for parameters.

The Multiple Physics Pretrained model (MPP) is adapted from MPP github. Note that we train this
model for 200 epochs while UNet and FNO are only trained for 50. See Table 10 for details.

The PDE-Refiner model was adapted from PDE-Refiner to work with our UNet model. Note that
we train this model for 200 epochs while UNet and FNO are only trained for 50. See Table 11 for
details.
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https://github.com/pdearena/pdearena
https://neuraloperator.github.io/dev/index.html
https://github.com/pytorch/vision
https://github.com/PolymathicAI/multiple_physics_pretraining
https://phlippe.github.io/PDERefiner/
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Table 9: RL ResNet parameters.

Parameter Value
Model Size (# parameters) 11,751,300
Number of Layers [3, 4, 6, 3]
Hidden Channels 64
Sinusoidal. Time Embedding Yes
Activation Function ReLU
Learning Rate 1e-5
Optimizer Adam
Reward Function Equation 3
Epochs 30

Table 10: Multiple Physics Pretraining parameters.

Parameter Value
Model Size (# parameters) 28,979,436
Patch Size 16x16
Embedding Dimension 384
Number of Axial Attention Heads 6
Number of Transformer Blocks 12
Epochs 200

Table 11: PDE-Refiner parameters.

Parameter Value
Model Size (# parameters) 12,378,241
Number of Refinement/Denoising Steps 3
Minimum Noise Scale 4e-7
Hidden Channels 64
Activation Function GELU
Channel Multipliers [1, 2, 2]
Num Residual Blocks Per Channel 2
Sinusoidal Time Embedding Yes
Learning Rate 1e-4
Optimizer Adam
Loss Function MSE
Epochs 200
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