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ABSTRACT

As machine learning models become increasingly prevalent in motion forecasting
for autonomous vehicles (AVs), it is critical to ensure that model predictions are
safe and reliable. However, exhaustively collecting and labeling the data necessary
to fully test the long tail of rare and challenging scenarios is difficult and expensive.
In this work, we construct a new benchmark for evaluating and improving model
robustness by applying perturbations to existing data. Specifically, we conduct
an extensive labeling effort to identify causal agents, or agents whose presence
influences human drivers’ behavior in any format, in the Waymo Open Motion
Dataset (WOMD), and we use these labels to perturb the data by deleting non-causal
agents from the scene. We evaluate a diverse set of state-of-the-art deep-learning
model architectures on our proposed benchmark and find that all models exhibit
large shifts under even non-causal perturbation: we observe a 25-38% relative
change in minADE as compared to the original. We also investigate techniques to
improve model robustness, including increasing the training dataset size and using
targeted data augmentations that randomly drop non-causal agents throughout
training. Finally, we release the causal agent labels as an additional attribute to
WOMD and the robustness benchmarks to aid the community in building more
reliable and safe deep-learning models for motion forecasting (see supplementary).

1 INTRODUCTION

Machine learning models are increasingly prevalent in trajectory prediction and motion planning
tasks for autonomous vehicles (AVs) (Casas et al., 2020; Chai et al., 2019; Cui et al., 2019; Ettinger
et al., 2021; Varadarajan et al., 2021; Rhinehart et al., 2019; Lee et al., 2017; Hong et al., 2019;
Salzmann et al., 2020; Zhao et al., 2019; Mercat et al., 2020; Khandelwal et al., 2020; Liang et al.,
2020). To safely deploy such models, they must have reliable, robust predictions across a diverse
range of scenarios and they must be insensitive to spurious features, or patterns in the data that fail to
generalize to new environments. However, collecting and labeling the required data to both evaluate
and improve model robustness is often expensive and difficult, in part due to the long tail of rare and
difficult scenarios (Makansi et al., 2021).

In this work, we propose perturbing existing data via agent deletions to evaluate and improve model
robustness to spurious features. To be useful in our setting, the perturbations must preserve the correct
labels and not change the ground truth trajectory of the AV. Since generating such perturbations
requires high-level scene understanding as well as causal reasoning, we propose using human labelers
to identify irrelevant agents. Specifically, we define a non-causal agent as an agent whose deletion
does not cause the ground truth trajectory of a given target agent to change. We then construct a
robustness evaluation dataset that consists of perturbed examples where we remove all non-causal
agents from each scene, and we study model behavior under alternate perturbations, such as removing
causal agents, removing a subset of non-causal agents, or removing stationary agents.

Using our perturbed datasets, we then conduct an extensive experimental study exploring how factors
such as model architecture, dataset size, and data augmentation affect model sensitivity. We also
propose novel metrics to quantify model sensitivity, including one that captures per-example absolute
changes between predicted and ground truth trajectories and another that directly reflects how the
model outputs change under perturbation via IoU (intersection-over-union) without referring to the
ground truth trajectory. The second metric helps to address the issue that the ground truth trajectory
is one sample from a distribution of many possibly correct trajectories. Additionally, we visualize
scenes with large model sensitivity to understand why performance degrades under perturbations.
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(a) Original Scene (minADE 0.282m) (b) Perturbed Scene (minADE 4.17m)

Figure 1: Trajectory prediction is sensitive to removing non-causal agents. We show a top-down view of a
scene from the WOMD (left) and a perturbed version of the scene where we delete all non-causal agents (right).
The AV and its predicted trajectories via the Scene Transformer model (Ngiam et al., 2021) are shown in blue,
the ground truth trajectory of the AV is grey, and the ground truth of other agents is green. The perturbation
causes a large shift in minADE because the model fails to predict the ground truth mode (a right turn), which
indicates the brittleness of the model to such perturbations.

Our results show that existing motion forecasting models are sensitive to deleting non-causal agents
and can have pathological behavior dependencies on faraway or distant agents. For example, Figure
1 illustrates an original (left) and perturbed (right) scenes with non-causal agents removed. In the
perturbed example, the model’s prediction misses the right-turn mode, which corresponds to the
ground-truth trajectory. Such brittleness could lead to serious consequences in autonomous driving
systems if we rely on deep-learning models without further safety assurance from other techniques
such as optimization and robotics algorithms. The main contributions of our work are as follows:

1. We contribute a new robustness benchmark for the WOMD for evaluating trajectory predic-
tion models’ sensitivity to spurious correlations. We release the causal agent labels from
human labelers as additional attributes to WOMD so that researchers can utilize the causal
relationships between the agents for robustness evaluation and for other tasks such as agents
relevance or ranking (Refaat et al., 2019; Tolstaya et al., 2021).

2. We introduce two metrics to quantify the robustness of motion forecasting models to
perturbations, including absolute per-example change in minADE and a trajectory set metric
that measures sensitivity without using the ground truth as a reference.

3. We evaluate the robustness of several state-of-the-art motion forecasting models, includ-
ing Multipath++ (Varadarajan et al., 2021), Wayformer (Nayakanti et al., 2022) , and
SceneTransformer (Ngiam et al., 2021). We show that the absolute per-example change in
minADE can range from 0.07-0.23 m (a significant 25− 38% change relative to the original
minADE). We find that all models are sensitive to deleting non-causal agents, and the model
with the best overall performance (in terms of regular metrics used to quantify the trajectory
prediction performance such as minADE) is not necessarily the most robust.

4. We show that increasing training dataset size and targeted data augmentations that remove
non-causal agents can help improve model robustness.

Overall, this is the first work focusing on the robustness of trajectory prediction models to perturba-
tions based on human labels. Such robustness is critical for models deployed in a self-driving car
where the reliability and safety requirements are of utmost importance. Ultimately, our goal is to
provide a robustness benchmark which can aid the community to better evaluate model reliability,
detect possible spurious correlations in deep-learning-based trajectory prediction models, and facili-
tate the development of more robust models or other mitigation techniques such as optimization and
traditional robotic algorithms as complementary solutions to minimize safety risks.
2 RELATED WORK

Robustness evaluation on perturbations. Machine learning models are known to have brittle
predictions under distribution shift. Across multiple domains, researchers have proposed robustness
evaluation protocols that move beyond a fixed test set (Recht et al., 2019; Biggio & Roli, 2018;
Szegedy et al., 2013; Hendrycks & Dietterich, 2019; Gu et al., 2019; Shankar et al., 2019; Taori
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et al., 2020). Evaluation can be broadly categorized into three types: (i) slicing, i.e. existing test
data is sliced over multiple dimensions, (ii) perturbations, i.e. existing test data is modified via
transformations, or (iii) dataset shift, i.e. new test data is drawn from a different distribution. Our
work focuses on perturbations, which have previously been explored in both computer vision and NLP.
In computer vision, researchers perturb images via pixel level noise corruptions (Geirhos et al., 2018;
Hendrycks & Dietterich, 2019), spatial transformations (Engstrom et al., 2019; Fawzi & Frossard,
2015), and adversarial modifications (Biggio et al., 2013; Szegedy et al., 2013). Such synthetic shifts
are easy to apply to arbitrary images, but limited in that they do not test model invariance to more
complex modifications such as deleting or modifying irrelevant parts of the image. In trajectory
prediction, perturbations are potentially more valuable, since the models train on discrete inputs,
namely, the agents and the roadgraph. Because of the structure of the problem, it is easier to reliably
construct perturbations that do not modify the ground truth labels. This situation mirrors that of
NLP, where sentences composed of discrete words can be modified in ways that do not change the
prediction task, and indeed, such transformations have proven valuable for testing the robustness of
models and identifying possible biases (Dhole et al., 2021).

Robustness evaluation for trajectory prediction. The three types of robustness evaluation (slicing,
perturbations, and dataset shift) described above also characterize the trajectory prediction literature.
Slicing. The most common approach is to slice model performance along different hyperparameters
and buckets, such as duration of the historical trajectories (Radwan et al., 2020), size of the training
data (Huynh & Alaghband, 2019; Ngiam et al., 2021), sampling frequency (Bera et al., 2016),
number of agents in the scene (Rhinehart et al., 2019; Ngiam et al., 2021), criticality / interactivity
of the scenarios (Kooij et al., 2019; Ettinger et al., 2021), and speed of the AV (Ngiam et al.,
2021). Perturbations. Another thread of related work focuses on the robustness of the algorithms to
perturbations in both training and test data. For example, (Bera et al., 2016) introduced synthetic
sensor noises into both the training and test process to evaluate the model’s accuracy against sensor
noises. (Han et al., 2019) introduced 30% anomalies into the training data (with extra labels), and
evaluated the robustness of the algorithm to anomalies in the training process. Dataset shift. Less
work has focused on dataset shift due to the difficulty of collecting, annotating, and releasing entirely
new data. Examples include training and testing in different locations or routes (Schöller et al., 2019;
Sun et al., 2021), weather, time of day, and sensor noise (Sun et al., 2021).

A related body of work has studied adversarial robustness for trajectory prediction. In particular,
Cao et al. (2022b) propose an adversarial training framework for trajectory predictions as well as
domain-specific data augmentations and show that both empirically improve robustness to adversarial
attacks. Additionally, researchers have generated more realistic adversarial attack models and
benchmarked models against them: Cao et al. (2022a) generates adversarial realistic trajectories
using a differentiable dynamic model, Zhang et al. (2022) perturbs existing trajectories to maximize
prediction error, Saadatnejad et al. (2022) perturbs trajectories to result in agent collisions, and Wang
et al. (2021) simulates directly from sensor data to modify trajectories in a physically plausible manner.
Unlike prior work, we evaluate model robustness to “non-causal” domain shifts instead of hard (e.g.

weather, location) or adversarial domain shifts. Because these non-causal perturbations are closer to
the original validation dataset than the hard domain shifts and do not assume worst-case behavior or
presence of an adversary, the discrepancies we observe are in some ways a more immediate priority
for improving model robustness.

Agent relevance. Since trajectory prediction in AV systems must reason about other agents in the
scene, researchers have attempted to efficiently rank agents according to their impact on the AV. The
main motivation is to determine which agents to allocate real-time computational resources to. In
particular, Aksoy et al. (2020) proposed a driver’s saliency prediction model which incorporates
an attention mechanism to understand salient features for driving context. Refaat et al. (2019)
approximated an agent’s influence by looking at the difference between two plans when a given agent
is accounted for versus not. However, removing one agent at a time does not account for certain
situations where multiple agents may be influencing the car in the same way e.g. two pedestrians
are blocking the path of the car and removing one of the pedestrians has no influence on the car. In
similar work, Tolstaya et al. (2021) quantifies interactivity using a deep learning model which can
suffer from the same robustness issues. More generally, algorithmically defined importance/relevance
or interaction scores can be unreliable, especially in scenes with complex interactions between the AV
and surrounding agents. In this work, we use human labeling to decide which agents are important,
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and our motivation is to use these labels to test model robustness. In the future, our causal agent
labels can be used to verify algorithmic definitions of agent importance or relevance.

Causal reasoning in autonomous driving. In a similar line of work, Ramanishka et al. (2018)
collect causal annotations using human labelers for the Honda Research Institute Driving Dataset and
they slice performance of an object detector over scenes with varying causal attributes. Our work
instead uses causal labels to evaluate model robustness for trajectory prediction on WOMD, and we
provide more fine-grained per-agent measurements of causality.

3 METHODS
3.1 LABELING CAUSAL AGENTS IN WOMD
The objective of the labeling task is to identify all agents — cars, cyclists, or pedestrians — that are
causal to the AV at any time during a driving segment. Although we are more interested in removing
non-causal agents from each scene, we ask labelers to identify causal agents since there are typically
fewer of them and they tend to be closer to the AV, making them easier for labelers to identify.

Data. We focus on labeling the WOMD validation data because our primary goal is to evaluate
the robustness of models trained on the original dataset. Each example in WOMD is 9.1 seconds
in length (91 steps at 10Hz) and is generated in overlapping windows from a 20-second video
segment. We label the 20-second segments to give labelers access to a longer time horizon and to not
waste resources on labeling overlapping scenes. Moreover, both the regular and interactive WOMD
validation sets are generated from the same 20-second segments of data, hence, our causal labels can
be used for both.

Figure 2: Camera images from a randomly chosen scene in the labeling UI. The causal agents are circled.

Labeling policy and UI. Causality is an inherently subjective label since human drivers may vary
in their judgements of which agents in the scene affect their decisions. Therefore, we want to be
overly conservative and identify as many causal agents as possible to maximize the likelihood that
removed agents are actually non-causal. If human labelers are unsure if an agent is causal or not,
we instruct them to include it as causal. We emphasize that false positives (identifying an agent
as causal when it is truly non-causal) are acceptable to a certain extent, but we should avoid false
negatives (failing to identify a truly causal agent). (Appendix A includes the exact instructions given
to labelers.) That said, in ambiguous situations, we did not expect labelers to reason about chained
causality relationships. For example, if the AV is driving behind a queue of 5 cars and the first car
were to brake, it could eventually cause the car in front of the AV to brake. In this situation we would
only expect the labeler to identify the car directly in front as causal.

The labeling UI is a web-based 3D view of the AV and its surroundings in the 20-second segmented
videos. An example is shown in Fig. 2 where the camera images from a randomly selected scene
overlaid with the causal annotations provided by the human labelers.

Human annotations. To maximize coverage and avoid false negatives, each scene is annotated by
5 human labelers and we designate causal agents as all agents that any labeler identified as causal.
Appendix B shows the distribution over causal agents for the number of human labelers who selected
the agent as causal. The majority of causal agents are selected by all 5 labelers, but a significant
portion (24%) are selected by only 1 labeler.

3.2 CAUSAL AGENT STATISTICS

To understand the properties of causal agents, we compute several statistics of causal agents in the
WOMD validation dataset, including the percentage of causal agents (Figure 3a), the distribution
of the relative distance between the AV and the causal agents versus all surrounding agents (Figure
3b), and the breakdown of causal versus all surrounding agents by agent type (vehicle, pedestrian, or
cyclist) (Figure 3c). Figure 3a shows that the majority of agents are actually non-causal: on average,
only 13% of the total agents in the scene are labeled as causal, and 93% of scenes have less than 30%

4



Under review as a conference paper at ICLR 2023

(a) Causal agent frequency (b) Distance from AV (c) Agent type

Figure 3: Causal agent statistics. Causal agents are less frequent than non-causal agents (on average 13% of
agents are causal), and, compared to typical agents, they tend to be closer to the AV. Cyclists are relatively more
likely to be causal agents than pedestrians or vehicles.

of the agents labeled as causal. Figure 3b shows that causal agents are typically closer to the AV
than non-causal agents; causal agents are an average distance of 28.4m from the AV, compared to
an average of 49.4m over all agents. Figure 3c shows the likelihood that an agent of a given type
(Vehicle, Ped, or Cyclist) is causal. Surprisingly, cyclists are more likely to be causal agents than any
other agents, and vehicles are more likely to be causal than pedestrians. We hypothesize that this is
because cyclists usually share the road with the AV and have a strong prior of not respecting road
boundaries like a car, whereas there are many parked cars that are not necessarily interacting with the
AV and similarly pedestrians can be off the road on sidewalks.
3.3 PERTURBED DATASETS

In this work, we consider perturbations that modify the scene by deleting agents. While it is possible
to create more complex perturbations, such as adding noise to the xyz position of the agents, we
start with deletion since it directly reflects the models’ robustness regarding the causal relationships
of agents in the scene. Object track states in the WOMD consist of the object’s states (e.g., 3D
center point, velocity vector, heading), as well as a valid flag to indicate which time steps have valid
measurements. To delete an agent from the scene, we set its valid mask to false throughout all time
steps (and we double check for each model implementation that all agent state is ignored if the valid
bit is false). We consider four different perturbations:

1. RemoveNoncausal: Removes all non-causal agents in the dataset.

2. RemoveNoncausalEqual: Removes an equal number of randomly selected non-causal
agents as there are causal agents in the scene. For example, if a scene has 5 causal agents,
we randomly remove 5 non-causal agents. RemoveNoncausalEqual is meant to be a less
aggressive form of RemoveNoncausal since it deletes fewer agents and it allows us to
compare to RemoveCausal when controlling for the number of agents deleted.

3. RemoveStatic: Removes agents whose xyz positions do not change above a certain thresh-
old (e.g. parked cars). We use a threshold of .1 m on the L2 distance of the agent’s xyz state
to account for sensor noise. Not all static agents are non-causal.

4. RemoveCausal: Removes all causal agents; the complement of RemoveNoncausal.

Among them, we categorize both RemoveNoncausal and RemoveNoncausalEqual as “non-causal”
perturbations. Specifically, to define non-causal perturbations, let us assume X is a scenario represen-
tation, Y is the ground truth trajectory of the AV, and f is the ground-truth model that gives the relation-
ship between X and Y . If a perturbation ∆X satisfies f(X+∆X) = f(X) = Y , we define it as non-
causal perturbation since it does not impact the relationship between X and Y . We define a deep learn-
ing model f̂ to be robust to non-causal perturbations if f̂(X+∆X) = f̂(X) = Ŷ ∀ non-causal ∆X ,
where Ŷ is the predicted trajectory from the model. Additionally, we consider RemoveStatic as an
important baseline that does not require the human labels. We can thus apply it to the training dataset,
which we explore in Section 4.3. Finally, we include the RemoveCausal perturbation as a sanity to
ensure models are sensitive to deleting causal agents.

3.4 EVALUATION

Since we only have camera and LiDAR data from the AV perspective, we only collect causal labels
and evaluate model predictions for the AV trajectory. We report the average minADE (Ettinger et al.,
2021), or minimum Average Displacement Error, which computes the L2 norm between the ground
truth trajectory and the model’s closest prediction, over 3, 5 and 8 seconds on both the original
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and perturbed datasets. We measure minADE in units of meters. In all instances, we use the top 6
trajectories for each model (K=6).

Robustness Metrics. Since we found in our results that the perturbed minADE often improves for a
large fraction of the examples, averaging over examples cancels out some of the effects we would like
to measure. Thus, we introduce a metric to measure the per-example absolute change in minADE:

Abs(∆) =
1

n

n∑
i=1

|perturbed minADE(i)− original minADE(i)| (1)

We report Abs(∆), the standard deviation of Abs(∆), and the the relative percentage change in
Abs(∆) with respect to the original minADE. Finally, since the ground truth may represent only one
of several correct ways to drive, in Section 4.2 we also consider pairwise differences between the
original and perturbed predictions to measure model sensitivity.

Model Architecture Coord. System # Params

MultiPath++ LSTM agent-centric 125M
SceneTransformer factorized attention transformer global 15M

Wayformer early fusion attention transformer agent-centric 42M

Table 1: We evaluate on a diverse set of models.

The IoU-based metric. The IoU-based trajectory metric is computed as follows: given two predicted
trajectory sets (with and without perturabtion), we first upsample all predicted trajectories (6 of them
in each set) to 100Hz, and then voxelize them into a 2D top down grid with resolution of 0.5 meters.
We then count the number of voxels both sets occupy, divided by the total number of voxels either
output set occupies. To simplify computation, we explicitly ignore the probabilities and speeds of
trajectories. This measure quantifies ”how geometrically different the trajectories look”. An IoU of 1
means the trajectories did not meaningfully change, and an IoU of 0 means the trajectories do not
overlap at all. While more complicated versions of this metric could be computed (e.g. earth movers
distance), we found this metric intuitive and useful for finding interesting shifts due to perturbation.

Models. We select three representative deep learning models for evaluation: MultiPath++ (Varadara-
jan et al., 2021), Scene Transformer (Ngiam et al., 2021), and Wayformer (Nayakanti et al., 2022).
Importantly, we only consider non-ensembled models (Multipath++ reports ensemble results in their
paper and on the WOMD leaderboard). Table 1 reviews the architectural differences and parameter
counts of the models. Since we only evaluate on the AV, we typically only train the models to predict
the AV, but for MultiPath++ and SceneTransformer we also train models on all agents (which we
indicate by appending –All to the model name). Additionally, for SceneTransformer–All, we include
both the marginal and joint models (these models are the same when training on only the AV.)

4 RESULTS

4.1 MODEL SENSITIVITY TO NON-CAUSAL PERTURBATIONS

Figure 4: Model sensitivity to different perturbation types. We plot the per-example perturbed versus original
minADE for all perturbations for the MP++ model. The example frequency is shown with a log color scale
where yellow is the most frequent. The majority of examples show minimal change from the perturbation and lie
close to the y=x axis. However, across all perturbation types, there is a long tail of examples that show relatively
large change in minADE(>1m). Surprisingly, even for the RemoveCausal perturbation, the model performance
often improves on the perturbed examples. Comparing RemoveNoncausal and RemoveNoncausalEqual indicates
that the model is more sensitive to removing larger numbers of non-causal agents).

In order to understand model sensitivity on a per-example level, Figure 4 plots the perturbed versus
original minADE across each perturbation for MultiPath++ (see Appendix H for other models). For

6



Under review as a conference paper at ICLR 2023

each perturbation type, we observe that the majority of examples show minimal change (i.e. are
clustered around the y=x axis), but a long tail of outlier examples experience a large change (>1m
in minADE). Among perturbation types, the model is most sensitive to RemoveCausal, which is
expected since removing causal agents can change the correct ground-truth trajectory. Interestingly,
models are significantly more robust to RemoveNoncausalEqual than RemoveNoncausal, which
means removing more agents increases model sensitivity. When comparing RemoveCausal and
RemoveNoncausalEqual, which controls for the number of agents removed, we see that the model is
significantly more sensitive to removing causal agents than removing non-causal agents.

Surprisingly, across all perturbation types, including RemoveCausal, the model sees a large portion
of examples where minADE improves (i.e. the minADE itself becomes smaller under the perturba-
tion): 42.7% of examples show an improvement under the RemoveCausal perturbation, 43.0% for
RemoveNoncausal, 49.6% for RemoveNoncausalEqual and 51.0% for RemoveStatic. This finding
is counter-intuitive and motivated us to measure model sensitivity in terms of Abs(∆), defined
in Equation 1. Across all models, the average Abs(∆) is 0.1450 for RemoveCausal, 0.131 for
RemoveNoncausal, 0.051 for RemoveNoncausalEqual, and 0.089 for RemoveStatic. Appendix C
reports Abs(∆) for each individual model and perturbation type.

Comparing models. Focusing on RemoveNoncausal, in Table 2, we evaluate each model and report
the original minADE, perturbed minADE, Abs(∆), the standard deviation of Abs(∆), and Abs(∆)

minADEOri

(see Appendix C for other perturbations.) SceneTransformer Marginal shows the lowest average
absolute sensitivity, while MultiPath++–All shows the lowest sensitivity relative to original minADE.
In general, Abs(∆) decreases with the original minADE, but there is no clear relationship between
relative Abs(∆) and minADE. Unexpectedly, the marginal SceneTransformer is more robust than
the joint (we hypothesize that jointly modeling agents in the scene causes the model to pay more
attention to non-causal agents). In Appendix G, we report minFDE, overlap rate, miss rate, and mAP.

Model comparison, RemoveNoncausal, minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
minADEOri

(%)
MultiPath++ 0.376 0.395 0.141 ±0.21 37.5%
SceneTransformer Marginal 0.250 0.265 0.067 ±0.12 26.8%
Wayformer 0.393 0.406 0.101 ±0.16 25.7%
MultiPath++-All 0.900 0.945 0.226 ±0.32 25.1%
SceneTransformer-All Joint 0.493 0.504 0.170 ±0.26 34.5%
SceneTransformer-All Marginal 0.305 0.328 0.081 ±0.14 26.6%

Table 2: Model sensitivity to the RemoveNoncausal perturbation. The SceneTransformer Marginal model
shows the lowest average absolute sensitivity to the perturbation, while the MultiPath++–All model shows the
lowest sensitivity relative to original minADE. Original and Perturbed are the average minADE across the whole
dataset. Abs(∆) is the average per-example absolute difference between perturbed and original minADE.

Slicing the robustness metric. We further slice the robustness of the models (Abs(∆)) along several
dimensions: AV’s current speed, the percentage of removed non-causal agents (the number of
removed non-causal agents divided by the number of all context agents), and the minimum distance
from the AV to removed non-causal agents. The full results are given in Figure 12 in Appendix E. We
see that, across all models, model sensitivity increases when we drop a larger fraction of non-causal
agents and when the speed of the AV is greater. We also see that model sensitivity typically decreases
when we drop agents that are farther away from the AV, though the SceneTransformer models have
much noisy robustness measurements when dropping far away agents.

Visualizing examples. We also visualize some examples with the largest output changes under the
RemoveNoncausal perturbation in Appendix E. The findings are discussed in Section 5.

4.2 SENSITIVITY VIA AN IOU-BASED TRAJECTORY SET METRIC
To directly measure the magnitude of model output changes with and without perturbation, we use
an IoU (intersection-over-union) based metric (defined in Section 3.4) to compare model sensitivity
to different perturbations. The results of three AV-only models under perturbations RemoveCausal,
RemoveNoncausal and RemoveNoncausalEqual are shown in Figure 5. We find that models are least
sensitive to RemoveNoncausalEqual, and much more sensitive to RemoveCausal and RemoveNon-
causal. This is consistent with our finding in Section 4.1, indicating the model is more sensitive to
large perturbations since there are more non-causal agents than causal ones in most examples.
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(a) Scene Transformer Marginal (b) Wayformer (c) Multipath++

Figure 5: Density distribution of the per-scene trajectory set IoU values for AV-only models under perturbations
(RemoveCausal, RemoveNoncausal, and RemoveNoncausalEqual): models are least sensitive to RemoveNon-
causalEqual, and more sensitive to RemoveCausal and RemoveNoncausal.

4.3 TRAINING WITH DATA AUGMENTATIONS IMPROVES MODEL ROBUSTNESS

We experiment with two types of data augmentation: 1) data augmentations that use a heuris-
tic definition of non-causal agents, such as randomly dropping any static context agent1, and 2)
robustness-targeted data augmentations that directly drop only non-causal agents using a labeled
portion of the val set.

Heuristic data augmentation. The benefit of using a heuristic definition of non-causal agents for
data augmentations is that it can be applied without collecting causal labels. We implement 2 types of
heuristic-based data augmentation in the training set of WOMD: Drop Context (randomly dropping
context agents) as a baseline, and Drop Static Context (randomly dropping static context agents). We
use the MultiPath++–All model and we set the probability of dropping an agent to 0.1 (the best one
among 0.1, 0.5, and 0.8). Table 3 summarizes the results for the RemoveNoncausal perturbation (for
the per-scene distribution of model sensitivity, see Appendix K). Models with data augmentation
show less sensitivity to the perturbations, and, in particular, Drop Static Context shows a significant
improvement in minADE and Abs(∆) over Drop Context. We hypothesize that Drop Static Context
does better because the static context agents are less likely to be causal. Overall, the results for Drop
Static Context imply that dropping non-causal agents via data augmentation in training can improve
model robustness to such perturbations at test time.

Heuristic Data Augs, RemoveNoncausal, minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
minADEOri

(%)
MP++-All 0.900 0.945 0.226 ±0.32 25.1%
MP++-All Drop Context 0.948 0.988 0.209 ±0.31 22.0%
MP++-All Drop Static Context 0.819 0.837 0.183 ±0.26 22.3%

Table 3: Heuristic data augmentations. We compare the MP++-All baseline model to the same model trained
with either dropping context agents or dropping static context agents, finding that data augmentations that drop
agents that are more likely to be non-causal can improve robustness.
Non-causal data augmentations. Motivated by our results that dropping static context agents
improves model robustness, we further explore using non-causal perturbations as a data augmentation
strategy during training. We randomly sample approximately 70% of the original validation dataset
(i.e. 30k scenes), perturb multiple copies of them via the causal labels, and add the perturbed versions
into the training dataset. We leave the remaining 30% of the validation set as a holdout for evaluation.
We then train a baseline model on the new training dataset as well as a model that randomly drops
non-causal agents (when possible) with probability 0.1. In Table 4, we see that similarly dropping
non-causal agents helps improve minADE as well as model robustness.Noncausal Augs, RemoveNoncausal, minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
minADEOri

(%)
MP++ Baseline 0.395 0.408 0.150 ±0.226 38.0%
MP++ Drop Non-causal 0.373 0.389 0.138 ±0.194 37.0%

Table 4: Noncausal data augmentation. We fold a portion of the WOMD validation dataset into the original
training dataset and apply data augmentations that drop non-causal agents. On held-out validation data, we find
significant improvements in model robustness across all three Abs(∆) metrics.

1Context agents are agents for which no prediction is required in the WOMD leaderboard.
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4.4 LARGER DATASET SIZE IMPROVES MODEL ROBUSTNESS

We also evaluate model robustness with increasing training data. We randomly select 10%, 20%,
50%, 80% of the training dataset and train separate models on each split. We sample three datasets for
each split and average the performance and robustness of each model. Appendix D summarizes the
results. As we increase the training data size, the model performance improves (minADE decreases)
and both the absolute and relative robustness improves. Interestingly, previously when varying model
architectures, we found that the model with the lowest minADE did not always have the best relative
robustness. Here, we see a strong trend: for a fixed model architecture, lowering the minADE by
increasing the training data results in lower relative sensitivity.

5 DISCUSSION

We now discuss a few hypotheses and initial supporting evidence for why models are not robust to
the non-causal perturbations.

Overfitting. One reason models may fail to generalize to the non-causal perturbations is that they
overfit to spurious correlations in the training data (i.e. features that correlate with certain ground
truth trajectories but fail to generalize). In our experiments, we observe that models that overfit on
the original training dataset (as measured by increasing minADE on the original validation dataset)
are more sensitive to the non-causal perturbations (see Fig. 11 in Appendix E). Thus, the more the
model overfits to spurious features like the number of parked cars in a faraway parking lot, the less
well it generalizes to examples where these features are absent. Data augmentation and increasing
dataset size may improve robustness by protecting against overfitting.

Distribution shift. Models may fail to generalize to perturbations that are significantly different
from any data seen during training. In our results, we observe that the more non-causal agents we
remove, the less robust models are. Perhaps certain types of scenes with few agents are relatively rare
in the training dataset and the model does not generalize well to the distribution shift. By evaluating
on the perturbations, we essentially expose the model to rare scenarios not seen in training. One
reason that training with data augmentations via dropping (static) context agents or non-causal agents
improves robustness could be that it exposes the model to similar scenes during training.

Over-reliance on agents instead of roadmap. A third possible reason that models fail to generalize
is that they utilize the non-causal agents to infer the drivable areas instead of using the mapping
information in the input (we serve high-definition maps and traffic control signals as input features
for all models). Our evidence comes from visualizing examples where dropping non-causal agents
creates predictions that disobey the roadgraph rules (see Fig. 10 in Appendix E).

Data-dependent modes. Finally, many of the state of the art models (e.g. (Ngiam et al., 2021;
Varadarajan et al., 2021)) utilize modes (e.g. straight, left, u-turn, etc.) learned from the data
distribution, where the input data influences how the model will utilize its K predictions to minimize
its loss function. While effective at minimizing minADE-like metrics, these methods provide no
coverage guarantees, and can encourage the model to predict multiple speed profiles for the same
mode instead of diverse modes. When we triage examples (see Fig. 9 in Appendix E), we find some
of the largest failures come from agent deletions that influence which modes the model predicts,
demonstrating a weakness of this approach and the metrics they perform well on.

6 CONCLUSIONS

We establish a benchmark and metrics for evaluating the robustness of several state-of-the-art models
for trajectory prediction for autonomous driving. We find that most state-of-the-art models (with
different model architectures and coordination systems) show significant levels of sensitivity to
perturbations that remove non-causal agents, with higher sensitivity when removing a greater number
of them. While most examples show minimal change in minADE (≤ 0.1 m), there is a long tail of
examples that can have large changes (≥ 1m and sometimes up to 8m). Surprisingly, removing either
causal or non-causal agents can cause a significant fraction of examples to improve their minADE. We
also find that increasing dataset size and data augmentation can help improve the model robustness.
Overall, our results indicate that current machine learning models for trajectory prediction may not be
reliable enough on their own, and careful thought needs to be given to how to integrate such models
with non-learning components to make a safe system. Finally, we will publish the causal agent labels
as complementary attributes to the WOMD to aid future researchers in building more robust models.
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**For review purposes, we provide a copy of the causal labels annotations in the supplementary
materials. The causal agent labels are released as a TFRecord of causal labels protos (see the file
‘causal label.proto‘ in the supplementary material). The proto maps scenario id to labeler id to a list
of agent ids identified by that labeler.
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A LABELING POLICY

Below is the exact text given to labelers to define causal agents:

The objective is to identify all agents - cars, cyclists, or pedestrians - that
are causal to the AV at any time. A causal agent is one whose presence
would modify or influence human driver behavior in any way.
Causality is an inherently subjective label. If you are unsure if an agent
is causal or not, please err on the side of including it. In other words,
false positives (identifying an agent as causal when it is truly non-causal)
are okay, but we should avoid false negatives (failing to identify a truly
causal agent).
If the behavior of a human driver would be modified because of a poten-
tial action that an agent is likely to take, then that agent should be causal.
On the other hand, if the human driver would drive the same regardless
of whether the agent is there or not, the agent is non-causal.

The labeling policy also included several examples scenarios with causal agents identified such as
Figure 6.

Figure 6: Example from the labeling policy. Causal agents are circled in green and a subset of non-causal agents
are circled in red.
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B LABELER AGREEMENT STATISTICS

Figure 7: Labeler agreement statistics. We plot the distribution of labeler agreement (i.e. number of labelers
who selected a given agent) across all agents in the WOMD validation set. The majority of agents are selected
by more than one labeler.

C MODEL SENSITIVITY TO VARIOUS PERTURBATION TYPES

In this section, we summarize the robustness metrics across different model architectures for each of
the perturbation types (RemoveCausal, RemoveNoncausal, RemoveNoncausalEqual, RemoveStatic).
We report the model’s original minADE, perturbed minADE, average absolute difference between
perturbed and original minADE computed per-example (Abs(∆)), standard deviation of Abs(∆), and
the relative % change (Abs(∆) divided by the original minADE). Each table below shows the results
for a different perturbation dataset.

RemoveCausal minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.425 0.153 ±0.25 40.6%
ST Marginal 0.250 0.272 0.068 ±0.14 27.1%
Wayformer 0.393 0.423 0.122 ±0.20 31.1%
MP++-All 0.900 0.968 0.231 ±0.34 25.7%
ST-All Marginal 0.305 0.341 0.091 ±0.16 29.7%
ST-All Joint 0.493 0.540 0.207 ±0.31 42.0%

Table 5: Model sensitivity for RemoveCausal, minADE.
RemoveNoncausal minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.395 0.141 ±0.21 37.4%
ST Marginal 0.250 0.265 0.067 ±0.12 26.8%
Wayformer 0.393 0.406 0.101 ±0.16 25.7%
MP++-All 0.900 0.945 0.226 ±0.32 25.1%
ST-All Marginal 0.305 0.328 0.081 ±0.14 26.5%
ST-All Joint 0.493 0.504 0.170 ±0.26 34.5%

Table 6: Model sensitivity for RemoveNoncausal, minADE.
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RemoveNoncausalEqual minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.378 0.062 ±0.12 16.4%
ST Marginal 0.250 0.252 0.023 ±0.05 9.3%
Wayformer 0.393 0.395 0.042 ±0.10 10.6%
MP++-All 0.900 0.907 0.103 ±0.20 11.5%
ST-All Marginal 0.305 0.308 0.025 ±0.05 8.2%
ST-All Joint 0.493 0.495 0.051 ±0.11 10.3%

Table 7: Model sensitivity for RemoveNoncausalEqual, minADE.

RemoveStatic minADE, ∆ = Perturbed - Original

Model Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

MP++ 0.376 0.387 0.094 ±0.17 25.0%
ST Marginal 0.250 0.249 0.043 ±0.07 17.3%
Wayformer 0.393 0.400 0.054 ±0.12 13.9%
MP++-All 0.900 0.927 0.161 ±0.23 17.9%
ST-All Marginal 0.305 0.291 0.063 ±0.08 20.8%
ST-All Joint 0.493 0.462 0.118 ±0.18 24.0%

Table 8: Model sensitivity for RemoveStatic, minADE.
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To make it easier to compare across perturbation types, we also report the average Abs(Perturbed -
Original) minADE for each model and perturbation type in Table 9.

Abs(Perturbed - Original) minADE
Model R.Causal R.Noncausal R.NoncausalEqual R.Static
MP++ 0.153 0.141 0.062 0.094
ST Marginal 0.068 0.067 0.023 0.043
Wayformer 0.122 0.101 0.042 0.054
MP++-All 0.231 0.226 0.103 0.161
ST-All Marginal 0.091 0.081 0.025 0.063
ST-All Joint 0.207 0.170 0.051 0.118
Average 0.145 0.131 0.051 0.089

Table 9: Abs(Perturbed-Original) across different perturbation types and models. We report the average
absolute difference between the per-example perturbed and original minADE for each model and perturbation
type. The model sensitivity for RemoveCausal and RemoveNoncausal is similar, with RemoveCausal resulting
in a slightly larger average absolute change. However, when we control for the number of agents and compare
RemoveCausal to RemoveNoncausalEqual, we see that the model is significantly more sensitive to removing
causal agents than non-causal agents.
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D INCREASING DATASET SIZE

Train %, minADE, RemoveNoncausal, ∆ = Ptb - Ori

Train(%) Original Perturbed Abs(∆) Std. Abs(∆) Abs(∆)
Ori (%)

10% 1.222 1.309 0.448 ±0.69 37.0%
20% 1.039 1.117 0.386 ±0.53 37.2%
50% 0.947 0.996 0.266 ±0.45 28.0%
80% 0.901 0.925 0.236 ±0.32 26.2%
100% 0.900 0.945 0.226 ±0.32 25.1%

Table 10: Increasing training data improves robustness.
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E EXAMPLE VISUALIZATION

E.1 FAILURE (NON-ROBUST) CASES UNDER NON-CAUSAL PERTURBATION

We have triaged several top sensitive examples under the RemoveNoncausal perturbation. Among
these examples, we have found three failure patterns: 1) predictions under the perturbation violate
traffic rules, as shown in Figure 8; 2) predictions under the perturbation missed to capture the ground-
truth mode, as shown in Figure 9; and 3) predictions under the perturbation violates the causality,
for instance, unnecessary slows down when the road becomes more empty due to the removal of
non-causal agents, such as the bottom example in Figure 11. Meanwhile, we also have identified
examples where the predictions under the non-causal perturbation becomes better, as shown in Figure
10.MP++

Figure 8: An sensitive example from MP++ under non-causal perturbation: Left side is inference on the original
validation data, and right side is inference on the RemoveNoncausal data, where all non-causal agents are
removed from the scene, but some of predicted outputs weirdly turn right in the middle of a straight road.
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Figure 9: An example from marginal Scene Transformer under non-causal perturbation: Left side is inference
on the original validation data, and right side is inference on the RemoveNoncausal data, where all non-causal
agents are removed from the scene. It shows a scene where the model performed worse under perturbation,
entirely missing the correct mode.
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Figure 10: An sensitive example from marginal Scene Transformer under non-causal perturbation: Left side
is inference on the original validation data, and right side is inference on the RemoveNoncausal data, where
all non-causal agents are removed from the scene. The model outputs under perturbation actually improved
by capturing the ground-truth mode. The original model missed a mode where it should have driven forward,
potentially because of a spurious correlation with the non-causal agent in front of it. After removing that (and
other agents), it correctly predicted that mode. However, there is one mode showing a too wide right turn under
the perturbation, which is highly unlikely in human driving. This might due to the removal of the static agents
from the cross traffic confuses the model about the drivable area.

E.2 AN EVIDENCE EXAMPLE FOR NON-ROBUSTNESS DUE TO OVERFITTING

In this section, we show an example scenario that showcases overfitting is one potential reason for
poor robustness. We have trained the MP++ with 1M iterations, which overfitted at 210k iterations.
We then visualize the predictions of a same example with two different checkpoints, one at 210k
iteration and another at 1M. The results are shown in Figure 11. We can see that the robustness of the
model under non-causal perturbation becomes bad when the model over-fits.
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MP++

MP++

Figure 11: An example from MP++ indicating over-fitting is one possible reason for poor robustness: Left
side is inference on the original validation data, and right side is inference on the RemoveNoncausal data,
where all non-causal agents are removed from the scene. The top row shows the performance of the model
at 210k iteration, while the bottom row is for that of 1M where we observe over-fitting based on minADE
on the validation set. We can see that at 1M iteration, the top-1 prediction under the non-causal perturbation
unnecessarily slows down. Note that in this plot, we only visualize the top-1 predictions for better visualization.
We also only visualize the predictions of the AV in the bottom row.
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F SLICING RESULTS

We further slice the robustness of the models along several dimensions, including the AV’s current
speed, the percentage of removed non-causal agents (the number of removed non-noncausal agents
divided by the number of all context agents) in the scenarios, and the minimum distance from the AV
to removed non-causal agents. Results are given in Figure 12. We found that:

• Along the percentage of removed non-causal agents, we found all models are more sensitive
if a larger fraction of agents are removed. Across them, ST Marginal and Wayformer are the
most robust models. Compared to Wayformer, ST marginal is less sensitive when more than
40% of the context agents are non-causal and removed from the data (Figure 12 left).

• Along the AV’s speed, ST Marginal is more robust when the AV’s speed is slower than
45mph (Figure 12 top-left). Note that the high fluctuations at high speed (> 45mph) is
because we have fewer examples there (the count of examples in each bin is provided in
Appendix).

• Along the minimum distance between the removed non-causal agents to the AV, Wayformer
is the most robust one, particularly when the minimum distance is larger (i.e., all removed
non-causal agent are relatively far away from the AV, Figure 12 right). Such results indicate
that Wayformer learns to not pay too much attention to far-away non-causal agents. On the
contrary, we noticed that ST models tend to be more sensitive to far-away non-causal agents.
We hypothesize that this might be because the global coordination that ST models are used
makes it more sensitive to large coordinate values.

Figure 12: We slice the average Abs(Perturbed - Original) minADE along i) ratio of removed non-causal agents
to context agents (left), ii) AV speed (mph) (middle), and iii) minimum distance (m) between the removed
non-causal agents and the AV (right).
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G AGGREGATE RESULTS FOR ALTERNATE METRICS

In this section, we report aggregate results for minFDE, overlap rate, miss rate, and mAP on the
RemoveNoncausal perturbation.

minFDE, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.853 0.895
SceneTransformer Marginal 0.487 0.516
Wayformer 0.848 0.885
MultiPath++-All 1.430 1.551
SceneTransformer-All Joint 1.170 1.176
SceneTransformer-All Marginal 0.622 0.674

Table 11: minFDE RemoveNoncausal results.

Overlap Rate, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.188 0.191
SceneTransformer Marginal 0.211 0.210
Wayformer 0.187 0.194
MultiPath++-All 0.167 0.178
SceneTransformer-All Joint 0.191 0.202
SceneTransformer-All Marginal 0.198 0.206

Table 12: Overlap Rate RemoveNoncausal results.
Miss Rate, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.064 0.067
SceneTransformer Marginal 0.059 0.064
Wayformer 0.059 0.063
MultiPath++-All 0.142 0.157
SceneTransformer-All Joint 0.283 0.280
SceneTransformer-All Marginal 0.098 0.111

Table 13: Miss Rate RemoveNoncausal results.
mAP, RemoveNoncausal

Model Name Original Perturbed
MultiPath++ 0.554 0.524
SceneTransformer Marginal 0.475 0.447
Wayformer 0.546 0.539
MultiPath++-All 0.268 0.243
SceneTransformer-All Joint 0.227 0.223
SceneTransformer-All Marginal 0.395 0.367

Table 14: mAP RemoveNoncausal results.

23



Under review as a conference paper at ICLR 2023

H PER-EXAMPLE SCATTER PLOTS

Figure 13: MP++

Figure 14: ST Marginal

Figure 15: Wayformer

Figure 16: MP++–All

Figure 17: ST–All Marginal
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Figure 18: ST–All Joint

I COMPARISON ACROSS MODELS

Figure 19: Models are sensitive to non-causal perturbations. We plot the distribution of the per-scene
difference between perturbed and original minADE for various models and perturbation types. Models that are
less sensitive to the perturbation have a higher example density at 0 difference. All models show sensitivity to
the non-causal perturbations, which can either increase or decrease the perturbed minADE relative to the original
minADE. The models are more sensitive to RemoveNoncausalAgents than RemoveNoncausalAgentsEqual,
implying that removing more non-causal agents increases model sensitivity. Among the models, Wayformer and
Scene Transformer Marginal show the least sensitivity to the perturbation.

J COMPARISON ACROSS PERTURBATION TYPES

Figure 20 shows the sensitivity of the Wayformer AV Only, ST Marginal AV Only, and MultiPath++
All Agents models to each of the perturbation types. The perturbation can either increase or decrease
the minADE. On average, it increase the minADE but this depends on the pertubation type (Remove-
CausalAgents causes the strongest increase; see Appendix C). The models are most sensitive to both
the RemoveCausalAgents and RemoveNoncausalAgents perturbations.

The RemoveCausalAgents has the largest effect on the model, producing the most outliers that increase
the difference between the perturbed and original minADE, followed closely by RemoveNoncausalA-
gents, then RemoveStaticAgents, and then RemoveNoncausalAgentsEqual. Surprisingly, the sensi-
tivity of RemoveNoncausalAgents is close to that of RemoveCausalAgents (exact numbers TODO).
However, when we change the number of non-causal agents removed (in RemoveNoncausalAgentsE-
qual) to be the same as the number of causal agents removed (in RemoveCausalAgents), the sensitivity
is much less.

K DATA AUGMENTATIONS
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Figure 20: Models are sensitive to non-causal perturbations. For three models, we plot the distribution of
the per-scene difference between perturbed and original minADE for various perturbation types. The models
are least sensitive the RemoveNoncausalAgentsEqual perturbation, and most sensitive (almost equally so) to
RemoveCausalAgents and RemoveNoncausalAgents.

Figure 21: Targeted data augmentations can improve model robustness. Dropping static context agents as
opposed to context agents has a greater effect on reducing model sensitivity to non-causal perturbations.

26



Under review as a conference paper at ICLR 2023

L TRAJECTORY SET METRICS (CONTINUED)
Since ∆(Ptb-Ori) on minADE only quantifies how the perturbations impact the models’ robustness in
terms of the distance between ground-truth and the closest predicted trajectories, it does not directly
reflect the difference between the two predicted trajectory sets (w/ and w/o perturbations). We thus
introduce two trajectory set metrics to capture such difference: an IoU based metric as given in
Section 3.4 in the main context and a trajectory set minADE defined below. Ideally, a model’s
predicted trajectory sets would not be sensitive to dropping non-causal agents, meaning we expect a
low difference on the trajectory set metrics.

minADE between trajectory sets (TS minADE). Let p̂ipert,orig represent the i-th predicted trajec-
tory in the predicted trajectory sets w/ and w/o perturbation, respectively. We define TS minADE =
minL2(p̂iorig, p̂

j
pert), i, j = 1, 2, · · · , N where N is the number of the predicted trajectories of the

model. Hence, a smaller TS minADE means that two predicted trajectory sets are more similar.

The results for all the models are given in Table 15. We can see that most of the models are sensitive
to the RemoveNoncausal perturbation. The Wayformer is least sensitive, which is good. However,
it is also least sensitive to RemoveCausal, which indicate that the model is less sensitive to agent
removal in general.

Trajectory set minADE for RemoveNoncausal and RemoveCausal
Model RemoveNoncausal RemoveCausal

MultiPath++ 0.037 0.024
SceneTransformer Marginal 0.103 0.094

SceneTransformer Marginal-All 0.140 0.141
SceneTransformer Joint 0.156 0.195

Wayformer 0.0140 0.0164
MP++ All Agents 0.114 0.114

Table 15: The trajectory set minADE for models evaluated on the perturbations of RemoveNoncausal and
RemoveCausal
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