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Abstract— While unmanned aerial vehicles (UAVs) are
proven beneficial in search and rescue (SAR) missions, the
scalability of their deployment is in practice still challenging as
high-level decision-making capabilities for UAVs still lack, and
the natural human-in-the-loop command and communications
in a SAR mission are rarely tackled. Some promising large-
language-model- (LLM-)modulo planning frameworks have
been developed for general robotics, combining the strengths
of LLMs given their vast training data, but complementing
them with domain-specific knowledge and reasoning capabilities
for more robust planning. However, adopting the existing
frameworks for online planning in a SAR mission requires
further adaptations to scale for larger problems, while assuring
the real-time planning capability. We introduce Say-REAPEx,
an LLM-modulo online planning framework that discards
irrelevant or lowly feasible actions based on domain-specific
knowledge in order to reduce the size of the planning problem,
while leveraging online heuristic search to reduce uncertainty
of future rewards. Results of validation tests based on realistic
SAR missions show that Say-REAPEx is 70 % more efficient
compared to existing frameworks, while maintaining better and
comparable success rate.

I. INTRODUCTION

Unmanned area vehicles (UAVs) are increasingly utilized
for search and rescue (SAR) missions due to their promising
capabilities, such as rapid deployment, ability to access
dangerous areas, and cost-effectiveness compared to con-
ventional methods [21]. Furthermore, they have shown great
potential in minimizing risks for both rescuers and victims.
Their deployment spans various environments, from man-
made to natural disasters, from maritime to mountainous
areas. In all cases, response time is a critical factor [12], [33].

In current SAR operations, a single UAV is often operated
by an entire team [3]. Reducing crew size remains a chal-
lenge, largely due to the limited modifiability of commer-
cially available UAVs. Additionally, integrating command-
and-control communications into UAVs is still uncommon, as
these systems are often tasked with simple skills like navigat-
ing from point A to point B or tracking objects [16], although
in practice, UAV teams are issued complex commands in
natural language, e.g. “Search area A for a missing person
P, a male with reported cardiac issues and dementia. He was
last seen half an hour ago wearing a red backpack and blue
jacket in the open area A and may be heading towards the
highway. Send images of potential sightings to the K9 unit.”
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Executing such tasks requires advanced natural language
processing (NLP) and symbolic decision-making to adapt to
the dynamic, open-world environment [17]. In order to use
natural language as instruction, recent research suggests that
NLP can be integrated as an extension of a user interface
(UI), enabling more intuitive commands that closely mirror
human communication patterns, thereby streamlining human-
drone collaboration. Although current efforts aim to enhance
UIs for better usability and interoperability in SAR missions,
they remain insufficient for handling highly dynamic and
complex rescue scenarios [9].

Recent studies in robotics have explored the use of large
language models (LLMs) to bridge this gap [5], [11], ven-
turing thereby into leveraging LLMs for flexible decision-
making. While many argue that LLMs significantly enhance
explainable and decision-making capabilities by processing
natural language inputs and generating contextually appro-
priate responses, their capabilities in decision-making remain
unreliable. According to studies performed by planning
experts, are only usable in non-ergodic environments1 if
integrated with specialized modules [18].

The SayCan framework demonstrated how combining
LLMs with domain-specific knowledge can empower robots
to perform high-level tasks with a better understanding of
contextual details [1]. However, SayCan is hardly scalable
for larger problems, resulting in the extended framework Say-
CanPay that includes also heuristics to guide the search [13],
but is limited to only offline planning. Despite these advance-
ments, the application of these frameworks for UAVs in SAR
operations is not without limitations, due to their reliance
on training data. Furthermore, while SayCanPay can tackle
larger problems thanks to the use of a heuristic to guide the
search, it is limited to only offline planning.

Building on SayCan and SayCanPay, we propose Say-
REAPEx2, an online planning framework for our SAR do-
main. The main contributions of our work can be summarized
as follows:

• Unlike SayCan and SayCanPay, the score-models of
Say-REAPEx do not over-rely on scoring pre-trained in
a static world using expert-generated plan trajectories.

• Say-REAPEx can handle significantly more different
actions, while keeping the computation time for deter-
mining the next best action consistent.

1An ergodic environment implies that an agent acting in it can reach any
state at any given moment [18]

2REAP is a “Real-world Environment for AI-Planning proposed in [19],
while REAPEx extends it with Execution capabilities. Say extends REAPEx
with the ability to plan for problems instantiated using natural language.



• We use AEMS2 [24] for online POMDP planning as
a heuristic to guide the update of the Q-values, which
we use in lieu of the “Pay”-model in SayCanPay that
is only for offline planning.

In this work, we start by defining the planning problem as
a Partially Observable Markov Decision Process (POMDP).
Subsequently, we provide details on the “Say-”, “Can-” and
“Pay-” models of Say-REAPEx, followed by a pseudocode
that describes how these models are used within a framework
for determining in an online manner the next best action to be
undertaken by the SAR-UAV. Validation tests show that Say-
REAPEx outperforms SayCan and SayCanPay in the overall
computation time despite the substantial number of actions
in our SAR use case, and reduces extensively the number of
calls to the LLM-API.

II. RELATED WORK

A. SAR Missions with UAVs

The use of UAVs in SAR operations is becoming more
popular. The survey paper by Lyu et al. [21] highlights
that the flexibility, mobility, and real-time data processing
capabilities offered by UAVs improve the success rates
significantly in disaster response by reaching otherwise in-
accessible areas. The study also elaborates on the integration
of various sensors such as thermal imaging and LiDAR
for enhanced target perception and localization. Similarly,
Vincent-Lambert et al. offer a scoping review in [33], on
the use of UAVs in wilderness search and rescue (WSAR)
operations, identifying thereby UAVs as valuable tools in lo-
cating victims, mitigating risks, and improving the efficiency
of SAR missions, particularly in remote and hazardous
environments. However, there has not been research work
focusing on high-level human-in-the-loop decision-making
in SAR missions using UAVs.

B. Planning with LLMs

In the context of planning with LLMs, a distinction can
be made between pure LLM planners and LLM-supported
hybrid planners [22]. The majority of LLM-only methods
focuses on natural language prompts, which emulate dia-
logues by providing new instructions in textual form and
by generating textual response [23], to be either parsed
into parameters and actions or is given directly in code
format to be executed [28], [32]. Other works in this regard
learn interactions with LLMs to obtain more grounded task
models [14], to model the symbolic representation of sub-
goal plans [35], to compute smooth plan trajectories by
combining LLM and hand-sketched trajectories [36] or to
pre-train robots on specific tasks [6].

However, Kambhampati et al. argue that LLMs’ plan-
ning abilities are limited to only generating plausible re-
sponses [18]. Furthermore, LLMs appear successful in plan-
ning for tasks only when the user already knows the correct
answer and even hint it in the prompts. Therefore, in an
non-ergodic environment, it is more beneficial to use LLMs
as a “helper” for planning, for example by combining them
with model-based verifiers. In line with this concept are

planning frameworks such as SayCan by Ahn et al. [1] and
SayCanPay by Hazra et al. [13]. In SayCan, an LM is used
to suggest potential candidate actions; these suggestions are
validated against an affordance scoring to determine whether
the actions are feasible in the environment the robot finds
itself in. This idea of a grounded model-based verifier was
adopted and extended in SayCanPay, by adding a heuristic to
accelerate the search process in an offline planning approach.

C. Online Planning and Online Algorithms to Solve
POMDPs

Online planning involves selecting actions in real-time
(i.e. during execution), allowing thereby decision-making
based on feedback signals arising from the interaction with
the environment. In SAR missions, due to the incomplete
information of the goal state3, dynamics of the environment,
and new incoming information of the problem instance (e.g.
new last-seen location of the missing person, additional task
assignment to the UAV), decisions must be made during
execution within a planning and acting framework [10].

While [12] treats the SAR mission as a multi-UAV offline
multi-objective optimization problem, other similar target
detection and recognition problems using UAVs are treated
as online optimization problem to account for uncertainties
arising from the observation of states [4], [34]. The solution
to this class of planning problem relies mostly on approxi-
mate online algorithms. Frequently used approaches are for
example POMCP [27] that includes Monte Carlo tree search
in expanding the current belief state, while [26] improves
POMCP by adding safety requirements to be adopted for
safety-critical problems. Other works use look-ahead heuris-
tics such as the AEMS2 heuristics to minimize uncertainty
in future rewards [24], while [8] enhances AEMS2 with a
selection mechanism to improve plan quality.

III. PROBLEM STATEMENT OF A SAR MISSION

Given the uncertainties arising from the actions and ob-
servations, we model our planning problem as a Partially
Observable Markov Decision Process (POMDP) with the
tuple (S,A,O, b0,T,O,R, γ), where S is the state space,
with a state s ∈ S being represented as (lUAV, pUAV, sUAV,
l1, c1, m1, sz1, d1 ..., lO, cO, mO, szO, dO, ms), where
lUAV, pUAV and sUAV denote the location, position and the
type of sensor payload of the SAR-UAV, while lo, co, mo,
szo and do denote the location, color, mobility, size of the
object o to be searched and its state of being detected or
not. ms denotes the current meteorological season. A is the
action set, comprising all skills that the SAR-UAV is capable
to perform. O is the observation space, b0 is the initial belief
state, T(s, a, s′) : S × A × S −→ [0, 1] is the transition
probability function to the next state s′ by applying action a
at the current state s, O(o, a, s′) : O×A×S −→ [0, 1] maps
a probability to an observation o, and an action a applied
leading to the next state s′, R(s, a) : S × A −→ R returns
the immediate payoff for applying action a at state s, and γ

3We only know what to search for, but not where to search.



is the discount factor. At each time step t, after applying the
action at, the belief state bt+1 is updated with the following
equation:

bt+1(st+1) = µO(ot, at, st+1) ·
∑
st∈S

T(st, at, st+1)bt(st),

(1)
with µ being a normalizer variable.
Planning Problem Instance In practice, the SAR planning
problem is provided by the user (i.e. drone operator) in form
of a natural language instruction L, that contains information
on the goal state sg , objects to the searched, transition
function T (e.g. the mobility of the missing person/object),
reward function R, and the (initial) belief state b0. Once a
goal state is believed to be reached, the human operator will
check and confirm or deny. Therefore, the reachability of the
goal state is fully observable.
Solution to Online Planning Problem As we intend to solve
the planning problem in real-time: at each time instant, given
the current belief state bt, the next best action a∗t+1 ∈ A will
be selected according to a pre-defined scoring f :

a∗t+1 = argmax
at+1∈A

f(at+1, sg, ht), (2)

where ht is a sequence of past action-observation pairs, i.e.
ht = ((a0, o0), ..., (at, ot)).

IV. Say-REAPEx: AN ONLINE PLANNING FOR SAR
MISSIONS

Solving a planning problem given a problem instance
defined by a natural language instruction L has been dealt
with by several frameworks, with the most promising being
the SayCan-Framework by Anh et al. [1] and its extension
for offline and larger planning problems, the SayCanPay-
Framework by Hazra et al. [13], which considers a heuristic
to accelerate the search. We adopt the fundamental ideas
of these frameworks as they leverage language models to
help planning, specifically with planning problems that are
instantiated with natural language instruction(s) in an open-
world environment. The solution can come in handy for
problems in which the definition of an exact planning domain
and problem instance can be very challenging.

However, as mentioned in Section I, for solving our SAR
online planning problem, we need to adapt SayCan and
SayCanPay for the following reasons:

1) SayCan is not guided by heuristics, and can therefore
fail in larger planning problems.

2) SayCanPay includes heuristics to accelerate the search,
but is design for use in offline planning.

A. Say-REAPEx: Say-Score

Given a language instruction L and the action-observation
trace ht, a prompt ma = (ℓa, ℓsg , ht) is constructed, which
comprises the natural-language description of an action a ∈
A, the natural-language description of the goal state sg
extracted from L, and the action-observation trace ht. The
prompt is then evaluated by an LLM to determine the scoring

of the action a as a relevant candidate next action at+1 for
reaching the goal state in form of a probability:

f Say
at+1

(a, sg, ht) = f LLM(ma) = p(at+1 = a|sg, ht). (3)

Note the linear latency of promptings with LLMs, they
do not scale well with the number of actions in A. In the
SayCan and SayCanPay frameworks, the number of actions
considered in the benchmarking problems are relatively
small, while in our SAR use case, due to the parameters each
action can take on, i.e. the high-level action “fly to”, once
parameterized with the L-locations in the assigned operation
area, generate altogether L different actions a1, ..., aL ∈ A.

Therefore, we consider an additional Say-Score for high-
level non-parameterized actions. Equation 3 can be rewritten
as

f Say

ât+1
(â, sg, ht) = f LLM(mâ) = p(ât+1 = â|sg, ht), (4)

where â ∈ Â denotes the action without parameter, and
for each â, there is a list of associated parameters pâ =
{p1, ..., pn, ..., pN}â, such that â(pn) ∈ A, for all pn ∈ pâ,
and â(pn) ̸= â(pm), if n ̸= m.

B. Say-REAPEx: Can-Score

A Can-Score typically evaluates the feasibility of an
action. In Say-REAPEx, we define two Can-scorings: f Can-prea

and f Can-compa . f Can-pre
a only considers the preconditions of the

action when evaluating its feasibility, and is defined by

f Can-pre
at+1

(a, ht) =p(pre(a)|ht) (5)

=
∑
st∈S

p(pre(a)|st, ht) · p(st|ht)︸ ︷︷ ︸
b(st)

(6)

=
∑
st∈S

δ(st |= pre(a)) · b(st), (7)

where p(pre(a)|ht) denotes the probability of the precon-
ditions of a being satisfied given the action-observation
trace ht. Using the Theorem of Total Probability, we obtain
Equation 6. δ(st |= pre(a)) = 1, if state s satisfies the
preconditions of a (i.e. pre(a)), otherwise, δ(st |= pre(a)) =
0.
f Can-comp
a evaluates the feasibility of an action based on the

success rate of completing the action given a state:

f Can-comp
at+1

(a, ht) =p(comp(a)|ht) (8)

=
∑
st∈S

p(comp(a)|st, ht) · p(st|ht)︸ ︷︷ ︸
b(st)

(9)

=
∑
st∈S

p(comp(a)|st) · b(st), (10)

where p(comp(a)|ht) denotes the probability of completing
action a given the action-observation trace ht. We assume
that p(comp(a)|s, ht) = p(comp(a)|s), as the success prob-
ability of completing action a depends only on the true state
s instead of on the action-observation trace ht.

The probability distribution of p(comp(a)|s) can be
learned in a domain-specific manner [15]. This is particularly



relevant for modeling the ability of a sensor payload to detect
and recognize an object when scanning an area in a SAR
mission, as the probability of completing the action with
success depends on the color and size of the object, the pay-
load used by the drone, its altitude, and the meteorological
season coupled with the type of location4 being scanned.

p(comp(a)|s) = p(s|comp(a)) · p(comp(a))

p(ot)
(11)

We learn the distribution models using the Bayesian theo-
rem above in a simulated realistic environment (shown in
Figure 2) built with Unreal Engine and AirSim [19].

Note that, similar to the Say-Score, the Can-Scores de-
scribed by Equation 7 and 10 can be defined for non-
parameterised actions as well.

C. Say-REAPEx: Pay-Score
While Say-REAPEx offers flexibility to plan with incom-

plete problem model, LLMs must be complemented with
domain-specific knowledge using Can-Scores to eliminate
infeasible actions or actions with low probability to be
completed. While this concept was also considered in Say-
CanPay [13] (with different details in the implementation
and scoring), an additional Pay-Model was also introduced
to look-ahead, in order to find shorter plans leading to
the goal state, hence minimizing execution time, which is
critical for a SAR mission. However, SayCanPay introduces
learned heuristics (from static planning environment) that
are only applicable for offline planning. Given the dynamics
of a SAR mission, the heuristic used in SayCanPay cannot
be exploited here. Instead, we resort to the Anytime Error
Minimization Search (AEMS2) heuristic introduced by Ross
and Chaib-draa [24] for approximate online algorithm to
search for solutions of large POMDPs. The general idea
is, given a current belief state, a fringe belief state of the
search tree will be chosen based on the AEMS2 heuristic
that leads towards exploring nodes with the most substantial
uncertainty regarding future rewards, while being a node on a
path that carries the most substantial cumulative reward. The
chosen fringe node will be expanded with applicable actions
to calculate their Q-values, followed by a backtracking to
update Q values of all ancestor nodes. These steps, (i.e. select
fringe node, expand tree, update ancestor nodes), are repeated
until either the allocated planning time is over, or for a given
number of iterations.

The Pay-Score used in Say-REAPEx is defined by

f Pay
at+1

(a, bt) = Q(bt, a), (12)

where Q(b, a) is the lower bound of

Q(b, a) = R(b, a) + γ
∑
s∈S

b(s)
∑
s′∈S

T (s, a, s′)·∑
o∈O

O(o, a, s′)V (b(s′|a, o)), (13)

where V is the maximum Q-value with respect to a.

4As an intuitive example, an electro-optical camera is less effective in
recognizing a missing person in a green jacket on a open field than in an
urban area.

D. Say-REAPEx

Algorithm 1 describes the pseudo code of Say-REAPEx.

Algorithm 1 Say-REAPEx
Given: A high level natural language instruction L, an initial

belief state b0, an observation function O, and the set of
action A and their language description la.

1: Define the transition function T, the reward function R
and the goal state sg from L

2: t← 0, Σ← ∅
3: while lat

̸= “land” || τ(t) < τmax do
4: for â ∈ Â and lâ ∈ lÂ do ▷ Select Action
5: Compute f Say

ât+1
(â, sg, ht) based on Eq. 4

6: Compute f Can-pre

ât+1
(â, ht) with Eq. 7

7: f Say-Can(â) = f Say

ât+1
(â, sg, ht) · f Can-pre

ât+1
(â, ht)

8: Σ← Σ ∪ {f Say-Can(â)}
9: end for

10: â← argmax
â∈Â

Σ

11: Σ← ∅
12: χâ ← â(pâ) ▷ Find all parameterized actions
13: for a ∈ χâ do ▷ Select likely Parameters
14: Compute f Can-comp

at+1
(a, ht) based on Eq. 10

15: Σ← Σ ∪ {f Can-comp
at+1

(a, ht)}
16: end for
17: χâ,k ← get top k(χâ,Σ, k) ▷ Get top-k actions
18: Σ← ∅
19: for a ∈ χâ,k and la ∈ lχmod do ▷ Select Parameters
20: Compute f Say

at+1
(a, sg, ht) based on Eq. 3

21: Compute f Pay
at+1

(a, bt) based on Eq. 12
22: f Combined

a ← f Say
at+1

(a, sg, ht) · f Pay
at+1

(a, bt)
23: Σ← Σ ∪ {f Combined

a }
24: end for
25: a∗ ← argmax

a∈A
Σ

26: EXECUTE(a∗)
27: update belief state bt+1 with Eq. 1
28: ht+1 ← (ht, (a, o))
29: t← t+ 1
30: end while

While the UAV is not landing, or if the maximum flight
time τmax is not exceeded, a next action will be selected. The
selection of the next action is carried out in three main for-
loops. Figure 1 shows the schematic system diagram of Say-
REAPEx, depicting Algorithm 1. In the first for-loop (from
Line 4 to 9), the aim is to select a non-parameterized action
â using a Say-Score evaluated by LLM and a Can-Score
that considers only the preconditions of a non-parameterized
action. The first for-loop is to limit the number of prompts
to be processed by the LLM and is indicated as “Select
Action” in the figure. After â is selected in Line 10, the list of
parameterized actions χâ associated to â will be determined,
alongside with their Can-scores that are based on the success
rate of the action and computed as in Equation 10, (see
Line 13 to Line 16). Subsequently, another selection is
performed to select the top-k parameterized actions, while



Fig. 1. System diagram of Say-REAPEx. Two key steps are distinguished: first, a feasible action is selected, followed by determination of its respective
parameters. This action is then sent to the execution platform, which processes it and provides a new observation based on the updated environment.

others are discarded. This first discarding of lowly-scored
parameterized actions is done in the CAN-Module of “Select
Parameters” in the system diagram in Figure 1. This is to
filter out action parameters that have low (Can-)scores, so
that the prompts to be processed in the third for-loop can be
further reduced. The third for-loop spanning from Line 19
to Line 24, as illustrated in the figure by the Say- and Pay-
Module, follows the concept of the SayCanPay framework,
using scorings that are described in Equations 3 and 12
respectively. The new action at+1 is selected based on the
combined scoring f Combined

a . After the execution of the action,
the belief state, as well as the action-observation trace are
updated.

V. EXPERIMENTS & RESULTS

A. Experimental Setup

Fig. 2. Simulation environment in Unreal Engine with the operation areas
and the location of the person indicated.

To assess the efficacy of Say-REAPEx, we use the REAP-
Framework [19] as the validation environment, within which
our planner was developed. This framework uses ROS2 [30]
as a middleware and implements a range of predefined
actions for UAVs. These actions are selected and sent to
the UAV by a planning and execution mechanism, while an

offboard controller node receives the commands and directs
the flight controller. The simulation is set up in Unreal
Engine 5.2 using AirSim [25] as quad-copter simulator and
physics engine. The combination of the Cesium plugin and
the Google Photorealistic tileset allows for the deployment of
drones in a realistic scenario. A screenshot from the simula-
tion, with marked operation areas and to be searched objects
is shown in Figure 2. For object detection, a YOLOv8 [31]
model that has been pre-trained on the COCO dataset [20],
and is fine-tuned on a smaller dataset, with the objective
of reducing the number of classes to only those relevant in
a SAR mission, is deployed. As LLM, we mainly used the
gpt-4o-mini, but other LLMs as Llama3 [7], Claude3 [2] and
Gemini [29] were also tested. For the validation, language
instructions similar to “Search areas open fields. If you find
a person, confirm it, return home, and land.” is utilized.
This text is initially provided by the human-operator and
subsequently parsed by the planner to be inserted as a goal
in the prompt of the LLM model. In this scenario, 9 non-
parameterized actions Â = {“Return to Home and Land”,
“Take off”, “Search an area”, “Hover”, “Confirm an object”,
“Ascend”, “Descend”, “Perform mapping”, “Take one single
image”} are being considered. The resulting number of
parameterized actions A differs depending on the number
of parameters, e.g. â =“Ascend” can take different altitudes
as parameters to describe how much the UAV should ascend
{â(30), â(60), â(90)}.

B. Results

We evaluate the performance of Say-REAPEx to that of
SayCan (i.e. by omitting the first and second for-loops and
also by omitting f Pay in the combined scoring in Line 22 of
Algorithm 1) and to that of an online SayCanPay implemen-
tation (i.e. by omitting only the first and second for-loops
in Algorithm 1) by comparing the computation times for a
given number of (parameterized) actions (5, 25, 50, 75, 100,
125) (see Figure 3).

As the number of available actions increases, the compu-



TABLE I
COMPARING THE MEAN COMPUTATION TIME OF THE NEXT ACTION, THE MEAN NUMBER OF PROCESSED ACTIONS IN EACH SELECTION STEP, THE

MEAN PRECISION OF ALL SELECTED ACTIONS AND THE SUCCESS RATE WITH DIFFERENT MODELS. HERE THE NUMBER OF ACTIONS IS |A| = 48.

SayCan SayCanPay SayCan-SayCanPay Say-REAPEx
∅ Action Computation Time 35.675 s 37.586 s 2.832 s 2.104 s

∅ Number of Processed Actions 48 48 21.4 13.2
∅ Precision in % 45.2 49.5 49.3 52.5

Success in % 47.5 52.5 50.0 55.0

tation time for the action selection in the SayCan and the
SayCanPay model exponentially rises. This is due to the

Fig. 3. Comparing the Action Selection Computation Time of different
Number of Actions for the SayCan, SayCanPay and Say-REAPEx.

synchronous LLM evaluation of all possible actions in set A.
Both approaches take more than 250 seconds if 125 actions
are to be considered, which is too long as an online UAV
planning approach in a SAR mission. In comparison, the Say-
REAPEx model reduces the action set to only the promising
and highly feasible parameterized actions. Consequently, the
computation time remains relatively consistent despite the
increasing number of parameterized actions to be considered.
Moreover, since APIs such as gpt-4o-mini have restrictions
on their call rate limit, it is beneficial to discard non-relevant
of infeasible actions.

In the second validation, we constructed 20 test runs, with
each test run limited to at most 16 actions to emulate the
battery capacity of the SAR-UAV since we do not include
a high-fidelity energy consumption model in the simulation
environment. Table I displays the mean computation time, the
mean number of processed actions, the mean precision and
the success rate for SayCan, SayCanPay, SayCan-SayCanPay
(i.e. by omitting the second for-loops in Algorithm 1) and
Say-REAPEx. The mean action computation time reveals
that the high number of evaluated actions in SayCan and
SayCanPay causes the much greater computation time. Con-
sidering the 48 given actions, our approach only computes
up to 13.2 actions on average in each action selection step,
which is ≈ 72% fewer than the SayCan approach in our
scenario.

Although the mean action computation time and the mean
number of processed actions are greatly reduced with Say-
REAPEx, no vast improvement is seen with the precision
and success rate. Object recognition is apparently the main
hindrance to improving precision and success rate. In the
test runs, either objects are not recognized or wrong objects
were recognized, causing unnecessary follow-up actions to
“Hover”, “Confirm” and “Take an image”.

VI. CONCLUSION

In this work, we introduced Say-REAPEx, an auto-
mated high-level UAV online planning framework for SAR-
operations in the open world, in which the complete mod-
elling of a planning problem (domain and instance) can
be impossible. The LLM-module planning framework is
also able to understand instructions formulated in natural
language by the human UAV-operator in a SAR mission.

In Say-Say-REAPEx, we adapted the existing SayCan and
SayCanPay approaches by:

1) developing a two-step action selection process consist-
ing of an action selection step (of non-parameterised
actions) and an action parameter selection step;

2) adopting new scorings so that sensor capabilities can
be considered in the Can-Model, and that a heuristic
for online planning guides the exploration of actions
more efficiently in the Pay-Model.

These improvements allow us to employ the method for SAR
operations, in which reduced planning time and the efficiency
of a plan are critical, given the limited battery capacity of
SAR-UAVs. Moving forward, we plan to

1) extend Say-REAPEx for use by multiple UAVs, as
multi-UAV systems benefit more from automated
decision-making functions without increasing the size
of the drone team in a SAR mission while reducing
response time;

2) incorporate more flexibility into the existing frame-
work to accept additional incoming instructions or
information which alter the goal states, the transition,
and the reward functions.
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