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Abstract

Open-world learning (OWL) requires models that can adapt to evolving envi-
ronments while reliably detecting out-of-distribution (OOD) inputs. Existing
approaches, such as SCONE, achieve robustness to covariate and semantic shifts
but assume static environments, leading to degraded performance in dynamic
domains. In this paper, we propose Temp-SCONE, a temporally-consistent ex-
tension of SCONE designed to handle temporal shifts in dynamic environments.
Temp-SCONE introduces a confidence-driven regularization loss based on Aver-
age Thresholded Confidence (ATC), penalizing instability in predictions across
time steps while preserving SCONE’s energy-margin separation. Experiments
on dynamic datasets demonstrate that Temp-SCONE significantly improves ro-
bustness under temporal drift, yielding higher corrupted-data accuracy and more
reliable OOD detection compared to SCONE. On distinct datasets without temporal
continuity, Temp-SCONE maintains comparable performance, highlighting the
importance and limitations of temporal regularization. Our theoretical insights on
temporal stability and generalization error further establish Temp-SCONE as a step
toward reliable OWL in evolving dynamic environments.

1 Introduction

Reliable open-world learning (OWL) for Artificial Intelligence (AI) provides a paradigm where
AI models learn and adapt to a dynamic-world assumption such that agents encounter unexpected
environments Zhu et al. [2024]. Machine learning (ML) models deployed in real-world environments
inevitably encounter data that differs from the training distribution. For example, a simple cat-vs-dog
classifier trained on curated datasets may, once deployed, receive an input image of an elephant.
Since such an input lies outside the model’s training distribution, the model’s predictions become
unreliable. This challenge is broadly studied under the framework of Out-of-Distribution (OOD)
detection Liu et al. [2021], Wang et al. [2022], Park et al. [2021], Tamang et al. [2025], Yang et al.
[2024]. Unlike ML models, where the models are trained on seen (in-domain) environments, modern
AI agents require detecting and adapting to unseen data and abrupt domain shifts. OWL aims to
build a robust human-like system that can transfer and consolidate knowledge incrementally during
deployment while adapting to shifted domains and detecting OOD samples. An OWL paradigm on
wild data Katz-Samuels et al. [2022] is built upon two parts, unknown rejection (OOD detection),
novel class discovery (distribution shift generalization) under dynamic domains. Within OWL context,
In-distribution (ID) refers to data drawn from the same distribution as the training set—the data that
the model is expected to handle reliably. Prior work in both OOD detection and distribution shift has
primarily focused on two categories: (1) covariate shift refers to inputs that belong to the same label
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space as the training data but differ due to changes in the input distribution Ye et al. [2022], Koh et al.
[2021]. For example, in autonomous driving, a model trained on ID data with sunny weather may
experience a covariate shift when deployed in snowy weather. Similarly, in image classification, a
dog image turned upside down or corrupted with Gaussian noise remains labeled as “dog”, yet such
covariate perturbations can degrade model performance. (2) Semantic shifts occur when entirely new
classes are introduced at test time Yang et al. [2024], Ye et al. [2022], such as a classifier trained
on cats and dogs encountering an elephant. While these perspectives have significantly advanced
both OOD detection and OOD generalization Bai et al. [2023], but they largely overlook temporal
dynamics, the fact that data distributions may evolve over time due to changing environments, user
behavior, or data sources Yao et al. [2022]. Such temporal shifts can lead to gradual but systematic
degradation of model performance if left unchecked. For example, a perception system trained on
traffic patterns from one year may underperform as new road constructions, seasonal changes, or
evolving driving behaviors shift the data distribution over time.
In this paper, we situate these challenges within the broader paradigm of OWL, where AI systems
must not only detect semantic novelty but also adapt to distribution shifts encountered over time “in
the wild”. We introduce a unified approach that simultaneously generalizes to covariate and temporal
shifts while robustly detecting semantic shifts. To characterize temporal drift, we leverage metrics
such as average threshold confidence (ATC) Garg and Balakrishnan [2022]( and average confidence
(AC)), showing that persistent deviations in these metrics provide strong signals of temporal instability.
We evaluate our approach on both static benchmark datasets and dynamic datasets that evolve over
time, demonstrating improved robustness under open-world conditions. Among established OOD
detection and semantic shift generalization methods, the most recent framework SCONE Bai et al.
[2023] learns a robust classifier that detects semantic OOD inputs and generalizes to covariate-OOD
data.
SCONE explanation Bai et al. [2023]: Consider wild data where the static agent encounters covariate
and semantic shifts with distribution Pwild in (1), where type = semantic, covariate. SCONE is
a unified energy margin–based learning framework that leverages freely available unlabeled data
in the wild, capturing test-time OOD distributions under both covariate and semantic shifts. By
marginalizing the energy function, SCONE enforces a sufficient margin between the OOD detector
and ID data, thereby improving the performance of both the classifier fθ and detector gθ.
SCONE Limitations: A central limitation of SCONE is its reliance on static environments, while
OWL inherently involves dynamic domains. Although the authors report strong performance, our
experiments demonstrate that SCONE suffers significant performance degradation when transitioning
to new domains. This motivates the following critical yet underexplored hypothesis:

Hypothesis: Exploiting temporal-based confidence in SCONE improves the OOD generaliza-
tion in downstream time steps and controls the shocks during domain transition in dynamic
environments leading one step towards reliable OWL.

Toward the hypothesis above, we propose Temp-SCONE, a temporally-consistent extension of SCONE
designed for dynamic domains. Temp-SCONE builds on SCONE’s energy margin–based framework
by introducing a temporal regularization loss that stabilizes model confidence across evolving
distributions. The method leverages ATC (and AC) to monitor prediction stability on both ID and
covariate-shifted samples. When confidence drift between consecutive timesteps exceeds a tolerance,
Temp-SCONE applies a differentiable temporal loss with adaptive weighting, penalizing instability
while preserving flexibility in gradual shifts. This temporal regularization is jointly optimized with
cross-entropy and energy-based OOD objectives, allowing Temp-SCONE to maintain strong ID
performance while improving robustness to covariate shifts and enhancing semantic OOD detection
under dynamic open-world conditions.
Our main contributions: We propose Temp-SCONE, a framework for dynamic OOD detection
and generalization under temporal shifts. We design a temporal regularization loss using ATC (and
AC) to stabilize confidence across time. We demonstrate Temp-SCONE’s effectiveness on dynamic
(CLEAR, YearBook) and distinct (CIFAR-10, Imagenette, CINIC-10, STL-10) datasets. We provide
theoretical insights linking temporal consistency to generalization error bound.

2 Methodology

We start with preliminaries to lay the necessary context, followed by our proposed Temp-SCONE
method (Section 2.1) and a clear description of SCONE and Temp-SCONE differences.
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Preliminaries: We consider a deployed classifier fθ : X → RK trained on a labeled in-distribution
(ID) dataset DID = {(xi, yi)}ni=1, drawn i.i.d. from the joint data distribution PXY . The function
fθ predicts the label of an input sample x as ŷ(f(x)) := argmaxy f

y(x). Define Pin, the marginal
distribution of the labeled data (X ,Y), which is also referred to as the in-distribution. Ptype

out is the
marginal distribution out of PX ′Y′ on X ′, where the input space undergoes "type" shifting and the
joint distribution has the same label space or different label space (depending to the "type"). We
consider a generalized characterization of the open world setting with two types of OOD

Pwild = (1−
∑
type

πtype)Pin +
∑
type

πtypePtype
out , (1)

where type = {semantic, covariate}, where πtype,
∑
type

πtype ∈ (0, 1).

Covariate OOD type: Taking autonomous driving as an example, a model trained on ID data with
sunny weather may experience a covariate shift due to foggy/snowy weather. Under such a covariate
shift, a model is expected to generalize to the OOD data—correctly predicting the sample into one of
the known classes (e.g., car), despite the shift. Pcov

out is the marginal distribution of covariate shifted
data (X ′,Y) with distribution PX ′Y , where the joint distribution has the same label space as the
training data, yet the input space undergoes shifting in domain.
Semantic OOD type: In autonomous driving example, the model may encounter a semantic shift,
where samples are from unknown classes (e.g., bear) that the model has not been exposed to during
training. Psem

out is the marginal distribution when wild data does not belong to any known categories
Y = {1, 2, ...,K} and therefore should be detected as OOD sample. To detect the semantic OOD
data, we train OOD detector Dθ(x, θ) which is a ranking function gθ : X 7→ R with parameter θ.

Dθ(x, θ) =

{
ID if gθ(x) > λ

OOD if gθ(x) ≤ λ

The threshold value λ is typically chosen so that a high fraction of ID data is correctly classified.
This means that the detector gθ should predict semantic OOD data as OOD and otherwise predict as
ID. An example of gθ is energy function Eθ(x) := − log

∑K
y=1 e

f
(y)
θ (x), where f

(y)
θ (x) denotes the

y-th element of fθ(x), corresponding to label y.

Learning Objectives: In our setup, we consider the following objective functions:
ID-Acc measures the model’s performance on Pin which is cross-entropy E(x,y)∼PXY [LCE(f(x), y)].
OOD-Acc measures the OOD generalization ability on Pcov

out, E(x,y)∼Pcov
out

[LCE(f(x), y)].

False positive rate (FPR) measures the OOD detection Ex∼{Psem
out }(1

(
Dθ(x, θ) = ID)

)
.

2.1 Temp-SCONE Method

In this section, we present our Temp-SCONE methodology that enables performing both OOD gener-
alization and OOD detection in dynamic domains when unlabeled data in the wild is encountered.
Our Temp-SCONE method for the first time proposes OWL under temporal shift for streams of wild
data which shows superior advantage over the counter part approaches that (1) rely only on the ID
data, or (2) address static OOD generalization and OOD detection with strong applications that are
deployed in the dynamic open world. In addition, Temp-SCONE maintain SCONE’s performance on
ID accuracy, covariate shift accuracy, and OOD detection (FPR) on the stream of distinct wild data.
Leveraging Confidence Score to Enhance both OOD Generalization and Detection: We de-
fine the evolving test-time distribution at time t in (1) as Pwild,t = (1 −

∑
type πtype,t)Pin +∑

type πtype,tPtype
out,t, where type = {semantic, covariate}. And Pout,t and πtype,t may vary over

time due to seasonal, contextual factors. Our temporal-SCONE (Temp-SCONE) technique, leverages
confidence score to enhance OOD detection and generalization with temporal shift Cai et al. [2024],
Wu et al. [2025], Chang et al. [2025].
Definition:(ATC Garg and Balakrishnan [2022]) Consider softmax prediction of the function f ,
and two such score functions: s(fθ(x)) = maxj∈Y fj(x) (maximum confidence) and s(fθ(x)) =∑

j fj(x) log fj(x) (negative entropy). ATC identifies a threshold and the error estimate is given by
the expected number of points that obtain a score less than δ i.e.

ATC(s) := EPin
[1{s(fθ(x)) < δ}] . (2)
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In this paper, we propose a temporal shift accurance based on ATC criteria (2). We also use average
confidence AC(s) := EPin [1{s(fθ(x))}] as secondary confidence score to compare against ATC.
Definition: (Temporal Shift) Consider marginal distribution of the labeled data (Xt,Yt) at time step t
(Pt

in). We define temporal shift for the classifier fθ(x) iff the ATC is shifted over time.∣∣∣EPt+1
in

[1{s(f(x)) < δ}]− EPt
in
[1{s(f(x)) < δ}]

∣∣∣ ≤ ϵ, (3)

where ϵ ≥ 0 is small constant. Note that the classifier is trained on an online dataset.

Temp-SCONE objective function: Given access to wild samples {x̃1t, . . . , x̃mt} from wild data with
distribution Pwild,t along with labeled ID samples (x1, y1), ..., (xn, yn). Denote the combination
of covariate shifted {xc

1t, . . . ,x
c
mct} and ID data {x1t, . . . ,xmidt

} by {xid,c
1t, . . . ,x

id,c
mid,ct

}.
Here mt = mct +mst +midt are the size of covariate shifted, semantic shifted, and ID sample sizes.

Temp-SCONE Optimization with ATC→ argminθ
1

m

m∑
i=1

1{Eθ(x̃it) ≤ 0}

s. t.
1

n

n∑
j=1

1{Eθ(xjt) ≥ η} ≤ α,
1

n

n∑
j=1

1{ŷ(fθ(xjt) ̸= yj} ≤ τ,

∣∣∣ 1

mct

mct∑
r=1

1{s(fθ(xid,c
rt )) < δ} − 1

mc(t−1)

mc(t−1)∑
r=1

1{s(fθ(xid,c
r(t−1))) < δ}

∣∣∣ ≤ ϵ. (4)

In (4), mid,ct = mct +midt and the ATC and AC are computed on {xid,c
1t, . . . ,x

id,c
mid,ct

}. And

the energy function Eθ(x) is defined by Eθ(x) = − log
∑K

y=1 e
f
(y)
θ (x), where f

(y)
θ (x) is the logit

value for class y. Our Temp-SCONE objective function relies on WOODs Katz-Samuels et al. [2022]
and SCONE Bai et al. [2023], and enforces the ID data to have energy smaller than the margin η (a
negative value), a margin controller for OOD decision boundary with respect to the ID data, while
optimizing for the level-set estimation based on the energy function. The temporal loss (the last
line in (4)) controls the confidence level (ATC) turbulence of both ID and covariate shifted datasets
through dynamic domains.

Algorithm 1 Differentiable Temporal Loss with Mode Switching and Adaptive Weighting
Input: In-dist. data Dt

in, covariate OOD data Dt
cov , model fθ at timestep t

Input: State store state with previous scores, mode ∈ {ATC, AC}, smoothing ω, base weight λbase,
max drift ∆max

Output: Temporal loss Ltemp,t(fθ)
if t = 0 then
Ltemp,t ← 0 // initialize (grad-enabled zero in implementation) return Ltemp,t

end
// Differentiable confidence/ATC scores at timestep t
if mode = ATC then stin ← DiffATC(fθ, Dt

in; δ = ∆max, ω) stcov ← DiffATC(fθ, Dt
cov; δ =

∆max, ω)
else if mode = AC then stin ← DiffAC(fθ, Dt

in) stcov ← DiffAC(fθ, Dt
cov)

// Fetch previous-time scores from state
pt−1
in ← state[last in-score for mode] pt−1

cov ← state[last cov-score for mode]
// Asymmetric temporal drift (penalize ID decreases and COV increases)
did ←

[
pt−1
in − stin

]
+

dcov ←
[
stcov − pt−1

cov

]
+

dtot ← did + dcov

// Adaptive temporal weighting
wtemp ← AdaptiveWeight(did, dcov; λbase,∆max)
// Final temporal loss
Ltemp,t(fθ)← wtemp · dtot
// Update state (e.g., append loss, weight, drift; optionally log)
state← UpdateState(state,Ltemp,t, wtemp, did, dcov, t)
return Ltemp,t(fθ)

How to train Temp-SCONE model?: To demonstrate our Temp-SCONE method, we employed the
SCONE approach and executed three main steps: (Step 1) load wild data Dt

aux that is combination
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of ID, covariate and semantic shifted data, Dt
in,D

cov,t
out ,Dsem,t

out ; (Step 2) compute loss functions
Lt
CE , Lt

in, Lt
out and Lt

temp; (Step 3) backpropagate and update parameter θ based on loss function
Lt

total = Lt
CE + λout · Lt

out + λtempLt
temp, where λout and λtemp are hyperparameters. Lt

total is the
loss function that aligns with Temp-SCONE objective function (4). The 0/1 loss is not differentiable,
hence, we will replace it with a smooth approximation given by the binary sigmoid loss function. the
algorithms 1 and 2, illustrates the details of steps above.

Algorithm 1 notations: Dt
in is ID data {x1t, . . . ,xmidt

}, Dt
cov is covariate-shifted OOD data

{xc
1t, . . . ,x

c
mct
}. fθ is the classifier with parameters θ. stin, s

t
cov denote differentiable ATC (or AC)

scores on Dt
in and Dt

cov , respectively. pt−1
in , pt−1

cov are the corresponding scores stored from timestep
t− 1. The temporal drifts are did = [pt−1

in − stin]+ (ID confidence decrease) and dcov = [stcov− pt−1
cov ]+

(COV confidence increase). wtemp is the adaptive temporal weight based on did, dcov. The temporal
loss is Ltemp,t(fθ) = wtemp · (did + dcov).

Algorithm 2 notations: DSem,t
out denotes semantic OOD data and {Dt}Tt=0 denotes wild data. x̃t

aux is
batch of wild data {Dt}Tt=0. ytin is the label of ID data. zt is the logit layer of the classifier fθ and ID
energy, Et

in and OOD energy, Et
out are computed from ztcls and ztaux, respectively.

Algorithm 2 Training Temp-SCONE

Input: {Dt}Tt=0 (A combination of Dt
id, Dcov,t

out , and DSem,t
out datasets), Model fθ, logistic layer

gθ for energy-based detection, hyperparameters η, λin, λout, λtemp,FPRcutoff, δ, lrλ, ce_tol,
and penalty multipliers λ, λ2

Output: Trained OOD detector and generalized model fθ
for t = 0 to T do

Load Dt
in, D

cov,t
out , Dsem,t

out
Compute baseline classification loss← L(fθ) loss on Dt

in
for epoch = 1 to E do

// –- Compute Temporal Loss from Algorithm 1 –-
// –- Mini-batch Training Loop –-
foreach mini-batch (xt

in, y
t
in), x

cov,t
out , xsem,t

out do
x̃t

aux ← MixBatches(xt
in, x

cov,t
out , xsem,t

out ) xt ← concat(xt
in, x̃

t
aux), y

t ← ytin
zt = fθ(x

t), ztcls = z[: |xt
in|], and ztaux = z[: |x̃t

aux|] LCE(fθ)← CrossEntropy(ztcls, y
t)

// –- Energy-based OOD losses –-
Et

in ← logsumexp(ztcls), E
t
out ← logsumexp(ztaux) Lt

in = sigmoid(gθ(Et
in)) Lt

out =
sigmoid(−gθ(Et

out − η))
// –- Augmented Lagrangian Terms –-
in_constraint ← Lt

in − FPRcutoff almin ← λ · in_constraint + λin
2 ·

(in_constraint)2
Lt

total ← Lt
CE + λout · Lt

out + almin + λtempLt
temp

Backpropagate and update model parameters θ
end
// –- Lagrange Multiplier Updates –-
Compute Lt

in and Lt
CE over Dt

in λ ← λ + lrλ · (Lt
in − FPRcutoff) λ2 ← λ2 + lrλ · (Lt

CE −
ce_tol · L(fθ))

end
end

Differences between SCONE and Temp-SCONE: The SCONE framework builds on WOODS Katz-
Samuels et al. [2022] by introducing an energy margin η < 0 to separate ID and covariate-shifted
samples from semantic OOD. Specifically, SCONE leverages the energy function Eθ(x), which
assigns negative energy to ID data and positive energy to OOD data. In WOODS, the boundary
Eθ(x) = 0 often misclassifies covariate-shifted samples as semantic OOD; SCONE resolves this by
requiring Eθ(x) < η, which (1) pushes ID deeper into the negative region and (2) pulls covariate-
shifted samples below the margin. Thus, everything to the left of η is ID/covariate-OOD (semantically
valid), and everything to the right of 0 is semantic OOD. Temp-SCONE leverages the same mechanism
but further addresses temporal shifts and average confidence control over time, which SCONE
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does not consider. It introduces a temporal loss that regularizes fluctuations in confidence across
sequential domains. Using differentiable ATC/AC, Temp-SCONE tracks the stability of model
confidence, penalizing drifts beyond a tolerance ϵ with an adaptive temporal weighting scheme that
applies stronger correction when drift is large. This prevents “confidence turbulence” during domain
transitions and helps maintain reliable decision boundaries. In summary, SCONE enforces a static
energy margin to separate ID/covariate vs. semantic OOD, while Temp-SCONE augments this with a
time-aware consistency mechanism that stabilizes the decision rule under evolving distributions.

3 Experiments

Datasets and Experimental Setup We evaluate the effectiveness of Temp-SCONE across
diverse datasets and model architectures, focusing on robustness under two key settings: (1)
Dynamic (temporal) datasets that evolve gradually over time, and (2) Distinct datasets with no
temporal continuity, representing strong domain shifts. Each timestep includes an ID dataset, its
covariate-shifted (corrupted) variant, and a semantic OOD dataset.
Dynamic Datasets. We use the CLEAR dataset Lin et al. [2021], which spans 10 temporal
stages, each representing a distinct time period. For every timestep, we define ID (original data),
covariate-shifted (Gaussian noise), and semantic OOD (Places365 Zhou et al. [2017]) splits to
evaluate OOD detection and generalization under temporal drift. As a complementary benchmark,
we use the Yearbook dataset Ginosar et al. [2015], containing grayscale portraits of U.S. high school
students over a century, divided into 7 temporal stages with 11 balanced classes per stage. Similar to
CLEAR, we apply Gaussian noise for covariate shifts, while FairFace Kärkkäinen and Joo [2019]
serves as the semantic OOD dataset, introducing demographic and contextual diversity.
Distinct Datasets. For the distinct (non-temporal) setting, we conduct experiments using four differ-
ent ID datasets and varying semantic OOD datasets: ID for timesteps 1-4: are CIFAR-10 Krizhevsky
[2009]→ Imagenette Howard [2019]→ CINIC-10 Darlow et al. [2018]→ STL-10 Coates et al.
[2011] as the ID datasets, each with its own covariate-shifted versions generated using Gaussian
noise and Defocus blur corruptions. In the distinct experiment, the semantic OOD dataset changes
with the timestep: timestep 1 uses LSUN-C Yu et al. [2015], timestep 2 uses SVHN Netzer et al.
[2011], timestep 3 uses Places365 Zhou et al. [2017], and timestep 4 uses DTD Cimpoi et al. [2014]
(Textures). We perform three additional experiments that are provided in Appendix by applying
semantic OOD dataset LSUN-C, SVHN, or Places365) across all timesteps.

Training Procedure. In both dynamic and distinct settings, the model is first trained on
ID data from timestep 1 using a standard classification objective, serving as initialization for the
Temp-SCONE framework. In the dynamic setting, the model is then trained sequentially from
timestep 1 to timestep 10 on the CLEAR dataset, where each timestep represents a distinct temporal
distribution. In the distinct setting, the same initialized model is fine-tuned independently on each
dataset (CIFAR-10, Imagenette, CINIC-10, STL-10), treating them as separate domains.
Model Architectures and Optimization. We evaluate TEMP-SCONE using two backbone
architectures: a convolutional neural network WideResNet-40-2 (WRN) Debgupta et al. [2020] and
vision transformer ViT (DeiT-Small) Han et al. [2022]. All models are trained using stochastic
gradient descent (SGD) with Nesterov momentum of 0.9, a weight decay of 0.0005, and a batch
size of 128. In the dynamic setting (CLEAR), we use a multi-step learning rate schedule, starting at
0.0001 and decaying by a factor of 0.5 at 50%, 75%, and 90% of training. In the distinct setting, we
also use an initial learning rate of 0.0001 for timestep 1 (CIFAR 10), and multiply it by a factor of
5 for timestep 2 (Imagenette), timestep 3 (CINIC-10) and timestep 4 (STl-10) to account for their
increased visual complexity.
Temporal Regularization. We integrated the TEMP-SCONE framework in two variants, each using
a different metric for temporal consistency. One variant uses ATC (2) to measure and regularize the
change in confidence between timesteps, while the other variant uses AC for the same purpose. In
both cases, we apply a temporal loss term if the chosen metric’s drift exceeds a defined threshold,
helping the model maintain stable confidence across shifts. We ran experiments with both ATC-based
and AC-based TEMP-SCONE variants to evaluate their effectiveness in reducing OOD detection
errors and maintaining performance over time.
In our results, we report ID Acc. which is the accuracy on the clean ID test set, OOD Acc. which is
the accuracy on the Gaussian-corrupted version of the test set, and finally FPR95, which is false
positive rate when 95 percent of ID examples are correctly classified.
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4 Results and Discussion

Temp-SCONE outperforms SCONE on dynamic domains. We present experiments on CLEAR
and Yearbook to show that Temp-SCONE consistently outperforms SCONE across all timesteps.
In Fig. 1, Yearbook serves as ID and FairFace as OOD for both WRN and ViT. Results highlight
Temp-SCONE’s stability benefits, with superior ID accuracy (left), OOD accuracy (middle), and
lower FPR95 (right). For ViT, SCONE exhibits volatility—early drops in ID/corrupted accuracy and
high FPR95—while Temp-SCONE with AC/ATC yields smoother trajectories, higher accuracies, and
lower FPR95 in early/mid timesteps, reducing forgetting and improving robustness under appearance
drift. All methods show a U-shape over time, but Temp-SCONE, especially ATC, drives stronger
recovery in ID/corrupted accuracy, while AC provides steadier OOD detection and ATC trades
stability for more aggressive adaptation. Across both backbones, at least one Temp-SCONE variant
(AC or ATC) dominates SCONE on the primary robustness axis—accuracy under corruption—while
also improving temporal stability of ID performance and delivering competitive or better OOD
calibration on ViT. Thus, under temporal drift, Temp-SCONE with AC or ATC offers a strictly
stronger robustness profile than SCONE.

Figure 1: Dynamic Data (YearBook - 7 timesteps), FairFace is OOD data, (top row WRN, bottom
row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.

Our second set of experiments treats CLEAR as the ID benchmark and evaluates OOD detection
against Places365 for both WRN and ViT across ten timesteps. As shown in Fig. 2, adding the tempo-
ral stability term (Temp-SCONE with AC/ATC) consistently improves robustness under distribution
shift. On WRN, Temp-SCONE shows slightly lower early ID accuracy than SCONE but achieves
larger and more persistent gains on corrupted data, demonstrating stronger robustness to covariate
shift. SCONE’s early advantage reflects mild overfitting to the initial domain, while Temp-SCONE’s
temporal regularization mitigates this, yielding smoother performance and better generalization over
time. Although OOD detection is mixed, Temp-SCONE maintains higher corrupted accuracy and
comparable late-stage FPR95, offering a more balanced robustness profile. The non-monotonic
trends align with typical temporal drift behavior, where early adaptation and later shifts jointly shape
performance. On ViT, Temp-SCONE strictly dominates: both AC and ATC achieve higher corrupted
and clean accuracy than SCONE, and ATC attains the lowest FPR95 in later timesteps, indicating
improved OOD calibration where drift accumulates. Overall, CLEAR results confirm that introducing
temporal consistency yields a Pareto improvement on ViT and a clear robustness win on WRN,
establishing Temp-SCONE (AC/ATC) as preferable to SCONE for dynamic data.
Temp-SCONE maintains SCONE’s performance on distinct data. Fig. 3 shows results on four

distinct datasets (CIFAR-10, Imagenette, CINIC-10, STL-10), where each timestep corresponds to
a different dataset. Across both WRN and ViT, SCONE and Temp-SCONE curves overlap, indi-
cating no advantage from temporal regularization when domains lack continuity. The AC and ATC
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Figure 2: Dynamic Data (CLEAR - 10 timesteps), Places365 is OOD data, (top row WRN, bottom
row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.

variants of Temp-SCONE behave almost identically, further confirming that temporal consistency
provides no advantage in this setting. A consistent trend emerges: SCONE is not robust to distinct
datasets—FPR95 rises sharply after the first timestep, while ID and OOD accuracy drop, especially
for ViTs. Temp-SCONE inherits this limitation, as its temporal loss assumes gradual drift and cannot
handle fully disjoint shifts. While WRNs retain slightly better stability, both backbones collapse
under distinct domains.
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Figure 3: Distinct Data - CIFAR-10→ Imagenette→ CINIC-10→ STL-10 are four ID timesteps.
Semantic OOD dataset changes with the timestep: timestep 1 uses LSUN-C, timestep 2 uses SVHN,
timestep 3 uses Places365, and timestep 4 uses DTD (Textures), (top row WRN, bottom row ViT).
Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.

5 Theoretical Insights

Motivated by the success of WOODs Katz-Samuels et al. [2022], SCONE Bai et al. [2023], and
inspired by theoretical investigations in Zhang et al. [2024], Tong et al. [2021], we have studied
generalization error (GErrt+1(f)) of model fθ for two time steps t and t+ 1. We assume: [A1] At
time step t, TV (p(yt|xt)∥U) is constant. [A2] At time step t, F θ1

f The class distributions predicted
by f and pθ2(yt|xt) have same distribution with different parameter θ1 and θ2, respectively and
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θ1 − θ2 = δ, where δ is bounded. [A3] There exist a constant (say Zt), s.t.

EPt+1,cov
out

H(p(yt+1|xt+1))− EPt,cov
out

H(p(yt|xt))) ≥ Zt + Conft − Conft+1.

Theorem 5.1. Let Pt,cov and Pt,sem
test be the covariate-shifted OOD and semantic OOD distribution.

Denote GErrt+1(f) the generalization error at time t. Let Lreg be the OOD detection loss devised
for MSP detectors Hendrycks et al. [2018], i.e., cross-entropy between predicted distribution fθ and
uniform distribution. Then at two time steps t and t+ 1 and under assumptions [A1]-[A3], we have

GErrt+1(f)−GErrt(f) ≥ −κ̃ ∆cov,sem
t→t+1 − κ̃ Ξsem

t→t+1 − δ
2

t EPt,cov
out

(IF (θ))

+ Ct→t+1 + Conft − Conft+1, (5)

where ∆cov,sem
t→t+1 := dF (Pt+1,cov

out ,Pt+1,sem
out ) + dF (Pt,cov

out ,Pt,sem
out )

and Ξsem
t→t+1 := EPt+1,sem

out

√
1

2
(Lreg(f)− logK) + EPt,sem

out

√
1

2
(Lreg(f)− logK).

And Ct→t+1 = Ct+1−Ct+Bt+Zt and δt are constants and δ
2

t = loge
2 δ2t . Here dF (Pt,cov

out ,Pt,sem
out ) is

disparity discrepancy with total variation distance) (TVD) that measures the dissimilarity of covariate-
shifted OOD and semantic OOD. Conf is maximum confidence Conf(fθ) := maxj∈Y fj(x), and
If (θ) is Fisher information Cramér [1999].

The details and proof are deferred in Appendix. Our theoretical finding demonstrates that for MSP
detectors (without any OOD detection regularization), at two timesteps t and t+1, the OOD detection
objective difference conflicts with OOD generalization difference. In addition, the generalization
error difference over time is not only negatively correlated with OOD detection loss that the model
minimizes, it also negatively correlated to the Fisher information of the network parameter under
Pt,cov
out . The OOD generalization error at t+1 and t is positively correlated with confidence difference

over the same period. It is important to mention that similar to Zhang et al. [2024] our theorem is
applicable for all MSP-based OOD detectors. The inherent motivation of OOD detection methods lies
in minimizing the OOD detection loss in Pt,sem

out under test data, regardless of the training strategies
used.

6 Related Work

Robustness for Wild Data. Recent work has addressed OOD detection and generalization in open-
world settings. SCONE enhances robustness to “wild” data comprising ID, covariate-shifted, and
semantic-shifted samples by imposing margin-based constraints that separate semantic OOD while
keeping covariate OOD aligned with ID Bai et al. [2023]. Beyond fully automated approaches,
human-assisted frameworks have also been explored: AHA leverages selective annotation in the
maximum disambiguation region to better separate covariate and semantic shifts and has been shown
to outperform SCONE in wild-data settings Bai et al. [2024]. OOD Detection in Time-Series.
Most OOD detection methods are developed for vision and language, with limited assessment in
time-series. A recent study provides a comprehensive analysis of modality-agnostic OOD algo-
rithms on multivariate time-series, showing that many SOTA methods transfer poorly, while deep
feature–based approaches appear more promising Gungor et al. [2025]. This complements our focus:
rather than benchmarking generic methods on time-series, we target wild OOD classification with
temporal dynamics, where distributions evolve across time. Temporal OOD Detection. Recent
work addresses OOD detection under temporally evolving settings via sliding-window calibration,
temporal consistency or ensembling, and test-time/continual adaptation Wang et al. [2020], Sun
et al. [2020], Gao et al. [2023], Wu et al. [2023]. These approaches stabilize predictions but largely
treat OOD dynamics in aggregate, without explicitly disentangling covariate vs. semantic OOD
or providing fine-grained stability across timesteps. Complementarily, Temp-SCONE introduces
a confidence-driven temporal regularization that leverages ATC (and AC) to penalize confidence
turbulence between domains while retaining SCONE’s energy-margin separation for robust covariate
and semantic OOD detection.
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7 Conclusion

In this work, we introduced Temp-SCONE, a temporally-consistent extension of SCONE that
addresses the challenges of OOD detection and generalization under evolving data distributions. By
integrating confidence-based metrics with a temporal regularization loss, Temp-SCONE stabilizes
decision boundaries across timesteps and mitigates confidence turbulence during domain transitions.
Our experimental results on both dynamic datasets and distinct datasets highlight several key findings:
(1) Temp-SCONE, significantly improves robustness and OOD calibration in temporally evolving
domains, particularly under covariate shifts under either WRN or ViT network; (2) on distinct datasets
with abrupt domain changes, Temp-SCONE maintains parity with SCONE, underscoring the limits of
temporal regularization when no temporal continuity exists; and (3) vision transformers benefit most
from temporal consistency, demonstrating reduced instability and improved reliability under drift.
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8 Appendix

8.1 Theoretical Proofs

Lemma .1. At time steps t and t+ 1, if H(p(yt|xt)) ≤ H(p(yt+1|xt+1)) then

Conft = max
yt∈Yt

p(yt|xt) ≥ max
yt+1∈Yt+1

p(yt+1|xt+1) = Conft+1.

Proof: For K classes at both time t and t + 1, denote p∗t := max
yt∈Yt

p(yt|xt) and p∗t+1 :=

max
yt+1∈Yt+1

p(yt+1|xt+1). Suppose p∗t = P (yt = k1|xt) and p∗t+1 = P (yt = k2|xt+1). Now set

pt = (p∗t , 1− p∗t ), where 1− p∗t is split among classes {1, . . . ,K}/k1 and 1− p∗t+1 is split among
classes {1, . . . ,K}/k2. This approximates the entropy as

H(pt) = −p∗t log p∗t −
∑

i∈{1,...,K}/k1

pit log pit, (6)

where pit =
1−p∗

t

K−1 . And (6) is simplified as

H(pt) = −p∗t log p∗t − (1− p∗t ) log
1− p∗t
K − 1

. (7)

Equivalently

H(pt+1) = −p∗t+1 log p
∗
t+1 − (1− p∗t+1) log

1− p∗t+1

K − 1
. (8)

Because H(pt) ≤ H(pt+1) and from (7) and (8), we implies that p∗t ≥ p∗t+1.
Lemma .2. (Theorem 1, (Zhang et al. [2024])) The generalization error at time step t, GErrt,
is standard cross entropy loss for hypothesis f ∈ F under covariant shift Pcov. GErrt is lower
bounded by

GErrt(f) ≥ −
1

2κ
EPt,sem

out

√
1

2
(Lreg(f)− logK) (9)

− 1

2κ
dF (Pt.cov

out ,Pt,sem
out ) + Ct + EPt,cov

out
H(p(yt|xt)),

,

where Ct is constant.
Lemma .3. (Lemma 1, (Zhang et al. [2024])) For any f ∈ F , we have

EPt,cov
out

TV (Ff∥U) ≤EPt,sem
out

TV (Ff∥U) (10)

+ dF (Pt.cov
out ,Pt,sem

out ) + λ,

where λ is a constant independent of f . U is the K-classes uniform distribution. Pt,cov
out is the

covariate-shifted OOD distribution at time t. Pt,sem
out ) is the semantic OOD distribution at time t.

Lemma .4. (Lemma 3, (Zhang et al. [2024])) Denote the OOD detection loss used for MSP detectors
as Lreg, then we have

EPt,sem
out

(TV (Ff∥U)) ≤ EPt,sem
out

√
1

2
(Lreg(f)− logK). (11)

Lemma .5. The generalization error at time step t, GErrt, is standard cross entropy loss for
hypothesis f ∈ F under covariant shift Pcov . GErrt is lower bounded by

GErrt(f) ≤
loge

2
EPt,sem

out

√
1

2
(Lreg(f)− logK) +

loge

2
dF (Pt.cov

out ,Pt,sem
out ) (12)

+ Ct +
loge

2
EPt,cov

out

(
X 2(p(yt|xt)∥Ff (xt))

)
+H(p(yt|xt)), (13)

where Ct is constant.
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Proof:

GErrt(f) := EPt,cov
out
LCE(f(xt, yt))

= EPt,cov
out

KL(p(yt|xt)∥Ff (xt)) +H(p(yt|xt))

≤ loge

2
EPt,cov

out

(
TV (p(yt|xt)∥Ff (xt)) + X 2(p(yt|xt)∥Ff (xt))

)
+H(p(yt|xt)) (14)

≤ loge

2
EPt,cov

out
(TV (p(yt|xt)∥U) + TV (Ff (xt)∥U)) (15)

+ EPt,cov
out

(
X 2(p(yt|xt)∥Ff (xt))

)
+ EPt,cov

out
H(p(yt|xt)) (16)

where from Sason and Verdú [2016], we have

X 2(P∥Q) + 1 =

∫
P 2

Q
dµ

and from Nishiyama and Sason [2020] we have

KL(P∥Q) ≤ 1

2

(
TV (P∥Q) + X 2(P∥Q)

)
log e

From Lemma .3 above we have

GErrt(f) ≤
loge

2
EPt,cov

out
(TV (p(yt|xt)∥U)) +

loge

2
EPt,sem

out
TV (Ff∥U)

+
loge

2
dF (Pt.cov

out ,Pt,sem
out ) (17)

+
loge

2
λ+

loge

2
EPt,cov

out

(
X 2(p(yt|xt)∥Ff (xt))

)
+ EPt,cov

out
H(p(yt|xt)) (18)

From Lemma .4 above we have

GErrt(f) ≤
loge

2
EPt,cov

out
(TV (p(yt|xt)∥U)) +

loge

2
EPt,sem

out

√
1

2
(Lreg(f)− logK)

+
loge

2
dF (Pt.cov

out ,Pt,sem
out ) +

loge

2
λ (19)

+
loge

2
EPt,cov

out

(
X 2(p(yt|xt)∥Ff (xt))

)
+ EPt,cov

out
H(p(yt|xt)) (20)

since at each time t, EPt,cov
out

(TV (p(yt|xt)∥U)) is constant, we upper bound GErrt(f) as

GErrt(f) ≤
loge

2
EPt,sem

out

√
1

2
(Lreg(f)− logK) +

loge

2
dF (Pt.cov

out ,Pt,sem
out ) (21)

+ Ct +
loge

2
EPt,cov

out

(
X 2(p(yt|xt)∥Ff (xt))

)
+ EPt,cov

out
H(p(yt|xt)) (22)

Lemma .6. Under the assumption [A2] and regularity condition on F θ1
f , we have

EPt,cov
out

(
X 2(p(yt|xt)∥Ff (xt))

)
≤ δ2t EPt,cov

out
(IF (θ2)) +Bt, (23)

where IF (θ2) is Fisher information and Bt is constant. The key part of this conjecture is developed
based on

EPt,cov
out

(
X 2(p(yt|xt)∥Ff (xt))

)
= (θ1 − θ2)

2EPt,cov
out

(IF (θ2)) + o(θ1 − θ2)
2, (24)

where θ1 is approximately vanishes.

Because inverse of entropy can be used as a confidence score to gauge the likelihood of a prediction
being correct, we assume:
[A3] There exist a constant (say Zt), such that

EPt+1,cov
out

H(p(yt+1|xt+1))− EPt,cov
out

H(p(yt|xt))) ≥ Zt + Conft − Conft+1 (25)
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Theorem 8.1. (Main Theorem) Let Pt,cov and Pt,sem be the covariate-shifted OOD and semantic
OOD distribution. Denote GErrt+1(f) the generalization error at time t. Then at two time steps t
and t+ 1 and under assumptions [A1] and [A2], we have

GErrt+1(f)−GErrt(f) ≥ −κ̃ ∆cov,sem
t→t+1 − κ̃ Ξsem

t→t+1 − δ
2

t EPt,cov
out

(IF (θ2))

+ Ct→t+1 + Conft − Conft+1, (26)

where
∆cov,sem

t→t+1 := dF (Pt+1,cov
out ,Pt+1,sem

out ) + dF (Pt,cov
out ,Pt,sem

out )

and

Ξsem
t→t+1 := EPt+1,sem

out

√
1

2
(Lreg(f)− logK) + EPt,sem

out

√
1

2
(Lreg(f)− logK).

And Ct→t+1 = Ct+1 − Ct +Bt + Zt and δt are constants and δ
2

t = loge
2 δ2t .

Proof: Recall the definition of GErrt(f):

GErrt+1(f)−GErrt(f) ≥ −
1

2κ
EPt+1,sem

out

√
1

2
(Lreg(f)− logK)− 1

2κ
dF (Pt+1,cov

out ,Pt+1,sem
out )

− loge

2
EPt,sem

out

√
1

2
(Lreg(f)− logK)− loge

2
dF (Pt.cov

out ,Pt,sem
out )

− loge

2
EPt,cov

out

(
X 2(p(yt|xt)∥Ff (xt))

)
+ (Ct+1 − Ct) + (EPt+1,cov

out
H(p(yt+1|xt+1))− EPt,cov

out
H(p(yt|xt))),

(27)

If we denote
∆cov,sem

t→t+1 := dF (Pt+1,cov
out ,Pt+1,sem

out ) + dF (Pt,cov
out ,Pt,sem

out )

and

Ξsem
t→t+1 := EPt+1,sem

out

√
1

2
(Lreg(f)− logK) + EPt,sem

out

√
1

2
(Lreg(f)− logK),

then there exist a constant κ̃ ≤ 1
2κ + loge

2 that (27) is written as

GErrt+1(f)−GErrt(f) ≥ −κ̃ ∆cov,sem
t→t+1 − κ̃ Ξsem

t→t+1 + Ct→t+1

− loge

2
EPt,cov

out

(
X 2(p(yt|xt)∥Ff (xt))

)
+ EPt+1,cov

out
H(p(yt+1|xt+1))− EPt,cov

out
H(p(yt|xt))), (28)

where Ct→t+1 = Ct+1 − Ct is constant. Apply the upper bound in Lemma .6, we have the lower
bound below

GErrt+1(f)−GErrt(f) ≥ −κ̃ ∆cov,sem
t→t+1 − κ̃ Ξsem

t→t+1 − δ
2

t EPt,cov
out

(IF (θ2))

+ Ct→t+1 + EPt+1,cov
out

H(p(yt+1|xt+1))− EPt,cov
out

H(p(yt|xt)), (29)

where Ct→t+1 = Ct+1 − Ct +Bt is constant and δ
2

t = loge
2 δ2t . By applying assumption [A3], we

conclude the proof.

9 Additional Experiments

Evaluation Protocol. Each model is evaluated after training on three separate test sets: the clean
ID test set, the covariate-shifted test set, created by applying Gaussian noise to the ID data, and the
semantic OOD test set. In our results, we report ID Acc. which is the accuracy on the clean ID test
set, OOD Acc. which is the accuracy on the Gaussian-corrupted version of the test set, and finally
FPR95, which is false positive rate when 95 percent of ID examples are correctly classified.
We compare TEMP-SCONE against the SCONE method, which serves as our primary baseline for
OOD detection. SCONE is chosen for its strong performance in leveraging semantic consistency,
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providing a relevant benchmark to evaluate the effectiveness of our approach. Note that all experi-
ments are conducted using a consistent hardware setup with NVIDIA L40 GPUs. We ensure that
both TEMP-SCONE and SCONE baselines are trained under the same conditions to provide a fair
comparison.

A summary of the dynamic and distinct datasets used in our experiments is provided in Table 1 and
Table 2.

Experiment ID Progression Covariate Shift Applied Semantic OOD Dataset(s)

Dynamic–CLEAR CLEAR (10 sequential timesteps) Gaussian corrup (CLEAR-C) LSUN-C, SVHN
(10 sequential timesteps) Places365

Dynamic–YearBook YearBook Gaussian corrup (YearBook-C) FairFace
(7 temporal splits)

Table 1: Experiment-oriented summary of dynamic datasets. Each experiment specifies the ID dataset
progression, the covariate shift type applied, and the semantic OOD dataset(s) used.

Experiment ID Progression Covariate Shift Applied Semantic OOD Dataset(s)

Distinct–Exp 1 CIFAR-10 → Imagenette → Gaussian/Defocus corrup LSUN-C (all timesteps)
→ CINIC-10 → STL-10 Gaussian/Defocus corrup LSUN-C (all timesteps)

Distinct–Exp 2 CIFAR-10 → Imagenette → Gaussian/Defocus corrup SVHN (all timesteps)
→ CINIC-10 → STL-10 Gaussian/Defocus corrup SVHN (all timesteps)

Distinct–Exp 3 CIFAR-10 → Imagenette → Gaussian/Defocus corrup Places365 (all timesteps)
→ CINIC-10 → STL-10 Gaussian/Defocus corrup Places365 (all timesteps)

Distinct–Exp 4 CIFAR-10 → Imagenette → Gaussian/Defocus corrup LSUN-C → SVHN → Places365 → DTD
→ CINIC-10 → STL-10 Gaussian/Defocus corrup LSUN-C → SVHN → Places365 → DTD

Table 2: Experiment-oriented summary of distinct datasets. Each experiment specifies the ID dataset
progression, the covariate shift type applied, and the semantic OOD dataset(s) used. Note that Exp 4
is presented in main paper body.

We have executed additional experiments on both Gaussian noise and Defocus Blur covariate shifts
on both dynamic and distinct dataset.

Figure 4: Dynamic Data (CLEAR - 10 timesteps), LSUN-C is OOD data, and Corruption type is
Gaussian Noise (top row WRN, bottom row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.
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Figure 5: Dynamic Data (CLEAR - 10 timesteps), LSUN-C is OOD data, and Corruption type is
Defocus Blur (top row WRN, bottom row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.

Figure 6: Dynamic Data (CLEAR - 10 timesteps), SVHN is OOD data, and Corruption type is
Gaussian Noise (top row WRN, bottom row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.
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Figure 7: Dynamic Data (CLEAR - 10 timesteps), SVHN is OOD data, and Corruption type is
Defocus Blur (top row WRN, bottom row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.

Figure 8: Dynamic Data (CLEAR - 10 timesteps), Places365 is OOD data, and Corruption type is
Defocus Blur (top row WRN, bottom row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.
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Figure 9: Dynamic Data (YearBook - 7 timesteps), FairFace is OOD data, and Corruption type is
Defocus Blur (top row WRN, bottom row ViT). Columns show ID Acc.↑, OOD Acc.↑, FPR95 ↓.
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Figure 10: Distinct Data — Exp 1 (CIFAR-10→ Imagenette→ CINIC-10→ STL-10 are four ID
timesteps. Semantic OOD dataset is fixed as LSUN-C for all timesteps). Top row: WRN, bottom
row: ViT. Columns show FPR95↓, ID test accuracy↑, and corrupted test accuracy↑.
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Figure 11: Distinct Data — Exp 2 (CIFAR-10→ Imagenette→ CINIC-10→ STL-10 are the four
ID timesteps; semantic OOD is fixed as SVHN). Top row: WRN, bottom row: ViT. Columns show
FPR95↓, ID test accuracy↑, and corrupted test accuracy↑.
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Figure 12: Distinct Data — Exp 3 (CIFAR-10→ Imagenette→ CINIC-10→ STL-10 are the four
ID timesteps; semantic OOD is fixed as Places365). Top row: WRN, bottom row: ViT. Columns
show FPR95↓, ID test accuracy↑, and corrupted test accuracy↑.
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Table 3: Distinct Datasets Full experimental results across experiments, models, and methods with
Gaussian Noise corruption. Each row reports FPR95, ID accuracy, and corrupted accuracy at Steps
1–2.

Exp Model Method Step 1 (FPR) Step 1 (ID Acc) Step 1 (OOD Acc) Step 2 (FPR) Step 2 (ID Acc) Step 2 (OOD Acc)

1 WRN SCONE 4.24 93.49 59.57 45.24 5.02 6.97
1 WRN Temp-SCONE ATC 4.36 93.41 59.53 49.24 5.18 7.21
1 WRN Temp-SCONE AC 4.48 93.29 59.49 49.12 5.18 7.25
1 ViT SCONE 72.00 83.16 34.56 97.36 9.46 9.31
1 ViT Temp-SCONE ATC 72.00 83.16 34.56 97.36 9.46 9.31
1 ViT Temp-SCONE AC 72.00 83.16 34.52 97.36 9.46 9.35
2 WRN SCONE 56.08 92.87 59.25 94.84 4.98 6.93
2 WRN Temp-SCONE ATC 64.88 92.44 59.30 95.80 5.10 7.25
2 WRN Temp-SCONE AC 63.00 92.64 59.26 95.80 5.10 7.33
2 ViT SCONE 76.08 83.16 34.52 98.68 9.46 9.35
2 ViT Temp-SCONE ATC 76.08 83.16 34.56 98.68 9.46 9.31
2 ViT Temp-SCONE AC 76.08 83.16 34.56 98.68 9.46 9.31
3 WRN SCONE 51.12 92.67 59.10 92.20 5.26 7.21
3 WRN Temp-SCONE ATC 51.28 92.71 59.20 92.16 5.22 7.17
3 WRN Temp-SCONE AC 47.84 93.14 59.37 92.88 5.10 7.01
3 ViT SCONE 70.84 83.16 34.52 91.24 9.46 9.35
3 ViT Temp-SCONE ATC 70.84 83.16 34.56 91.24 9.46 9.31
3 ViT Temp-SCONE AC 70.84 83.16 34.56 91.24 9.46 9.31
4 WRN SCONE 4.52 93.18 59.25 95.96 5.10 7.29
4 WRN Temp-SCONE ATC 4.24 93.41 59.41 96.00 5.06 7.33
4 WRN Temp-SCONE AC 4.24 93.41 59.80 95.72 5.06 7.08
4 ViT SCONE 72.00 83.16 34.52 98.68 9.46 9.35
4 ViT Temp-SCONE ATC 72.00 83.16 34.56 98.68 9.46 9.31
4 ViT Temp-SCONE AC 72.00 83.16 34.56 98.68 9.46 9.31

Table 4: Distinct Datasets Full experimental results across experiments, models, and methods with
Gaussian Noise corruption. Each row reports FPR95, ID accuracy, and corrupted accuracy at Steps
3–4.

Exp Model Method Step 3 (FPR) Step 3 (ID Acc) Step 3 (OOD Acc) Step 4 (FPR) Step 4 (ID Acc) Step 4 (OOD Acc)

1 WRN SCONE 22.48 75.42 48.01 16.96 47.52 33.13
1 WRN Temp-SCONE ATC 27.64 74.61 47.51 20.80 46.97 33.57
1 WRN Temp-SCONE AC 27.76 74.57 48.05 20.76 47.05 33.64
1 ViT SCONE 99.48 22.01 14.77 98.88 15.73 15.06
1 ViT Temp-SCONE ATC 99.48 21.98 14.77 98.88 15.73 15.06
1 ViT Temp-SCONE AC 99.48 21.98 14.77 98.88 15.73 15.14
2 WRN SCONE 82.00 75.42 47.73 80.32 47.40 32.98
2 WRN Temp-SCONE ATC 88.52 73.78 47.24 89.20 46.58 33.63
2 WRN Temp-SCONE AC 88.40 73.63 47.51 89.16 46.58 33.45
2 ViT SCONE 100.00 21.94 14.77 99.92 15.73 15.14
2 ViT Temp-SCONE ATC 100.00 21.94 14.73 99.92 15.73 15.06
2 ViT Temp-SCONE AC 100.00 21.94 14.73 99.92 15.81 15.06
3 WRN SCONE 82.08 73.89 47.75 80.44 46.74 33.48
3 WRN Temp-SCONE ATC 82.44 73.85 47.67 80.64 46.70 33.49
3 WRN Temp-SCONE AC 77.96 75.42 47.85 77.12 47.40 33.10
3 ViT SCONE 94.72 21.98 14.77 92.44 15.73 15.14
3 ViT Temp-SCONE ATC 94.72 21.98 14.77 92.44 15.69 15.06
3 ViT Temp-SCONE AC 94.72 21.98 14.77 92.44 15.73 15.10
4 WRN SCONE 82.76 73.66 47.90 88.84 46.54 33.37
4 WRN Temp-SCONE ATC 83.04 73.81 48.05 89.01 46.47 33.57
4 WRN Temp-SCONE AC 80.12 74.84 48.28 87.42 47.05 33.07
4 ViT SCONE 94.72 21.98 14.77 98.64 15.69 15.14
4 ViT Temp-SCONE ATC 94.72 21.98 14.77 98.64 15.69 15.06
4 ViT Temp-SCONE AC 94.72 21.98 14.77 98.64 15.69 15.06
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Table 5: Distinct Datasets Full experimental results across experiments, models, and methods with
Defocus Blur. Each row reports FPR95, ID accuracy, and corrupted accuracy at Steps 1–2.

Exp Model Method Step 1 (FPR) Step 1 (ID Acc) Step 1 (OOD Acc) Step 2 (FPR) Step 2 (ID Acc) Step 2 (OOD Acc)

1 WRN SCONE 3.72 94.23 73.72 43.24 5.06 8.76
1 WRN Temp-SCONE ATC 4.48 94.23 72.60 45.48 5.28 8.80
1 WRN Temp-SCONE AC 4.40 94.12 72.80 45.60 5.32 8.80
1 ViT SCONE 72.00 83.16 81.91 97.36 9.46 9.19
1 ViT Temp-SCONE ATC 72.00 83.16 81.91 97.36 9.46 9.19
1 ViT Temp-SCONE AC 72.00 83.16 81.91 97.36 9.46 9.19
2 WRN SCONE 65.04 93.26 74.42 96.08 5.16 8.68
2 WRN Temp-SCONE ATC 65.28 93.18 74.47 96.00 5.16 8.72
2 WRN Temp-SCONE AC 50.00 93.33 74.69 92.80 5.17 8.64
2 ViT SCONE 76.08 83.16 81.91 98.68 9.46 9.19
2 ViT Temp-SCONE ATC 76.08 83.16 81.91 98.68 9.46 9.19
2 ViT Temp-SCONE AC 76.08 83.16 81.91 98.68 9.46 9.19
3 WRN SCONE 51.08 93.57 71.57 92.16 5.06 9.27
3 WRN Temp-SCONE ATC 52.92 93.53 71.04 92.60 5.17 8.92
3 WRN Temp-SCONE AC 51.72 93.57 70.92 92.56 5.21 8.96
3 ViT SCONE 70.84 83.16 81.91 91.24 9.46 9.19
3 ViT Temp-SCONE ATC 70.84 83.16 81.91 91.24 9.46 9.19
3 ViT Temp-SCONE AC 70.84 83.16 81.91 91.24 9.46 9.19
4 WRN SCONE 4.28 94.15 72.99 96.36 5.12 8.65
4 WRN Temp-SCONE ATC 4.44 94.15 72.84 96.40 5.05 8.68
4 WRN Temp-SCONE AC 3.80 94.19 73.45 94.56 5.13 8.53
4 ViT SCONE 72.00 83.16 81.91 98.68 9.46 9.19
4 ViT Temp-SCONE ATC 72.00 83.16 81.91 98.68 9.46 9.19
4 ViT Temp-SCONE AC 72.00 83.16 81.91 98.68 9.46 9.19

Table 6: Distinct Datasets Full experimental results across experiments, models, and methods with
Defocus Blur. Each row reports FPR95, ID accuracy, and corrupted accuracy at Steps 3–4.

Exp Model Method Step 3 (FPR) Step 3 (ID Acc) Step 3 (OOD Acc) Step 4 (FPR) Step 4 (ID Acc) Step 4 (OOD Acc)

1 WRN SCONE 18.92 76.50 56.22 16.08 47.91 38.79
1 WRN Temp-SCONE ATC 23.12 75.62 55.95 19.08 47.29 38.44
1 WRN Temp-SCONE AC 23.20 75.58 55.71 18.88 47.37 38.28
1 ViT SCONE 99.48 21.90 20.62 98.88 15.73 14.53
1 ViT Temp-SCONE ATC 99.48 21.94 20.62 98.88 15.73 14.53
1 ViT Temp-SCONE AC 99.48 21.90 20.62 98.88 15.73 14.57
2 WRN SCONE 87.80 74.53 58.75 85.92 46.89 39.53
2 WRN Temp-SCONE ATC 87.80 74.49 58.75 86.04 46.89 39.53
2 WRN Temp-SCONE AC 80.72 75.80 58.71 75.12 47.56 39.65
2 ViT SCONE 100.00 21.90 20.66 99.92 15.69 14.53
2 ViT Temp-SCONE ATC 100.00 21.90 20.66 99.92 15.69 14.53
2 ViT Temp-SCONE AC 100.00 21.90 20.66 99.92 15.69 14.57
3 WRN SCONE 79.20 76.12 55.09 78.68 47.95 37.89
3 WRN Temp-SCONE ATC 81.68 75.19 54.97 81.08 47.13 37.59
3 WRN Temp-SCONE AC 81.44 75.00 54.78 81.36 47.25 37.43
3 ViT SCONE 94.76 21.90 20.58 92.52 15.77 14.53
3 ViT Temp-SCONE ATC 94.76 21.90 20.58 92.52 15.77 14.53
3 ViT Temp-SCONE AC 94.76 21.86 20.58 92.52 15.77 14.53
4 WRN SCONE 82.40 74.99 55.33 88.13 47.25 37.66
4 WRN Temp-SCONE ATC 82.16 74.99 55.17 88.25 47.13 37.55
4 WRN Temp-SCONE AC 79.28 75.92 55.56 86.47 47.76 37.97
4 ViT SCONE 94.76 21.86 20.58 98.70 15.77 14.53
4 ViT Temp-SCONE ATC 94.72 21.90 20.58 98.70 15.77 14.53
4 ViT Temp-SCONE AC 94.72 21.86 20.58 98.70 15.77 14.53
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The conclusion and methods in the abstract and introduction accurately
encapsulate the contributions of our paper. In our work, we dedicate Sections 1, 2 and 5
to a proper introduction, methodology and theoretical insights of the proposed approach.
Section 3 contains the experimental results showing a decent performance of our method.
All the results match the claims from the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: : The paper transparently acknowledges the main limitations in Section 4.
Both SCONE and Temp-SCONE assume gradual temporal drift and therefore fail under
distinct domains.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: we provide all the proofs in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: While we do not release the full source code at submission time, the paper
provides sufficient detail to enable reproduction. Specifically, we describe the datasets
used (CLEAR, YearBook, CIFAR-10, Imagenette, CINIC-10, STL-10, LSUN-C, SVHN,
Places365, DTD, FairFace), the construction of covariate and semantic OOD splits, the
training procedure (sequential vs. independent timesteps), model architectures (WideResNet-
40-2, DeiT-Small), optimization settings (SGD with momentum, weight decay, batch size,
learning rate schedules), temporal regularization variants (ATC, AC), and evaluation metrics
(ID Acc, OOD Acc, FPR95). Pseudo-code of our contribution is also included. Together,
these details provide all the necessary information for independent researchers to reproduce
the main experimental results and verify our claims.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will provide the source code available in camera ready version (if accepted).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we describe our experimental setup in Section 3, with corresponding technical
details being provided in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: The paper does not report error bars due to space challenges but the experiments
are conducted such that results are statistically significant. The experiments were conducted
under 3 trials and the presented results are the average.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computational setup used in our experiments: all models were
trained on NVIDIA L40 GPUs with a batch size of 128. This information specifies the type
of hardware and training configuration employed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully reviewed and complied with the NeurIPS Code of Ethics through-
out this work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The paper doesn’t pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We cite the authors of all the benchmark datasets used in our work in Section 3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: This paper does not introduce any new assets, hence there is no associated
documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: This paper does not involve any crowdsourcing experiments or research with
human subjects, therefore this question is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for minor grammar correction and rephrasing during
paper writing. They were not involved in the research methodology, experiments, or scientific
contributions
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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