

GROUNDING COMPUTER USE AGENTS ON HUMAN DEMONSTRATIONS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939<br

of which it must precisely click. When grounding fails, the plan quickly veers off course, small errors compound, and tasks ultimately fail (Nayak et al., 2025). Moreover, grounding in desktop applications is challenging due to their complexity and diversity. These applications often feature high-resolution displays with dense layouts and visually similar elements, making precise localization difficult. Additionally, desktop applications can contain user-specific artifacts (e.g., documents or spreadsheets) that may not have been seen during training, adding variability and unseen contexts. Finally, collecting automated datasets for desktop environments with strong coverage is also challenging, as highlighted by recent datasets (Gou et al., 2024; Wu et al., 2024; Xie et al., 2025).

To this end, we introduce **GROUNDCUA**, a large-scale, human-annotated dataset for desktop grounding. The dataset spans 87 applications across 12 categories, with 56K screenshots and 3.56M+ element annotations. These annotations are collected from task demonstrations by trained annotators, ensuring high-quality and densely labeled data that provides rich context for effective model training. It also reflects the pixel diversity of desktops, with resolutions ranging from 500K to 7M pixels and a substantial proportion of very small bounding boxes, highlighting the fine-grained challenges agents must overcome. Furthermore, GROUNDCUA includes fine-grained category information (menus, buttons, etc.) for 50% of the UI elements and includes multiple variants of related applications (e.g., LibreOffice and OnlyOffice), directly addressing the difficulty of similar yet distinct applications and enabling agents to learn robust, application-specific grounding strategies. Key highlights of GROUNDCUA compared to other datasets are: **Scale**: 56K annotated screenshots and 3.56 million elements; **Resolution, Element Size, and Density**: High-resolution images with maximum annotation density, covering almost every visible element, including small elements like icons and controls; **Expert Quality**: Human-verified annotations for high accuracy; **Application Diversity**: 87 desktop applications for broad real-world coverage. Using this dataset, we construct a 700K image-instruction pair instruction-tuning set that mimics real-world semantic interactions.

We introduce the **GROUNDNEXT** series of vision-language models, designed for precise grounding across desktop applications. The series includes models at 3B and 7B scales, offering a balance between efficiency and accuracy. Each model is trained in two stages: first, supervised fine-tuning (SFT) on 700K curated datapoints from GROUNDCUA, and second, reinforcement learning (RL) to further refine performance. This approach enables GROUNDNEXT to achieve state-of-the-art results on key desktop benchmarks, including ScreenSpotPro (Li et al., 2025), OSWorld-G (Xie et al., 2025), and UI-Vision (Nayak et al., 2025). Despite using significantly fewer SFT datapoints than state-of-the-art models like JEDI (which are trained on 9M datapoints), GROUNDNEXT outperforms existing models, demonstrating its **efficiency in training** and proving that high-quality, well-curated data can outperform larger, less precise datasets. In the RL stage, GROUNDNEXT further refines its grounding accuracy, achieving significant improvements **without relying on complex reward strategies**, unlike many RL-tuned models, which typically incorporate specialized reward functions and additional objectives. This shows the effectiveness of combining supervised fine-tuning (SFT) with high-quality data. Additionally, GROUNDNEXT excels in **cross-platform generalization**, delivering strong performance across desktop, mobile, and web environments; even though we only train on desktop dataset. Evaluated on benchmarks like MMBench-GUI (L2) and ScreenSpot-v2, in addition to desktop-specific tasks, GROUNDNEXT showcases its ability to generalize across a wide range of user interfaces and platforms. We plan to release both GROUNDCUA and the trained GROUNDNEXT models to support open research, providing a solid foundation for the development of reliable, adaptable computer-use agents across diverse environments.

In summary, our contributions are as follows:

- We introduce GROUNDCUA, a large-scale, human-annotated desktop grounding dataset with over 3.56 million annotations across 56K screenshots from 87 applications in 12 categories, providing dense, high-resolution, and fine-grained supervision for robust computer-use agents.
- We present the GROUNDNEXT series, vision-language models at 3B and 7B scales, trained on GROUNDCUA with SFT and RL, achieving state-of-the-art performance across desktop benchmarks with significantly fewer datapoints than prior models.
- We provide a comprehensive analysis of SFT and RL roles, evaluate our dataset’s cross-domain impact and generalization beyond desktop, and study the benefits of open-source software for grounding performance.

108

2 RELATED WORK

110 **Computer-Use Agents.** Recent advancements in computer-use agents have focused on enhancing
 111 their ability to understand and interact with user interfaces, ranging from simple commands
 112 to complex, multi-step tasks. Supervised fine-tuned models such as CogAgent (Hong et al., 2023),
 113 ShowUI (Lin et al., 2024), and Ferret-UI (You et al., 2024) have improved interaction capabilities by
 114 enabling zero-shot instruction-following across desktop, web, and mobile interfaces, combining vi-
 115 sion, language, and action. Benchmarks like ScreenSpot-Pro (Li et al., 2025) and UI-Vision (Nayak
 116 et al., 2025) have emphasized the challenges of grounding natural language instructions in high-
 117 resolution desktop environments, particularly with dense screens and small elements. Grounding-
 118 focused agents, such as OS-ATLAS (Wu et al., 2024), UGround (Gou et al., 2024), and JEDI (Xie
 119 et al., 2025), have made significant progress by scaling training data to map language to specific UI
 120 elements. However, these methods often face challenges with data efficiency, particularly in complex
 121 desktop environments. Furthermore, recent RL-based approaches, inspired by DeepSeek-R1 (Guo
 122 et al., 2025), such as GUI-R1 (Luo et al., 2025), GUI-G² (Tang et al., 2025), and InfiGUI-G1 (Liu
 123 et al., 2025a), have addressed grounding through both simplistic and complex distance-based reward
 124 approaches. Despite these advancements, reliably grounding instructions to the correct on-screen el-
 125 ements remains a persistent bottleneck. To address this, we focus on high-quality, expert-annotated
 126 data to enhance grounding through both SFT and RL training, while prioritizing data-efficient fine-
 127 tuning to improve model performance.

128 **Table 1: Comparison of grounding datasets.** Columns: **H** = human-provided instructions and labels; **Desk**
 129 = includes desktop data; **E / Desk-E / S** = number of elements, desktop elements, and screenshots; **Res Range**
 130 = screenshot resolution range (MP); **EleArea** = average element area (% of screenshot); **#AvgE** = average
 131 elements per screen; **Perm** = permissive OSI-style license (e.g., Apache-2.0, MIT), **?** = not clearly reported.
 132 Datasets marked with * are grounding-specific versions constructed from the OS-ATLAS (Wu et al., 2024).

133 Grounding Datasets	134 Annotation		135 Scale			136 Avg. Data Stats			137 Perm?
	138 H	139 Desk	140 E	141 Desk-E	142 S	143 Res Range	144 EleArea	145 #AvgE	
146 UGround (Gou et al., 2024)	✗	✗	147 9M	—	773k	(0.4, 1.9)	—	11.6	✓
148 JEDI (Xie et al., 2025)	✗	✓	149 4M	2.4M	575k	(0.9, 2.1)	—	7.0	?
150 AGUVIS-G (Xu et al., 2024)	✗	✗	151 3.8M	—	452k	(0.5, 2.1)	—	8.5	?
152 OS-ATLAS (Wu et al., 2024)	✗	✓	153 14.5M	1.2M	1.85M	(0.5, 5.2)	0.53%	7.8	✗
154 RICOSCA* (Li et al., 2020a)	✗	✗	155 170K	—	18K	(0.5, 2.1)	0.28%	9.4	?
156 UIBert* (Bai et al., 2021)	✗	✗	157 166K	—	57K	(0.5, 2.1)	0.24%	2.9	✓
158 Widget Caption* (Li et al., 2020b)	✗	✗	159 101K	—	14K	(0.5, 2.1)	4.2%	7.0	✓
160 AMEX* (Chai et al., 2025)	✗	✗	161 1.2M	—	101K	(0.9, 4.5)	2.1%	11.8	?
162 SeeClick (Cheng et al., 2024)	✗	✗	163 3M	—	270K	(2.1, 2.1)	0.33%	11.2	?
164 AriaUI (Yang et al., 2024)	✗	✓	165 4.1M	150K	295K	(1.3, 1.9)	—	13.9	?
166 Fineweb* (Penedo et al., 2024)	✗	✗	167 9.9M	—	1.4M	(2.1, 2.1)	0.29%	6.9	✗
168 GROUNDCUA(ours)	✓	✓	169 3.56M	3.56M	55k	(0.4, 7.0)	0.13%	64.1	✓

170 **GUI Grounding Datasets.** Training datasets for GUI grounding span mobile, web, and desktop
 171 platforms. Mobile datasets like RICO (Deka et al., 2017), UIBert (Bai et al., 2021), and
 172 AMEX (Chai et al., 2025) provide element-level supervision within standardized layouts, sim-
 173 plifying extraction but limiting exposure to desktop-style density and iconography. Web-focused
 174 datasets, including SeeClick (Cheng et al., 2024) and UGround (Gou et al., 2024), scale ground-
 175 ing through automated harvesting from HTML/DOM, while Aguvic-G (Xu et al., 2024) broadens
 176 coverage across platforms. However, these automated pipelines likely overemphasize text-bearing
 177 elements while underrepresenting small icon-only controls, which are standard in desktop software.
 178 Desktop resources remain limited and challenging. OS-ATLAS (Wu et al., 2024) and AriaUI (Yang
 179 et al., 2024) assembles desktop splits via accessibility-tree traversal, yet accessibility signals are of-
 180 ten incomplete or inconsistent, leading to missing or imprecise element labels (Muryn et al., 2025;
 181 Gou et al., 2024). JEDI (Xie et al., 2025) achieves scale through synthetic interface generation, but
 182 these simplified screens underrepresent genuine desktop complexity.

183 **How is ours different?** GROUNDCUA is the largest expert-annotated dataset for desktop ground-
 184 ing, comprising 55,568 screenshots across 87 open-source applications with over 3.56M human-
 185 verified UI elements. Compared to existing datasets, GROUNDCUA features denser screens, a wider

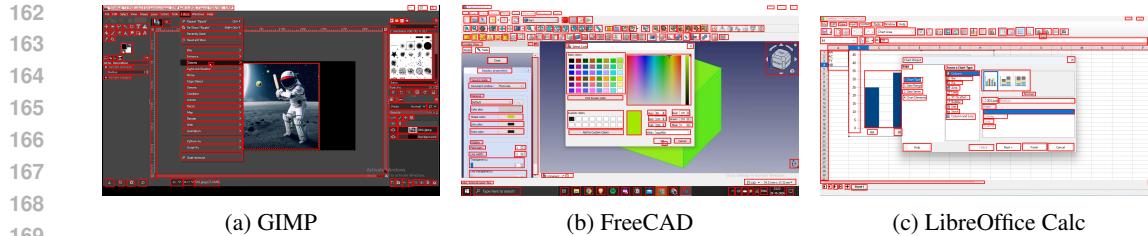


Figure 2: Examples of screenshots from different applications in GROUNDCUA. Red bounding boxes indicate the annotated UI elements within each screenshot.

resolution range, and smaller average element areas (see Table 1). It uniquely captures small desktop components, such as icons, toolbars, and controls, that are difficult to capture using automated tools. Its high-resolution images (ranging from 0.39 to 7.0M pixels) are substantially higher than other datasets and are the only ones to include very high-resolution images (see Figure 5, left). Additionally, GROUNDCUA features dense annotations that support semantics- and context-aware instructions, averaging 64 per screenshot, more than three times that of OS-Atlas (Desktop) and much higher than Aguvis-G (9) or UGround (11). Together, these properties make GROUNDCUA a comprehensive and challenging dataset for training robust desktop grounding agents.

3 GROUNDCUA DATASET

This section introduces GROUNDCUA, the largest and most diverse desktop-specific dataset annotated by human experts. We provide an overview of the data collection pipeline and annotation process, as well as our high-quality fine-tuning data below.

Collecting demonstrations from human experts We record real-world interactions of expert users performing tasks with desktop applications and annotated interface elements at scale. This approach captures user-driven interactions, resulting in a more realistic distribution of screenshots that better reflects real-world usage, compared to prior work that often relies on depth-first or breadth-first search to generate random interface states (Wu et al., 2024). Our pipeline consists of three main steps: selecting diverse applications, designing and executing practical tasks, and annotating screenshots. We partnered with a data labeling company for this process, with details on the annotator pool and training in Appendix A.2.

Selecting diverse desktop applications To support general-purpose computer-use agents, we selected 87 open-source applications across 12 categories (Table 5). Most applications are drawn from UI-Vision (Nayak et al., 2025), with four additional ones covering finance and scientific applications. By focusing on open-source applications with permissive licenses, we ensure the dataset can be freely released while encompassing a wide range of domains. These applications mirror the functionality of popular closed-source software (e.g., LibreOffice vs. Microsoft Office), making the dataset broadly applicable. Further details are provided in Appendix A.1.

Designing and executing computer-use tasks. We asked annotators to design everyday computer-use tasks that reflect common goals (e.g., drafting a document, editing a spreadsheet, running a simulation) and then carry them out. This approach produces natural interaction trajectories, unlike random clicking, and yields screenshots that closely mirror real-world usage. In total, annotators completed over 10,000 task demonstrations across 87 applications ¹.

Dense annotation of screenshots. From the recorded demonstrations, we extracted keyframes that capture the state of the interface immediately before a user action (e.g., a mouse click or text entry) that would trigger a change in the application. Annotators labeled every visible element in each keyframe using bounding boxes. For each element, they provided a textual label. This label was the element’s name when available, the displayed text for shorter strings, or a concise summary in

¹We will release both the tasks and videos as part of the dataset.

216 the case of long passages such as source code or detailed descriptions. We also extracted OCR using
 217 PaddleOCR (Cui et al., 2025) to extract raw text specifically for these longer segments. In addition,
 218 around 50% of the elements were assigned to one of eight high-level categories (see Table 6). In total,
 219 this process produced over 3.56 million annotated elements, making GROUNDCUA the largest and
 220 most diverse human-annotated grounding dataset for desktop environments to date. Examples of the
 221 annotations are provided in Appendix A.5, and further details of the annotation process are described
 222 in Appendix A.2.

223 **Constructing high-quality finetuning instructions** User queries in real-world settings can take
 224 various forms, from explicit references to UI elements (e.g., *Click ‘Save’*), to functional commands
 225 (e.g., *Open a new tab*), or spatial descriptions (e.g., *Select the icon left of ‘Files’*). To handle this
 226 diversity, we design a pipeline that leverages our dense annotations, which include bounding boxes,
 227 labels, categories, and OCR text, to construct diverse instruction-tuning data. These annotations
 228 enable the generation of highly contextual instructions, grounded directly in annotated screenshots.
 229 Unlike prior works that rely on pretrained models, our approach involves prompting a multimodal
 230 LLM with annotated bounding boxes, application names, element labels, and surrounding context.
 231 This ensures that the instructions are tightly linked to both the visual and textual content, making
 232 them semantically and contextually relevant. By leveraging nearly every visible element on the
 233 screen, we are able to create UI context-aware and challenging instructions. We generate three pri-
 234 mary types of instructions: **Direct**, which describe an element’s attributes, position, and surrounding
 235 context (e.g., *Click the magnifying-glass icon next to the search bar* for visual elements or *Click the*
 236 *button that has the text ‘Save’* for OCR-based textual elements); **Functional**, which focus on the
 237 intended action of an element (e.g., *Open a new tab* instead of *Click the ‘+’ button*); and **Spatial**,
 238 which guide the model based on the relative positioning of elements (e.g., *Click the element to the*
 239 *left of ‘Files’* or *Select the icon between ‘Undo’ and ‘Redo’*). We describe these instruction types in
 240 more detail in Appendix B and provide examples in Appendix B.6. These diverse instruction types,
 241 grounded in both visual and semantic context, provide a comprehensive foundation for training more
 242 effective and context-aware GUI agents.

243 **Dataset Statistics** GROUNDCUA consists of 56K screenshots, totaling 3.56 million annotated
 244 elements. On average, each screenshot contains 64 annotations, with some images having as many as
 245 542. The images have a mean resolution of 2.03 megapixels, with a range from 0.39 to 7 megapixels.
 246 Bounding boxes are relatively small, covering just 0.13% of the image area on average, underscoring
 247 the fine-grained nature of the annotations. This results in high-quality fine-tuning data, with 700K
 248 samples for SFT and 10K for RL, extracted from the densely annotated screenshots and metadata.
 249 Detailed distribution plots of resolution, bounding box sizes, and category-level statistics for both
 250 screenshots and annotations are provided in Appendix A.3.

251 4 TRAINING GROUNDNEXT MODELS ON GROUNDCUA

252 4.1 MODEL TRAINING

253 We use Qwen2.5-VL-Instruct as the base model for all experiments, considering both the 3B and
 254 7B parameter variants. We finetune both the vision encoder and the language model, as preliminary
 255 experiments indicated that this leads to better grounding performance.

256 **SFT** We first train the models with standard supervised finetuning. Training is performed on a
 257 single node with 8 H100 GPUs, using a global batch size of 128. Additional hyperparameter details
 258 are provided in Appendix C.2. For training data, we use the instruction tuning dataset introduced in
 259 Section 3. From this dataset, we use a subset of 700k instructions that balances coverage and diver-
 260 sity. This choice keeps the experiments practical and reproducible, while still being large enough to
 261 demonstrate the effectiveness of our dataset for grounding tasks. Further details on the composition
 262 of this subset, along with the choices made in its construction, are provided in Appendix C.1.

263 **RL Post-training.** In the next stage, we adopted RL post-training and explored several heuristics
 264 for constructing training data. GROUNDCUA allows us to sample from a much larger pool than the
 265 one used for SFT, so we selected 10K new elements not included in the original 700K SFT training

270 set. This approach yielded the strongest generalization across benchmarks in our initial experiments,
 271 and we adopted it for the final model.

272 For policy optimization, we employed the Relative Leave-One-Out (RLOO) method (Ahmadian
 273 et al., 2024), which compares the reward of each rollout to the average reward of other samples
 274 within the same group, avoiding the need for training a separate critic model. Concretely, for a
 275 group of n rollouts $\{y_1, \dots, y_n\}$, the gradient is given by:
 276

$$277 \nabla_{\theta} J(\pi_{\theta}) = \frac{1}{n} \sum_{i=1}^n \left(R(y_i, x) - \frac{1}{n-1} \sum_{j \neq i} R(y_j, x) \right) \cdot \nabla_{\theta} \log \pi_{\theta}(y_i | x),$$

280 where $R(y_i, x)$ is the reward assigned to output y_i given the input x . In our grounding setup, each
 281 y_i corresponds to a sequence of tokens representing the predicted coordinates (\hat{p}_i) on the image and
 282 x corresponds to the input prompt and image.

283 **Reward Function.** We designed a customized discrete reward based on the normalized distance
 284

$$285 \quad 286 \quad 287 \quad 288 \quad 289 \quad 290 \quad 291 R_{score}(\hat{p}, B, I) = \begin{cases} -1.0 & \text{if } \mathcal{D}_{norm} < -0.5, \\ -0.5 & \text{if } -0.5 \leq \mathcal{D}_{norm} < -0.1, \\ -0.1 & \text{if } -0.1 \leq \mathcal{D}_{norm} < 0, \\ 0.1 & \text{if } 0 \leq \mathcal{D}_{norm} < 0.1, \\ 0.5 & \text{if } 0.1 \leq \mathcal{D}_{norm} < 0.5, \\ 1.0 & \text{if } \mathcal{D}_{norm} \geq 0.5. \end{cases}$$

292 The normalized distance is defined as $\mathcal{D}_{norm} = \frac{\mathcal{D}(\hat{p}, B)}{\mathcal{D}_{ref}}$, where $\mathcal{D}_{ref} = \frac{\text{diam}(B)}{2}$ if $\hat{p} \in B$ and
 293 $\mathcal{D}_{ref} = \mathcal{D}_{max}(B, I)$ otherwise. $\mathcal{D}(\hat{p}, B)$ is the signed distance between the predicted coordinate
 294 \hat{p} and the ground-truth bounding box B , with positive values inside. We use half the bounding
 295 box diameter if $\hat{p} \in B$ because that is the maximum distance a point inside B can have from the
 296 boundary. This results in a \mathcal{D}_{norm} value between -1 and 1.

297 This discrete scheme captures dominant error modes: predictions just outside the box receive a
 298 milder penalty, while predictions far outside receive a stronger one, and predictions inside the box
 299 are encouraged to move toward the center. We exclude reward model-based approaches due to
 300 the unreliable nature of current judges (Feizi et al., 2025; Lù et al., 2025). We experimented with
 301 alternative reward formulations (e.g., continuous and binary schemes), but ultimately adopted this
 302 discrete variant due to its superior empirical performance (see Appendix C.4 for details). We set the
 303 group size to $n = 8$, the batch size to 64, and trained for one epoch on a single H100 node (8 GPUs),
 304 consistent with the SFT setup.

306 4.2 EVALUATION

308 **Task Definition.** Given a screenshot I and a user instruction x , the model predicts a 2D point
 309 $\hat{p} = (\hat{u}, \hat{v})$ in image coordinates. Let B denote the axis-aligned ground-truth bounding box for the
 310 target element. A prediction is marked *correct* if $\hat{p} \in B$, and *incorrect* otherwise. We report the
 311 accuracy metric.

312 **Benchmarks.** We evaluate GROUNDNEXT on five key benchmarks that cover a wide range of
 313 grounding scenarios. For desktop applications, we use ScreenspotPro (Li et al., 2025), OSWorld-G
 314 (Xie et al., 2025), and UI-Vision (Nayak et al., 2025), which focus on desktop interactions. To test
 315 cross-platform performance, we also use MMBench-GUI (L2) (Wang et al., 2025b) and Screenspot-
 316 v2 (Cheng et al., 2024), which include mobile and web splits in addition to desktop. This mix of
 317 benchmarks lets us evaluate performance across desktops, mobile, and web environments. Since
 318 UI-Vision overlaps with our dataset in platform coverage, we treat it as an in-domain benchmark,
 319 while the others are out-of-domain. We make efforts to minimize overlap during training, but due to
 320 annotation differences and the repetitive nature of desktop software, perfect separation isn't always
 321 possible.

322 **Baselines.** We compare GROUNDNEXT against two main types of baselines. First, we evaluate
 323 GROUNDNEXT (SFT) alongside several SFT-only variants to measure the impact of our instruction

324
 325 Table 2: **SFT-only results** on five challenging benchmarks. Results are shown for both 3B and 7B
 326 model scales. Only top-performing models are presented here; see Appendix D for full comparisons
 327 with additional baselines. Our GROUNDNEXT (SFT) consistently achieves the best average perfor-
 328 mance across all benchmarks, demonstrating the effectiveness of our high-quality data.

Model	SSPro	OSW-G	MMB-GUI	SSv2	UI-V	Avg
≈ 3B						
Qwen2.5-VL-3B (Bai et al., 2025)	16.1	27.3	60.8	80.9	6.3	38.3
Qwen2.5-VL-3B (Agent mode)	29.0	37.4	60.8	81.8	6.3	43.1
PhiGround-4B-7C (Zhang et al., 2025)	22.8	51.4	60.3	80.8	20.5	47.2
JEDI-3B (Xie et al., 2025)	36.1	50.9	66.5	88.6	18.7	52.2
GUI-Actor-3B (Wu et al., 2025)	42.2	48.9	69.8	91.0	19.7	54.3
GROUNDNEXT-3B (SFT)	48.6	62.2	75.5	87.3	58.2	66.4
≈ 7B						
Qwen2.5-VL-7B (Bai et al., 2025)	26.8	31.4	33.9	88.8	0.9	36.4
Qwen2.5-VL-7B (Agent mode)	29.7	42.7	67.7	86.4	16.5	48.6
OS-Atlas-7B (Wu et al., 2024)	18.9	27.7	41.4	85.1	9.0	36.4
UGround-V1-7B (Gou et al., 2024)	16.5	36.4	65.7	87.6	12.9	43.8
Aguvis-7B (Xu et al., 2024)	39.5	38.7	45.7	86.0	13.7	44.7
GUI-Actor-7B (Wu et al., 2025)	44.6	47.0	70.9	92.1	21.9	55.3
JEDI-7B (Xie et al., 2025)	39.5	54.1	70.4	91.7	24.8	56.1
GROUNDNEXT-7B (SFT)	50.2	67.2	80.4	89.3	58.7	69.2

348 data (see Table 2). Then, we compare GROUNDNEXT (RL) with recent reinforcement learning-
 349 based models to assess the effectiveness of RL fine-tuning (see Table 3).

5 RESULTS

5.1 EFFICIENT SUPERVISED FINE-TUNING WITH HIGH-QUALITY DATA

356 We present the performance results of our models trained using SFT across five benchmarks in
 357 Table 2. Our models achieve the highest average performance for both 3B and 7B model sizes. For
 358 ≈3B, GROUNDNEXT-3B (SFT) ranks first on most datasets (except SSv2) and leads the SFT-only
 359 group by a clear margin with an average performance of **68.4** vs. 63.0 for the next best (GUI-Actor-
 360 3B) without considering UI-V, and **66.4** vs. 54.3 with UI-V (i.e., +5.4 and +12.1 points, respectively).
 361 Notably, our 3B SFT average also surpasses all *RL-tuned* 3B baselines. Adding the RL stage yields a
 362 small, consistent lift to **68.4 Avg / 70.0 (w/o UI-V)**, setting the best overall results in this size range.
 363 For ≈7B, GROUNDNEXT-7B (SFT) also leads among SFT-only models with **71.8 Avg** without UI-
 364 V and **69.2** with, outperforming the next best SFT baseline (JEDI-7B) by +7.9 and +13.1 points,
 365 respectively. Among RL-tuned systems, GROUNDNEXT-7B (RL) attains the top **Avg (w/o UI-V)**
 366 = **73.0**. Overall, these results indicate the efficacy of our high quality data. Notably, our results
 367 are achieved with substantially less data and modest compute. We train on only 700K instructions,
 368 which is far below multi-million-sample corpora used by prior work (e.g., JEDI 9M). Yet, we
 369 outperform larger SFT baselines and remain competitive with RL-tuned systems. This suggests that
 370 high-quality, densely grounded supervision and targeted instruction design can substitute for raw
 371 scale, delivering strong gains without escalating data volume or compute.

372 **GROUNDCUA compared to other SFT training corpora** To make a fair comparison and high-
 373 light the quality of our dataset, we train the same base model (Qwen2.5-VL-3B-Instruct) on 100K
 374 samples from each of the following datasets: Aguvis, UGround, OS-Atlas (Desktop), JEDI, and
 375 GROUNDCUA. We use identical hyperparameters and preprocessing for all experiments (details in
 376 the Appendix). Figure 3 (yellow bars) summarizes the average performance across benchmarks, ex-
 377 cluding UI-Vision. We observe that GROUNDCUA yields significantly higher SFT averages than all
 378 other training sources, demonstrating the benefits of its high-quality, densely grounded supervision.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 3: **RL-tuned results.** We present results for the 3B and 7B model scales. We highlight the top-performing models here and refer readers to Appendix D for full comparisons with additional baselines. Our GROUNDNEXT(RL) achieves the highest average performance.

Model	SSPro	OSW-G	MMB-GUI	SSv2	UI-V	Avg
≈ 3B						
UI-R1-E-3B (Lu et al., 2025)	17.8	48.8	68.4	88.6	16.5	48.0
SE-GUI-3B (Yuan et al., 2025)	35.9	46.1	66.3	86.8	15.0	50.0
InfiGUI-R1-3B (Liu et al., 2025a)	35.7	42.9	70.6	89.5	17.8	51.3
GUI G ² -3B (Tang et al., 2025)	36.4	53.5	66.3	87.6	18.7	52.5
GUI-G1-3B (Zhou et al., 2025)	37.1	49.5	71.0	89.5	20.3	53.5
InfiGUI-G1-3B (Liu et al., 2025b)	45.2	49.6	73.4	91.1	22.0	56.3
GROUNDNEXT-3B (SFT)	48.6	62.2	75.5	87.3	58.2	66.4
GROUNDNEXT-3B (RL)	49.8	64.2	77.1	88.8	62.1	68.4
≈ 7B						
SE-GUI-7B (Yuan et al., 2025)	47.3	33.9	34.5	68.9	16.7	40.3
UI-TARS-1.5-7B (Qin et al., 2025)	49.6	64.2	64.3	90.3	20.8	57.8
GUI G ² -7B (Tang et al., 2025)	47.5	61.9	79.5	93.3	25.6	61.7
InfiGUI-G1-7B (Liu et al., 2025b)	51.9	59.9	80.8	93.5	26.1	62.4
GTA1-7B (Yang et al., 2025)	50.1	67.7	79.4	92.4	25.7	63.1
GROUNDNEXT-7B (SFT)	50.2	67.2	80.4	89.3	58.7	69.2
GROUNDNEXT-7B (RL)	52.9	67.7	81.1	90.4	60.3	70.5

5.2 REINFORCEMENT LEARNING POST-TRAINING RESULTS

RL post-training on top of the SFT models results in consistent but modest improvements for both the 3B and 7B models shown in Table 3. For the 3B model, **GROUNDNEXT-3B (RL)** achieves an average of **70.0** (without UI-V) and **68.4** overall, surpassing the SFT-only model, **GROUNDNEXT-3B (SFT)**, which scores **68.4** and **66.4**, respectively. For the 7B model, **GROUNDNEXT-7B (RL)** achieves **70.5**, improving upon **GROUNDNEXT-7B (SFT)**’s **69.2** (with UI-V). These results suggest that SFT, when trained with high-quality data, captures the majority of the model’s performance, with RL offering targeted fine-tuning that provides incremental improvements. In practice, high-quality SFT can establish strong baselines, and RL can serve as an optional refinement step to further enhance performance. While our reward design is simple, we acknowledge that more sophisticated reward functions, such as those in Liu et al. (2025b), could lead to more substantial RL gains, which we leave for future work.

Analyzing RL Gains. We investigate the modest gains from RL (see Figure 3). In this setup, we start with SFT models (Qwen2.5-VL-3B-Instruct) trained on Aguvis, UGround, OS-Atlas (Desktop), JEDI, and GROUNDCUA, and then apply RL using 10K examples exclusively from GROUNDCUA. We find that models trained with GROUNDCUA during SFT show the smallest performance gains from RL, while models trained on other datasets benefit more from RL fine-tuning with GROUNDCUA. This suggests that SFT with GROUNDCUA already provides highly informative supervision, leaving fewer errors for RL to correct. Moreover, the magnitude of RL improvements correlates with the initial SFT performance: stronger SFT models yield smaller absolute gains because they start with fewer remaining errors. We explore this phenomenon in greater detail in Appendix D.6.

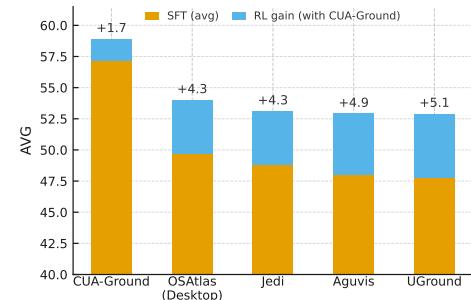


Figure 3: Mean SFT scores (orange) across benchmarks, with RL gains from 10k GROUNDCUA samples shown in blue.

432 Table 4: **Agentic performance comparison on OSWorld-Verified.** **Bold** and underline indicate the
 433 best-performing open-source model in each category. Our 3B model, GROUNDNEXT-3B, is among
 434 the top-performing open-source models, surpassing larger and proprietary models, highlighting its
 435 practical utility and efficiency for real-world agentic tasks.

Model	OS	Office	Daily	Pro	Workflow	Overall
Proprietary Models						
OpenAI o3 (OpenAI, 2025)	62.5	14.5	21.4	38.8	16.5	23.0
CUA (OpenAI, 2025)	23.9	34.6	55.1	18.3	18.3	31.4
Claude-4-Sonnet (Anthropic, 2025a)	45.8	39.3	48.1	59.2	27.9	41.4
Qwen3-VL-Flash (Bai et al., 2025)	40.9	53.6	55.1	22.0	22.0	41.6
UI-TARS-250705 (Qin et al., 2025)	41.7	50.4	55.7	51.0	14.7	41.8
Claude-4.5-Sonnet (Anthropic, 2025b)	70.8	72.6	61.4	63.3	49.0	62.9
Open-source Models						
Qwen2.5-VL-32B (Bai et al., 2025)	8.3	1.7	6.4	6.1	2.2	3.9
Qwen2.5-VL-72B (Bai et al., 2025)	16.7	4.3	6.4	2.0	3.2	5.0
Kimi-VL-A3B (Kimi Team, 2025)	12.5	6.0	21.7	18.4	1.1	10.3
OpenCUA-A3B (Wang et al., 2025a)	12.5	16.3	21.7	46.9	2.2	17.7
UI-TARS-72B-DPO (Qin et al., 2025)	37.5	19.0	34.6	63.3	8.3	27.1
OpenCUA-7B (Wang et al., 2025a)	41.7	22.2	37.1	49.0	9.3	27.0
UI-TARS-1.5-7B (Qin et al., 2025)	33.3	29.9	37.9	53.1	9.1	29.6
OpenCUA-72B (Wang et al., 2025a)	<u>58.3</u>	47.0	53.8	<u>73.5</u>	20.4	46.1
JEDI-7B w/ o3 (Xie et al., 2025)	50.0	<u>46.1</u>	61.9	75.5	<u>35.3</u>	51.0
GROUNDNEXT-3B (RL) w/ o3 (ours)	62.5	47.0	<u>55.0</u>	<u>73.5</u>	36.5	<u>50.6</u>

5.3 FURTHER ANALYSIS

461 **Agentic Performance** We evaluate GROUNDNEXT’s performance in an agentic setting to assess
 462 its ability to ground in realistic, multi-step tasks. Experiments are conducted on the OSWorld-
 463 Verified benchmark using OpenAI o3 as the planner, which consumes task instructions and action
 464 history to generate grounding commands that GROUNDNEXT executes to locate target UI elements
 465 on the screen. Following the setup of (Xie et al., 2025; Yang et al., 2025; Wang et al., 2025a), we
 466 evaluate 361 tasks (excluding Google Drive-related ones) on an Ubuntu system with a 1920×1080
 467 resolution, running on Microsoft Azure within 10 Docker environments.

468 The results in Table 4 highlight GROUNDNEXT-3B’s strong performance. Within its 3B parameter
 469 class, GROUNDNEXT-3B (50.6 Overall) significantly outperforms peers like OpenCUA-A3B
 470 (17.7) and Kimi-VL-A3B (10.3). Notably, it surpasses many larger models, including OpenCUA-
 471 72B (46.1) and proprietary APIs such as Qwen3-VL-Flash (41.6) and Claude-4-Sonnet (41.4). The
 472 comparison with JEDI-7B, which also uses the o3 planner, is particularly notable. Despite being less
 473 than half the size, our 3B model achieves a comparable overall score (50.6 vs. 51.0) and demon-
 474 strates superior performance in 3 out of 5 categories (OS, Office, and Workflow). This performance
 475 from a compact 3B model underscores GROUNDNEXT-3B’s significant practical utility, presenting
 476 it as an effective and efficient solution for real-world agentic systems where inference speed and
 477 resource constraints are critical factors.

478 **Gains from GROUNDCUA.** We investigate where GROUNDCUA yields the greatest gains by
 479 studying the performance of GROUNDNEXT. Since GROUNDCUA primarily covers desktop soft-
 480 ware, we expect the largest gains on desktop benchmarks. Our results confirm this: GROUND-
 481 NEXT-7B (RL) achieves the best performance on UI-V, OSW-G, and SSPro. For mixed datasets
 482 such as MMBench-GUI, GROUNDNEXT shows a 3.66% improvement on desktop platforms over
 483 the second-best model, InfiGUI-G1, with notable gains coming from Linux and macOS (see Ap-
 484 pendix D.3). At the element level, the most significant improvements are observed in icon recogni-
 485 tion. For example, on SSPro, we outperform most models by an average of 10.7% in icon recogni-

486 (see Table 11). This reflects the high density of icons in desktop applications and suggests that the
 487 diversity in GROUNDCUA provides richer knowledge, leading to better performance on icons.
 488

489 **GROUNDNEXT generalization across domains.** Next, we evaluate the generalization ability of
 490 GROUNDCUA, trained primarily on desktop software, to mobile and web interfaces using SSv2
 491 and MMBench-GUI. On MMBench-GUI, GROUNDCUA-7B (RL) performs competitively across
 492 both domains, achieving 89.2% on mobile and 81.9% on web, compared to the next best model, i.e.,
 493 InfiGUI-G1-7B, at 90.9% and 85.3%, respectively. On SSv2, GROUNDCUA achieves comparable
 494 results on mobile but falls behind on web. A detailed error analysis is provided in Appendix E.
 495 These results suggest that while GROUNDCUA enables strong cross-domain generalization, future
 496 work could explore augmenting desktop data with web and mobile sources to further enhance per-
 497 formance.
 498

499 **Effects of using open source applications.** To study the impact of open-source software, we ex-
 500 amine SSPro performance across various categories, focusing particularly on icon recognition. Icons
 501 often require application-specific knowledge, unlike text, which is more general in nature. As shown
 502 in Table 11, GROUNDCUA achieves the best icon performance in the *Office Suite*, *Development*,
 503 *Creative*, *Scientific*, and *CAD* categories, and ranks second in *OS*. The presence of open-source of-
 504 fice software, such as LibreOffice, likely contributes to the strong results in the *Office Suite* category.
 505 Similarly, the diversity of open-source development tools and creative software, such as video and
 506 image editing programs, results in significant improvements, with our model outperforming the next
 507 best model, i.e., InfiGUI-G1-7B, by 15.9% in *Development* and 8.4% in *Creative* for icon accu-
 508 racy. Future work could further analyze the impact of application similarity to determine whether
 509 applications more similar to those in our dataset lead to higher performance.
 510

510 6 CONCLUSION & DISCUSSION

511 We introduced GROUNDCUA, a human-annotated desktop grounding dataset spanning 87 applica-
 512 tions (56K screenshots, 3.56M+ elements) with dense keyframe labels that reflect real interaction
 513 states. From these annotations, we constructed real-world computer-use instruction tasks for ground-
 514 ing. We developed the GROUNDCUA family of models and following recent trends, trained it first
 515 with SFT and then RL on verifiable rewards. Across five challenging benchmarks, GROUNDCUA
 516 achieves state-of-the-art results despite using substantially less SFT training data than many prior
 517 works. The key takeaway is that high-quality data drives reliable desktop grounding more effectively
 518 than sheer data volume. By releasing both the dataset and other research artifacts, we aim to unlock
 519 grounding as a core capability, laying the foundation for end-to-end computer-use agents that can
 520 perform complex tasks across diverse desktop applications.
 521

522 While this work advances desktop grounding and demonstrates the value of high-quality expert
 523 demonstrations, it also opens up new opportunities and raises important questions. First, we train
 524 models with limited scale and compute, but the dataset can support variable-sized fine-tuning sets
 525 to further scale model performance. Second, our dense annotations should enable the develop-
 526 ment of precise and expressive reward signals for RL, moving beyond the simplistic one used in
 527 this paper. This creates opportunities to systematically study how different reward designs impact
 528 grounding accuracy. Third, cross-domain generalization remains a key frontier. Desktop environ-
 529 ments involve complex, multi-window workflows, whereas mobile and web tasks are lighter and
 530 more context-specific. Mixing data across these domains could yield models that operate seamlessly
 531 across platforms, though balancing these domains and addressing transfer bottlenecks will require
 532 careful study. Finally, GROUNDCUA includes platform- and category-level metadata, enabling re-
 533 search on continual learning and adaptation, evaluating how agents adapt to unseen applications and
 534 continually improve as new interaction paradigms emerge.
 535

536 ETHICS STATEMENT

537 Our work focuses on the responsible development of computer-use agents through transparent
 538 dataset curation and model training. We have taken significant steps to protect user privacy by
 539 ensuring all desktop applications used are open-source with permissive licenses, and no personally
 540 identifiable information (PII) was collected during screenshot annotation. All human annotators

were fairly compensated and worked under proper data protection protocols. While we have filtered potentially harmful content from our dataset, we cannot fully guarantee that models trained on GROUNDCUA will not generate inappropriate instructions or interact with sensitive interface elements inappropriately. Users and developers are strongly encouraged to implement appropriate safeguards and human oversight when deploying computer-use agents in production environments. Additionally, all human evaluation studies were conducted by collaborating researchers following established ethical guidelines, with no PII collected during the evaluation process.

We disclose that there are no conflicts of interest that would bias this work. Any funding sources will be listed in the camera-ready version per ICLR policy.

REPRODUCIBILITY STATEMENT

We are committed to ensuring full reproducibility of our work by providing comprehensive implementation details and releasing all necessary resources. All artifacts, including the complete GROUNDCUA dataset, GROUNDCUA model weights, training code, evaluation scripts, and detailed data sheets, will be publicly released. We have thoroughly documented all hyperparameters, training procedures, data preprocessing steps, and evaluation metrics in the appendices to enable accurate replication of our results. The human annotation guidelines, quality assurance protocols are fully described to ensure transparency in dataset creation. The instruction generation prompts, model architectures, and benchmark evaluation procedures are detailed to facilitate consistent reproduction across different research groups.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin, Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, October 2024. URL <https://www.anthropic.com/news/3-5-models-and-computer-use>.

Anthropic. Introducing claude 4, May 2025a. URL <https://www.anthropic.com/news/claude-4>.

Anthropic. Introducing claude sonnet 4.5, September 2025b. URL <https://www.anthropic.com/news/claude-sonnet-4-5>.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, et al. Uibert: Learning generic multimodal representations for ui understanding. *arXiv preprint arXiv:2107.13731*, 2021.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents, 2025. URL <https://arxiv.org/abs/2407.17490>.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile gui agents. *arXiv preprint arXiv:2406.11317*, 2024.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. *arXiv preprint arXiv:2401.10935*, 2024.

Cheng Cui, Ting Sun, Manhui Lin, Tingquan Gao, Yubo Zhang, Jiaxuan Liu, Xueqing Wang, Zelun Zhang, Changda Zhou, Hongen Liu, Yue Zhang, Wenyu Lv, Kui Huang, Yichao Zhang, Jing Zhang, Jun Zhang, Yi Liu, Dianhai Yu, and Yanjun Ma. Paddleocr 3.0 technical report, 2025. URL <https://arxiv.org/abs/2507.05595>.

594 Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibscher, Daniel Afergan, Yang Li, Jeffrey
 595 Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design ap-
 596 plications. In *Proceedings of the 30th annual ACM symposium on user interface software and*
 597 *technology*, pp. 845–854, 2017.

598 Aarash Feizi, Sai Rajeswar, Adriana Romero-Soriano, Reihaneh Rabbany, Valentina Zantedeschi,
 599 Spandana Gella, and João Monteiro. Pairbench: Are vision-language models reliable at compar-
 600 ing what they see?, 2025. URL <https://arxiv.org/abs/2502.15210>.

602 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
 603 Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
 604 *arXiv preprint arXiv:2410.05243*, 2024.

605 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 606 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 607 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

609 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 610 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. *arXiv*
 611 *preprint arXiv:2312.08914*, 2023.

612 Kimi Team. Kimi-vl technical report, 2025. URL <https://arxiv.org/abs/2504.07491>.

614 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 615 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
 616 2025.

617 Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
 618 instructions to mobile ui action sequences. *arXiv preprint arXiv:2005.03776*, 2020a.

620 Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget caption-
 621 ing: Generating natural language description for mobile user interface elements. *arXiv preprint*
 622 *arXiv:2010.04295*, 2020b.

623 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
 624 Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
 625 agent, 2024. URL <https://arxiv.org/abs/2411.17465>.

627 Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
 628 and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
 629 reasoners. *arXiv preprint arXiv:2504.14239*, 2025a.

630 Yuhang Liu, Zeyu Liu, Shuanghe Zhu, Pengxiang Li, Congkai Xie, Jiasheng Wang, Xueyu Hu,
 631 Xiaotian Han, Jianbo Yuan, Xinyao Wang, Shengyu Zhang, Hongxia Yang, and Fei Wu. Infigui-
 632 g1: Advancing gui grounding with adaptive exploration policy optimization, 2025b. URL
 633 <https://arxiv.org/abs/2508.05731>.

635 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
 636 Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents
 637 by reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.21620>.

638 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
 639 action model for gui agents. *arXiv preprint arXiv:2504.10458*, 2025.

640 Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejan-
 641 dra Zambrano, Karolina Stańczak, Peter Shaw, Christopher J. Pal, and Siva Reddy. Agentre-
 642 wardbench: Evaluating automatic evaluations of web agent trajectories, 2025. URL <https://arxiv.org/abs/2504.08942>.

645 Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu,
 646 Chengyu Shen, Runming He, Yanhao Li, Bin Cui, and Wentao Zhang. Learning what re-
 647 enforcement learning can't: Interleaved online fine-tuning for hardest questions, 2025. URL
<https://arxiv.org/abs/2506.07527>.

648 Viktor Muryn, Marta Sumyk, Mariya Hirna, Sofiya Garkot, and Maksym Shamrai. Screen2ax:
 649 Vision-based approach for automatic macos accessibility generation, 2025. URL <https://arxiv.org/abs/2507.16704>.

650

651 Shravani Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A. Rodriguez, Montek Kalsi, Rabiul Awal,
 652 Nicolas Chapados, M. Tamer Özsu, Aishwarya Agrawal, David Vazquez, Christopher Pal, Perouz
 653 Taslakian, Spandana Gella, and Sai Rajeswar. Ui-vision: A desktop-centric gui benchmark for
 654 visual perception and interaction, 2025. URL <https://arxiv.org/abs/2503.15661>.

655

656 OpenAI. Introducing openai o3 and o4-mini, April 2025. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

657

658

659 OpenAI. Computer-using agent, January 2025. URL <https://openai.com/index/computer-using-agent/>.

660

661 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 662 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
 663 finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>.

664

665 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jia-
 666 hao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, KuanYe Li, Jiale Yang, Yu Miao, Woyu Lin,
 667 Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei
 668 Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua
 669 Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. Ui-tars: Pioneering au-
 670 tomated gui interaction with native agents. *arXiv preprint arXiv:2501.12326*, 2025. URL
 671 <https://github.com/bytedance/UI-TARS>.

672

673 Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
 674 Wenqi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g²: Gaussian reward modeling for gui
 675 grounding. *arXiv preprint arXiv:2507.15846*, 2025.

676

677 Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
 678 Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda
 679 Chen, Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin
 680 Shin, Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Yipu Wang, Heng Wang,
 681 Diyi Yang, Victor Zhong, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
 682 computer-use agents, 2025a. URL <https://opencua.xlang.ai/>.

683

684 Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
 685 Qingyun Li, Xuan Dong, Zhe Chen, Weiyun Wang, Xiangyu Zhao, Jixuan Chen, Haodong Duan,
 686 Tianbao Xie, Chenyu Yang, Shiqian Su, Yue Yu, Yuan Huang, Yiqian Liu, Xiao Zhang, Yant-
 687 ing Zhang, Xiangyu Yue, Weijie Su, Xizhou Zhu, Wei Shen, Jifeng Dai, and Wenhui Wang.
 Mmbench-gui: Hierarchical multi-platform evaluation framework for gui agents, 2025b. URL
<https://arxiv.org/abs/2507.19478>.

688

689 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
 690 Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden, Qingwei Lin, Huan Zhang, Tong Zhang,
 691 Jianbing Zhang, Dongmei Zhang, and Jianfeng Gao. Gui-actor: Coordinate-free visual grounding
 692 for gui agents, 2025. URL <https://arxiv.org/abs/2506.03143>.

693

694 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 695 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
 696 generalist gui agents, 2024. URL <https://arxiv.org/abs/2410.23218>.

697

698 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 699 Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
 700 decomposition and synthesis. *arXiv preprint arXiv:2505.13227*, 2025.

701

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2024.
 URL <https://arxiv.org/abs/2412.04454>.

702 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
 703 Huang, Amrita Saha, Zeyuan Chen, Ran Xu, Liyuan Pan, Caiming Xiong, and Junnan Li. Gta1:
 704 Gui test-time scaling agent, 2025. URL <https://arxiv.org/abs/2507.05791>.
 705

706 Yuhan Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
 707 Visual grounding for gui instructions. *arXiv preprint arXiv:2412.16256*, 2024.
 708

709 Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
 710 Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. *arXiv
 711 preprint arXiv:2404.05719*, 2024.

712 Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
 713 Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-
 714 evolutionary reinforcement learning. *arXiv preprint arXiv:2505.12370*, 2025.
 715

716 Miaozen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen,
 717 Justin Wagle, Tim Franklin, et al. Phi-ground tech report: Advancing perception in gui grounding.
 718 *arXiv preprint arXiv:2507.23779*, 2025.

719 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 720 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 721 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 722 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 723 tics. URL <http://arxiv.org/abs/2403.13372>.
 724

725 Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Un-
 726 derstanding r1-zero-like training for visual grounding in gui agents, 2025. URL <https://arxiv.org/abs/2505.15810>.
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

APPENDIX

Table of Contents

	Page
A. GROUNDCUA – Creation	16
A.1 Platforms	16
A.2 Human Annotation	16
A.3 Dataset Statistics	17
A.4 Comparision with Prior Works	17
A.5 Dataset Examples	19
B. Instruction Tuning Data	19
B.1 Direct Instructions	19
B.2 Functional Instructions	22
B.3 Spatial Instructions	22
B.4 Examples	23
B.5 Need and Impact of Different Instruction Types	22
B.6 Quality of Instruction Tuning Data	23
C. Training	23
C.1 SFT Data	23
C.2 SFT Training Details	24
C.3 RL Data	25
C.4 RL Training Details	25
C.5 RL Design Choices and Hyperparameters	27
D. Evaluation	28
D.1 ScreenSpot-Pro Results	28
D.2 OSWorld-G Results	28
D.3 MMBench-GUI Results	28
D.4 ScreenSpot-v2 Results	28
D.5 UI-Vision Results	28
D.6 Discussion on RL Gains	30
D.7 SFT Scaling Behavior	32
E. GROUNDNEXT Error Analysis	33
F. Limitations	34
G. LLM Usage	35

A GROUNDCUA - CREATION

A.1 PLATFORMS

Table 5: Categories of desktop applications and their corresponding applications.

Category	Platforms
Education	Anki, Zotero, Calibre, OpenBoard, Mendeley
Browsers	Brave, Chromium, Mozilla Firefox, DuckDuckGo
Development	VSCode, Atom, Eclipse, NetBeans, PyCharm, IntelliJ IDEA, Brackets, Geany, Bluefish, KDevelop, Komodo Edit, Code::Blocks, Qt Creator, Arduino IDE
Productivity	LibreOffice Calc, LibreOffice Draw, LibreOffice Impress, LibreOffice Writer, draw.io, Joplin, OpenProject, Affine, PDFedit, OnlyOffice Calendar, OnlyOffice Document Editor, OnlyOffice Forms, OnlyOffice PDF Forms, OnlyOffice Presentation, OnlyOffice Spreadsheet, Nextcloud, Gnumeric, Simplenote, WeKan
Graphics and Design	Blender, GIMP, Inkscape, Krita, darktable, FontForge, Scribus, WordPress
Video and Audio Production	OpenShot, OBS Studio, Lightworks, Shotcut, Natron, OpenToonz, Audacity, MuseScore
Communication	Element, Signal, Mastodon, Lemmy, Matrix, Zulip, Jitsi
Entertainment	VLC Media Player, Kodi, Emby
System Utilities	Ubuntu Terminal, Conky, Bash, 7-Zip, Flameshot, Nemo, gedit
Security	Bitwarden, Cryptomator
Finance and Business Analytics	GnuCash, Frappe Books, Metabase
Scientific	RStudio, Veusz, GNU Octave, GrassGIS, QGIS, FreeCAD, Spyder

We select 87 platforms, focusing on open-source software with permissive licenses. These applications span 12 diverse categories, detailed in Table 5. Our selection is motivated by the under-representation of such platforms in existing datasets and the flexibility provided by permissive licensing, which enables dataset release with minimal restrictions. We primarily rely on UI-Vision (Nayak et al., 2025) as the source for platforms, as they motivated their platform selection similarly. We additionally include 4 platforms to improve coverage across finance and scientific categories. We further show that this choice does not compromise generalization (see Section 5.3), as the open-source software usually shares UI elements and layout with its closed-source counterparts. For instance, LibreOffice and Office Suite share many interface elements, layout, and functionality. This ensures broader applicability of GROUNDCUA.

A.2 HUMAN ANNOTATION

We collaborated with a professional data labeling vendor that specializes in dataset curation for AI applications. The annotation effort spanned three phases, beginning with a pilot study where we worked closely with the annotation team to refine task instructions and provide iterative feedback. The annotation team consisted of around 70 individuals, organized into multiple tiers of annotators, quality assurance specialists, and project managers. The majority of the team was located in India and Latin America, with participants in the 20–35 year age group and a balanced gender distribution. All annotators held at least a bachelor’s degree in technical fields such as Computer Science or Engineering and had prior experience in data labeling and user interface research.

864 Table 6: UI element categories in GROUNDCUA with descriptions and representative examples.
865

866 Category	867 Description and Common UI Elements
868 Input Element	869 Interactive fields where users enter or modify data, like text boxes, checkboxes, radio buttons, etc.
870 Sidebar	871 Vertical or horizontal panels that provide quick access to tools or navigation. Examples include tool palettes, folder trees, settings sidebars.
872 Information Display	873 Regions that primarily present textual or numerical information. Examples include labels, console outputs, document text, and code blocks.
874 Button	875 Clickable controls that trigger an action like submit button, “OK/Cancel” buttons, play/pause buttons
876 Navigation	877 Elements that help users move within or across applications. Examples: tabs, back/forward arrows etc.
878 Visual Elements	879 Non-textual graphical elements that convey information or functionality. Examples include icons, thumbnails, images, charts, and progress bars.
880 Menu	881 Structured lists of commands or options, often hierarchical. Examples: file menu, context menu, dropdown menus.
882 Others	883 Elements not covered by the above categories, often decorative or container elements like spacers.

884 Annotators underwent a training process to become familiar with the platforms and annotation
885 guidelines. They were compensated hourly, with each task requiring on average 60–90 minutes
886 to complete, including quality checks. The process began with the creation of computer-use tasks
887 for 87 software applications (see Table 5). Annotators then executed these tasks while screen record-
888 ings were collected. From these recordings, we extracted keyframes corresponding to major user
889 interactions. Each keyframe was annotated using a custom tool, where annotators drew bounding
890 boxes around all visible interface elements. For each bounding box, annotators assigned a label
891 corresponding to the element’s name, or, in the case of textual elements, the text was also provided
892 in addition to the element name. For long text segments such as source code or lengthy descrip-
893 tions, annotators provided a concise summary that captured the main theme. To supplement these
894 summaries, we also applied OCR using PaddleOCR (Cui et al., 2025) to extract the full text when
895 available. In addition, every element was assigned to one of six high-level categories. We applied
896 rigorous quality assurance at multiple stages. Annotations were reviewed by dedicated quality spe-
897 cialists, cross-checked by the authors, and validated using custom evaluation scripts. This pipeline
898 allowed us to construct a large-scale dataset of grounded user interface interactions with high diver-
899 sity and reliable annotation quality.

900 A.3 DATASET STATISTICS

901 We provide detailed statistics for GROUNDCUA. Figure 4 presents the overall dataset statistics. Fig-
902 ure 4a shows the number of annotations across the 12 categories, while Figure 4b reports the number
903 of screenshots per category. We also analyze the pixel distribution of screenshots in Figure 4c, ob-
904 serving a wide range from roughly 0.3 megapixels to 7 megapixels. The distribution of bounding
905 box areas, shown in Figure 4d, highlights the prevalence of small UI elements in the dataset. Finally,
906 Figure 4e shows the number of bounding boxes per screenshot, with some screenshots containing
907 up to 500 annotated elements and Figure 4f shows the distribution of desktop applications across 12
908 different categories.

909 A.4 COMPARISON WITH PRIOR WORKS

910 **Comparative Analysis with Existing Datasets** We compare GROUNDCUA against four recent
911 grounding datasets: UGround (Gou et al., 2024), Aguvis (Xu et al., 2024), OS-Atlas (Wu et al.,
912 2024), and JEDI (Xie et al., 2025). For OS-Atlas and JEDI, which are much larger, we sample 200k
913 images for screenshot-level analysis, with bounding-box statistics computed over all annotations. As
914 shown in Figure 5 (left), GROUNDCUA’s screenshots range from 0.5M–7M pixels, averaging 2.0M,
915 capturing high-resolution desktop environments. UGround and OS-Atlas (Desktop) have lower res-
916 olutions (1.1M and 1.6M), limiting their detail. Figure 5 (right) highlights GROUNDCUA’s smaller
917 median element size, with many fine-grained targets like icons and small controls, typical of desktop

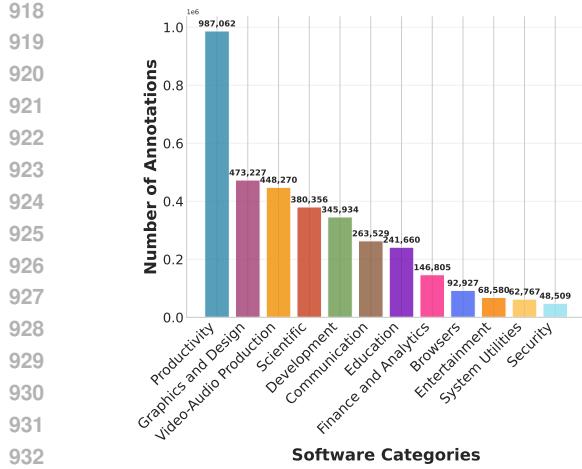
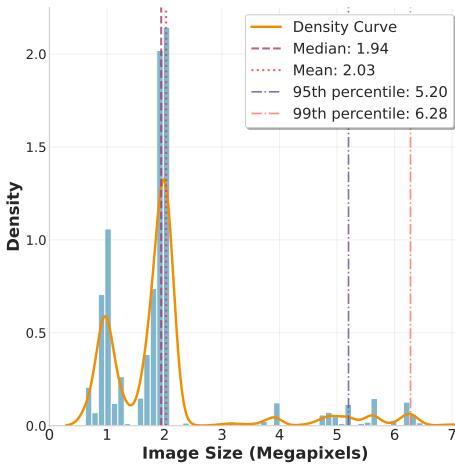
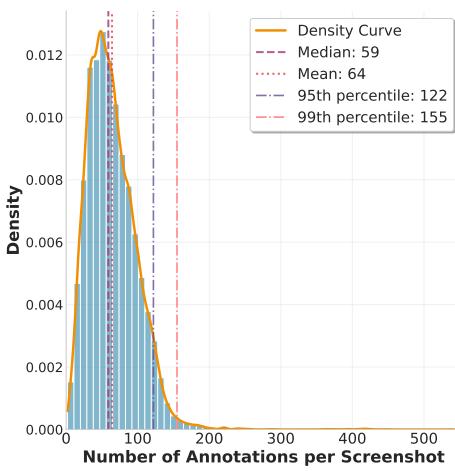
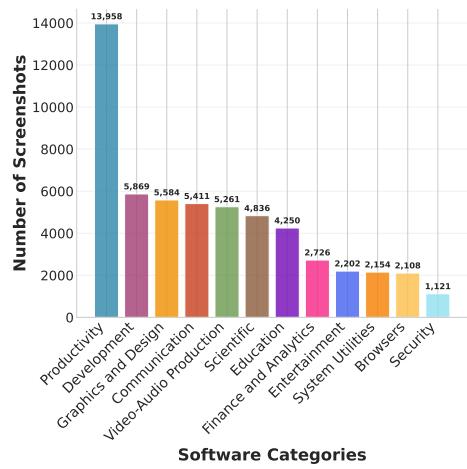
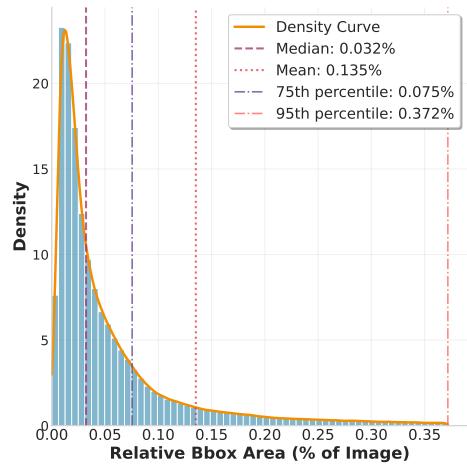
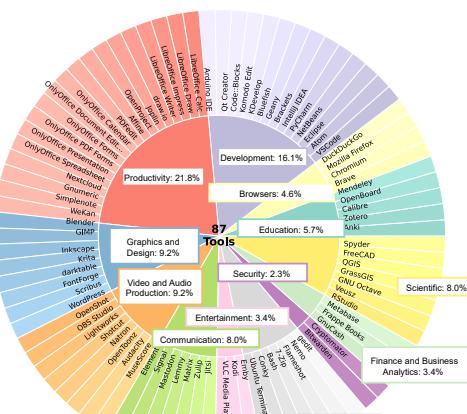


Figure 4: Dataset Statistics

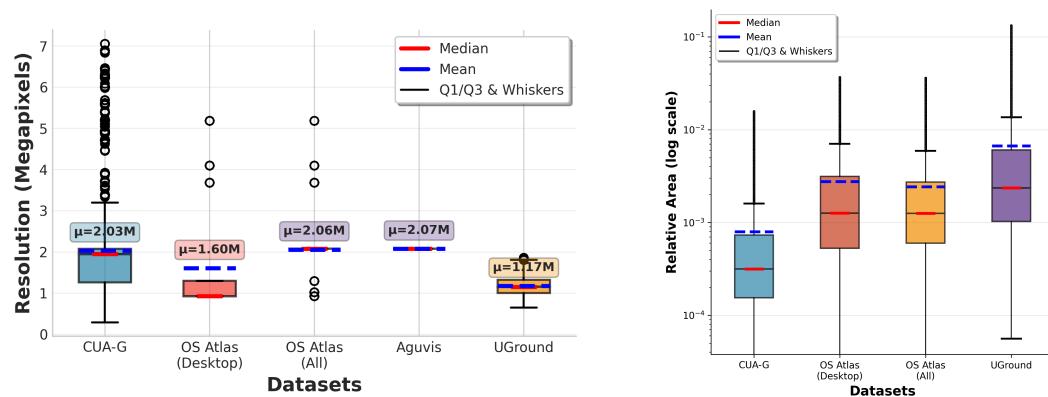


Figure 5: Comparison across different datasets. (Left) Pixel distribution for different datasets. (Right) Relative bounding box area in log scale.

interfaces. In contrast, other datasets focus on larger, more salient elements. GROUNDCUA also has denser annotations, averaging 64 per screenshot, more than three times that of OS-Atlas (Desktop) and much higher than Aguvis (9) or UGround (11). JEDI, despite its scale, has sparser annotations due to its reliance on synthetic data. UGround and Aguvis cover web interfaces, while OS-Atlas uses automated accessibility-tree traversal, which is often incomplete and prone to errors (Gou et al., 2024; Muryn et al., 2025), resulting in less precise annotations. JEDI is impressive in scale but lacks dense, real-world coverage due to the synthetic pipeline involved in creating the dataset. GROUNDCUA, with its high-resolution, human-verified annotations, and extensive platform diversity, fills a crucial gap by providing a more accurate and detailed representation of desktop environments.

A.5 DATASET EXAMPLES

Figure 6 shows examples of screenshots from several software platforms with bounding boxes overlaid on the images.

B INSTRUCTION TUNING DATA

GROUNDCUA contains over 3.5M annotated elements. Desktop screens are highly redundant, with many UI elements repeating across views. To reduce duplication before building instructions, we deduplicate elements using text matching on labels and perceptual image similarity (pHash) computed on crops defined by each element’s bounding box. This produces roughly 900k unique elements. We use strict thresholds during filtering. While this may remove some valid cases, it yields a diverse, non-redundant pool overall. We also randomize selection across screenshots so that no single interface is over-represented. The filtered elements form the base for constructing the instruction tuning data. We detail the different types of instructions we have created below and provide examples in Figure 7.

B.1 DIRECT INSTRUCTIONS

Direct instructions explicitly refer to the element (Click the “File” button) that the model should act on. These are the most common types of instruction a CUA would encounter. We first create a class of descriptive instructions for every element, which incorporates attributes such as color, shape, position, and nearby context. These descriptions provide richer context for the model and help reduce ambiguity. We generate these instructions by prompting Qwen2.5-VL-72B with the element’s bounding box, platform name, annotated label, the full screenshot, and an optional zoomed crop. We also ask the model to provide the location of the element if there are other similar elements to disambiguate. We additionally use category information to create three specific types of direct instructions:

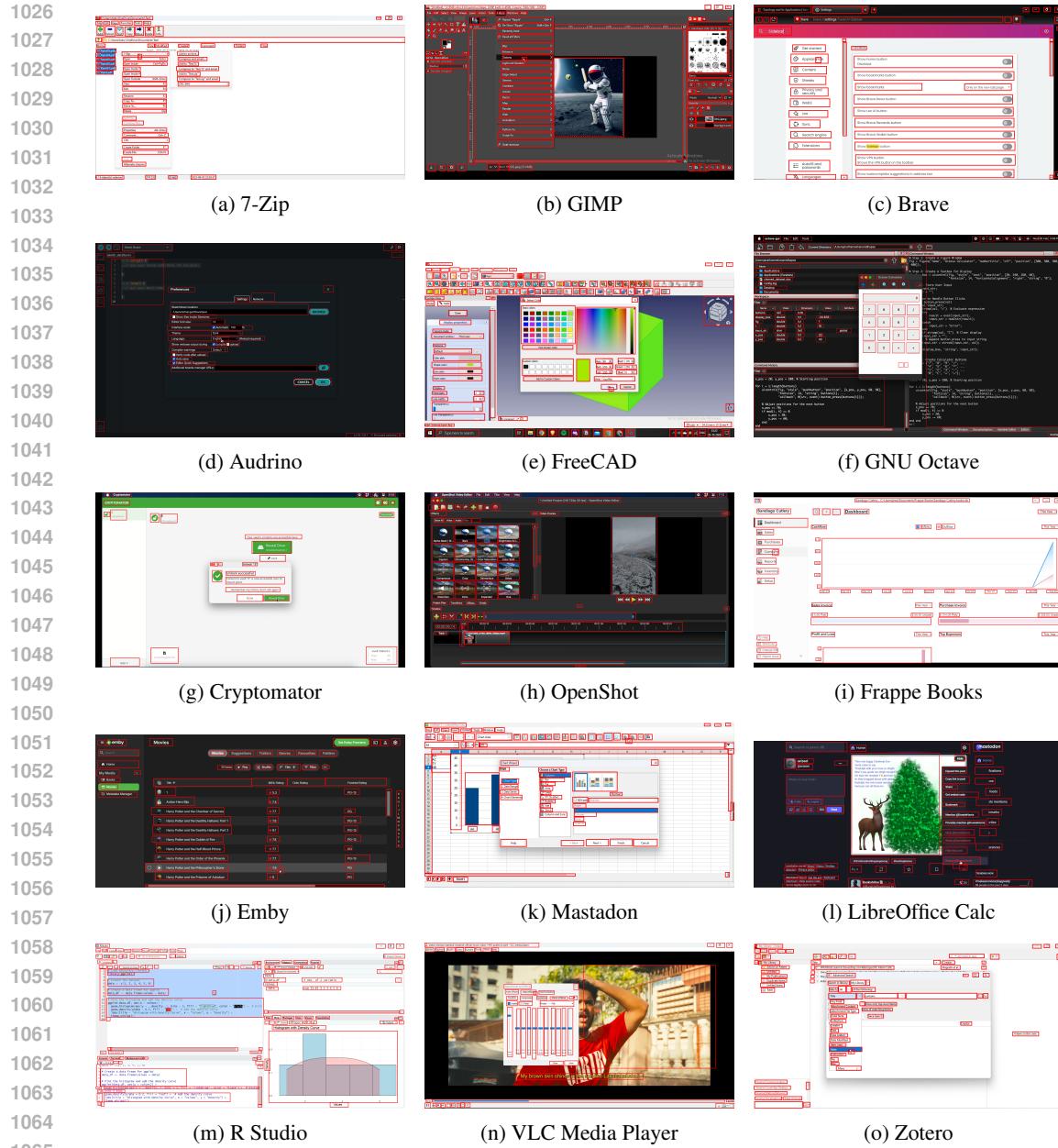


Figure 6: Examples of screenshots from different platforms in GROUNDCUA. Red bounding boxes indicate the annotated UI elements within each screenshot.

Description Instruction Prompt

You are an expert UI analyst. You are given a screenshot with a target element in a red bounding box, a cropped image containing the target element in a red bounding box, the name of the element and the platform name.

Can you find it? Is it visible from the screenshot? Can you write a concise description that is sufficient for humans to locate it from the screenshot? The response must be relevant to the platform and element name provided. Do not reference the red bounding box and that it is highlighted.

If you find other identical elements, your description must include specific details about the

1080 target element's location and other unique attributes to differentiate it from the others.
 1081 Only output what you are sure about. Do not make assumptions. Return the response in the
 1082 following JSON format:
 1083 {
 1084 "visible": true,
 1085 "description": "your description here"
 1086 }
 1087
 1088 Platform: {platform name}
 1089 Target Element Label: {text}

1090
 1091
 1092 **Textual elements.** We identify textual elements by matching OCR output with the
 1093 human-annotated label and by selecting items from the *Information Display* category. We then
 1094 embed the extracted text into about 100 templates that directly instruct the model to move to these
 1095 labels. Some templates used to generate instructions are provided below.

Textual Elements Instruction Templates

1. Do you see the text 'text'? Please click on it.
2. Please locate the user interface component marked with the text 'text' and then proceed to click on it.
3. Make your way to the 'text' label with your cursor.
4. You are required to find the element associated with the text 'text' and then move your cursor to hover over it.

1100
 1101
 1102 **Visual elements.** For icon-based or other visual elements (e.g., tool icons, shapes, images), we
 1103 generate concise captions that highlight distinctive features and local context (e.g., "Click the
 1104 magnifying-glass icon next to the search bar"). These are produced using Qwen2.5-VL-72B by
 1105 providing the element crop, its bounding box in the full screenshot, the platform name, and the
 1106 annotated label.

1107
 1108 **General templates.** In addition to text and visual elements, we design a set of general instructions
 1109 that apply to any element. These are created heuristically using about 120 templates (e.g., "Click on
 1110 the following element.") or generated by prompting an MLLM.

General Instruction Prompt

1111 You are an expert UI analyst. You are given a screenshot with a target element in a red bounding
 1112 box, a cropped image containing the target element in a red bounding box, the name of the
 1113 element and the platform name.

1114 Is it visible from the screenshot? Generate a concise, imperative instruction a user would give
 1115 to operate or interact with the target element.

1116 The response must be relevant to the platform and element name provided. Do not reference
 1117 the red bounding box and that it is highlighted.

1118 If you find other identical elements, your description must include specific details about the
 1119 target element's location and other unique attributes to differentiate it from the others.

1120 Only output what you are sure about. Do not make assumptions. Return the response in the
 1121 following JSON format:

1122 {
 1123 "visible": true,
 1124 "instruction": "your description here"
 1125 }
 1126

1127
 1128 Platform: {platform}
 1129 Target Element Label: {text}

1134
1135

B.2 FUNCTIONAL INSTRUCTION PROMPT

1136
1137
1138
1139
1140

Functional instructions describe an element by its purpose rather than its name (e.g., “Open a new tab”). We focus on *Buttons* and *Menus* since these most often encode actions. For each candidate element, we prompt Qwen2.5-VL-72B with the full screenshot, the element crop and bounding box, platform name, and the annotated label, asking for a concise functional instruction (e.g., “Open a new tab”).

1141
1142

Functional Instruction Prompt

1143
1144
1145
1146
1147

You are an expert UI analyst. You are given a screenshot with a target element in a red bounding box, a cropped image containing the target element in a red bounding box, the name of the element and the platform name. Is it visible from the screenshot? Generate a task-oriented instruction that describes a user’s goal. The instruction must implicitly identify the target element by describing what it helps the user accomplish (not the name of the element).

1148
1149

The response must be relevant to the platform and element name provided. It should also be concise and to the point. Do not reference the red bounding box and that it is highlighted.

1150
1151
1152

Include the location or other unique attributes if there are other identical elements.

Only output what you are sure about. Do not make assumptions. Return the response in the following JSON format:

```
{
  "visible": true,
  "function": "your description here"
}
```

Platform: {platform}

Target Element Label: {text}

1157
1158
1159

B.3 SPATIAL INSTRUCTIONS

1160
1161
1162
1163
1164
1165
1166
1167

Spatial instructions locate a target element by its position relative to another element (anchor), using relations such as *left*, *right*, *above*, *below*, and *between*. We leverage dense annotations to choose anchors that are close to the target and have reliable labels (e.g., “Click the icon to the left of ‘Files’”). We generate these with simple templates that insert the anchor’s label and the relation. Some templates used to produce instructions are provided below.

1168
1169

Spatial Instructions Templates

1170
1171
1172
1173
1174

1. Place your mouse on the element directly to the right of ”{element}”.
2. Hover your mouse on the element immediately to the left of ”{element}”.
3. Hover your mouse on the element between ”{element_1}” and ”{element_2}”.
4. Place your mouse on the element directly above ”{element}”.

1175

B.4 EXAMPLES

1177
1178
1179

Figure 7 shows different kinds of instructions generated by our data generation pipeline.

1180

B.5 NEED AND IMPACT OF DIFFERENT INSTRUCTION TYPES

1181
1182
1183
1184
1185
1186
1187

As mentioned above we have three main instruction types: Direct, Functional, and Spatial. The “Direct” category is itself broad, encompassing instructions based on descriptions, text/visuals, as well as general/heuristic templates. To analyze their impact of different instruction types and their subtypes, we sampled 100k datapoints for each distinct instruction subtype and trained Qwen2.5-VL-Instruct-3B model. The results are presented in Table 7.

As shown in Table 7, Functional instructions yield the highest average performance. We hypothesize this is because these goal-oriented instructions (e.g., “Open a new tab”) closely match the tasks in

1188 Table 7: **Ablation study on different instruction types.** We sample 100k data points for each type
 1189 and train a Qwen2.5-VL-3B model.

Data Type	SS-Pro	OSW-G	UI-V	MMB-GUI	SSv2	Avg
Functional	43.0	51.0	27.6	73.4	88.1	56.6
Direct - Description	36.5	58.5	24.5	70.1	85.0	54.9
Direct - General templates	37.9	52.8	26.4	73.8	86.1	55.4
Direct - Text and visual	35.3	51.0	20.3	64.2	85.1	51.2
Direct - Miscellaneous	32.5	56.3	24.7	67.1	85.4	53.2
Spatial	20.5	52.5	22.4	67.8	74.1	47.5

1200
 1201
 1202 the evaluation benchmarks. However, the other instruction types are crucial for building a robust,
 1203 well-rounded agent for two main reasons:

1204
 1205 1. **Complementary Strengths:** While “Functional” is best on average, other types excel at
 1206 specific tasks. For example, in the OSWorld-G text-recognition category, the “Direct - Text
 1207 and visual” split achieves a 0.64 score, outperforming the “Functional” split’s 0.60.

1208 2. **Preventing Overfitting:** We observed that models trained on only one instruction type
 1209 become brittle. For example, a model trained only on “Description” instructions sees its
 1210 performance drop by 4% on ScreenSpot-Pro when the prompt “Click on the element with
 1211 the following description:” is not prepended to the benchmark’s instructions.

1212 Our final 700K SFT dataset is a chosen mix to ensure the model is both high-performing and less
 1213 sensitive to prompts used. Hence, when evaluating our final models, we do not provide any prefix
 1214 prompts and evaluate directly on the instructions provided by the benchmarks.

1216 B.6 QUALITY OF INSTRUCTION TUNING DATA

1217 Our MLLM pipeline for generating the instructions is highly robust for a key reason: we are not de-
 1218 pending on the MLLM’s open-ended knowledge. Our pipeline is highly constrained. It provides the
 1219 MLLM with strong, ground-truth context, including the element’s name, its bounding box, and addi-
 1220 tional screenshot context (e.g., elements around the target element for spatial instructions). The task
 1221 is one of grounded rephrasing or description, not open-ended task creation. This also clearly reflects
 1222 the outcome of the trained model using generated instructions across a wide variety of benchmarks
 1223 and the reported result in the paper.

1224 To further verify this systematically, we performed a human evaluation on the generated instruction-
 1225 tuning set. Three annotators who are not the authors of the paper annotated 100 randomly selected
 1226 instructions to check for validity (i.e., whether the instruction accurately describes the element being
 1227 grounded). Using a majority vote to aggregate these annotations, we found an error rate of 4%. We
 1228 believe this represents a low error rate for a training dataset, highlighting the quality and reliability
 1229 of our MLLM-generated instruction data.

1231 C TRAINING

1232 In this section, we describe the training process for GROUNDNEXT. We outline the key design
 1233 choices behind our SFT and RL setups, including data selection and filtering strategies, hyperpa-
 1234 rameter configurations, and other relevant details. We also report experimental observations, high-
 1235 lighting the impact of these choices and the insights gained during development.

1236 C.1 SFT DATA

1237 From the instruction-tuning corpus, we curate a split of 700K size with 50% direct instructions, 35%
 1238 functional instructions, and 15% spatial instructions.

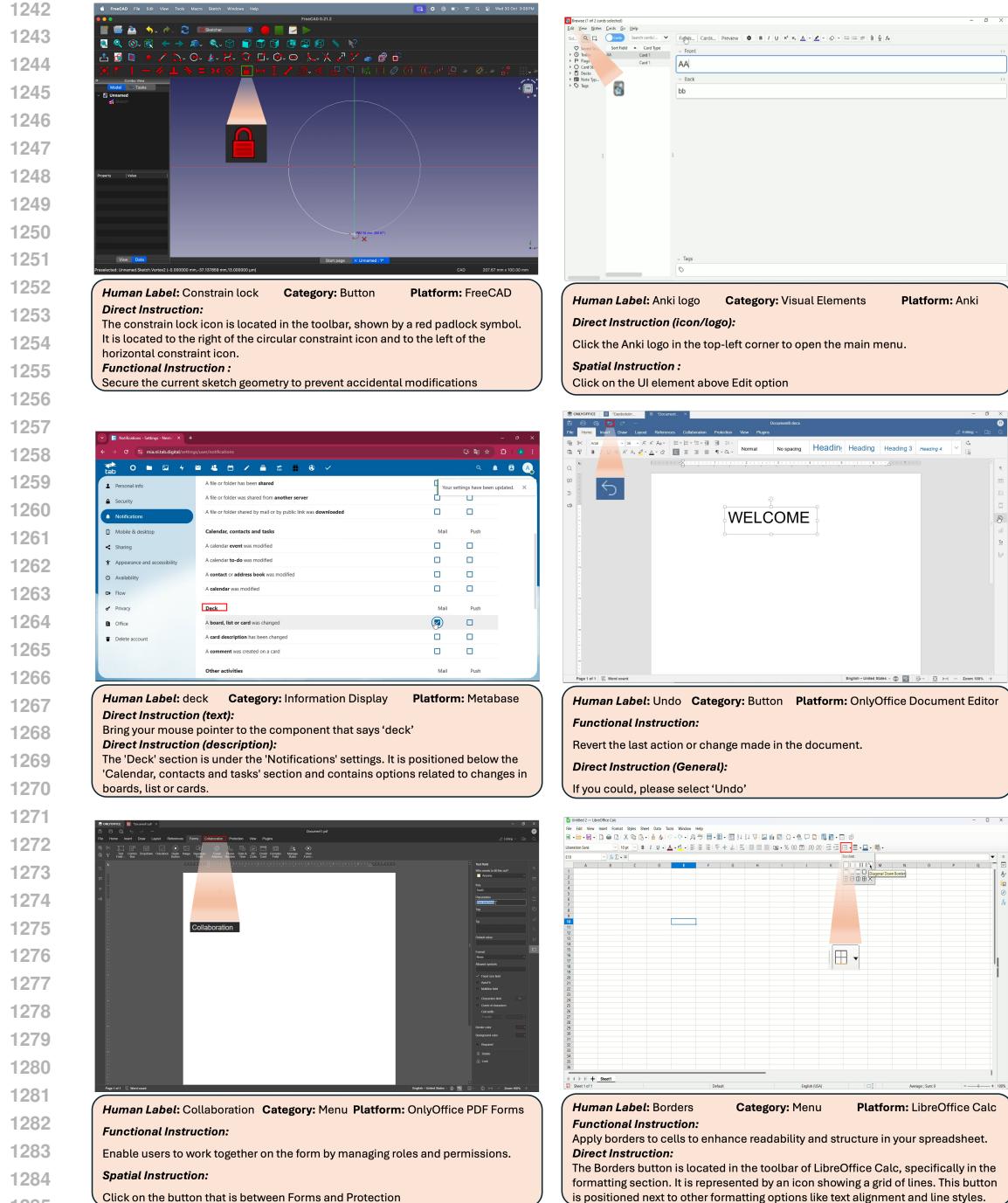


Figure 7: Instruction tuning data examples.

C.2 SFT TRAINING DETAILS

We use LlamaFactory (Zheng et al., 2024) to train our SFT models with a learning rate of 3e-6, cosine decay, and a warmup ratio of 0.05. Models are trained for two epochs, as this consistently outperforms training for a single epoch. Preliminary experiments also show that training the entire model, rather than only the LLM, is more effective; we therefore adopt this configuration throughout. All models are trained on a single H100 node with 8 H100 GPUs, using a global batch size of 128, gradient accumulation of 16, and a per-device batch size of 1.

1296 C.3 RL DATA
1297

1298 For RL training, we first performed rejection sampling on the SFT training set using the SFT model
1299 itself. Specifically, we extracted the model’s errors and sampled 10K instances, which were then
1300 used to run RL. While this yielded modest improvements, the SFT model was already strong, and
1301 many of the extracted errors corresponded to noisy or ambiguous datapoints (e.g., prompts with mul-
1302 tiple valid answers or inconsistent labels). These issues limited the effectiveness of this approach.

1303 We next applied RL on top of the SFT model using 10K previously unseen samples from GROUND-
1304 CUA. This strategy avoided noise from ambiguous training points and yielded a more significant
1305 performance boost. Consequently, our final setup exclusively used the 10K samples unseen during
1306 SFT from GROUNDCAU.

1307 We also explored incorporating a small amount of out-of-distribution data to encourage generaliza-
1308 tion to web and mobile domains. Specifically, we added 10K samples from GUIAct (Chen et al.,
1309 2024), in addition to 10K samples from GROUNDCAU, split evenly between mobile (5K) and web
1310 (5K). Unlike the gains observed when adding in-distribution samples from GROUNDCAU, this pre-
1311 liminary attempt did not yield consistent improvements. We note, however, that our setup was
1312 limited in scope and did not include rejection sampling or other analysis. A more systematic in-
1313 vestigation of combining our dataset with complementary sources, particularly in the context of RL
1314 training to improve cross-platform performance, is an exciting direction for future work.

1315
1316 C.4 RL TRAINING DETAILS
1317

1318 For our RL training, we compared two rule-based optimization methods, Group Relative Policy
1319 Optimization (GRPO) and Relative Leave-One-Out (RLOO). Empirically, and as pointed out in
1320 previous literature (Zhang et al., 2025), we found that RLOO produced more stable learning and
1321 better results. The RLOO objective can be written as:

$$1323 \nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \left(R(\tau) - \frac{1}{n-1} \sum_{j \neq i} R(\tau_j) \right) \right], \quad (1)$$

1326 where $R(\tau)$ is the reward of trajectory τ , and the baseline is computed as the average reward of
1327 all other trajectories in the same group (excluding the i -th trajectory). This avoids training a critic
1328 model and instead uses relative group comparisons. In our case, the trajectories are the predicted
1329 coordinates by the model, and the reward is defined based on where the predicted point is relative to
1330 the bounding box. For the grounding task, τ is a sequence of tokens, which represents the predicted
1331 coordinate.

1332
1333 **Reward Formulation.**

1334 1. *Continuous reward*: Based on the normalized distance d between the predicted point \hat{p} and the
1335 ground-truth bounding box B , we defined:

$$1337 r = 1 - d, \quad d = \frac{\|\hat{p} - p^*\|}{\text{MaxDist}(B, W, H)},$$

1339 where p^* is the closest point in B , and $\text{MaxDist}(B, W, H)$ is the maximum possible distance a point
1340 inside an image of width W and height H can have. However, this suffered from sparsity and weak
1341 gradient signals.

1343 2. *Binary reward*: A simple scheme assigning

$$1345 r = \begin{cases} 1 & \text{if } \hat{p} \in B, \\ -1 & \text{otherwise.} \end{cases}$$

1347 This proved more stable than continuous rewards but lacked sensitivity to error magnitude.

1348 3. *Customized Discrete Reward (final choice)*: To distinguish between predictions that miss the
1349 bounding box by a small or large margin, and to encourage predictions inside the box to move closer

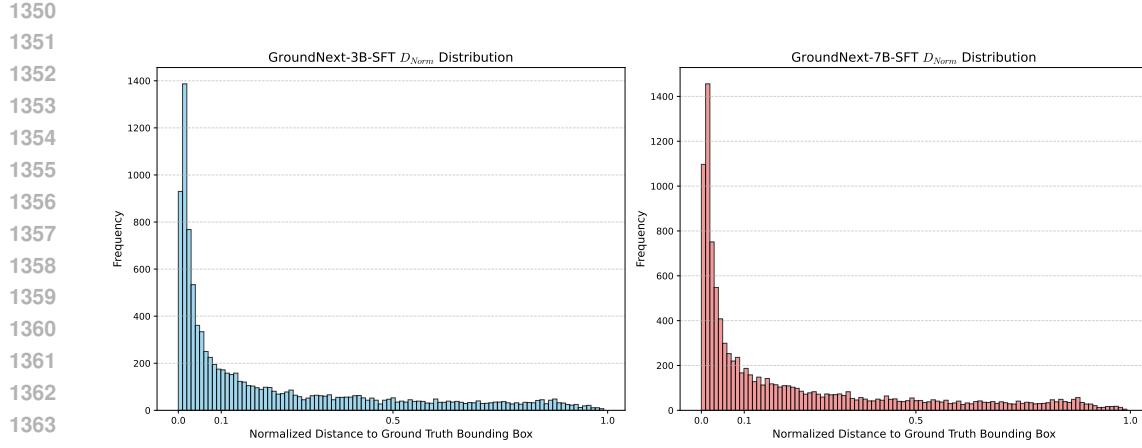


Figure 8: \mathcal{D}_{norm} distribution of the errors made by GROUNDNEXT-3B (SFT) and GROUNDNEXT-7B (SFT) on the training set. 50% of the errors lie within $\mathcal{D}_{norm} < 0.1$, highlighting the motivation of our reward function.

to the center, we designed a customized discrete reward based on a normalized signed distance. The reward function is defined as:

$$R_{score}(\hat{p}, B, I) = \begin{cases} -1.0 & \text{if } \mathcal{D}_{norm} < -0.5, \\ -0.5 & \text{if } -0.5 \leq \mathcal{D}_{norm} < -0.1, \\ -0.1 & \text{if } -0.1 \leq \mathcal{D}_{norm} < 0, \\ 0.1 & \text{if } 0 \leq \mathcal{D}_{norm} < 0.1, \\ 0.5 & \text{if } 0.1 \leq \mathcal{D}_{norm} < 0.5, \\ 1.0 & \text{if } \mathcal{D}_{norm} \geq 0.5. \end{cases}$$

The normalized distance is calculated as $\mathcal{D}_{norm} = \frac{\mathcal{D}(\hat{p}, B)}{\mathcal{D}_{ref}}$, where $\mathcal{D}(\hat{p}, B)$ is the signed distance between the predicted coordinate \hat{p} and the ground-truth bounding box B (with positive values denoting the interior). The reference distance \mathcal{D}_{ref} adapts based on the prediction’s location to ensure $\mathcal{D}_{norm} \in [-1, 1]$:

$$\mathcal{D}_{ref} = \begin{cases} 0.5 \times \text{diam}(B) & \text{if } \hat{p} \in B, \\ \mathcal{D}_{max}(B, I) & \text{otherwise.} \end{cases}$$

Here, we use half the bounding box diameter when $\hat{p} \in B$, as this represents the maximum possible distance a point inside B can have from the boundary. Conversely, $\mathcal{D}_{max}(B, I)$ represents the maximum distance in the image context I for exterior points.

In summary, we adopt RLOO with this shaped reward formulation, as it effectively balances penalties for misses with incentives for precise centering. Our level-wise reward is motivated by the large proportion of predicted points that miss the bounding box by only a small margin. We highlight this characteristic in Figure 8, where we compute \mathcal{D}_{norm} for 10K errors made by GROUNDNEXT-3B (SFT) and GROUNDNEXT-7B (SFT) on the training set they were trained on. This figure shows the imbalance in the error distance of the predicted points and the prevalence of “near misses”, which directly motivates our choice of reward function.

To better demonstrate how the rewards behave for different predicted points, Figure 9 shows a screenshot from FreeCAD where the ground-truth bounding box encloses the “sketch in progress”. In this toy example, we illustrate six predicted points, each with a corresponding \mathcal{D}_{norm} value that falls into one of the ranges defined by our reward function. As a result, each point receives a different reward. Higher rewards correspond to predicted points that are closer to the center of the bounding box.

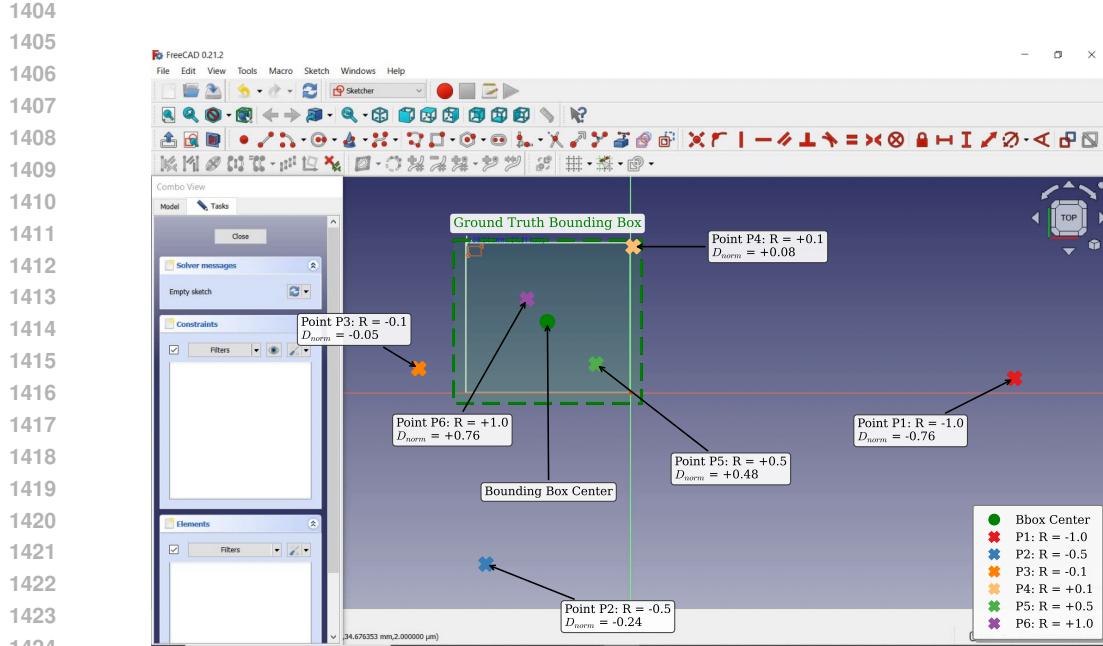


Figure 9: Rewards of 6 predicted points with respect to the ground truth bounding box in a screenshot of FreeCAD.

C.5 RL DESIGN CHOICES AND HYPERPARAMETERS

C.5.1 DISCRETE REWARD DESIGN

We investigate the impact of reward granularity on model performance during the RLOO stage. As shown in Table 8, we compared reward configurations ranging from binary feedback to 8-level quantization using a preliminary 3B checkpoint. We observe that the 6-level design achieves the best performance on OSWorld-G (63.1%) and yields the highest average score (65.2%) across all granularity settings. Based on these results, we selected the 6-level configuration (formulated as $\{-1.0, -0.5, -0.1, 0.1, 0.5, 1.0\}$) for all subsequent experiments.

Table 8: Performance of different reward designs for the RLOO stage using a preliminary 3B checkpoint. The “Levels” column indicates the number of discrete reward values used within the range $[-1, 1]$.

Reward Granularity	MMBench-GUI	OSWorld-G	ScreenSpot-Pro	Avg
8 Levels	80.6	61.5	52.3	64.8
6 Levels	81.0	63.1	51.6	65.2
4 Levels	80.4	62.6	52.6	65.2
2 Levels	81.0	62.1	52.4	65.1

C.5.2 IMPACT OF GROUP NUMBER

We also ablated the group size n (the number of generations per prompt) to balance performance with training efficiency. This study was conducted using a preliminary GROUNDNEXT-3B-SFT checkpoint trained via GRPO on a subset of 5.1K RL data points. As shown in Table 9, increasing the group size to $n = 32$ yields the best overall performance; however, the marginal gains do not justify the significant increase in computational cost and training time. While $n = 4$ slightly outperforms $n = 8$, we consider such a small group size potentially unstable for gradient estimation.

1458
 1459 Consequently, we choose to $n = 8$ for our final experiments, a choice consistent with settings used
 1460 in recent prior works (Liu et al., 2025a; Tang et al., 2025).
 1461

1462 Table 9: Ablation of the group number n using a preliminary 3B checkpoint with GRPO (5K sam-
 1463 ples). All scores are reported as percentages.

n	ScreenSpot-Pro	ScreenSpot-v2	OSWorld-G	UI-Vision	Avg
4	48.1	88.1	59.4	58.11	63.4
8	48.6	87.7	59.0	57.8	63.3
32	49.5	88.2	58.3	58.2	63.5

C.5.3 RLOO vs. GRPO

1474 Further, we conducted an ablation on RLOO vs. GRPO. While GRPO is widely used, we selected
 1475 RLOO for its simplicity and its successful application in related work such as InfiGUI-G1 (Liu et al.,
 1476 2025a). To validate this choice, we conducted a minimal comparison using an early SFT checkpoint
 1477 (Table 10). We observed that RLOO achieves performance parity with GRPO, yielding a slightly
 1478 higher average score (65.7% vs. 65.3%) and stronger results on OSWorld-G. We emphasize that we
 1479 do not claim RLOO is inherently superior to GRPO; rather, these results indicate that RLOO was a
 1480 reliable and robust configuration for our dataset-centric experiments.

1481 Table 10: Comparison of RLOO and GRPO algorithms on an early SFT checkpoint. All scores are
 1482 reported as percentages.

Algorithm	ScreenSpot-Pro	ScreenSpot-v2	OSWorld-G	Avg
GRPO	49.5	88.2	58.3	65.3
RLOO	49.3	88.3	59.4	65.7

D EVALUATION

D.1 SCREENSPOTPRO RESULTS

1495 Table 11 summarises the results for different models on ScreenSpot-Pro (Li et al., 2025).

D.2 OSWORLD-G RESULTS

1499 Table 12 summarises the results for different models on OSWorld-G (Xie et al., 2025).

D.3 MMBENCH-GUI RESULTS

1503 Table 13 summarises the results for different models on MMBench-GUI (Wang et al., 2025b).

D.4 SCREENSPOT-V2 RESULTS

1507 Table 14 summarises the results for different models on ScreenSpot-v2 (Cheng et al., 2024).

D.5 UI-VISION RESULTS

1511 Table 15 summarises the results for different models on UI-Vision (Nayak et al., 2025).

1512 Table 11: Performance of different models on SSPro across categories (CAD, Dev, Creative, Scien-
1513 tific, Office, OS). Text and Icon refer to different input types.
1514

Model	CAD		Dev		Creative		Scientific		Office		OS		Avg.		
	Text	Icon	Avg.												
GPT-4o	2.0	0.0	1.3	0.0	1.0	0.0	2.1	0.0	1.1	0.0	0.0	0.0	1.3	0.0	0.8
Claude Computer Use	14.5	3.7	22.0	3.9	25.9	3.4	33.9	15.8	30.1	16.3	11.0	4.5	23.4	7.1	17.1
Qwen2.5-VL-3B	9.1	7.3	22.1	1.4	26.8	2.1	38.2	7.3	33.9	15.1	10.3	1.1	23.6	3.8	16.1
Qwen2.5-VL-7B	16.8	1.6	46.8	4.1	35.9	7.7	49.3	7.3	52.5	20.8	37.4	6.7	38.9	7.1	26.8
FOCUS-2B	7.6	3.1	22.8	1.7	23.7	1.7	25.0	7.1	23.2	7.7	17.8	2.5	19.8	3.9	13.3
ShowUI-2B	2.5	0.0	16.9	1.4	9.1	0.0	13.2	7.3	15.3	7.5	10.3	2.2	10.8	2.6	7.7
UI-TARS-2B	15.8	1.2	51.9	2.8	47.5	9.7	57.6	14.5	60.5	13.2	38.3	7.9	45.2	8.1	31.1
JEDI-3B	27.4	9.4	61.0	13.8	53.5	8.4	54.2	18.2	64.4	32.1	38.3	9.0	49.8	13.7	36.1
SeeClick-9.6B	2.5	0.0	0.6	0.0	1.0	0.0	3.5	0.0	1.1	0.0	2.8	0.0	1.8	0.0	1.1
Aria-UI	7.6	1.6	16.2	0.0	23.7	2.1	27.1	6.4	20.3	1.9	4.7	0.0	17.1	2.0	11.3
OS-Atlas-7B	12.2	4.7	33.1	1.4	28.8	2.8	37.5	7.3	33.9	5.7	27.1	4.5	28.1	4.0	18.9
UGround-7B	14.2	1.6	26.6	2.1	27.3	2.8	31.9	2.7	31.6	11.3	17.8	0.0	25.0	2.8	16.5
UI-TARS-7B	17.8	4.7	47.4	4.1	42.9	6.3	56.9	17.3	50.3	17.0	21.5	5.6	39.6	8.4	27.7
JEDI-7B	38.0	14.1	42.9	11.0	50.0	11.9	72.9	25.5	75.1	47.2	33.6	16.9	52.6	18.2	39.5
GUI-Actor-7B	—	—	—	—	—	—	—	—	—	—	—	—	—	—	44.6
OpenCUA-7B	—	—	—	—	—	—	—	—	—	—	—	—	—	—	50.0
CogAgent-18B	7.1	3.1	14.9	0.7	9.6	0.0	22.2	1.8	13.0	0.0	5.6	0.0	12.0	0.8	7.7
UI-TARS-72B	18.8	12.5	62.9	17.2	57.1	15.4	64.6	20.9	63.3	26.4	42.1	15.7	50.9	17.6	38.1
UI-R1-3B	11.2	6.3	22.7	4.1	27.3	3.5	42.4	11.8	32.2	11.3	13.1	4.5	24.9	6.4	17.8
UI-R1-E-3B	37.1	12.5	46.1	6.9	41.9	4.2	56.9	21.8	65.0	26.4	32.7	10.1	—	—	33.5
GUI-R1-3B	26.4	7.8	33.8	4.8	40.9	5.6	61.8	17.3	53.6	17.0	28.1	5.6	—	—	—
InfiGUI-R1-3B	33.0	14.1	51.3	12.4	44.9	7.0	58.3	20.0	65.5	28.3	43.9	12.4	49.1	14.1	35.7
GUI-G1-3B	39.6	9.4	50.7	10.3	36.6	11.9	61.8	30.0	67.2	32.1	23.5	10.6	49.5	16.8	37.1
SE-GUI-3B	38.1	12.5	55.8	7.6	47.0	4.9	61.8	16.4	59.9	24.5	40.2	12.4	50.4	11.8	35.9
InfiGUI-G1-3B	50.8	25.0	64.9	20.0	51.5	16.8	68.8	32.7	70.6	32.1	49.5	15.7	—	—	45.2
GUI-R1-7B	23.9	6.3	49.4	4.8	38.9	8.4	55.6	11.8	58.7	26.4	42.1	16.9	—	—	—
SE-GUI-7B	51.3	42.2	68.2	19.3	57.6	9.1	75.0	28.2	78.5	43.4	49.5	25.8	63.5	21.0	47.3
Phi-Ground-7B-16C-DPO	70.8	16.7	56.6	13.3	26.9	17.2	58.0	29.1	76.4	44.0	55.1	25.8	56.4	21.8	43.2
GUI-G ² -7B	55.8	12.5	68.8	17.2	57.1	15.4	77.1	24.5	74.0	32.7	57.9	21.3	64.7	19.6	47.5
GTA1-7B	66.9	20.7	62.6	18.2	53.3	17.2	31.8	76.4	82.5	50.9	48.6	25.9	65.5	25.2	50.1
InfiGUI-G1-7B	57.4	23.4	74.7	24.1	64.6	15.4	80.6	31.8	75.7	39.6	57.0	29.2	68.4	25.2	51.9
Our Models															
GROUNDNEXT-3B (SFT)	50.3	26.6	65.6	36.6	48.5	22.4	66.0	38.2	76.3	54.7	41.1	28.1	58.3	32.8	48.6
GROUNDNEXT-3B (RL)	55.3	32.8	65.6	36.6	50.0	24.5	66.0	37.3	74.6	50.9	45.8	29.2	59.9	33.6	49.8
GROUNDNEXT-7B (SFT)	46.2	32.8	68.2	38.6	54.5	20.3	70.8	37.3	76.8	49.1	45.8	33.7	59.9	33.6	50.2
GROUNDNEXT-7B (RL)	50.2	34.3	73.4	40.0	59.6	23.8	70.1	42.7	74.6	54.7	53.3	30.3	60.5	33.6	52.9

1544
1545 Table 12: Performance comparison of models on OSWORLD-G across multiple capability dimensions.
1546
1547

Model	Text Matching	Element Recognition	Layout Understanding	Fine-grained Manipulation	Refusal	Overall
OS-Atlas-7B	44.1	29.4	35.2	16.8	7.4	27.7
UGround-V1-7B	51.3	40.3	43.5	24.8	0.0	36.4
Aguvis-7B	55.9	41.2	43.9	28.2	0.0	38.7
UI-TARS-7B	60.2	51.8	54.9	35.6	0.0	47.5
Seed1.5-VL	73.9	66.7	69.6	47.0	18.5	62.9
UI-TARS-72B	69.4	60.6	62.9	45.6	0.0	57.1
Gemini-2.5-Pro	59.8	45.5	49.0	33.6	38.9	45.2
Operator	51.3	42.4	46.6	31.5	0.0	40.6
Qwen2.5-VL-3B	41.4	28.8	34.8	13.4	0.0	27.3
Qwen2.5-VL-7B	45.6	32.7	41.9	18.1	0.0	31.4
Qwen2.5-VL-32B	63.2	47.3	49.0	36.9	0.0	46.5
JEDI-3B	67.4	53.0	53.8	44.3	7.4	50.9
JEDI-7B	65.9	55.5	57.7	46.9	7.4	54.1
InfiGUI-G1-3B	65.5	53.0	56.1	34.2	0.0	49.6
InfiGUI-G1-7B	72.0	63.6	66.8	46.3	0.0	59.9
GTA1-7B	63.2	82.1	74.2	70.5	0.0	67.7
Our Models						
GROUNDNEXT-3B (SFT)	67.4	68.8	68.4	43.0	0.0	62.2
GROUNDNEXT-3B (RL)	70.9	71.2	70.8	43.6	0.0	64.2
GROUNDNEXT-7B (SFT)	72.4	73.3	73.1	53.7	0.0	67.2
GROUNDNEXT-7B (RL)	74.3	73.9	73.5	51.7	0.0	67.7

1566 Table 13: MMBench-GUI: Cross-platform performance of models across Windows, MacOS, Linux,
1567 iOS, Android, and Web.
1568

Model	Windows		MacOS		Linux		iOS		Android		Web		Avg
	Basic	Adv.	Basic	Adv.									
GPT-4o	1.5	1.1	8.7	4.3	1.1	1.0	5.1	3.3	2.5	1.4	3.2	2.9	2.9
Claude-3.7	1.5	0.7	12.5	7.5	1.1	0.0	13.7	10.6	1.4	1.4	3.2	2.3	4.7
Qwen-Max-VL	43.9	36.8	58.8	56.1	53.9	30.1	77.4	59.1	79.5	70.1	74.8	58.8	58.0
ShowUI-2B	9.2	4.4	24.1	10.4	25.1	11.7	29.0	19.7	17.4	8.7	22.9	12.7	16.0
Qwen2.5-VL-7B	31.4	16.5	31.3	22.0	21.5	10.2	66.6	55.2	35.1	35.2	40.3	32.5	33.9
Qwen2.5-VL-72B	55.7	33.8	49.9	30.1	40.3	20.9	56.1	28.2	55.6	25.4	68.4	45.8	41.8
OS-Atlas-Base-7B	36.9	18.8	44.4	21.7	31.4	13.3	74.8	48.8	69.6	46.8	61.3	35.4	41.4
Aguvis-7B-720P	37.3	21.7	48.1	33.3	33.5	25.0	67.5	65.2	61.0	51.0	61.6	45.5	45.7
UI-TARS-1.5-7B	68.3	39.0	69.0	44.5	64.4	37.8	88.5	69.4	90.5	69.3	81.0	56.5	64.3
UI-TARS-72B-DPO	78.6	51.8	80.3	62.7	68.6	51.5	90.8	81.2	93.0	80.0	88.1	68.5	74.3
UGround-V1-7B	66.8	39.0	71.3	48.6	56.5	31.1	92.7	70.9	93.5	71.0	88.7	64.6	65.7
InternVL3-72B	70.1	42.6	75.7	52.3	59.2	41.3	93.6	80.6	92.7	78.6	90.7	65.9	72.2
Naive RLVR-3B	68.6	44.5	78.6	50.0	61.3	39.3	92.4	76.4	91.3	76.1	87.4	63.0	70.9
Naive RLVR-7B	79.3	58.1	82.3	62.7	64.4	44.9	94.9	89.1	95.5	84.2	92.9	79.5	79.3
InfiGUI-G1-3B	74.2	47.1	78.8	55.2	65.4	41.8	95.2	78.8	92.1	78.0	89.7	64.3	73.4
InfiGUI-G1-7B	82.7	61.8	83.8	63.9	72.3	52.0	94.9	89.4	95.2	85.6	93.5	76.3	80.8
Our Models													
GROUNDNEXT-3B (SFT)	81.5	50.7	85.8	64.2	73.8	53.6	93.0	77.0	90.4	73.8	88.1	59.7	75.5
GROUNDNEXT-3B (RL)	80.4	52.6	<u>87.2</u>	64.5	70.7	57.1	<u>94.9</u>	78.5	91.9	78.0	90.6	64.3	77.1
GROUNDNEXT-7B (SFT)	83.8	<u>60.7</u>	86.7	<u>69.9</u>	75.4	61.2	94.3	83.3	94.9	79.4	91.0	70.5	80.4
GROUNDNEXT-7B (RL)	81.5	<u>60.7</u>	87.8	73.1	75.4	<u>59.2</u>	95.2	86.1	95.5	80.3	90.97	72.7	81.1

1588 Table 14: ScreenSpot-V2: Cross-platform breakdown by device and modality. “Icon/Widget” indicates 1589 icon- or widget-based queries. “Avg.” is across all devices and modalities.
1590

Model	Mobile		Desktop		Web		Avg.
	Text	Icon/Widget	Text	Icon/Widget	Text	Icon/Widget	
SeeClick	78.4	50.7	70.1	29.3	55.2	32.5	55.1
OS-Atlas-Base-7B	95.2	75.8	90.7	63.6	90.6	77.3	85.1
UI-TARS-7B	96.9	89.1	95.4	85.0	93.6	85.2	91.6
UI-TARS-72B	94.8	86.3	91.2	87.9	91.5	<u>87.7</u>	90.3
Qwen2.5-VL-3B	93.4	73.5	88.1	58.6	88.0	71.4	80.9
Qwen2.5-VL-7B	97.6	87.2	90.2	74.2	93.2	81.3	88.8
Qwen2.5-VL-32B	97.9	88.2	98.5	79.3	91.2	86.2	91.3
InfiGUI-G1-3B	99.3	88.2	94.8	82.9	<u>94.9</u>	80.3	<u>91.1</u>
InfiGUI-G1-7B	<u>99.0</u>	<u>91.9</u>	94.3	82.1	97.9	89.2	93.5
Our Models							
GROUNDNEXT-3B (SFT)	95.2	80.6	93.8	84.3	87.6	78.8	87.3
GROUNDNEXT-3B (RL)	94.8	96.4	93.9	87.1	90.6	79.3	88.5
GROUNDNEXT-7B (SFT)	97.2	84.8	94.3	90.0	91.5	74.9	89.3
GROUNDNEXT-7B (RL)	96.6	88.2	<u>95.4</u>	<u>87.9</u>	<u>94.9</u>	75.9	90.4

1609
1610 D.6 DISCUSSION ON RL GAINS1611
1612 We hypothesize that the observed “limited” improvement is not a failure of the RL step, but rather a
1613 finding that highlights the interaction between strong SFT baselines and RL gains. We also demon-
1614 strate that GROUNDCUA is an effective dataset for RL fine-tuning. We detail our analysis below.
16151616 D.6.1 HIGH-QUALITY SFT CREATES A “STRONG CEILING”
16171618 We hypothesize that stronger GUI models contain fewer actionable errors after the SFT stage, re-
1619 sulting in lower marginal benefits from subsequent RL fine-tuning, especially when the RL data is
drawn from the same distribution as the SFT data. This is supported by Figure 3, where we observe

1620 Table 15: UI-Vision: Performance grouped by category (Edu., Browser, Dev., Prod., Creative, En-
1621 tert.) and by setting (Basic, Functional, Spatial).

Model	Grouped by Setting			Overall
	Basic	Func.	Spatial	
GPT-4o	1.6	1.5	1.0	1.4
Claude-3.7-Sonnet	9.5	7.7	7.6	8.3
Qwen-2.5VL-7B	1.2	0.8	0.5	0.9
InternVL2.5-8B	2.5	2.8	1.0	2.1
MiniCPM-V-8B	7.1	5.3	1.5	4.3
SeeClick-9.6B	9.4	4.7	2.1	5.4
ShowUI-2B	8.1	7.7	2.1	5.9
CogAgent-9B	12.0	12.2	2.6	8.9
OSAtlas-7B	12.2	11.2	3.7	9.0
AriaUI-25.3B	12.2	14.0	4.0	10.1
UGround-v1-7B	15.4	17.1	6.3	12.9
UGround-v1-72B	27.9	26.7	14.9	23.2
Aguvis-7B	17.8	18.3	5.1	13.7
UI-TARS-7B	20.1	24.3	8.4	17.6
UI-TARS-72B	31.4	30.5	14.7	25.5
InfiGUI-G1-3B	31.2	28.0	8.2	22.0
InfiGUI-G1-7B	36.2	31.9	11.5	26.1
Our Models				
GROUNDNEXT-3B (SFT)	70.9	59.8	45.1	58.2
GROUNDNEXT-3B (RL)	72.9	63.9	50.6	62.1
GROUNDNEXT-7B (SFT)	67.1	60.0	49.9	58.7
GROUNDNEXT-7B (RL)	70.1	62.0	49.9	60.3

1649 that RL provides significantly larger gains for SFT models trained with other datasets compared to
1650 GROUNDCUA. We attribute this to the fact that GROUNDCUA yields a much stronger initial model;
1651 consequently, the RL stage serves as a minor refinement rather than a primary performance driver in
1652 our current setting.

1654 Table 16: Performance comparison between the base model (UI-Tars-1.5-7B) and the RL-tuned
1655 model (GTA-1-7B). Note that the results for UI-TARS-1.5-7B are reported using our own evaluation
1656 setup and differs from (Yang et al., 2025).

Benchmark	UI-Tars-1.5-7B	GTA-1-7B	Improvement
SS-Pro	47.9	50.1	+2.2%
OSW-G	64.2	67.7	+3.5%
MMB-GUI	75.4	79.4	+4.0%
SSv2	90.3	92.4	+2.1%
UI-V	20.8	25.7	+4.9%

1666 We also see this trend in a related work, GTA1 (Yang et al., 2025). GTA1-7B initializes its training
1667 from UI-TARS-1.5-7B, which is a powerful GUI grounding model. We observe that the average
1668 improvement across five benchmarks is 3.3% (see Table 16). This demonstrates that, while RL
1669 provides a consistent lift, the gains are moderate, not universally massive. The limited marginal
1670 return observed in GROUNDNEXT is consistent with the observations for GTA1-7B.

1672 **Important Note:** We emphasize that we **do not make a general claim that stronger GUI models**
1673 **cannot be effectively RL-tuned**. Our results merely provide evidence supporting the hypothesis
1674 that the marginal return is lower when a robust, high-quality SFT initialization is used, particularly

1674 for models in the 3–7B size range under the reward formulations we employ. A more detailed study
 1675 spanning different architectures, various reward functions, different model sizes, and deeper RL
 1676 fine-tuning is required to fully understand these interactions. This comprehensive investigation is
 1677 beyond the scope of our current paper, but our results provide the initial evidence for an interesting
 1678 phenomenon.

1681 D.6.2 GROUNDCUA IS A GREAT SOURCE FOR RL FINE-TUNING

1683 Table 17: RL ablation study: Performance of the Qwen2.5-VL-3B baseline trained with 10k RL
 1684 samples from different datasets.

1687 Dataset	SSPro	OSWorld-G	SSv2	MMBench	UI-V
1688 Baseline	29.0	37.4	81.8	60.8	6.3
1689 Aguvis	31.2	45.6	86.01	67.01	14.7
1690 OSAtlas	30.4	46.4	62.0	67.7	14.1
1691 UGround	33.6	43.8	89.0	68.8	16.7
1692 GroundCUA	36.8	48.8	88.9	70.5	19.2
1693 Imp. over baseline	+7.8%	+11.4%	+7.1%	+9.7%	+12.9%

1697 We clarify that the limited marginal gain observed in the final GROUNDCUA models is not a flaw
 1698 of the GROUNDCUA dataset itself. We validate this through a controlled experiment where we
 1699 sampled 10k data points from GROUNDCUA and three competing datasets with available bounding
 1700 boxes: Aguvis, OS-Atlas, and UGround. We trained a Qwen2.5-VL-3B-Instruct baseline using the
 1701 hyperparameters described in Section 4.1 and Appendix C.4, with two modifications: we adopted
 1702 the simpler binary (0/1) reward formulation described in the GTA paper and extended training to 2
 1703 epochs, as we observed rewards continuing to increase after the first epoch. We report the perfor-
 1704 mance across various benchmarks in Table Table 17

1705 We observe that GROUNDCUA provides substantial gains of 9.8% on average over the Qwen2.5-
 1706 VL-3B baseline. Furthermore, it achieves an average gain of 1.9% over the next best baseline (and
 1707 2.5% if we exclude the SSv2 benchmark). This validates that the GROUNDCUA data is highly
 1708 effective for RL. We attribute this to our human-annotated labels and bounding boxes (less noise)
 1709 and the rich diversity of platforms covered by our dataset.

1710 The strength of GROUNDCUA lies in its platform diversity (87 applications across 12 categories)
 1711 and dense annotations, which offer a huge variety of UI elements for agents to learn. RL training
 1712 on a very large scale (e.g., 700k samples in our case) is computationally expensive, especially in
 1713 resource-constrained settings (e.g., we used 8 H100 GPUs for our experiments). Hence, we believe
 1714 the diversity of GROUNDCUA can be effectively exploited through a careful combination of SFT,
 1715 which teaches new knowledge, and RL, which helps with generalization. Future research could
 1716 focus on optimizing this SFT/RL mix, which has shown promise in works like Ma et al. (2025). By
 1717 releasing our data, we provide the necessary resource to explore this path.

1719 D.7 SFT SCALING BEHAVIOR

1721 To study how performance scales with additional supervised data, we trained three versions of the
 1722 Qwen2.5-VL-Instruct-3B model using subsets of 100k, 350k, and 700k instructions sampled from
 1723 GROUNDCUA. All runs used identical hyperparameters. The results are reported in Table 18.

1724 We observe steady gains across almost all benchmarks as the amount of training data increases. The
 1725 improvements indicate that the training setup remains stable across scales and that the additional
 1726 samples provide useful signal. Since GROUNDCUA undergoes rigorous deduplication, larger sub-
 1727 sets introduce new visual and semantic variety rather than repeated patterns, which directly strength-
 ens grounding performance.

1728 Table 18: Scaling ablation on GROUNDCUA. Performance improves steadily as more SFT data is
 1729 used.

1730

1731

1732

1733

1734

1735

1736

1737

1738

The most pronounced improvements appear on UI-Vision, where performance increases from 29.8 at 100k to 58.2 at 700k. UI-Vision is closely aligned with the layouts and element styles present in GROUNDCUA, allowing the model to leverage broader coverage as more data is included. OSWorld-G and ScreenSpot-Pro show similar positive trends, reflecting consistent benefits in dense desktop scenarios.

1743

1744

1745

1746

1747

1748

E GROUNDNEXT ERROR ANALYSIS

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781



Figure 10: Errors made by GROUNDNEXT on mobile devices. Examples are chosen from the SSv2 benchmark.

In this section, we examine the errors made by GROUNDNEXTs and categorise them into 4 broad categories:

Limited Domain Knowledge (Generalization to Web/Mobile): We observe that some errors stem from limited knowledge of web and mobile platforms, as GROUNDCUA predominantly covers desktop software applications. This is most prevalent when generalizing to out-of-domain platforms. While GROUNDNEXT performs competitively on Mobile and Web benchmarks, errors often

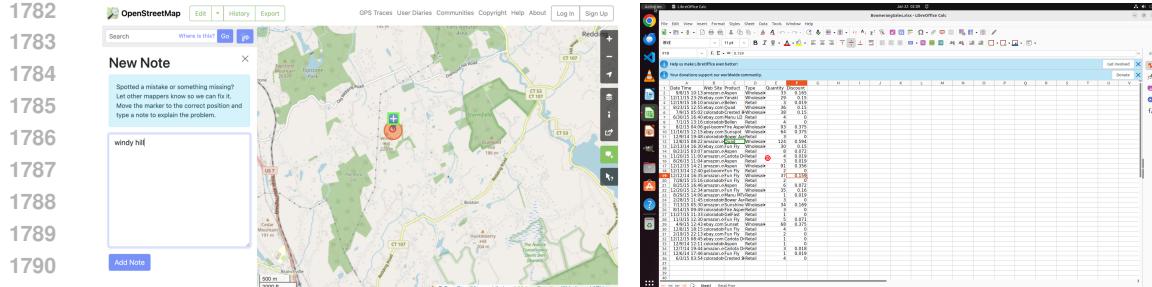


Figure 11: (Left) Example of a near miss for the prompt "Click on the marker already added to the map." (Right) Example from OSWorld-G where the model clicks the wrong cell for the prompt "Move your mouse to the cell in the 3rd column and 12th row (this cell is labeled as C12), then press the left mouse button."

arise due to distribution shifts. Mobile interfaces, for instance, utilize vastly different aspect ratios, resolutions, and distinct UI patterns that are absent in our desktop-centric training data. Figure 10 illustrates examples where GROUNDNEXT fails on relatively simple queries for the mobile platform, such as 'Join a twitch server.' We attribute these errors to a combination of factors, primarily the domain shift inherent in mobile screenshots compared to our desktop training data, as well as a lack of specific application knowledge, which we discuss in greater detail below.

Localization Precision (Near-Misses): We analyzed the magnitude of grounding errors and found that many "failures" are actually correct semantics with imperfect localization. As shown in Figure 8, over 50% of the errors have a relative distance of less than 10% from the ground truth bounding box. This suggests the model successfully identifies the correct target region but occasionally lacks pixel-perfect precision. We visualize a "near-miss" example in Figure Figure 11 (left).

Application-Specific Semantics: We observe errors when the model encounters specialized terminology or icons in unseen software applications. For example, in our analysis of Platform VMWare in ScreenSpot-Pro (which is not present in our training data), the model struggles with niche tools that require specific software knowledge to identify (eg, "restart from CD", "snapshot details"), whereas it remains robust on generic UI elements like "Refresh", "font size".

Spatial Reasoning Limitations: Despite the inclusion of spatial data in our instruction mix ($\approx 13\%$), the model shows a notable performance gap when handling complex relative instructions. This is quantified in the UI-Vision benchmark, where performance drops from $\approx 70.1\%$ on the "Basic" category to $\approx 49.9\%$ on the "Spatial" category. We suspect that while the current data helps, solving this fully may require a base model with stronger inherent spatial reasoning capabilities or a higher ratio of spatial instruction tuning. In Figure 11 (right), we show an error in localising the correct cell in the Libre Office Calc platform (from the OSWorld-G benchmark)

F LIMITATIONS

While our work makes significant progress in desktop GUI grounding, there are a few key limitations. Although it covers 87 applications across 6 categories, the dataset may not fully represent the diversity of desktop software, as it is biased toward commonly used applications. Our keyframe-based annotations capture static UI states but miss dynamic elements like animations and real-time updates. While we've taken steps to ensure annotation consistency, human labeling at scale can still introduce some inconsistencies, and the time and cost of annotation limit scalability. Additionally, our evaluation focuses on benchmark accuracy, but real-world applications require robustness to changes in distribution, new app versions, and UI updates; issues that need further exploration. Finally, we do not perform end-to-end agentic testing for task completion, which remains an important area for future work.

1836 **G LLM USAGE**
18371838 In our work, LLMs are used for the following aspects:
18391840

- 1841 • Using an LLM to help with paper writing. We use GPT5 to help optimize language, correct
grammar, and write \LaTeX table code.
- 1842 • Using an LLM as a research assistant. We use GPT5 to help search related works.
- 1843 • Using LLMs in our methods and experiments. This is described in the paper.

18441845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889