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ABSTRACT

Building reliable computer-use agents requires grounding: accurately connect-
ing natural language instructions to the correct on-screen elements. While large
datasets exist for web and mobile interactions, high-quality resources for desktop
environments are limited. To address this gap, we introduce GROUNDCUA, a
large-scale desktop grounding dataset built from expert human demonstrations. It
covers 87 applications across 12 categories and includes 56K screenshots, with
every on-screen element carefully annotated for a total of over 3.56M human-
verified annotations. From these demonstrations, we generate diverse instruc-
tions that capture a wide range of real-world tasks, providing high-quality data
for model training. Using GROUNDCUA, we develop the GROUNDNEXT family
of models that map instructions to their target UI elements. At both 3B and 7B
scales, GROUNDNEXT achieves state-of-the-art results across five benchmarks us-
ing supervised fine-tuning, while requiring less than one-tenth the training data of
prior work. Reinforcement learning post-training further improves performance.
These results demonstrate the critical role of high-quality, expert-driven datasets
in advancing general-purpose computer-use agents.
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Figure 1: Overview of the GROUNDCUA dataset and GROUNDNEXT models. Human demonstra-
tions of computer-use tasks are recorded as screenshots (example from FreeCAD) with UI meta-
data, which are processed into high-quality natural language instruction tasks for UI grounding.
GROUNDNEXT is trained in two stages: SFT (700K samples) followed by RL (10K samples),
achieving state-of-the-art grounding performance with efficient training.

1 INTRODUCTION

The vision of computer-use agents (CUA) that operate software on behalf of users has gained signif-
icant momentum with recent progress in multimodal large language model–based agents (OpenAI,
2025; Anthropic, 2024; Qin et al., 2025; Wang et al., 2025a). These agents promise to automate
routine work and make complex digital tools more accessible. For such agents to succeed, they
must first plan the next step in a task, then ground the plan to the exact on-screen element to click,
type, or drag. Accurate grounding is critical: without correctly identifying the right button or menu
item, even a flawless plan cannot be executed. In FreeCAD, for instance, when asked to “open the
color picker” (Figure 1), the agent must distinguish a small palette icon from look-alike tools, one

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of which it must precisely click. When grounding fails, the plan quickly veers off course, small
errors compound, and tasks ultimately fail (Nayak et al., 2025). Moreover, grounding in desktop
applications is challenging due to their complexity and diversity. These applications often feature
high-resolution displays with dense layouts and visually similar elements, making precise localiza-
tion difficult. Additionally, desktop applications can contain user-specific artifacts (e.g., documents
or spreadsheets) that may not have been seen during training, adding variability and unseen con-
texts. Finally, collecting automated datasets for desktop environments with strong coverage is also
challenging, as highlighted by recent datasets (Gou et al., 2024; Wu et al., 2024; Xie et al., 2025).

To this end, we introduce GROUNDCUA, a large-scale, human-annotated dataset for desktop
grounding. The dataset spans 87 applications across 12 categories, with 56K screenshots and
3.56M+ element annotations. These annotations are collected from task demonstrations by trained
annotators, ensuring high-quality and densely labeled data that provides rich context for effective
model training. It also reflects the pixel diversity of desktops, with resolutions ranging from 500K
to 7M pixels and a substantial proportion of very small bounding boxes, highlighting the fine-grained
challenges agents must overcome. Furthermore, GROUNDCUA includes fine-grained category in-
formation (menus, buttons, etc.) for 50% of the UI elements and includes multiple variants of related
applications (e.g., LibreOffice and OnlyOffice), directly addressing the difficulty of similar yet dis-
tinct applications and enabling agents to learn robust, application-specific grounding strategies. Key
highlights of GROUNDCUA compared to other datasets are: Scale: 56K annotated screenshots and
3.56 million elements; Resolution, Element Size, and Density: High-resolution images with max-
imum annotation density, covering almost every visible element, including small elements like icons
and controls; Expert Quality: Human-verified annotations for high accuracy; Application Diver-
sity: 87 desktop applications for broad real-world coverage. Using this dataset, we construct a 700K
image-instruction pair instruction-tuning set that mimics real-world semantic interactions.

We introduce the GROUNDNEXT series of vision-language models, designed for precise grounding
across desktop applications. The series includes models at 3B and 7B scales, offering a balance
between efficiency and accuracy. Each model is trained in two stages: first, supervised fine-tuning
(SFT) on 700K curated datapoints from GROUNDCUA, and second, reinforcement learning (RL) to
further refine performance. This approach enables GROUNDNEXT to achieve state-of-the-art results
on key desktop benchmarks, including ScreenSpotPro (Li et al., 2025), OSWorld-G (Xie et al.,
2025), and UI-Vision (Nayak et al., 2025). Despite using significantly fewer SFT datapoints than
state-of-the-art models like JEDI (which are trained on 9M datapoints), GROUNDNEXT outperforms
existing models, demonstrating its efficiency in training and proving that high-quality, well-curated
data can outperform larger, less precise datasets. In the RL stage, GROUNDNEXT further refines
its grounding accuracy, achieving significant improvements without relying on complex reward
strategies, unlike many RL-tuned models, which typically incorporate specialized reward functions
and additional objectives. This shows the effectiveness of combining supervised fine-tuning (SFT)
with high-quality data. Additionally, GROUNDNEXT excels in cross-platform generalization,
delivering strong performance across desktop, mobile, and web environments; even though we only
train on desktop dataset. Evaluated on benchmarks like MMBench-GUI (L2) and ScreenSpot-v2,
in addition to desktop-specific tasks, GROUNDNEXT showcases its ability to generalize across a
wide range of user interfaces and platforms. We plan to release both GROUNDCUAand the trained
GROUNDNEXT models to support open research, providing a solid foundation for the development
of reliable, adaptable computer-use agents across diverse environments.

In summary, our contributions are as follows:

• We introduce GROUNDCUA, a large-scale, human-annotated desktop grounding dataset with over
3.56 million annotations across 56K screenshots from 87 applications in 12 categories, providing
dense, high-resolution, and fine-grained supervision for robust computer-use agents.

• We present the GROUNDNEXT series, vision-language models at 3B and 7B scales, trained on
GROUNDCUA with SFT and RL, achieving state-of-the-art performance across desktop bench-
marks with significantly fewer datapoints than prior models.

• We provide a comprehensive analysis of SFT and RL roles, evaluate our dataset’s cross-domain
impact and generalization beyond desktop, and study the benefits of open-source software for
grounding performance.
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2 RELATED WORK

Computer-Use Agents. Recent advancements in computer-use agents have focused on enhanc-
ing their ability to understand and interact with user interfaces, ranging from simple commands
to complex, multi-step tasks. Supervised fine-tuned models such as CogAgent (Hong et al., 2023),
ShowUI (Lin et al., 2024), and Ferret-UI (You et al., 2024) have improved interaction capabilities by
enabling zero-shot instruction-following across desktop, web, and mobile interfaces, combining vi-
sion, language, and action. Benchmarks like ScreenSpot-Pro (Li et al., 2025) and UI-Vision (Nayak
et al., 2025) have emphasized the challenges of grounding natural language instructions in high-
resolution desktop environments, particularly with dense screens and small elements. Grounding-
focused agents, such as OS-ATLAS (Wu et al., 2024), UGround (Gou et al., 2024), and JEDI (Xie
et al., 2025), have made significant progress by scaling training data to map language to specific UI
elements. However, these methods often face challenges with data efficiency, particularly in complex
desktop environments. Furthermore, recent RL-based approaches, inspired by DeepSeek-R1 (Guo
et al., 2025), such as GUI-R1 (Luo et al., 2025), GUI-G2 (Tang et al., 2025), and InfiGUI-G1 (Liu
et al., 2025a), have addressed grounding through both simplistic and complex distance-based reward
approaches. Despite these advancements, reliably grounding instructions to the correct on-screen el-
ements remains a persistent bottleneck. To address this, we focus on high-quality, expert-annotated
data to enhance grounding through both SFT and RL training, while prioritizing data-efficient fine-
tuning to improve model performance.

Table 1: Comparison of grounding datasets. Columns: H = human-provided instructions and labels; Desk
= includes desktop data; E / Desk-E / S = number of elements, desktop elements, and screenshots; Res Range
= screenshot resolution range (MP); EleArea = average element area (% of screenshot); #AvgE = average
elements per screen; Perm = permissive OSI-style license (e.g., Apache-2.0, MIT), ? = not clearly reported.
Datasets marked with ∗ are grounding-specific versions constructed from the OS-ATLAS (Wu et al., 2024).

Grounding Datasets Annotation Scale Avg. Data Stats Perm?
H Desk E Desk-E S Res Range EleArea #AvgE

UGround (Gou et al., 2024) ✗ ✗ 9M — 773k (0.4, 1.9) — 11.6 ✓
JEDI (Xie et al., 2025) ✗ ✓ 4M 2.4M 575k (0.9, 2.1) — 7.0 ?
AGUVIS-G (Xu et al., 2024) ✗ ✗ 3.8 M — 452k (0.5, 2.1) — 8.5 ?
OS-ATLAS (Wu et al., 2024) ✗ ✓ 14.5M 1.2M 1.85M (0.5, 5.2) 0.53% 7.8 ✗
RICOSCA*(Li et al., 2020a) ✗ ✗ 170K — 18K (0.5, 2.1) 0.28% 9.4 ?
UIBert*(Bai et al., 2021) ✗ ✗ 166K — 57K (0.5, 2.1) 0.24% 2.9 ✓
Widget Caption*(Li et al., 2020b) ✗ ✗ 101K — 14K (0.5, 2.1) 4.2% 7.0 ✓
AMEX*(Chai et al., 2025) ✗ ✗ 1.2M — 101K (0.9, 4.5) 2.1% 11.8 ?
SeeClick (Cheng et al., 2024) ✗ ✗ 3M — 270K (2.1, 2.1) 0.33% 11.2 ?
AriaUI (Yang et al., 2024) ✗ ✓ 4.1M 150K 295K (1.3, 1.9) — 13.9 ?
Fineweb*(Penedo et al., 2024) ✗ ✗ 9.9M — 1.4M (2.1, 2.1) 0.29% 6.9 ✗
GROUNDCUA(ours) ✓ ✓ 3.56M 3.56M 55k (0.4, 7.0) 0.13% 64.1 ✓

GUI Grounding Datasets. Training datasets for GUI grounding span mobile, web, and desk-
top platforms. Mobile datasets like RICO (Deka et al., 2017), UIBert (Bai et al., 2021), and
AMEX (Chai et al., 2025) provide element-level supervision within standardized layouts, sim-
plifying extraction but limiting exposure to desktop-style density and iconography. Web-focused
datasets, including SeeClick (Cheng et al., 2024) and UGround (Gou et al., 2024), scale ground-
ing through automated harvesting from HTML/DOM, while Aguvis-G (Xu et al., 2024) broadens
coverage across platforms. However, these automated pipelines likely overemphasize text-bearing
elements while underrepresenting small icon-only controls, which are standard in desktop software.
Desktop resources remain limited and challenging. OS-ATLAS (Wu et al., 2024) and AriaUI (Yang
et al., 2024) assembles desktop splits via accessibility-tree traversal, yet accessibility signals are of-
ten incomplete or inconsistent, leading to missing or imprecise element labels (Muryn et al., 2025;
Gou et al., 2024). JEDI (Xie et al., 2025) achieves scale through synthetic interface generation, but
these simplified screens underrepresent genuine desktop complexity.

How is ours different? GROUNDCUA is the largest expert-annotated dataset for desktop ground-
ing, comprising 55,568 screenshots across 87 open-source applications with over 3.56M human-
verified UI elements. Compared to existing datasets, GROUNDCUA features denser screens, a wider
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(a) GIMP (b) FreeCAD (c) LibreOffice Calc

Figure 2: Examples of screenshots from different applications in GROUNDCUA. Red bounding
boxes indicate the annotated UI elements within each screenshot.

resolution range, and smaller average element areas (see Table 1). It uniquely captures small desk-
top components, such as icons, toolbars, and controls, that are difficult to capture using automated
tools. Its high-resolution images (ranging from 0.39 to 7.0M pixels) are substantially higher than
other datasets and are the only ones to include very high-resolution images (see Figure 5, left).
Additionally, GROUNDCUA features dense annotations that support semantics- and context-aware
instructions, averaging 64 per screenshot, more than three times that of OS-Atlas (Desktop) and
much higher than Aguvis-G (9) or UGround (11). Together, these properties make GROUNDCUA a
comprehensive and challenging dataset for training robust desktop grounding agents.

3 GROUNDCUA DATASET

This section introduces GROUNDCUA, the largest and most diverse desktop-specific dataset an-
notated by human experts. We provide an overview of the data collection pipeline and annotation
process, as well as our high-quality fine-tuning data below.

Collecting demonstrations from human experts We record real-world interactions of expert
users performing tasks with desktop applications and annotated interface elements at scale. This ap-
proach captures user-driven interactions, resulting in a more realistic distribution of screenshots that
better reflects real-world usage, compared to prior work that often relies on depth-first or breadth-
first search to generate random interface states (Wu et al., 2024). Our pipeline consists of three main
steps: selecting diverse applications, designing and executing practical tasks, and annotating screen-
shots. We partnered with a data labeling company for this process, with details on the annotator pool
and training in Appendix A.2.

Selecting diverse desktop applications To support general-purpose computer-use agents, we se-
lected 87 open-source applications across 12 categories (Table 5). Most applications are drawn
from UI-Vision (Nayak et al., 2025), with four additional ones covering finance and scientific ap-
plications. By focusing on open-source applications with permissive licenses, we ensure the dataset
can be freely released while encompassing a wide range of domains. These applications mirror the
functionality of popular closed-source software (e.g., LibreOffice vs. Microsoft Office), making the
dataset broadly applicable. Further details are provided in Appendix A.1.

Designing and executing computer-use tasks. We asked annotators to design everyday
computer-use tasks that reflect common goals (e.g., drafting a document, editing a spreadsheet,
running a simulation) and then carry them out. This approach produces natural interaction trajecto-
ries, unlike random clicking, and yields screenshots that closely mirror real-world usage. In total,
annotators completed over 10, 000 task demonstrations across 87 applications 1.

Dense annotation of screenshots. From the recorded demonstrations, we extracted keyframes
that capture the state of the interface immediately before a user action (e.g., a mouse click or text
entry) that would trigger a change in the application. Annotators labeled every visible element in
each keyframe using bounding boxes. For each element, they provided a textual label. This label was
the element’s name when available, the displayed text for shorter strings, or a concise summary in

1We will release both the tasks and videos as part of the dataset.
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the case of long passages such as source code or detailed descriptions. We also extracted OCR using
PaddleOCR (Cui et al., 2025) to extract raw text specifically for these longer segments. In addition,
around 50% of the elements were assigned to one of eight high-level categories(see Table 6). In total,
this process produced over 3.56 million annotated elements, making GROUNDCUA the largest and
most diverse human-annotated grounding dataset for desktop environments to date. Examples of the
annotations are provided in Appendix A.5, and further details of the annotation process are described
in Appendix A.2.

Constructing high-quality finetuning instructions User queries in real-world settings can take
various forms, from explicit references to UI elements (e.g., Click ‘Save’), to functional commands
(e.g., Open a new tab), or spatial descriptions (e.g., Select the icon left of ‘Files’). To handle this
diversity, we design a pipeline that leverages our dense annotations, which include bounding boxes,
labels, categories, and OCR text, to construct diverse instruction-tuning data. These annotations
enable the generation of highly contextual instructions, grounded directly in annotated screenshots.
Unlike prior works that rely on pretrained models, our approach involves prompting a multimodal
LLM with annotated bounding boxes, application names, element labels, and surrounding context.
This ensures that the instructions are tightly linked to both the visual and textual content, making
them semantically and contextually relevant. By leveraging nearly every visible element on the
screen, we are able to create UI context-aware and challenging instructions. We generate three pri-
mary types of instructions: Direct, which describe an element’s attributes, position, and surrounding
context (e.g., Click the magnifying-glass icon next to the search bar for visual elements or Click the
button that has the text ‘Save’ for OCR-based textual elements); Functional, which focus on the
intended action of an element (e.g., Open a new tab instead of Click the ‘+’ button); and Spatial,
which guide the model based on the relative positioning of elements (e.g., Click the element to the
left of ‘Files’ or Select the icon between ‘Undo’ and ‘Redo’). We describe these instruction types in
more detail in Appendix B and provide examples in Appendix B.6. These diverse instruction types,
grounded in both visual and semantic context, provide a comprehensive foundation for training more
effective and context-aware GUI agents.

Dataset Statistics GROUNDCUA consists of 56K screenshots, totaling 3.56 million annotated
elements. On average, each screenshot contains 64 annotations, with some images having as many as
542. The images have a mean resolution of 2.03 megapixels, with a range from 0.39 to 7 megapixels.
Bounding boxes are relatively small, covering just 0.13% of the image area on average, underscoring
the fine-grained nature of the annotations. This results in high-quality fine-tuning data, with 700K
samples for SFT and 10K for RL, extracted from the densely annotated screenshots and metadata.
Detailed distribution plots of resolution, bounding box sizes, and category-level statistics for both
screenshots and annotations are provided in Appendix A.3.

4 TRAINING GROUNDNEXT MODELS ON GROUNDCUA

4.1 MODEL TRAINING

We use Qwen2.5-VL-Instruct as the base model for all experiments, considering both the 3B and
7B parameter variants. We finetune both the vision encoder and the language model, as preliminary
experiments indicated that this leads to better grounding performance.

SFT We first train the models with standard supervised finetuning. Training is performed on a
single node with 8 H100 GPUs, using a global batch size of 128. Additional hyperparameter details
are provided in Appendix C.2. For training data, we use the instruction tuning dataset introduced in
Section 3. From this dataset, we use a subset of 700k instructions that balances coverage and diver-
sity. This choice keeps the experiments practical and reproducible, while still being large enough to
demonstrate the effectiveness of our dataset for grounding tasks. Further details on the composition
of this subset, along with the choices made in its construction, are provided in Appendix C.1.

RL Post-training. In the next stage, we adopted RL post-training and explored several heuristics
for constructing training data. GROUNDCUA allows us to sample from a much larger pool than the
one used for SFT, so we selected 10K new elements not included in the original 700K SFT training

5
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set. This approach yielded the strongest generalization across benchmarks in our initial experiments,
and we adopted it for the final model.

For policy optimization, we employed the Relative Leave-One-Out (RLOO) method (Ahmadian
et al., 2024), which compares the reward of each rollout to the average reward of other samples
within the same group, avoiding the need for training a separate critic model. Concretely, for a
group of n rollouts {y1, . . . , yn}, the gradient is given by:

∇θJ(πθ) =
1

n

n∑
i=1

(
R(yi, x)−

1

n− 1

∑
j ̸=i

R(yj , x)
)
.∇θ log πθ(yi|x),

where R(yi, x) is the reward assigned to output yi given the input x. In our grounding setup, each
yi corresponds to a sequence of tokens representing the predicted coordinates (p̂i) on the image and
x corresponds to the input prompt and image.

Reward Function. We designed a customized discrete reward based on the normalized distance

Rscore(p̂, B, I) =



−1.0 if Dnorm < −0.5,

−0.5 if − 0.5 ≤ Dnorm < −0.1,

−0.1 if − 0.1 ≤ Dnorm < 0,

0.1 if 0 ≤ Dnorm < 0.1,

0.5 if 0.1 ≤ Dnorm < 0.5,

1.0 if Dnorm ≥ 0.5.

The normalized distance is defined as Dnorm = D(p̂,B)
Dref

, where Dref = diam(B)
2 if p̂ ∈ B and

Dref = Dmax(B, I) otherwise. D(p̂, B) is the signed distance between the predicted coordinate
p̂ and the ground-truth bounding box B, with positive values inside. We use half the bounding
box diameter if p̂ ∈ B because that is the maximum distance a point inside B can have from the
boundary. This results in a Dnorm value between -1 and 1.

This discrete scheme captures dominant error modes: predictions just outside the box receive a
milder penalty, while predictions far outside receive a stronger one, and predictions inside the box
are encouraged to move toward the center. We exclude reward model-based approaches due to
the unreliable nature of current judges (Feizi et al., 2025; Lù et al., 2025). We experimented with
alternative reward formulations (e.g., continuous and binary schemes), but ultimately adopted this
discrete variant due to its superior empirical performance (see Appendix C.4 for details). We set the
group size to n = 8, the batch size to 64, and trained for one epoch on a single H100 node (8 GPUs),
consistent with the SFT setup.

4.2 EVALUATION

Task Definition. Given a screenshot I and a user instruction x, the model predicts a 2D point
p̂ = (û, v̂) in image coordinates. Let B denote the axis-aligned ground-truth bounding box for the
target element. A prediction is marked correct if p̂ ∈ B, and incorrect otherwise. We report the
accuracy metric.

Benchmarks. We evaluate GROUNDNEXT on five key benchmarks that cover a wide range of
grounding scenarios. For desktop applications, we use ScreenspotPro (Li et al., 2025), OSWorld-G
(Xie et al., 2025), and UI-Vision (Nayak et al., 2025), which focus on desktop interactions. To test
cross-platform performance, we also use MMBench-GUI (L2) (Wang et al., 2025b) and Screenspot-
v2 (Cheng et al., 2024), which include mobile and web splits in addition to desktop. This mix of
benchmarks lets us evaluate performance across desktops, mobile, and web environments. Since
UI-Vision overlaps with our dataset in platform coverage, we treat it as an in-domain benchmark,
while the others are out-of-domain. We make efforts to minimize overlap during training, but due to
annotation differences and the repetitive nature of desktop software, perfect separation isn’t always
possible.

Baselines. We compare GROUNDNEXT against two main types of baselines. First, we evaluate
GROUNDNEXT (SFT) alongside several SFT-only variants to measure the impact of our instruction
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Table 2: SFT-only results on five challenging benchmarks. Results are shown for both 3B and 7B
model scales. Only top-performing models are presented here; see Appendix D for full comparisons
with additional baselines. Our GROUNDNEXT (SFT) consistently achieves the best average perfor-
mance across all benchmarks, demonstrating the effectiveness of our high-quality data.

Model SSPro OSW-G MMB-GUI SSv2 UI-V Avg

≈ 3B
Qwen2.5-VL-3B (Bai et al., 2025) 16.1 27.3 60.8 80.9 6.3 38.3
Qwen2.5-VL-3B (Agent mode) 29.0 37.4 60.8 81.8 6.3 43.1
PhiGround-4B-7C (Zhang et al., 2025) 22.8 51.4 60.3 80.8 20.5 47.2
JEDI-3B (Xie et al., 2025) 36.1 50.9 66.5 88.6 18.7 52.2
GUI-Actor-3B (Wu et al., 2025) 42.2 48.9 69.8 91.0 19.7 54.3
GROUNDNEXT-3B (SFT) 48.6 62.2 75.5 87.3 58.2 66.4

≈ 7B
Qwen2.5-VL-7B (Bai et al., 2025) 26.8 31.4 33.9 88.8 0.9 36.4
Qwen2.5-VL-7B (Agent mode) 29.7 42.7 67.7 86.4 16.5 48.6
OS-Atlas-7B (Wu et al., 2024) 18.9 27.7 41.4 85.1 9.0 36.4
UGround-V1-7B (Gou et al., 2024) 16.5 36.4 65.7 87.6 12.9 43.8
Aguvis-7B (Xu et al., 2024) 39.5 38.7 45.7 86.0 13.7 44.7
GUI-Actor-7B (Wu et al., 2025) 44.6 47.0 70.9 92.1 21.9 55.3
JEDI-7B (Xie et al., 2025) 39.5 54.1 70.4 91.7 24.8 56.1
GROUNDNEXT-7B (SFT) 50.2 67.2 80.4 89.3 58.7 69.2

data (see Table 2). Then, we compare GROUNDNEXT (RL) with recent reinforcement learning-
based models to assess the effectiveness of RL fine-tuning (see Table 3).

5 RESULTS

5.1 EFFICIENT SUPERVISED FINE-TUNING WITH HIGH-QUALITY DATA

We present the performance results of our models trained using SFT across five benchmarks in
Table 2. Our models achieve the highest average performance for both 3B and 7B model sizes. For
≈3B, GROUNDNEXT-3B (SFT) ranks first on most datasets (except SSv2) and leads the SFT-only
group by a clear margin with an average performance of 68.4 vs. 63.0 for the next best (GUI-Actor-
3B) without considering UI-V, and 66.4 vs. 54.3 with UI-V (i.e., +5.4 and +12.1 points, respectively).
Notably, our 3B SFT average also surpasses all RL-tuned 3B baselines. Adding the RL stage yields a
small, consistent lift to 68.4 Avg / 70.0 (w/o UI-V), setting the best overall results in this size range.
For ≈7B, GROUNDNEXT-7B (SFT) also leads among SFT-only models with 71.8 Avg without UI-
V and 69.2 with, outperforming the next best SFT baseline (JEDI-7B) by +7.9 and +13.1 points,
respectively. Among RL-tuned systems, GROUNDNEXT-7B (RL) attains the top Avg (w/o UI-V)
= 73.0. Overall, these results indicate the efficacy of our high quality data. Notably, our results
are achieved with substantially less data and modest compute. We train on only 700K instructions,
which is far below multi-million–sample corpora used by prior work (e.g., JEDI 9M). Yet, we
outperform larger SFT baselines and remain competitive with RL-tuned systems. This suggests that
high-quality, densely grounded supervision and targeted instruction design can substitute for raw
scale, delivering strong gains without escalating data volume or compute.

GROUNDCUA compared to other SFT training corpora To make a fair comparison and high-
light the quality of our dataset, we train the same base model (Qwen2.5-VL-3B-Instruct) on 100K
samples from each of the following datasets: Aguvis, UGround, OS-Atlas (Desktop), JEDI, and
GROUNDCUA. We use identical hyperparameters and preprocessing for all experiments (details in
the Appendix). Figure 3 (yellow bars) summarizes the average performance across benchmarks, ex-
cluding UI-Vision. We observe that GROUNDCUA yields significantly higher SFT averages than all
other training sources, demonstrating the benefits of its high-quality, densely grounded supervision.
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Table 3: RL-tuned results. We present results for the 3B and 7B model scales. We highlight the
top-performing models here and refer readers to Appendix D for full comparisons with additional
baselines. Our GROUNDNEXT(RL) achieves the highest average performance.

Model SSPro OSW-G MMB-GUI SSv2 UI-V Avg

≈ 3B
UI-R1-E-3B (Lu et al., 2025) 17.8 48.8 68.4 88.6 16.5 48.0
SE-GUI-3B (Yuan et al., 2025) 35.9 46.1 66.3 86.8 15.0 50.0
InfiGUI-R1-3B (Liu et al., 2025a) 35.7 42.9 70.6 89.5 17.8 51.3
GUI G2-3B (Tang et al., 2025) 36.4 53.5 66.3 87.6 18.7 52.5
GUI-G1-3B (Zhou et al., 2025) 37.1 49.5 71.0 89.5 20.3 53.5
InfiGUI-G1-3B (Liu et al., 2025b) 45.2 49.6 73.4 91.1 22.0 56.3
GROUNDNEXT-3B (SFT) 48.6 62.2 75.5 87.3 58.2 66.4
GROUNDNEXT-3B (RL) 49.8 64.2 77.1 88.8 62.1 68.4

≈ 7B
SE-GUI-7B (Yuan et al., 2025) 47.3 33.9 34.5 68.9 16.7 40.3
UI-TARS-1.5-7B (Qin et al., 2025) 49.6 64.2 64.3 90.3 20.8 57.8
GUI G2-7B (Tang et al., 2025) 47.5 61.9 79.5 93.3 25.6 61.7
InfiGUI-G1-7B (Liu et al., 2025b) 51.9 59.9 80.8 93.5 26.1 62.4
GTA1-7B (Yang et al., 2025) 50.1 67.7 79.4 92.4 25.7 63.1
GROUNDNEXT-7B (SFT) 50.2 67.2 80.4 89.3 58.7 69.2
GROUNDNEXT-7B (RL) 52.9 67.7 81.1 90.4 60.3 70.5

5.2 REINFORCEMENT LEARNING POST-TRAINING RESULTS

RL post-training on top of the SFT models results in consistent but modest improvements
for both the 3B and 7B models shown in Table 3. For the 3B model, GROUNDNEXT-3B
(RL) achieves an average of 70.0 (without UI-V) and 68.4 overall, surpassing the SFT-only
model, GROUNDNEXT-3B (SFT), which scores 68.4 and 66.4, respectively. For the 7B model,
GROUNDNEXT-7B (RL) achieves 70.5, improving upon GROUNDNEXT-7B (SFT)’s 69.2 (with
UI-V). These results suggest that SFT, when trained with high-quality data, captures the ma-
jority of the model’s performance, with RL offering targeted fine-tuning that provides incre-
mental improvements. In practice, high-quality SFT can establish strong baselines, and RL
can serve as an optional refinement step to further enhance performance. While our reward
design is simple, we acknowledge that more sophisticated reward functions, such as those in
Liu et al. (2025b), could lead to more substantial RL gains, which we leave for future work.

CUA-Ground OSAtlas
(Desktop)

Jedi Aguvis UGround40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

AV
G

+1.7

+4.3
+4.3 +4.9 +5.1

SFT (avg) RL gain (with CUA-Ground)

Figure 3: Mean SFT scores (orange)
across benchmarks, with RL gains from 10k
GROUNDCUA samples shown in blue.

Analyzing RL Gains. We investigate the modest
gains from RL (see Figure 3). In this setup, we
start with SFT models (Qwen2.5-VL-3B-Instruct)
trained on Aguvis, UGround, OS-Atlas (Desktop),
JEDI, and GROUNDCUA, and then apply RL using
10K examples exclusively from GROUNDCUA. We
find that models trained with GROUNDCUA during
SFT show the smallest performance gains from RL,
while models trained on other datasets benefit more
from RL fine-tuning with GROUNDCUA. This sug-
gests that SFT with GROUNDCUA already provides
highly informative supervision, leaving fewer errors
for RL to correct. Moreover, the magnitude of RL
improvements correlates with the initial SFT perfor-
mance: stronger SFT models yield smaller absolute
gains because they start with fewer remaining errors.
We explore this phenomenon in greater detail in Appendix D.6.
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Table 4: Agentic performance comparison on OSWorld-Verified. Bold and underline indicate the
best-performing open-source model in each category. Our 3B model, GROUNDNEXT-3B, is among
the top-performing open-source models, surpassing larger and proprietary models, highlighting its
practical utility and efficiency for real-world agentic tasks.

Model OS Office Daily Pro Workflow Overall

Proprietary Models
OpenAI o3 (OpenAI, 2025) 62.5 14.5 21.4 38.8 16.5 23.0
CUA (OpenAI, 2025) 23.9 34.6 55.1 18.3 18.3 31.4
Claude-4-Sonnet (Anthropic, 2025a) 45.8 39.3 48.1 59.2 27.9 41.4
Qwen3-VL-Flash (Bai et al., 2025) 40.9 53.6 55.1 22.0 22.0 41.6
UI-TARS-250705 (Qin et al., 2025) 41.7 50.4 55.7 51.0 14.7 41.8
Claude-4.5-Sonnet (Anthropic, 2025b) 70.8 72.6 61.4 63.3 49.0 62.9

Open-source Models
Qwen2.5-VL-32B (Bai et al., 2025) 8.3 1.7 6.4 6.1 2.2 3.9
Qwen2.5-VL-72B (Bai et al., 2025) 16.7 4.3 6.4 2.0 3.2 5.0
Kimi-VL-A3B (Kimi Team, 2025) 12.5 6.0 21.7 18.4 1.1 10.3
OpenCUA-A3B (Wang et al., 2025a) 12.5 16.3 21.7 46.9 2.2 17.7
UI-TARS-72B-DPO (Qin et al., 2025) 37.5 19.0 34.6 63.3 8.3 27.1
OpenCUA-7B (Wang et al., 2025a) 41.7 22.2 37.1 49.0 9.3 27.0
UI-TARS-1.5-7B (Qin et al., 2025) 33.3 29.9 37.9 53.1 9.1 29.6
OpenCUA-72B (Wang et al., 2025a) 58.3 47.0 53.8 73.5 20.4 46.1
JEDI-7B w/ o3 (Xie et al., 2025) 50.0 46.1 61.9 75.5 35.3 51.0

GROUNDNEXT-3B (RL) w/ o3 (ours) 62.5 47.0 55.0 73.5 36.5 50.6

5.3 FURTHER ANALYSIS

Agentic Performance We evaluate GROUNDNEXT’s performance in an agentic setting to assess
its ability to ground in realistic, multi-step tasks. Experiments are conducted on the OSWorld-
Verified benchmark using OpenAI o3 as the planner, which consumes task instructions and action
history to generate grounding commands that GROUNDNEXT executes to locate target UI elements
on the screen. Following the setup of (Xie et al., 2025; Yang et al., 2025; Wang et al., 2025a), we
evaluate 361 tasks (excluding Google Drive–related ones) on an Ubuntu system with a 1920×1080
resolution, running on Microsoft Azure within 10 Docker environments.

The results in Table 4 highlight GROUNDNEXT-3B’s strong performance. Within its 3B param-
eter class, GROUNDNEXT-3B (50.6 Overall) significantly outperforms peers like OpenCUA-A3B
(17.7) and Kimi-VL-A3B (10.3). Notably, it surpasses many larger models, including OpenCUA-
72B (46.1) and proprietary APIs such as Qwen3-VL-Flash (41.6) and Claude-4-Sonnet (41.4). The
comparison with JEDI-7B, which also uses the o3 planner, is particularly notable. Despite being less
than half the size, our 3B model achieves a comparable overall score (50.6 vs. 51.0) and demon-
strates superior performance in 3 out of 5 categories (OS, Office, and Workflow). This performance
from a compact 3B model underscores GROUNDNEXT-3B’s significant practical utility, presenting
it as an effective and efficient solution for real-world agentic systems where inference speed and
resource constraints are critical factors.

Gains from GROUNDCUA. We investigate where GROUNDCUA yields the greatest gains by
studying the performance of GROUNDNEXT. Since GROUNDCUA primarily covers desktop soft-
ware, we expect the largest gains on desktop benchmarks. Our results confirm this: GROUND-
NEXT-7B (RL) achieves the best performance on UI-V, OSW-G, and SSPro. For mixed datasets
such as MMBench-GUI, GROUNDNEXT shows a 3.66% improvement on desktop platforms over
the second-best model, InfiGUI-G1, with notable gains coming from Linux and macOS (see Ap-
pendix D.3). At the element level, the most significant improvements are observed in icon recogni-
tion. For example, on SSPro, we outperform most models by an average of 10.7% in icon recognition
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(see Table 11). This reflects the high density of icons in desktop applications and suggests that the
diversity in GROUNDCUA provides richer knowledge, leading to better performance on icons.

GROUNDNEXT generalization across domains. Next, we evaluate the generalization ability of
GROUNDNEXT, trained primarily on desktop software, to mobile and web interfaces using SSv2
and MMBench-GUI. On MMBench-GUI, GROUNDNEXT-7B (RL) performs competitively across
both domains, achieving 89.2% on mobile and 81.9% on web, compared to the next best model, i.e.,
InfiGUI-G1-7B, at 90.9% and 85.3%, respectively. On SSv2, GROUNDNEXT achieves comparable
results on mobile but falls behind on web. A detailed error analysis is provided in Appendix E.
These results suggest that while GROUNDCUA enables strong cross-domain generalization, future
work could explore augmenting desktop data with web and mobile sources to further enhance per-
formance.

Effects of using open source applications. To study the impact of open-source software, we ex-
amine SSPro performance across various categories, focusing particularly on icon recognition. Icons
often require application-specific knowledge, unlike text, which is more general in nature. As shown
in Table 11, GROUNDNEXT achieves the best icon performance in the Office Suite, Development,
Creative, Scientific, and CAD categories, and ranks second in OS. The presence of open-source of-
fice software, such as LibreOffice, likely contributes to the strong results in the Office Suite category.
Similarly, the diversity of open-source development tools and creative software, such as video and
image editing programs, results in significant improvements, with our model outperforming the next
best model, i.e., InfiGUI-G1-7B, by 15.9% in Development and 8.4% in Creative for icon accu-
racy. Future work could further analyze the impact of application similarity to determine whether
applications more similar to those in our dataset lead to higher performance.

6 CONCLUSION & DISCUSSION

We introduced GROUNDCUA, a human-annotated desktop grounding dataset spanning 87 applica-
tions (56K screenshots, 3.56M+ elements) with dense keyframe labels that reflect real interaction
states. From these annotations, we constructed real-world computer-use instruction tasks for ground-
ing. We developed the GROUNDNEXT family of models and following recent trends, trained it first
with SFT and then RL on verifiable rewards. Across five challenging benchmarks, GROUNDNEXT
achieves state-of-the-art results despite using substantially less SFT training data than many prior
works. The key takeaway is that high-quality data drives reliable desktop grounding more effectively
than sheer data volume. By releasing both the dataset and other research artifacts, we aim to unlock
grounding as a core capability, laying the foundation for end-to-end computer-use agents that can
perform complex tasks across diverse desktop applications.

While this work advances desktop grounding and demonstrates the value of high-quality expert
demonstrations, it also opens up new opportunities and raises important questions. First, we train
models with limited scale and compute, but the dataset can support variable-sized fine-tuning sets
to further scale model performance. Second, our dense annotations should enable the develop-
ment of precise and expressive reward signals for RL, moving beyond the simplistic one used in
this paper. This creates opportunities to systematically study how different reward designs impact
grounding accuracy. Third, cross-domain generalization remains a key frontier. Desktop environ-
ments involve complex, multi-window workflows, whereas mobile and web tasks are lighter and
more context-specific. Mixing data across these domains could yield models that operate seamlessly
across platforms, though balancing these domains and addressing transfer bottlenecks will require
careful study. Finally, GROUNDCUA includes platform- and category-level metadata, enabling re-
search on continual learning and adaptation, evaluating how agents adapt to unseen applications and
continually improve as new interaction paradigms emerge.

ETHICS STATEMENT

Our work focuses on the responsible development of computer-use agents through transparent
dataset curation and model training. We have taken significant steps to protect user privacy by
ensuring all desktop applications used are open-source with permissive licenses, and no personally
identifiable information (PII) was collected during screenshot annotation. All human annotators
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were fairly compensated and worked under proper data protection protocols. While we have fil-
tered potentially harmful content from our dataset, we cannot fully guarantee that models trained
on GROUNDCUA will not generate inappropriate instructions or interact with sensitive interface
elements inappropriately. Users and developers are strongly encouraged to implement appropriate
safeguards and human oversight when deploying computer-use agents in production environments.
Additionally, all human evaluation studies were conducted by collaborating researchers following
established ethical guidelines, with no PII collected during the evaluation process.

We disclose that there are no conflicts of interest that would bias this work. Any funding sources
will be listed in the camera-ready version per ICLR policy.

REPRODUCIBILITY STATEMENT

We are committed to ensuring full reproducibility of our work by providing comprehensive im-
plementation details and releasing all necessary resources. All artifacts, including the complete
GROUNDCUA dataset, GROUNDNEXT model weights, training code, evaluation scripts, and de-
tailed data sheets, will be publicly released. We have thoroughly documented all hyperparameters,
training procedures, data preprocessing steps, and evaluation metrics in the appendices to enable
accurate replication of our results. The human annotation guidelines, quality assurance protocols
are fully described to ensure transparency in dataset creation. The instruction generation prompts,
model architectures, and benchmark evaluation procedures are detailed to facilitate consistent repro-
duction across different research groups.
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A GROUNDCUA – CREATION

A.1 PLATFORMS

Table 5: Categories of desktop applications and their corresponding applications.

Category Platforms

Education Anki, Zotero, Calibre, OpenBoard, Mendeley

Browsers Brave, Chromium, Mozilla Firefox, DuckDuckGo

Development VSCode, Atom, Eclipse, NetBeans, PyCharm, IntelliJ
IDEA, Brackets, Geany, Bluefish, KDevelop, Komodo Edit,
Code::Blocks, Qt Creator, Arduino IDE

Productivity LibreOffice Calc, LibreOffice Draw, LibreOffice Impress,
LibreOffice Writer, draw.io, Joplin, OpenProject, Affine,
PDFedit, OnlyOffice Calendar, OnlyOffice Document Ed-
itor, OnlyOffice Forms, OnlyOffice PDF Forms, OnlyOf-
fice Presentation, OnlyOffice Spreadsheet, Nextcloud, Gnu-
meric, Simplenote, WeKan

Graphics and Design Blender, GIMP, Inkscape, Krita, darktable, FontForge,
Scribus, WordPress

Video and Audio Production OpenShot, OBS Studio, Lightworks, Shotcut, Natron,
OpenToonz, Audacity, MuseScore

Communication Element, Signal, Mastodon, Lemmy, Matrix, Zulip, Jitsi

Entertainment VLC Media Player, Kodi, Emby

System Utilities Ubuntu Terminal, Conky, Bash, 7-Zip, Flameshot, Nemo,
gedit

Security Bitwarden, Cryptomator

Finance and Business Analytics GnuCash, Frappe Books, Metabase

Scientific RStudio, Veusz, GNU Octave, GrassGIS, QGIS, FreeCAD,
Spyder

We select 87 platforms, focusing on open-source software with permissive licenses. These ap-
plications span 12 diverse categories, detailed in Table 5. Our selection is motivated by the
under-representation of such platforms in existing datasets and the flexibility provided by permis-
sive licensing, which enables dataset release with minimal restrictions. We primarily rely on UI-
Vision (Nayak et al., 2025) as the source for platforms, as they motivated their platform selection
similarly. We additionally include 4 platforms to improve coverage across finance and scientific cat-
egories. We further show that this choice does not compromise generalization (see Section 5.3), as
the open-source software usually shares UI elements and layout with its closed-source counterparts.
For instance, LibreOffice and Office Suite share many interface elements, layout, and functionality.
This ensures broader applicability of GROUNDCUA.

A.2 HUMAN ANNOTATION

We collaborated with a professional data labeling vendor that specializes in dataset curation for AI
applications. The annotation effort spanned three phases, beginning with a pilot study where we
worked closely with the annotation team to refine task instructions and provide iterative feedback.
The annotation team consisted of around 70 individuals, organized into multiple tiers of annotators,
quality assurance specialists, and project managers. The majority of the team was located in India
and Latin America, with participants in the 20–35 year age group and a balanced gender distribution.
All annotators held at least a bachelor’s degree in technical fields such as Computer Science or
Engineering and had prior experience in data labeling and user interface research.
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Table 6: UI element categories in GROUNDCUA with descriptions and representative examples.

Category Description and Common UI Elements

Input Element Interactive fields where users enter or modify data, like text boxes, checkboxes,
radio buttons, etc.

Sidebar Vertical or horizontal panels that provide quick access to tools or navigation.
Examples include tool palettes, folder trees, settings sidebars.

Information Display Regions that primarily present textual or numerical information. Examples in-
clude labels, console outputs, document text, and code blocks.

Button Clickable controls that trigger an action like submit button, “OK/Cancel” but-
tons, play/pause buttons

Navigation Elements that help users move within or across applications. Examples: tabs,
back/forward arrows etc.

Visual Elements Non-textual graphical elements that convey information or functionality. Ex-
amples include icons, thumbnails, images, charts, and progress bars.

Menu Structured lists of commands or options, often hierarchical. Examples: file
menu, context menu, dropdown menus.

Others Elements not covered by the above categories, often decorative or container
elements like spacers.

Annotators underwent a training process to become familiar with the platforms and annotation
guidelines. They were compensated hourly, with each task requiring on average 60–90 minutes
to complete, including quality checks. The process began with the creation of computer-use tasks
for 87 software applications (see Table 5). Annotators then executed these tasks while screen record-
ings were collected. From these recordings, we extracted keyframes corresponding to major user
interactions. Each keyframe was annotated using a custom tool, where annotators drew bounding
boxes around all visible interface elements. For each bounding box, annotators assigned a label
corresponding to the element’s name, or, in the case of textual elements, the text was also provided
in addition to the element name. For long text segments such as source code or lengthy descrip-
tions, annotators provided a concise summary that captured the main theme. To supplement these
summaries, we also applied OCR using PaddleOCR (Cui et al., 2025) to extract the full text when
available. In addition, every element was assigned to one of six high-level categories. We applied
rigorous quality assurance at multiple stages. Annotations were reviewed by dedicated quality spe-
cialists, cross-checked by the authors, and validated using custom evaluation scripts. This pipeline
allowed us to construct a large-scale dataset of grounded user interface interactions with high diver-
sity and reliable annotation quality.

A.3 DATASET STATISTICS

We provide detailed statistics for GROUNDCUA. Figure 4 presents the overall dataset statistics. Fig-
ure 4a shows the number of annotations across the 12 categories, while Figure 4b reports the number
of screenshots per category. We also analyze the pixel distribution of screenshots in Figure 4c, ob-
serving a wide range from roughly 0.3 megapixels to 7 megapixels. The distribution of bounding
box areas, shown in Figure 4d, highlights the prevalence of small UI elements in the dataset. Finally,
Figure 4e shows the number of bounding boxes per screenshot, with some screenshots containing
up to 500 annotated elements and Figure 4f shows the distribution of desktop applications across 12
different categories.

A.4 COMPARISION WITH PRIOR WORKS

Comparative Analysis with Existing Datasets We compare GROUNDCUA against four recent
grounding datasets: UGround (Gou et al., 2024), Aguvis (Xu et al., 2024), OS-Atlas (Wu et al.,
2024), and JEDI (Xie et al., 2025). For OS-Atlas and JEDI, which are much larger, we sample 200k
images for screenshot-level analysis, with bounding-box statistics computed over all annotations. As
shown in Figure 5 (left), GROUNDCUA’s screenshots range from 0.5M–7M pixels, averaging 2.0M,
capturing high-resolution desktop environments. UGround and OS-Atlas (Desktop) have lower res-
olutions (1.1M and 1.6M), limiting their detail. Figure 5 (right) highlights GROUNDCUA’s smaller
median element size, with many fine-grained targets like icons and small controls, typical of desktop
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Figure 4: Dataset Statistics
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Figure 5: Comparison across different datasets. (Left) Pixel distribution for different datasets.
(Right) Relative bounding box area in log scale.

interfaces. In contrast, other datasets focus on larger, more salient elements. GROUNDCUA also has
denser annotations, averaging 64 per screenshot, more than three times that of OS-Atlas (Desktop)
and much higher than Aguvis (9) or UGround (11). JEDI, despite its scale, has sparser annotations
due to its reliance on synthetic data. UGround and Aguvis cover web interfaces, while OS-Atlas
uses automated accessibility-tree traversal, which is often incomplete and prone to errors (Gou et al.,
2024; Muryn et al., 2025), resulting in less precise annotations. JEDI is impressive in scale but lacks
dense, real-world coverage due to the synthetic pipeline involved in creating the dataset. GROUND-
CUA, with its high-resolution, human-verified annotations, and extensive platform diversity, fills a
crucial gap by providing a more accurate and detailed representation of desktop environments.

A.5 DATASET EXAMPLES

Figure 6 shows examples of screenshots from several software platforms with bounding boxes over-
laid on the images.

B INSTRUCTION TUNING DATA

GROUNDCUA contains over 3.5M annotated elements. Desktop screens are highly redundant, with
many UI elements repeating across views. To reduce duplication before building instructions, we
deduplicate elements using text matching on labels and perceptual image similarity (pHash) com-
puted on crops defined by each element’s bounding box. This produces roughly 900k unique ele-
ments. We use strict thresholds during filtering. While this may remove some valid cases, it yields
a diverse, non-redundant pool overall. We also randomize selection across screenshots so that no
single interface is over-represented. The filtered elements form the base for constructing the instruc-
tion tuning data. We detail the different types of instructions we have created below and provide
examples in Figure 7.

B.1 DIRECT INSTRUCTIONS

Direct instructions explicitly refer to the element (Click the “File” button) that the model should
act on. These are the most common types of instruction a CUA would encounter. We first create
a class of descriptive instructions for every element, which incorporates attributes such as color,
shape, position, and nearby context. These descriptions provide richer context for the model and
help reduce ambiguity. We generate these instructions by prompting Qwen2.5-VL-72B with the
element’s bounding box, platform name, annotated label, the full screenshot, and an optional zoomed
crop. We also ask the model to provide the location of the element if there are other similar elements
to disambiguate. We additionally use category information to create three specific types of direct
instructions:
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(a) 7-Zip (b) GIMP (c) Brave

(d) Audrino (e) FreeCAD (f) GNU Octave

(g) Cryptomator (h) OpenShot (i) Frappe Books

(j) Emby (k) Mastadon (l) LibreOffice Calc

(m) R Studio (n) VLC Media Player (o) Zotero

Figure 6: Examples of screenshots from different platforms in GROUNDCUA. Red bounding boxes
indicate the annotated UI elements within each screenshot.

Description Instruction Prompt

You are an expert UI analyst. You are given a screenshot with a target element in a red bounding
box, a cropped image containing the target element in a red bounding box, the name of the
element and the platform name.
Can you find it? Is it visible from the screenshot? Can you write a concise description that is
sufficient for humans to locate it from the screenshot? The response must be relevant to the
platform and element name provided. Do not reference the red bounding box and that it is
highlighted.
If you find other identical elements, your description must include specific details about the
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target element’s location and other unique attributes to differentiate it from the others.
Only output what you are sure about. Do not make assumptions. Return the response in the
following JSON format:
{
”visible”: true,
”description”: ”your description here”
}

Platform: {platform name}
Target Element Label: {text}

Textual elements. We identify textual elements by matching OCR output with the
human-annotated label and by selecting items from the Information Display category. We then
embed the extracted text into about 100 templates that directly instruct the model to move to these
labels. Some templates used to generate instructions are provided below.

Textual Elements Instruction Templates

1. Do you see the text ’text’? Please click on it.
2. Please locate the user interface component marked with the text ‘text‘ and then proceed to
click on it.
3. Make your way to the ‘text‘ label with your cursor.
4. You are required to find the element associated with the text ‘text‘ and then move your cursor
to hover over it.

Visual elements. For icon-based or other visual elements (e.g., tool icons, shapes, images), we
generate concise captions that highlight distinctive features and local context (e.g., “Click the
magnifying-glass icon next to the search bar”). These are produced using Qwen2.5-VL-72B by
providing the element crop, its bounding box in the full screenshot, the platform name, and the
annotated label.

General templates. In addition to text and visual elements, we design a set of general instructions
that apply to any element. These are created heuristically using about 120 templates (e.g., “Click on
the following element:”) or generated by prompting an MLLM.

General Instruction Prompt

You are an expert UI analyst. You are given a screenshot with a target element in a red bounding
box, a cropped image containing the target element in a red bounding box, the name of the
element and the platform name.
Is it visible from the screenshot? Generate a concise, imperative instruction a user would give
to operate or interact with the target element.
The response must be relevant to the platform and element name provided. Do not reference
the red bounding box and that it is highlighted.
If you find other identical elements, your description must include specific details about the
target element’s location and other unique attributes to differentiate it from the others.
Only output what you are sure about. Do not make assumptions. Return the response in the
following JSON format:
{
”visible”: true,
”instruction”: ”your description here”
}

Platform: {platform}
Target Element Label: {text}
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B.2 FUNCTIONAL INSTRUCTION PROMPT

Functional instructions describe an element by its purpose rather than its name (e.g., “Open a new
tab”). We focus on Buttons and Menus since these most often encode actions. For each candidate
element, we prompt Qwen2.5-VL-72B with the full screenshot, the element crop and bounding box,
platform name, and the annotated label, asking for a concise functional instruction (e.g., “Open a
new tab”).

Functional Instruction Prompt

You are an expert UI analyst. You are given a screenshot with a target element in a red bound-
ing box, a cropped image containing the target element in a red bounding box, the name of the
element and the platform name. Is it visible from the screenshot? Generate a task-oriented in-
struction that describes a user’s goal. The instruction must implicitly identify the target element
by describing what it helps the user accomplish (not the name of the element).
The response must be relevant to the platform and element name provided. It should also be
concise and to the point. Do not reference the red bounding box and that it is highlighted.
Include the location or other unique attributes if there are other identical elements.
Only output what you are sure about. Do not make assumptions. Return the response in the
following JSON format:
{
”visible”: true,
”function”: ”your description here”
}

Platform: {platform}
Target Element Label: {text}

B.3 SPATIAL INSTRUCTIONS

Spatial instructions locate a target element by its position relative to another element (anchor), using
relations such as left, right, above, below, and between. We leverage dense annotations to choose
anchors that are close to the target and have reliable labels (e.g., “Click the icon to the left of
‘Files’”). We generate these with simple templates that insert the anchor’s label and the relation.
Some templates used to produce instructions are provided below.

Spatial Instructions Templates

1. Place your mouse on the element directly to the right of ”{element}”.
2. Hover your mouse on the element immediately to the left of ”{element}”.
3. Hover your mouse on the element between ”{element 1}” and ”{element 2}”.
4. Place your mouse on the element directly above ”{element}”.

B.4 EXAMPLES

Figure 7 shows different kinds of instructions generated by our data generation pipeline.

B.5 NEED AND IMPACT OF DIFFERENT INSTRUCTION TYPES

As mentioned above we have three main instruction types: Direct, Functional, and Spatial. The
“Direct” category is itself broad, encompassing instructions based on descriptions, text/visuals, as
well as general/heuristic templates. To analyze their impact of different instruction types and their
subtypes, we sampled 100k datapoints for each distinct instruction subtype and trained Qwen2.5-
VL-Instruct-3B model. The results are presented in Table 7.

As shown in Table 7, Functional instructions yield the highest average performance. We hypothesize
this is because these goal-oriented instructions (e.g., “Open a new tab”) closely match the tasks in
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Table 7: Ablation study on different instruction types. We sample 100k data points for each type
and train a Qwen2.5-VL-3B model.

Data Type SS-Pro OSW-G UI-V MMB-GUI SSv2 Avg

Functional 43.0 51.0 27.6 73.4 88.1 56.6
Direct - Description 36.5 58.5 24.5 70.1 85.0 54.9
Direct - General templates 37.9 52.8 26.4 73.8 86.1 55.4
Direct - Text and visual 35.3 51.0 20.3 64.2 85.1 51.2
Direct - Miscellaneous 32.5 56.3 24.7 67.1 85.4 53.2
Spatial 20.5 52.5 22.4 67.8 74.1 47.5

the evaluation benchmarks. However, the other instruction types are crucial for building a robust,
well-rounded agent for two main reasons:

1. Complementary Strengths: While “Functional” is best on average, other types excel at
specific tasks. For example, in the OSWorld-G text-recognition category, the ”Direct - Text
and visual” split achieves a 0.64 score, outperforming the “Functional” split’s 0.60.

2. Preventing Overfitting: We observed that models trained on only one instruction type
become brittle. For example, a model trained only on “Description” instructions sees its
performance drop by 4% on ScreenSpot-Pro when the prompt “Click on the element with
the following description:” is not prepended to the benchmark’s instructions.

Our final 700K SFT dataset is a chosen mix to ensure the model is both high-performing and less
sensitive to prompts used. Hence, when evaluating our final models, we do not provide any prefix
prompts and evaluate directly on the instructions provided by the benchmarks.

B.6 QUALITY OF INSTRUCTION TUNING DATA

Our MLLM pipeline for generating the instructions is highly robust for a key reason: we are not de-
pendent on the MLLM’s open-ended knowledge. Our pipeline is highly constrained. It provides the
MLLM with strong, ground-truth context, including the element’s name, its bounding box, and addi-
tional screenshot context (e.g., elements around the target element for spatial instructions). The task
is one of grounded rephrasing or description, not open-ended task creation. This also clearly reflects
the outcome of the trained model using generated instructions across a wide variety of benchmarks
and the reported result in the paper.

To further verify this systematically, we performed a human evaluation on the generated instruction-
tuning set. Three annotators who are not the authors of the paper annotated 100 randomly selected
instructions to check for validity (i.e., whether the instruction accurately describes the element being
grounded). Using a majority vote to aggregate these annotations, we found an error rate of 4%. We
believe this represents a low error rate for a training dataset, highlighting the quality and reliability
of our MLLM-generated instruction data.

C TRAINING

In this section, we describe the training process for GROUNDNEXT. We outline the key design
choices behind our SFT and RL setups, including data selection and filtering strategies, hyperpa-
rameter configurations, and other relevant details. We also report experimental observations, high-
lighting the impact of these choices and the insights gained during development.

C.1 SFT DATA

From the instruction-tuning corpus, we curate a split of 700K size with 50% direct instructions, 35%
functional instructions, and 15% spatial instructions.
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Figure 7: Instruction tuning data examples.

C.2 SFT TRAINING DETAILS

We use LlamaFactory (Zheng et al., 2024) to train our SFT models with a learning rate of 3e-6,
cosine decay, and a warmup ratio of 0.05. Models are trained for two epochs, as this consistently
outperforms training for a single epoch. Preliminary experiments also show that training the entire
model, rather than only the LLM, is more effective; we therefore adopt this configuration throughout.
All models are trained on a single H100 node with 8 H100 GPUs, using a global batch size of 128,
gradient accumulation of 16, and a per-device batch size of 1.
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C.3 RL DATA

For RL training, we first performed rejection sampling on the SFT training set using the SFT model
itself. Specifically, we extracted the model’s errors and sampled 10K instances, which were then
used to run RL. While this yielded modest improvements, the SFT model was already strong, and
many of the extracted errors corresponded to noisy or ambiguous datapoints (e.g., prompts with mul-
tiple valid answers or inconsistent labels). These issues limited the effectiveness of this approach.

We next applied RL on top of the SFT model using 10K previously unseen samples from GROUND-
CUA. This strategy avoided noise from ambiguous training points and yielded a more significant
performance boost. Consequently, our final setup exclusively used the 10K samples unseen during
SFT from GROUNDCUA.

We also explored incorporating a small amount of out-of-distribution data to encourage generaliza-
tion to web and mobile domains. Specifically, we added 10K samples from GUIAct (Chen et al.,
2024), in addition to 10K samples from GROUNDCUA, split evenly between mobile (5K) and web
(5K). Unlike the gains observed when adding in-distribution samples from GROUNDCUA, this pre-
liminary attempt did not yield consistent improvements. We note, however, that our setup was
limited in scope and did not include rejection sampling or other analysis. A more systematic in-
vestigation of combining our dataset with complementary sources, particularly in the context of RL
training to improve cross-platform performance, is an exciting direction for future work.

C.4 RL TRAINING DETAILS

For our RL training, we compared two rule-based optimization methods, Group Relative Policy
Optimization (GRPO) and Relative Leave-One-Out (RLOO). Empirically, and as pointed out in
previous literature (Zhang et al., 2025), we found that RLOO produced more stable learning and
better results. The RLOO objective can be written as:

∇θJ(πθ) = Eτ∼πθ

 T∑
t=1

∇θ log πθ(at|st)

R(τ)− 1

n− 1

∑
j ̸=i

R(τj)

 , (1)

where R(τ) is the reward of trajectory τ , and the baseline is computed as the average reward of
all other trajectories in the same group (excluding the i-th trajectory). This avoids training a critic
model and instead uses relative group comparisons. In our case, the trajectories are the predicted
coordinates by the model, and the reward is defined based on where the predicted point is relative to
the bounding box. For the grounding task, τ is a sequence of tokens, which represents the predicted
coordinate.

Reward Formulation.

1. Continuous reward: Based on the normalized distance d between the predicted point p̂ and the
ground-truth bounding box B, we defined:

r = 1− d, d =
∥p̂− p∗∥

MaxDist(B,W,H)
,

where p∗ is the closest point in B, and MaxDist(B,W,H) is the maximum possible distance a point
inside an image of width W and height H can have. However, this suffered from sparsity and weak
gradient signals.

2. Binary reward: A simple scheme assigning

r =

{
1 if p̂ ∈ B,

−1 otherwise.

This proved more stable than continuous rewards but lacked sensitivity to error magnitude.

3. Customized Discrete Reward (final choice): To distinguish between predictions that miss the
bounding box by a small or large margin, and to encourage predictions inside the box to move closer
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Figure 8: Dnorm distribution of the errors made by GROUNDNEXT-3B (SFT) and GROUNDNEXT-
7B (SFT) on the training set. 50% of the errors lie within Dnorm < 0.1, highlighting the motivation
of our reward function.

to the center, we designed a customized discrete reward based on a normalized signed distance. The
reward function is defined as:

Rscore(p̂, B, I) =



−1.0 if Dnorm < −0.5,

−0.5 if − 0.5 ≤ Dnorm < −0.1,

−0.1 if − 0.1 ≤ Dnorm < 0,

0.1 if 0 ≤ Dnorm < 0.1,

0.5 if 0.1 ≤ Dnorm < 0.5,

1.0 if Dnorm ≥ 0.5.

The normalized distance is calculated as Dnorm = D(p̂,B)
Dref

, where D(p̂, B) is the signed distance
between the predicted coordinate p̂ and the ground-truth bounding box B (with positive values
denoting the interior). The reference distance Dref adapts based on the prediction’s location to
ensure Dnorm ∈ [−1, 1]:

Dref =

{
0.5× diam(B) if p̂ ∈ B,

Dmax(B, I) otherwise.

Here, we use half the bounding box diameter when p̂ ∈ B, as this represents the maximum possible
distance a point inside B can have from the boundary. Conversely, Dmax(B, I) represents the
maximum distance in the image context I for exterior points.

In summary, we adopt RLOO with this shaped reward formulation, as it effectively balances penal-
ties for misses with incentives for precise centering. Our level-wise reward is motivated by the large
proportion of predicted points that miss the bounding box by only a small margin. We highlight this
characteristic in Figure 8, where we compute Dnorm for 10K errors made by GROUNDNEXT-3B
(SFT) and GROUNDNEXT-7B (SFT) on the training set they were trained on. This figure shows the
imbalance in the error distance of the predicted points and the prevalence of “near misses”, which
directly motivates our choice of reward function.

To better demonstrate how the rewards behave for different predicted points, Figure 9 shows a
screenshot from FreeCAD where the ground-truth bounding box encloses the “sketch in progress”.
In this toy example, we illustrate six predicted points, each with a corresponding Dnorm value that
falls into one of the ranges defined by our reward function. As a result, each point receives a different
reward. Higher rewards correspond to predicted points that are closer to the center of the bounding
box.
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Ground Truth Bounding Box

Bounding Box Center

Point P1: R = -1.0
Dnorm = -0.76

Point P2: R = -0.5
Dnorm = -0.24

Point P3: R = -0.1
Dnorm = -0.05

Point P4: R = +0.1
Dnorm = +0.08

Point P5: R = +0.5
Dnorm = +0.48

Point P6: R = +1.0
Dnorm = +0.76

Bbox Center
P1: R = -1.0
P2: R = -0.5
P3: R = -0.1
P4: R = +0.1
P5: R = +0.5
P6: R = +1.0

Figure 9: Rewards of 6 predicted points with respect to the ground truth bounding box in a screenshot
of FreeCAD.

C.5 RL DESIGN CHOICES AND HYPERPARAMETERS

C.5.1 DISCRETE REWARD DESIGN

We investigate the impact of reward granularity on model performance during the RLOO stage. As
shown in Table 8, we compared reward configurations ranging from binary feedback to 8-level
quantization using a preliminary 3B checkpoint. We observe that the 6-level design achieves the
best performance on OSWorld-G (63.1%) and yields the highest average score (65.2%) across all
granularity settings. Based on these results, we selected the 6-level configuration (formulated as
{−1.0,−0.5,−0.1, 0.1, 0.5, 1.0}) for all subsequent experiments.

Table 8: Performance of different reward designs for the RLOO stage using a preliminary 3B check-
point. The “Levels” column indicates the number of discrete reward values used within the range
[−1, 1].

Reward Granularity MMBench-GUI OSWorld-G ScreenSpot-Pro Avg

8 Levels 80.6 61.5 52.3 64.8
6 Levels 81.0 63.1 51.6 65.2
4 Levels 80.4 62.6 52.6 65.2
2 Levels 81.0 62.1 52.4 65.1

C.5.2 IMPACT OF GROUP NUMBER

We also ablated the group size n (the number of generations per prompt) to balance performance
with training efficiency. This study was conducted using a preliminary GROUNDNEXT-3B-SFT
checkpoint trained via GRPO on a subset of 5.1K RL data points. As shown in Table 9, increasing
the group size to n = 32 yields the best overall performance; however, the marginal gains do
not justify the significant increase in computational cost and training time. While n = 4 slightly
outperforms n = 8, we consider such a small group size potentially unstable for gradient estimation.
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Consequently, we choose to n = 8 for our final experiments, a choice consistent with settings used
in recent prior works (Liu et al., 2025a; Tang et al., 2025).

Table 9: Ablation of the group number n using a preliminary 3B checkpoint with GRPO (5K sam-
ples). All scores are reported as percentages.

n ScreenSpot-Pro ScreenSpot-v2 OSWorld-G UI-Vision Avg

4 48.1 88.1 59.4 58.11 63.4
8 48.6 87.7 59.0 57.8 63.3

32 49.5 88.2 58.3 58.2 63.5

C.5.3 RLOO VS. GRPO

Further, we conducted an ablation on RLOO vs. GRPO. While GRPO is widely used, we selected
RLOO for its simplicity and its successful application in related work such as InfiGUI-G1 (Liu et al.,
2025a). To validate this choice, we conducted a minimal comparison using an early SFT checkpoint
(Table 10). We observed that RLOO achieves performance parity with GRPO, yielding a slightly
higher average score (65.7% vs. 65.3%) and stronger results on OSWorld-G. We emphasize that we
do not claim RLOO is inherently superior to GRPO; rather, these results indicate that RLOO was a
reliable and robust configuration for our dataset-centric experiments.

Table 10: Comparison of RLOO and GRPO algorithms on an early SFT checkpoint. All scores are
reported as percentages.

Algorithm ScreenSpot-Pro ScreenSpot-v2 OSWorld-G Avg

GRPO 49.5 88.2 58.3 65.3
RLOO 49.3 88.3 59.4 65.7

D EVALUATION

D.1 SCREENSPOTPRO RESULTS

Table 11 summarises the results for different models on ScreenSpot-Pro (Li et al., 2025).

D.2 OSWORLD-G RESULTS

Table 12 summarises the results for different models on OSWorld-G (Xie et al., 2025).

D.3 MMBENCH-GUI RESULTS

Table 13 summarises the results for different models on MMBench-GUI (Wang et al., 2025b).

D.4 SCREENSPOT-V2 RESULTS

Table 14 summarises the results for different models on ScreenSpot-v2 (Cheng et al., 2024).

D.5 UI-VISION RESULTS

Table 15 summarises the results for different models on UI-Vision (Nayak et al., 2025).
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Table 11: Performance of different models on SSPro across categories (CAD, Dev, Creative, Scien-
tific, Office, OS). Text and Icon refer to different input types.

Model CAD Dev Creative Scientific Office OS Avg.

Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.

GPT-4o 2.0 0.0 1.3 0.0 1.0 0.0 2.1 0.0 1.1 0.0 0.0 0.0 1.3 0.0 0.8
Claude Computer Use 14.5 3.7 22.0 3.9 25.9 3.4 33.9 15.8 30.1 16.3 11.0 4.5 23.4 7.1 17.1
Qwen2.5-VL-3B 9.1 7.3 22.1 1.4 26.8 2.1 38.2 7.3 33.9 15.1 10.3 1.1 23.6 3.8 16.1
Qwen2.5-VL-7B 16.8 1.6 46.8 4.1 35.9 7.7 49.3 7.3 52.5 20.8 37.4 6.7 38.9 7.1 26.8
FOCUS-2B 7.6 3.1 22.8 1.7 23.7 1.7 25.0 7.1 23.2 7.7 17.8 2.5 19.8 3.9 13.3
ShowUI-2B 2.5 0.0 16.9 1.4 9.1 0.0 13.2 7.3 15.3 7.5 10.3 2.2 10.8 2.6 7.7
UI-TARS-2B 15.8 1.2 51.9 2.8 47.5 9.7 57.6 14.5 60.5 13.2 38.3 7.9 45.2 8.1 31.1
JEDI-3B 27.4 9.4 61.0 13.8 53.5 8.4 54.2 18.2 64.4 32.1 38.3 9.0 49.8 13.7 36.1
SeeClick-9.6B 2.5 0.0 0.6 0.0 1.0 0.0 3.5 0.0 1.1 0.0 2.8 0.0 1.8 0.0 1.1
Aria-UI 7.6 1.6 16.2 0.0 23.7 2.1 27.1 6.4 20.3 1.9 4.7 0.0 17.1 2.0 11.3
OS-Atlas-7B 12.2 4.7 33.1 1.4 28.8 2.8 37.5 7.3 33.9 5.7 27.1 4.5 28.1 4.0 18.9
UGround-7B 14.2 1.6 26.6 2.1 27.3 2.8 31.9 2.7 31.6 11.3 17.8 0.0 25.0 2.8 16.5
UI-TARS-7B 17.8 4.7 47.4 4.1 42.9 6.3 56.9 17.3 50.3 17.0 21.5 5.6 39.6 8.4 27.7
JEDI-7B 38.0 14.1 42.9 11.0 50.0 11.9 72.9 25.5 75.1 47.2 33.6 16.9 52.6 18.2 39.5
GUI-Actor-7B – – – – – – – – – – – – – – 44.6
OpenCUA-7B – – – – – – – – – – – – – – 50.0
CogAgent-18B 7.1 3.1 14.9 0.7 9.6 0.0 22.2 1.8 13.0 0.0 5.6 0.0 12.0 0.8 7.7
UI-TARS-72B 18.8 12.5 62.9 17.2 57.1 15.4 64.6 20.9 63.3 26.4 42.1 15.7 50.9 17.6 38.1
UI-R1-3B 11.2 6.3 22.7 4.1 27.3 3.5 42.4 11.8 32.2 11.3 13.1 4.5 24.9 6.4 17.8
UI-R1-E-3B 37.1 12.5 46.1 6.9 41.9 4.2 56.9 21.8 65.0 26.4 32.7 10.1 – – 33.5
GUI-R1-3B 26.4 7.8 33.8 4.8 40.9 5.6 61.8 17.3 53.6 17.0 28.1 5.6 – – –
InfiGUI-R1-3B 33.0 14.1 51.3 12.4 44.9 7.0 58.3 20.0 65.5 28.3 43.9 12.4 49.1 14.1 35.7
GUI-G1-3B 39.6 9.4 50.7 10.3 36.6 11.9 61.8 30.0 67.2 32.1 23.5 10.6 49.5 16.8 37.1
SE-GUI-3B 38.1 12.5 55.8 7.6 47.0 4.9 61.8 16.4 59.9 24.5 40.2 12.4 50.4 11.8 35.9
InfiGUI-G1-3B 50.8 25.0 64.9 20.0 51.5 16.8 68.8 32.7 70.6 32.1 49.5 15.7 – – 45.2
GUI-R1-7B 23.9 6.3 49.4 4.8 38.9 8.4 55.6 11.8 58.7 26.4 42.1 16.9 – – –
SE-GUI-7B 51.3 42.2 68.2 19.3 57.6 9.1 75.0 28.2 78.5 43.4 49.5 25.8 63.5 21.0 47.3
Phi-Ground-7B-16C-DPO 70.8 16.7 56.6 13.3 26.9 17.2 58.0 29.1 76.4 44.0 55.1 25.8 56.4 21.8 43.2
GUI-G2-7B 55.8 12.5 68.8 17.2 57.1 15.4 77.1 24.5 74.0 32.7 57.9 21.3 64.7 19.6 47.5
GTA1-7B 66.9 20.7 62.6 18.2 53.3 17.2 31.8 76.4 82.5 50.9 48.6 25.9 65.5 25.2 50.1
InfiGUI-G1-7B 57.4 23.4 74.7 24.1 64.6 15.4 80.6 31.8 75.7 39.6 57.0 29.2 68.4 25.2 51.9

Our Models
GROUNDNEXT-3B (SFT) 50.3 26.6 65.6 36.6 48.5 22.4 66.0 38.2 76.3 54.7 41.1 28.1 58.3 32.8 48.6
GROUNDNEXT-3B (RL) 55.3 32.8 65.6 36.6 50.0 24.5 66.0 37.3 74.6 50.9 45.8 29.2 59.9 33.6 49.8
GROUNDNEXT-7B (SFT) 46.2 32.8 68.2 38.6 54.5 20.3 70.8 37.3 76.8 49.1 45.8 33.7 59.9 33.6 50.2
GROUNDNEXT-7B (RL) 50.2 34.3 73.4 40.0 59.6 23.8 70.1 42.7 74.6 54.7 53.3 30.3 60.5 33.6 52.9

Table 12: Performance comparison of models on OSWORLD-G across multiple capability dimen-
sions.

Model Text Matching Element Recognition Layout Understanding Fine-grained Manipulation Refusal Overall

OS-Atlas-7B 44.1 29.4 35.2 16.8 7.4 27.7
UGround-V1-7B 51.3 40.3 43.5 24.8 0.0 36.4
Aguvis-7B 55.9 41.2 43.9 28.2 0.0 38.7
UI-TARS-7B 60.2 51.8 54.9 35.6 0.0 47.5
Seed1.5-VL 73.9 66.7 69.6 47.0 18.5 62.9
UI-TARS-72B 69.4 60.6 62.9 45.6 0.0 57.1
Gemini-2.5-Pro 59.8 45.5 49.0 33.6 38.9 45.2
Operator 51.3 42.4 46.6 31.5 0.0 40.6
Qwen2.5-VL-3B 41.4 28.8 34.8 13.4 0.0 27.3
Qwen2.5-VL-7B 45.6 32.7 41.9 18.1 0.0 31.4
Qwen2.5-VL-32B 63.2 47.3 49.0 36.9 0.0 46.5
JEDI-3B 67.4 53.0 53.8 44.3 7.4 50.9
JEDI-7B 65.9 55.5 57.7 46.9 7.4 54.1
InfiGUI-G1-3B 65.5 53.0 56.1 34.2 0.0 49.6
InfiGUI-G1-7B 72.0 63.6 66.8 46.3 0.0 59.9
GTA-1-7B 63.2 82.1 74.2 70.5 0.0 67.7

Our Models
GROUNDNEXT-3B (SFT) 67.4 68.8 68.4 43.0 0.0 62.2
GROUNDNEXT-3B (RL) 70.9 71.2 70.8 43.6 0.0 64.2
GROUNDNEXT-7B (SFT) 72.4 73.3 73.1 53.7 0.0 67.2
GROUNDNEXT-7B (RL) 74.3 73.9 73.5 51.7 0.0 67.7
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Table 13: MMBench-GUI: Cross-platform performance of models across Windows, MacOS, Linux,
iOS, Android, and Web.

Model Windows MacOS Linux iOS Android Web Avg

Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv.

GPT-4o 1.5 1.1 8.7 4.3 1.1 1.0 5.1 3.3 2.5 1.4 3.2 2.9 2.9
Claude-3.7 1.5 0.7 12.5 7.5 1.1 0.0 13.7 10.6 1.4 1.4 3.2 2.3 4.7
Qwen-Max-VL 43.9 36.8 58.8 56.1 53.9 30.1 77.4 59.1 79.5 70.1 74.8 58.8 58.0
ShowUI-2B 9.2 4.4 24.1 10.4 25.1 11.7 29.0 19.7 17.4 8.7 22.9 12.7 16.0
Qwen2.5-VL-7B 31.4 16.5 31.3 22.0 21.5 10.2 66.6 55.2 35.1 35.2 40.3 32.5 33.9
Qwen2.5-VL-72B 55.7 33.8 49.9 30.1 40.3 20.9 56.1 28.2 55.6 25.4 68.4 45.8 41.8
OS-Atlas-Base-7B 36.9 18.8 44.4 21.7 31.4 13.3 74.8 48.8 69.6 46.8 61.3 35.4 41.4
Aguvis-7B-720P 37.3 21.7 48.1 33.3 33.5 25.0 67.5 65.2 61.0 51.0 61.6 45.5 45.7
UI-TARS-1.5-7B 68.3 39.0 69.0 44.5 64.4 37.8 88.5 69.4 90.5 69.3 81.0 56.5 64.3
UI-TARS-72B-DPO 78.6 51.8 80.3 62.7 68.6 51.5 90.8 81.2 93.0 80.0 88.1 68.5 74.3
UGround-V1-7B 66.8 39.0 71.3 48.6 56.5 31.1 92.7 70.9 93.5 71.0 88.7 64.6 65.7
InternVL3-72B 70.1 42.6 75.7 52.3 59.2 41.3 93.6 80.6 92.7 78.6 90.7 65.9 72.2
Naive RLVR-3B 68.6 44.5 78.6 50.0 61.3 39.3 92.4 76.4 91.3 76.1 87.4 63.0 70.9
Naive RLVR-7B 79.3 58.1 82.3 62.7 64.4 44.9 94.9 89.1 95.5 84.2 92.9 79.5 79.3
InfiGUI-G1-3B 74.2 47.1 78.8 55.2 65.4 41.8 95.2 78.8 92.1 78.0 89.7 64.3 73.4
InfiGUI-G1-7B 82.7 61.8 83.8 63.9 72.3 52.0 94.9 89.4 95.2 85.6 93.5 76.3 80.8

Our Models
GROUNDNEXT-3B (SFT) 81.5 50.7 85.8 64.2 73.8 53.6 93.0 77.0 90.4 73.8 88.1 59.7 75.5
GROUNDNEXT-3B (RL) 80.4 52.6 87.2 64.5 70.7 57.1 94.9 78.5 91.9 78.0 90.6 64.3 77.1
GROUNDNEXT-7B (SFT) 83.8 60.7 86.7 69.9 75.4 61.2 94.3 83.3 94.9 79.4 91.0 70.5 80.4
GROUNDNEXT-7B (RL) 81.5 60.7 87.8 73.1 75.4 59.2 95.2 86.1 95.5 80.3 90.97 72.7 81.1

Table 14: ScreenSpot-V2: Cross-platform breakdown by device and modality. “Icon/Widget” indi-
cates icon- or widget-based queries. “Avg.” is across all devices and modalities.

Model Mobile Desktop Web Avg.

Text Icon/Widget Text Icon/Widget Text Icon/Widget

SeeClick 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas-Base-7B 95.2 75.8 90.7 63.6 90.6 77.3 85.1
UI-TARS-7B 96.9 89.1 95.4 85.0 93.6 85.2 91.6
UI-TARS-72B 94.8 86.3 91.2 87.9 91.5 87.7 90.3
Qwen2.5-VL-3B 93.4 73.5 88.1 58.6 88.0 71.4 80.9
Qwen2.5-VL-7B 97.6 87.2 90.2 74.2 93.2 81.3 88.8
Qwen2.5-VL-32B 97.9 88.2 98.5 79.3 91.2 86.2 91.3
InfiGUI-G1-3B 99.3 88.2 94.8 82.9 94.9 80.3 91.1
InfiGUI-G1-7B 99.0 91.9 94.3 82.1 97.9 89.2 93.5

Our Models
GROUNDNEXT-3B (SFT) 95.2 80.6 93.8 84.3 87.6 78.8 87.3
GROUNDNEXT-3B (RL) 94.8 96.4 93.9 87.1 90.6 79.3 88.5
GROUNDNEXT-7B (SFT) 97.2 84.8 94.3 90.0 91.5 74.9 89.3
GROUNDNEXT-7B (RL) 96.6 88.2 95.4 87.9 94.9 75.9 90.4

D.6 DISCUSSION ON RL GAINS

We hypothesize that the observed “limited” improvement is not a failure of the RL step, but rather a
finding that highlights the interaction between strong SFT baselines and RL gains. We also demon-
strate that GROUNDCUA is an effective dataset for RL fine-tuning. We detail our analysis below.

D.6.1 HIGH-QUALITY SFT CREATES A “STRONG CEILING”

We hypothesize that stronger GUI models contain fewer actionable errors after the SFT stage, re-
sulting in lower marginal benefits from subsequent RL fine-tuning, especially when the RL data is
drawn from the same distribution as the SFT data. This is supported by Figure 3, where we observe
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Table 15: UI-Vision: Performance grouped by category (Edu., Browser, Dev., Prod., Creative, En-
tert.) and by setting (Basic, Functional, Spatial).

Model Grouped by Setting Overall

Basic Func. Spatial

GPT-4o 1.6 1.5 1.0 1.4
Claude-3.7-Sonnet 9.5 7.7 7.6 8.3
Qwen-2.5VL-7B 1.2 0.8 0.5 0.9
InternVL2.5-8B 2.5 2.8 1.0 2.1
MiniCPM-V-8B 7.1 5.3 1.5 4.3
SeeClick-9.6B 9.4 4.7 2.1 5.4
ShowUI-2B 8.1 7.7 2.1 5.9
CogAgent-9B 12.0 12.2 2.6 8.9
OSAtlas-7B 12.2 11.2 3.7 9.0
AriaUI-25.3B 12.2 14.0 4.0 10.1
UGround-v1-7B 15.4 17.1 6.3 12.9
UGround-v1-72B 27.9 26.7 14.9 23.2
Aguvis-7B 17.8 18.3 5.1 13.7
UI-TARS-7B 20.1 24.3 8.4 17.6
UI-TARS-72B 31.4 30.5 14.7 25.5
InfiGUI-G1-3B 31.2 28.0 8.2 22.0
InfiGUI-G1-7B 36.2 31.9 11.5 26.1

Our Models
GROUNDNEXT-3B (SFT) 70.9 59.8 45.1 58.2
GROUNDNEXT-3B (RL) 72.9 63.9 50.6 62.1
GROUNDNEXT-7B (SFT) 67.1 60.0 49.9 58.7
GROUNDNEXT-7B (RL) 70.1 62.0 49.9 60.3

that RL provides significantly larger gains for SFT models trained with other datasets compared to
GROUNDCUA. We attribute this to the fact that GROUNDCUA yields a much stronger initial model;
consequently, the RL stage serves as a minor refinement rather than a primary performance driver in
our current setting.

Table 16: Performance comparison between the base model (UI-Tars-1.5-7B) and the RL-tuned
model (GTA-1-7B). Note that the results for UI-TARS-1.5-7B are reported using our own evaluation
setup and differs from (Yang et al., 2025).

Benchmark UI-Tars-1.5-7B GTA-1-7B Improvement

SS-Pro 47.9 50.1 +2.2%
OSW-G 64.2 67.7 +3.5%
MMB-GUI 75.4 79.4 +4.0%
SSv2 90.3 92.4 +2.1%
UI-V 20.8 25.7 +4.9%

We also see this trend in a related work, GTA1 (Yang et al., 2025). GTA1-7B initializes its training
from UI-TARS-1.5-7B, which is a powerful GUI grounding model. We observe that the average
improvement across five benchmarks is 3.3% (see Table 16). This demonstrates that, while RL
provides a consistent lift, the gains are moderate, not universally massive. The limited marginal
return observed in GROUNDNEXT is consistent with the observations for GTA-1-7B.

Important Note: We emphasize that we do not make a general claim that stronger GUI models
cannot be effectively RL-tuned. Our results merely provide evidence supporting the hypothesis
that the marginal return is lower when a robust, high-quality SFT initialization is used, particularly

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

for models in the 3–7B size range under the reward formulations we employ. A more detailed study
spanning different architectures, various reward functions, different model sizes, and deeper RL
fine-tuning is required to fully understand these interactions. This comprehensive investigation is
beyond the scope of our current paper, but our results provide the initial evidence for an interesting
phenomenon.

D.6.2 GROUNDCUA IS A GREAT SOURCE FOR RL FINE-TUNING

Table 17: RL ablation study: Performance of the Qwen2.5-VL-3B baseline trained with 10k RL
samples from different datasets.

Dataset SSPro OSWorld-G SSv2 MMBench UI-V

Baseline 29.0 37.4 81.8 60.8 6.3
Aguvis 31.2 45.6 86.01 67.01 14.7
OSAtlas 30.4 46.4 62.0 67.7 14.1
UGround 33.6 43.8 89.0 68.8 16.7
GroundCUA 36.8 48.8 88.9 70.5 19.2

Imp. over baseline +7.8% +11.4% +7.1% +9.7% +12.9%

We clarify that the limited marginal gain observed in the final GROUNDNEXT models is not a flaw
of the GROUNDCUA dataset itself. We validate this through a controlled experiment where we
sampled 10k data points from GROUNDCUA and three competing datasets with available bounding
boxes: Aguvis, OS-Atlas, and UGround. We trained a Qwen2.5-VL-3B-Instruct baseline using the
hyperparameters described in Section 4.1 and Appendix C.4, with two modifications: we adopted
the simpler binary (0/1) reward formulation described in the GTA paper and extended training to 2
epochs, as we observed rewards continuing to increase after the first epoch. We report the perfor-
mance across various benchmarks in Table Table 17

We observe that GROUNDCUA provides substantial gains of 9.8% on average over the Qwen2.5-
VL-3B baseline. Furthermore, it achieves an average gain of 1.9% over the next best baseline (and
2.5% if we exclude the SSv2 benchmark). This validates that the GROUNDCUA data is highly
effective for RL. We attribute this to our human-annotated labels and bounding boxes (less noise)
and the rich diversity of platforms covered by our dataset.

The strength of GROUNDCUA lies in its platform diversity (87 applications across 12 categories)
and dense annotations, which offer a huge variety of UI elements for agents to learn. RL training
on a very large scale (e.g., 700k samples in our case) is computationally expensive, especially in
resource-constrained settings (e.g., we used 8 H100 GPUs for our experiments). Hence, we believe
the diversity of GROUNDCUA can be effectively exploited through a careful combination of SFT,
which teaches new knowledge, and RL, which helps with generalization. Future research could
focus on optimizing this SFT/RL mix, which has shown promise in works like Ma et al. (2025). By
releasing our data, we provide the necessary resource to explore this path.

D.7 SFT SCALING BEHAVIOR

To study how performance scales with additional supervised data, we trained three versions of the
Qwen2.5-VL-Instruct-3B model using subsets of 100k, 350k, and 700k instructions sampled from
GROUNDCUA. All runs used identical hyperparameters. The results are reported in Table 18.

We observe steady gains across almost all benchmarks as the amount of training data increases. The
improvements indicate that the training setup remains stable across scales and that the additional
samples provide useful signal. Since GROUNDCUA undergoes rigorous deduplication, larger sub-
sets introduce new visual and semantic variety rather than repeated patterns, which directly strength-
ens grounding performance.
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Table 18: Scaling ablation on GROUNDCUA. Performance improves steadily as more SFT data is
used.

Size SS-Pro OS-World-G MMBench-GUI UI-Vision SS-v2 Average

100k 41.7 54.6 72.5 29.8 87.4 57.2
350k 44.5 57.3 72.9 39.5 87.0 60.2
700k 48.6 62.2 75.5 58.2 87.3 66.4

The most pronounced improvements appear on UI-Vision, where performance increases from 29.8
at 100k to 58.2 at 700k. UI-Vision is closely aligned with the layouts and element styles present
in GROUNDCUA, allowing the model to leverage broader coverage as more data is included.
OSWorld-G and ScreenSpot-Pro show similar positive trends, reflecting consistent benefits in dense
desktop scenarios.

Overall, the scaling results show that high-quality, non-redundant supervision continues to improve
grounding accuracy throughout this data range, suggesting room for further gains with larger curated
subsets.

E GROUNDNEXT ERROR ANALYSIS

Figure 10: Errors made by GROUNDNEXT on mobile devices. Examples are chosen from the SSv2
benchmark.

In this section, we examine the errors made by GROUNDNEXTs and categorise them into 4 broad
categories:

Limited Domain Knowledge (Generalization to Web/Mobile): We observe that some errors
stem from limited knowledge of web and mobile platforms, as GROUNDCUA predominantly cov-
ers desktop software applications. This is most prevalent when generalizing to out-of-domain plat-
forms. While GROUNDNEXT performs competitively on Mobile and Web benchmarks, errors often
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Figure 11: (Left) Example of a near miss for the prompt ”Click on the marker already added to
the map.” (Right) Example from OSWorld-G where the model clicks the wrong cell for the prompt
“Move your mouse to the cell in the 3rd column and 12th row (this cell is labeled as C12), then press
the left mouse button.”

arise due to distribution shifts. Mobile interfaces, for instance, utilize vastly different aspect ratios,
resolutions, and distinct UI patterns that are absent in our desktop-centric training data. Figure 10
illustrates examples where GROUNDNEXT fails on relatively simple queries for the mobile platform,
such as ’Join a twitch server.’ We attribute these errors to a combination of factors, primarily the
domain shift inherent in mobile screenshots compared to our desktop training data, as well as a lack
of specific application knowledge, which we discuss in greater detail below.

Localization Precision (Near-Misses): We analyzed the magnitude of grounding errors and found
that many “failures” are actually correct semantics with imperfect localization. As shown in Fig-
ure 8, over 50% of the errors have a relative distance of less than 10% from the ground truth bounding
box. This suggests the model successfully identifies the correct target region but occasionally lacks
pixel-perfect precision. We visualize a “near-miss” example in Figure Figure 11 (left).

Application-Specific Semantics: We observe errors when the model encounters specialized termi-
nology or icons in unseen software applications. For example, in our analysis of Platform VMWare
in ScreenSpot-Pro (which is not present in our training data), the model struggles with niche tools
that require specific software knowledge to identify (eg, “restart from CD”, “snapshot details”),
whereas it remains robust on generic UI elements like “Refresh”, “font size”.

Spatial Reasoning Limitations: Despite the inclusion of spatial data in our instruction mix (≈
13%), the model shows a notable performance gap when handling complex relative instructions.
This is quantified in the UI-Vision benchmark, where performance drops from ≈ 70.1% on the
“Basic” category to ≈ 49.9% on the “Spatial” category. We suspect that while the current data helps,
solving this fully may require a base model with stronger inherent spatial reasoning capabilities or
a higher ratio of spatial instruction tuning. In Figure 11 (right), we show an error in localising the
correct cell in the Libre Office Calc platform (from the OSWorld-G benchmark)

F LIMITATIONS

While our work makes significant progress in desktop GUI grounding, there are a few key limita-
tions. Although it covers 87 applications across 6 categories, the dataset may not fully represent the
diversity of desktop software, as it is biased toward commonly used applications. Our keyframe-
based annotations capture static UI states but miss dynamic elements like animations and real-time
updates. While we’ve taken steps to ensure annotation consistency, human labeling at scale can still
introduce some inconsistencies, and the time and cost of annotation limit scalability. Additionally,
our evaluation focuses on benchmark accuracy, but real-world applications require robustness to
changes in distribution, new app versions, and UI updates; issues that need further exploration. Fi-
nally, we do not perform end-to-end agentic testing for task completion, which remains an important
area for future work.
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G LLM USAGE

In our work, LLMs are used for the following aspects:

• Using an LLM to help with paper writing. We use GPT5 to help optimize language, correct
grammar, and write LATEX table code.

• Using an LLM as a research assistant. We use GPT5 to help search related works.
• Using LLMs in our methods and experiments. This is described in the paper.
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