
Under review as a conference paper at ICLR 2021

LEARNING BINARY TREES VIA SPARSE RELAXATION

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the most classical problems in machine learning is how to learn binary trees
that split data into useful partitions. From classification/regression via decision trees
to hierarchical clustering, binary trees are useful because they (a) are often easy to
visualize; (b) make computationally-efficient predictions; and (c) allow for flexible
partitioning. Because of this there has been extensive research on how to learn
such trees that generally fall into one of three categories: 1. greedy node-by-node
optimization; 2. probabilistic relaxations for differentiability; 3. mixed-integer
programs (MIP). Each of these have downsides: greedy can myopically choose
poor splits, probabilistic relaxations do not have principled ways to prune trees,
MIP methods can be slow on large problems and may not generalize. In this
work we derive a novel sparse relaxation for binary tree learning. By deriving
a new MIP and sparsely relaxing it, our approach is able to learn tree splits and
tree pruning using argmin differentiation. We demonstrate how our approach
is easily visualizable and is competitive with current tree-based approaches in
classification/regression and hierarchical clustering.

1 INTRODUCTION

Learning discrete structures from unstructured data is extremely useful for a wide variety of real-world
problems (Gilmer et al., 2017; Kool et al., 2018; Yang et al., 2018). One of the most computationally-
efficient, easily-visualizable discrete structures that are able to represent complex functions are binary
trees. For this reason, there has been a massive research effort on how to learn such binary trees
since the early days of machine learning (Payne & Meisel, 1977; Breiman et al., 1984; Bennett, 1992;
Bennett & Blue, 1996). Learning binary trees has historically been done in one of three ways. The
first is via greedy optimization, which includes popular decision-tree methods such as classification
and regression trees (CART) (Breiman et al., 1984) and ID3 trees (Quinlan, 1986), among many
others. These methods optimize a splitting criterion for each tree node, based on the data routed
to it. The second set of approaches are based on probabilistic relaxations (İrsoy et al., 2012; Yang
et al., 2018). The idea is to optimize all splitting parameters at once via gradient-based methods,
by relaxing hard branching decisions into branching probabilities. The third approach optimizes
trees using mathematical programming (MIP) (Bennett, 1992; Bennett & Blue, 1996). This jointly
optimizes all continuous and discrete parameters to find globally-optimal trees.1

Each of these approaches have clear shortcomings. First, greedy optimization is clearly suboptimal:
tree splitting criteria are even intentionally crafted to be different than the global tree loss, as the
global loss does not encourage tree growth (Breiman et al., 1984). Second, probabilistic relaxations:
(a) are rarely sparse, so inputs probabilistically contribute to branches they would never visit if splits
are mapped to hard decisions; (b) they do not have principled ways to prune trees, as the distribution
over pruned trees is often intractable. Third, MIP approaches, while optimal, are only computationally
tractable on training datasets with thousands of inputs (Bertsimas & Dunn, 2017), and do not have
well-understood out-of-sample generalization guarantees.

In this paper we present a new approach to binary tree learning based on sparse relaxation and
argmin differentiation. Our main insight is that by quadratically relaxing an MIP that learns the
discrete parameters of the tree (input traversal and node pruning), we can differentiate through it to
simultaneously learn the continuous parameters of splitting decisions. This allows us to leverage
the superior generalization capabilities of stochastic gradient optimization to learn splits, and gives

1Here we focus on learning single trees instead of tree ensembles; our work easily extends to ensembles.

1

Under review as a conference paper at ICLR 2021

a principled approach to learning tree pruning. Further, we can derive customized algorithms to
compute the forward and backward passes through this program that are much more efficient than
generic approaches (Amos & Kolter, 2017). We demonstrate that (a) in classification/regression our
method, which learns a single tree and a classifier on top of it, is competitive with greedy, probabilistic,
MIP-based tree methods, and even powerful ensemble methods; (b) in hierarchical clustering we
match or improve upon the state-of-the-art.

2 RELATED WORK

The paradigm of binary tree learning has the goal of finding a tree that iteratively splits data into
meaningful, informative subgroups, guided by some criterion. Binary tree learning appears in a
wide variety of problem settings across machine learning. We briefly review work in two learning
settings where latent tree learning plays a key role: 1. Classification/Regression; and 2. Hierarchical
clustering. Due to the generality of our setup (tree learning with arbitrary split functions, pruning,
and downstream objective), our approach can be used to learn trees in any of these settings. Finally,
we detail how parts of our algorithm are inspired by recent work in isotonic regression.

Classification/Regression. Decision trees for classification and regression have a storied history,
with early popular methods that include classification and regression trees (CART; Breiman et al.,
1984), ID3 (Quinlan, 1986), and C4.5 (Quinlan, 1993). While powerful, these methods are greedy:
they sequentially identify ‘best’ splits as those which optimize a split-specific score (often differ-
ent from the global objective). As such, learned trees are likely sub-optimal for the classifica-
tion/regression task at hand. To address this, Carreira-Perpinán & Tavallali (2018) proposes an
alternating algorithm for refining the structure and decisions of a tree so that it is smaller and with
reduced error, however still sub-optimal. Another approach is to probabilistically relax the discrete
splitting decisions of the tree (İrsoy et al., 2012; Yang et al., 2018; Tanno et al., 2019). This allows the
(relaxed) tree to be optimized w.r.t. the overall objective using gradient-based techniques, with known
generalization benefits (Hardt et al., 2016; Hoffer et al., 2017). Variations on this approach aim at
learning tree ensembles termed ‘decision forests’ (Kontschieder et al., 2015; Lay et al., 2018; Popov
et al., 2019). The downside of the probabilistic relaxation approach is that there is no principled way
to prune these trees as inputs pass through all nodes of the tree with some probability. A recent line of
work has explored mixed-integer program (MIP) formulations for learning decision trees. Motivated
by the billion factor speed-up in MIP in the last 25 years, Rudin & Ertekin (2018) proposed a
mathematical programming approach for learning provably optimal decision lists (one-sided decision
trees; Letham et al., 2015). This resulted in a line of recent follow-up works extending the problem to
binary decision trees (Hu et al., 2019; Lin et al., 2020) by adapting the efficient discrete optimization
algorithm (CORELS; Angelino et al., 2017). Related to this line of research, Bertsimas & Dunn
(2017) and its follow-up works (Günlük et al., 2018; Aghaei et al., 2019; Verwer & Zhang, 2019;
Aghaei et al., 2020) phrased the objective of CART as an MIP that could be solved exactly. Even
given this consistent speed-up all these methods are only practical on datasets with at most thousands
of inputs (Bertsimas & Dunn, 2017) and with non-continuous features. Further, the out-of-sample
generalizability of these approaches is not well-studied, unlike stochastic gradient descent learning.

Hierarchical clustering. Compared to standard flat clustering, hierarchical clustering provides a
structured organization of unlabeled data in the form of a tree. To learn such a clustering the vast
majority of methods are greedy and work in one of two ways: 1. Agglomerative: a ‘bottom-up’
approach that starts each input in its own cluster and iteratively merges clusters; and 2. Divisive: a
‘top-down’ approach that starts with one cluster and recusively splits clusters (Zhang et al., 1997;
Widyantoro et al., 2002; Krishnamurthy et al., 2012; Dasgupta, 2016; Kobren et al., 2017; Moseley
& Wang, 2017). These methods suffer from similar issues as do greedy approaches to tree learning
for classification/regression: they may be sub-optimal for optimizing the overall tree. Further they
are often computationally-expensive due to their sequential nature. Inspired by approaches for
classification/regression, recent work has designed probabilistic relaxations for learning hierarchical
clusterings via gradient-based methods (Monath et al., 2019).

Our work takes inspiration from both the MIP-based and gradient-based approaches. Specifically, we
frame learning the discrete tree parameters as an MIP, which we sparsely relax to allow continuous
parameters to be optimized by argmin differentiation methods.

2

Under review as a conference paper at ICLR 2021

Argmin differentiation. Solving an optimization problem as a differentiable module within a
parent problem tackled with gradient-based optimization methods is known as argmin differentiation,
a particular instance of bi-level optimization (Gould et al., 2016). This situation arises in as diverse
scenarios as hyperparameter optimization (Pedregosa, 2016), meta-learning (Rajeswaran et al.,
2019), or structured prediction (Stoyanov et al., 2011; Domke, 2013; Niculae et al., 2018). General
algorithms for quadratic Amos & Kolter (2017) and disciplined convex programming (Section 7,
Amos, 2019; Agrawal et al., 2019a;b) have been given, as well as expressions for more specific
cases like isotonic regression (Djolonga & Krause, 2017). By taking advantage of the very specific
structure of the decision tree induction problem, we obtain a direct, efficient algorithm.

Isotonic regression. Also called monotonic regression, isotonic regression (Barlow et al., 1972)
constrains the regression function to be non-decreasing/non-increasing. This is useful if one has
prior knowledge of such monotonicity (e.g., the mean temperature of the climate is non-decreasing).
A classic algorithm is pooling-adjacent-violators (PAV), which optimizes the pooling of adjacent
points that violate the monotonicity constraint (Barlow et al., 1972). This initial algorithm has been
generalized and incorporated into convex programming frameworks (see Mair et al. (2009) for an
excellent summary of the history of isotonic regression and its extensions). Our work builds off of
the generalized PAV (GPAV) algorithm of Yu & Xing (2016).

3 METHOD

Given inputs {xi}ni=1, our goal is to learn a latent binary decision tree T with maximum depth D.
This tree sends each input x through branching nodes to a specific leaf node in the tree. Specifically,
all branching nodes TB ⊂ T split an input x by forcing it to go to its left child if sθ(x) < 0, and
right otherwise. There are three key parts of the tree that need to be identified: 1. The continuous
parameters θt ∈ Rd that describe how sθt splits inputs at every node t; 2. The discrete paths z made
by each input x through the tree; 3. The discrete choice at of whether a node t should be active or
pruned. We describe how to learn each of these below.

3.1 TREE-TRAVERSAL & PRUNING PROGRAMS

Imagine the splitting functions of the tree sθt are fixed. Given this, the following integer linear
program (ILP) describes how inputs x traverse the tree. The solution zit ∈ {0, 1} indicates if xi
reaches node t ∈ T (for notational simplicity let zi ∈ {0, 1}|T | be the vectorized indicator for xi),

max
z1,...,zn

n∑
i=1

z>i qi (1)

s.t. ∀i ∈ [n], qit = min{rit, lit}
rit = min{sθt′ (xi), ∀t

′ ∈ AR(t), }
lit = min{−sθt′ (xi), ∀t

′ ∈ AL(t)}
zit ∈ {0, 1}.

HereAL(t) is the set of ancestors of node t whose left child must be followed to get to t, and similarly
for AR(t). The quantities qit (where qi ∈ R|T | is the tree-vectorized version of qit) describe the
‘reward’ of sending xi to node t. This is based on how well the splitting functions leading to t are
satisfied (qit is positive if all splitting functions are satisfied and negative otherwise).

Notice that the solution is unique so long as sθt(xi) 6=0 for all t ∈ T , i ∈ {1, . . . , n} (i.e., sθt(xi)=0
means there is no preference to split xi left or right). Further note that the integer constraint on zit
can be relaxed to an interval constraint zit ∈ [0, 1] without loss of generality. This is because if
sθt(xi) 6= 0 then zt = 0 if and only if qt < 0 and zt = 1 when qt > 0 (and qt 6= 0).

While the above program works for any fixed tree, we would like to be able to also learn the structure
of the tree itself. Let ηt ∈ R be our preference for pruning/keeping node t (larger ηt indicates node t
should be kept). To encourage this pruning preference while ensuring connectivity, we introduce an
additional optimization variable at ∈ {0, 1}, indicating if node t ∈ T is active (if 1) or pruned (if 0).

3

Under review as a conference paper at ICLR 2021

We may now adapt eq. 1 into the following pruning-aware mixed integer program (MIP):

max
z1,...,zn,a

n∑
i=1

z>i qi + η>a (2)

s.t. ∀i ∈ [n], at ≤ ap(t), ∀t ∈ T \ {root}
zit ≤ at
zit ∈ [0, 1], at ∈ {0, 1}.

Here we have removed the first three constraints in eq. 1 as they are a deterministic computation
independent of z1, . . . , zn,a. Further p(t) indicates the parent of node t. The added constraint
at ≤ ap(t) ensures that child nodes t are pruned if parent nodes p(t) are pruned. While the new
constraint zit ≤ at ensures that no point xi can reach node t if node t is pruned.

3.2 LEARNING TREE PARAMETERS

A natural approach to learn splitting parameters θt would be to do so in the MIP itself, as in the
optimal tree literature. However, this would severely restrict allowed splitting functions as even linear
splitting functions can only practically run on at most thousands of training inputs (Bertsimas & Dunn,
2017). Instead, we propose to learn sθt via gradient descent. To do so, we must be able to compute
the gradients ∂z

∂η and ∂z
∂q . However, the solutions of eq. 2 are discontinuous and piecewise-constant.

To solve this, we relax the integer constraint on a to the interval [0, 1] and add quadratic regularization
1/2
∑
i ‖zi‖22 + 1/2‖a‖22. Rearranging and negating the objective yields

Tη(q1, . . . ,qn) = arg min
z1,...,zn,a

1/2

n∑
i=1

‖zi − qi‖2 + 1/2‖η − a‖2 (3)

s.t. ∀i ∈ [n], at ≤ ap(t), ∀t ∈ T \ {root}
zit ≤ at
zit ∈ [0, 1], at ∈ [0, 1].

The regularization makes the objective strongly convex, so from convex duality it follows that Tη is
Lipschitz continuous (Zalinescu, 2002, Corollary 3.5.11). By Rademacher’s theorem (Borwein &
Lewis, 2010, Theorem 9.1.2), Tη is thus differentiable almost everywhere. Generic methods such as
OptNet (Amos & Kolter, 2017) could be used to compute the solution and the gradients. However, by
using the tree structure of the constraints, we next derive an efficient specialized algorithm. The main
insight, shown below, reframes pruned binary tree learning as isotonic optimization.

Proposition 1. Let C =
{
a ∈ R|T | : at ≤ ap(t) for all t ∈ T \ {root}

}
. Consider

a? = arg min
a∈C∩[0,1]|T |

∑
t∈T

(
1/2(at − ηt)2

+
∑

i:at≤qit

1/2(at − qit)2
)
. (4)

Define2 [z?]it = Proj[0,a?t](qit). Then, Tη(q1, . . . ,qn) = z?1, . . . , z
?
n,a

?.

Proof. The constraints and objective function of eq. 3 are separable, so we may push the minimization
w.r.t. z inside the objective, resulting in:

arg min
a∈C∩[0,1]|T |

1/2‖η − a‖2 +
∑
t∈T

n∑
i=1

min
0≤zit≤at

1/2(zit − qit)2
. (5)

Each of the inner nested minimizations, min0≤zit≤at 1/2(zit − qit)2 is a one-dimensional projection
onto box constraints, with solution z?it = Proj[0,at](qit). We may use this result to eliminate z from
the objective, noting that

1/2(z?it − qit)2 =


1/2 q2

it, qit < 0

0, 0 ≤ qit < at
1/2(at − qit)2, qit ≥ at

(6)

2Here ProjS(x) is the projection of x onto set S. If S are box constraints, projection amounts to clipping.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Latent decision tree induction via isotonic optimization.

1: initial partition G ←
{
{1}, {2}, · · · } ⊂ 2T

2: for all G ∈ G do
3: dG ← argmina

∑
t∈G gt(a) . Proposition 2

4: while exists t such that at > ap(t) do
5: tmax ← argmaxt{at : at > ap(t)}
6: merge G← G ∪G′ where t ∈ G and p(t) ∈ G′.
7: update aG ← argmina

∑
t∈G gt(a) . Proposition 2 again

the first two conditions are constants w.r.t. at Thus, the objective functions eq. (3) and eq. (4) differ
by a constant. As their constraints are also the same, they have equivalent minimizers a?.

Efficiently inducing trees as isotonic optimization. From Proposition 1, notice that eq. 4 is an
instance of tree-structured isotonic optimization: the objective decomposes over nodes, and the
inequality constraints correspond to edges in a rooted tree:

arg min
a∈C

∑
t∈T

gt(at) , where gt(at) = 1/2(at − ηt)2
+
∑

i:at≤qit

1/2(at − qit)2
+ ι[0,1](at). (7)

where ι[0,1](at) =∞ if at /∈ [0, 1] and 0 otherwise. This problem can be solved by a generalized
pool adjacent violators (PAV) algorithm: Obtain a tentative solution by ignoring the constraints, then
iteratively remove violating edges at > ap(t) by pooling together the nodes at the end points. At the
optimum, the nodes are organized into a partition G ⊂ 2T , such that if two nodes t, t′ are in the same
group G ∈ G, then at = a′t := aG.

When the inequality constraints are the edges of a rooted tree, as is the case here, the PAV algorithm
finds the optimal solution in at most |T | steps, where each involves updating the aG value for a
newly-pooled group by solving a one-dimensional subproblem of the form (Yu & Xing, 2016)3

aG = arg min
a∈R

∑
t∈G

gt(a) , (8)

resulting in Algorithm 1. It remains to show how to solve eq. 8. The next result, proved in
Appendix A.1, gives an exact and efficient solution, with an algorithm that requires finding the nodes
with highest qit (i.e., the nodes where xi is most highly encouraged to traverse).

Proposition 2. The solution to the one-dimensional problem in eq. (8) for any G is given by

arg min
a∈R

∑
t∈G

gt(a) = Proj[0,1]

(
a(k?)

)
where a(k?) :=

∑
t∈G ηt +

∑
(i,t)∈S(k?) qit

|G|+ k?
, (9)

S(k) = {j(1), . . . , j(k)} is the set of indices j = (i, t) ∈ {1, . . . , n} ×G into the k highest values of
q, i.e., qj(1) ≥ qj(2) ≥ . . . ≥ qj(m) , and k? is the smallest k satisfying a(k) > qj(k+1) .

Figure 2 shows the speed of our specialized algorithm compared to a leading generic optimizer
(details in Appendix A.2).

Backward pass and efficient implementation details. Algorithm 1 is a sequence of differentiable
operations that can be implemented as is in automatic differentiation frameworks. However, because
of the prominent loops and indexing operations, we opt for a low-level implementation as a C++
extension. Since the q values are constant w.r.t. a, we only need to sort them once as preprocessing.
For the backward pass, rather than relying on automatic differentiation, we make two remarks about
the form of a. Firstly, its elements are organized in groups, i.e., at = a′t = aG for {t, t′} ⊂ G.
Secondly, the value aG inside each group depends only on the optimal support set S?G := S(k?) as

3Compared to Yu & Xing (2016), our tree inequalities are in the opposite direction. This is equivalent to a
sign flip of parameter a, i.e., to selecting the maximum violator rather than the minimum one at each iteration.

5

Under review as a conference paper at ICLR 2021

Algorithm 2 Learning with latent decision tree representations.
1: initialize neural network parameters φ,θ
2: initialize pruning scores η ∼ U(−1, 1)
3: repeat
4: sample batch {xi}i∈B

5: induce traversals {zi}i∈B ,a = Tη

(
{qθ(xi)}

)
. algorithm 1; differentiable

6: update parameters using∇{θ,η,φ}`(fφ(xi, zi)) + λ‖η‖Ω . autograd

defined for each subproblem by Proposition 2. Therefore, in the forward pass, we must store only the
node-to-group mappings and the sets S?G. Then, if G is the group of node t,

∂a?t
∂ηt′

=

{
1

|G|+k? , 0 < a?t < 1 and t′ ∈ G,
0, otherwise.

∂a?t
∂qit′

=

{
1

|G|+k? , 0 < a?t < 1, and (i, t′) ∈ S?G,
0, otherwise.

.

As Tη is differentiable almost everywhere, these expressions yield the unique Jacobian at all but a
measure-zero set of points, where they yield one of the Clarke generalized Jacobians (Clarke, 1990).
We then rely on automatic differentiation to propagate gradients from q to the split parameters θ;
since q is defined elementwise via min functions, the gradient propagates through the minimizing
path, by Danskin’s theorem (Proposition B.25, Bertsekas, 1999; Danskin, 1966).

3.3 THE OVERALL OBJECTIVE

We are now able to describe the overall optimization procedure that simultaneously learns tree
parameters: (a) input traversals z1, . . . , zn; (b) tree pruning a; and (c) split parameters θt. Given this
tree, we will additionally learn a function fφ(z,x) to minimize an arbitrary loss `(·) as follows,

min
θ,η,φ

n∑
i=1

`
(
fφ(xi, zi)

)
+ λ‖η‖Ω

where z1, . . . , zn,a := Tη
(
qθ(x1), . . . , qθ(xn)

)
.

(10)

In practice, we perform mini-batch updates for efficient training; the procedure is sketched in
Algorithm 2. Recall Tη(·) is the solution to the tree program (eq. 3), so we may update the parameters
η and θ by back-propagation. Here we define qθ(xi) := qi to make explicit the dependence of qi on
θ. The regularization ‖ · ‖Ω can be any norm (in practice we find Ω =∞ to perform the best.) The
overall model is represented in Figure 1.

4 EXPERIMENTS

x

z
`

Tη

(
qθ(x)

)
fφ(x, z)

Figure 1: Model overview.

In this section we showcase our method on both: (a) Classifica-
tion/Regression for tabular data, where tree-based models have been
demonstrated to have superior performance over MLPs (Popov et al.,
2019); and (b) Hierarchical clustering on unsupervised data. Our
experiments demonstrate that our method leads to predictors that are
competitive with state-of-the-art tree-based approaches. Further we
visualize the trees learned by our method, and how sparsity is easily
adjusted by tuning the regularization parameter λ.

Architecture details. We use a linear function or a multi-layer
perceptron (L fully-connected layers with Elu activation (Clevert
et al., 2015) and dropout) for fφ(·) and choose between linear or linear followed by Elu splitting
functions sθ(·) (we limit the search for simplicity, there are no restrictions except differentiability).

4.1 SUPERVISED LEARNING ON TABULAR DATASETS

Our first set of experiments is on supervised learning with heterogeneous tabular datasets, where we
consider both regression and binary classification tasks. We minimize the Mean Square Error (MSE)

6

Under review as a conference paper at ICLR 2021

Table 1: Results on tabular datasets. We report average and standard deviations over 4 runs of MSE for
regression datasets: Year, Microsoft and Yahoo, and error rate for classification datasets: Click and Higgs. Best
result, and those within a standard deviation from it, for each family of algorithms (single tree or ensemble) are
in bold. Dashes ‘-’ indicate that the method cannot be run (i.e., a method is designed only for classification).
Experiments are run on a machine with 16 CPUs and 63GB of RAM, with a training time limit of 3 days. We
denote methods that exceed this memory and training time as OOM and OOT, respectively.

method YEAR MICROSOFT YAHOO CLICK HIGGS

Si
ng

le
Tr

ee

CART 97.40± 0.37 0.6914± 3e-3 0.6190± 3e-3 0.3780± 6e-3 0.3220± 1e-3
DNDT - - - 0.4866± 1e-2 OOM
OPTREE - - - 0.4100± 4e-2 OOT
NDF-1 - - - 0.3344± 5e-4 0.2644± 8e-4
ANT 77.84± 0.55 0.5721± 17e-4 0.5893± 22e-4
Ours 77.11± 0.21 0.5728± 4e-4 0.5911± 5e-4 0.3342± 4e-4 0.2227± 6e-4

E
ns

. NODE 76.21± 0.12 0.5570± 2e-4 0.5692± 2e-4 0.3312± 2e-3 0.2101± 5e-4
XGBoost 78.53± 0.09 0.5544± 1e-4 0.5420± 4e-4 0.3310± 2e-3 0.2328± 3e-4

on regression datasets and the Binary Cross-Entropy (BCE) on classification datasets. We compare
our results with tree-based architectures, which either train a single or an ensemble of decision
trees. Namely, we compare to the greedy classification and regression trees (CART) (Breiman
et al., 1984) and to the optimal decision tree learner with local search (Optree-LS; Dunn, 2018). We
also consider three baselines with probabilistic routing: deep neural decision trees (DNDT; Yang
et al., 2018), deep neural decision forests (Kontschieder et al., 2015) configured to use an ensemble
size of 1 (NDF-1) and adaptive neural networks (ANT; Tanno et al., 2019). As for the ensemble
baselines, we compare to NODE (Popov et al., 2019), the state-of-the-art method for training a forest
of differentiable oblivious decision trees on tabular data, and to XGBoost (Chen & Guestrin, 2016), a
scalable tree boosting method. We carry out the experiments on the following datasets. Regression:
Year (Bertin-Mahieux et al., 2011), Temporal regression task constructed from the Million Song
Dataset; Microsoft (Qin & Liu, 2013), Regression approach to the MSLR-Web10k Query–URL
relevance prediction for learning to rank; Yahoo (Chapelle & Chang, 2011), Regression approach to
the C14 learning-to-rank challenge. Binary classification: Click, Link click prediction based on the
KDD Cup 2012 dataset, encoded and subsampled following Popov et al. (2019); Higgs (Baldi et al.,
2014), prediction of Higgs boson–producing events.

For all tasks, we follow the preprocessing and task setup from (Popov et al., 2019). All datasets come
with training/test splits. We make use of 20% of the training set as validation set for selecting the
best model over the epochs and for tuning the hyperparameters. We tune the hyperparameters for all
methods but for Optree, as its long training time makes hyper-parameter tuning unfeasible. Details
are provided in the appendices. Finally, we optimize eq. (10) and all neural network methods (DNDT,
NDF, ANT and NODE) using the Quasi-Hyperbolic Adam (Ma & Yarats, 2018) stochastic gradient
descent method, with default parameters and batch size equal to 512. Table 1 reports the obtained
results.4 Unsurprisingly, ensemble methods outperfom single-tree ones on all datasets, although at
the cost of being harder to visualize/interpret. Our method has the advantage of (a) generalizing to
any task; (b) outperforming or matching all single-tree methods; (c) approaching the performance of
ensemble-based methods. Additional experiments reported in the appendices show that our model is
also significantly faster to train, compared to its differentiable tree counterparts NDF-1 and ANT,
while matching or beating the performance of these baselines.

Further comparison with optimal tree baselines. We run a set of experiments on small binary
classification datasets to compare our method with optimal tree methods. Specifically we compare
against two versions of Optree: one that solves the MIP exactly (Optree-MIP) (Bertsimas & Dunn,
2017), and another that solves it with local search Optree-LS (Dunn, 2018). We also compare
with the state-of-the-art optimal tree method of Lin et al. (2020), called GOSDT. We consider the
Mushrooms binary classification dataset (Schlimmer, 1987): prediction between edible and poisonous
mushrooms, with 8124 instances and 22 features We apply a stratified split on both datasets to obtain
60%-20%-20% training-validation-test sets, convert categorical features to ordinal, and z-score them.
For our method, we apply the Quasi-Hyperbolic Adam optimization algorithm, with batch size equal
to 512. Further details about the experimental setup are available in the appendices.

4DNDT, Optree-LS and NDF handle only classification tasks.

7

Under review as a conference paper at ICLR 2021

Table 2: Results on the Mushrooms tabular dataset. We report average training time (s), and average and
standard deviations of test error rate over 4 runs for binary classification datasets. We bold the best result (and
those whose standard deviation overlaps the mean of the best result). Experiments are run on a machine with 16
CPUs and 63GB RAM. We limit the training time to 3 days.

MUSHROOMS
method training time (s) error rate
OPTREE-MIP OOT -
OPTREE-LS OOT -
GOSDT 214 0.0122± 0.0027
Ours 66 0.0723± 0.0544

Table 3: Results for hierarchical clustering. We report
average and standard deviations of dendrogram purity
over four runs. Best results and all within a standard
deviation from it are in bold.

METHOD GLASS COVTYPE

Ours 0.494± 0.025 0.467± 0.006
gHHC 0.463± 0.002 0.444± 0.005
HKMeans 0.508± 0.008 0.440± 0.001
BIRCH 0.429± 0.013 0.440± 0.002

100 101 102 103

n

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

tim
e

(s
)

cvxpy
ours

Figure 2: Comparison of Algorithm 1’s run-
ning time (ours) with the running time of
cvxpy (Diamond & Boyd, 2016; Agrawal et al.,
2018) with the OSQP solver (Stellato et al.,
2020) for tree depth D=3, varying n.

Table 2 reports the performance of all methods across 4 runs. Both OPTREE variants do not finish in
under 3 days. On Mushrooms our method runs 3 times faster than GOSDT at the expense of higher
error. We believe the slow scaling of GOSDT is due to the fact that it binarizes features, working
with 118 final binary attributes on Mushrooms.

4.2 SELF-SUPERVISED HIERARCHICAL CLUSTERING

To show the versatility of our method, we carry out a second set of experiments on hierarchical
clustering tasks. Inspired by the recent success of self-supervised learning approaches (Lan et al.,
2019; He et al., 2020), we learn a tree for hierarchical clustering in a self-supervised way. Specifically,
we regress a subset of input features from the remaining features, minimizing the MSE. This allows
us to use eq. (10) to learn a hierarchy (tree). To evaluate the quality of the learned trees, we compute
their dendrogram purity (DP; Monath et al., 2019). DP measures the ability of the learned tree to
separate points from different classes, and corresponds to the expected purity of the least common
ancestors of points of the same class.

We experiment on the following datasets: Glass (Dua & Graff, 2017): glass identification for forensics,
and Covtype (Blackard & Dean, 1999; Dua & Graff, 2017): cartographic variables for forest cover
type identification. For Glass, we regress features ‘Refractive Index’ and ‘Sodium,’ and for Covtype
the horizontal and vertical ‘Distance To Hydrology.’ We split the datasets into training/validation/test
sets, with sizes 60%/20%/20%. Here we only consider linear fφ. As before, we optimize Problem 10
using the Quasi-Hyperbolic Adam algorithm, with batch size equal to 512 for Covtype and 8 for
Glass, and tune the hyper-parameters using the validation set.

As baselines, we consider: BIRCH (Zhang et al., 1996) and Hierarchical KMeans (HKMeans), the
standard methods for performing clustering on large datasets; and the recently proposed gradient-
based Hyperbolic Hierarchical Clustering (gHHC) (Monath et al., 2019) designed to construct trees in
hyperbolic space. Table 3 reports the dendrogram purity scores for all methods. Our method matches
or outperforms all methods, even though not specifically tailored to hierarchical clustering.

Tree Pruning The hyper-parameter λ in eq. 10 controls how aggressively the tree is pruned, hence
the amount of tree splits that are actually used to make decisions. This is a fundamental feature of
our framework as it allows to smoothly trim the portions of the tree that are not necessary for the
downstream task, resulting in lower computing and memory demands at inference. In Figure 3, we

8

Under review as a conference paper at ICLR 2021

Figure 3: Glass tree routing distribution, in rounded percent of dataset, for λ left-to-right in {0, 0.001, 0.1}.
The larger λ, the more nodes are pruned. We report dendrogram purity (DP) and total empty nodes (EN).

100

22 77

- 22 7 70

- - - 22 - 7 51 18

(a) Window-Float-Build

100

17 82

- 17 17 64

- - - 17 - 17 52 11

(b) Window-Float-Vehicle

100

69 30

- 69 30 -

- - 30 38 7 23 - -

(c) NonW-Containers

100

3 96

3 - 10 86

3 - - - - 10 6 79

(d) NonW-Headlamps

Figure 4: Class routing distributions on Glass, with distributions normalized over each depth level. Trees were
trained with optimal hyper-parameters, (depth D=6), but we plot nodes up to D=4 for visualization ease.

study the effects of pruning on the tree learned on Glass with a depth fixed to D=3. We report how
inputs are distributed over the learned tree for different values of λ. We notice that the number of
empty nodes, i.e., nodes that are not traversed by any data point, increases together with λ up to a
certain value in order not to significantly deteriorate results (as measured by dendrogram purity).

Class Routing In order to gain insights on the latent structure learned by our method, we study
how points are routed through the tree, depending on their class. The Glass dataset is particularly
interesting to analyze as its classes come with an intrinsic hierarchy, e.g., with superclasses Window
and NonWindow. Figure 4 reports the class routes for four classes. As the trees are constructed
without supervision, we do not expect the structure to exactly reflect the class partition and hierarchy.
Still, we observe that points from the same class or super-class traverse the tree in a similar way.
Indeed, trees for class Build 4(a) and class Vehicle 4(b), which both belong to Window super-class,
share similar paths, unlike the classes Containers 4(c) and Headlamps 4(d).

5 DISCUSSION

In this work we have presented a new optimization approach to learn trees for a variety of machine
learning tasks. Our method works by sparsely relaxing a ILP for tree traversal and pruning, to
enable simultaneous optimization of these parameters, alongside splitting parameters and downstream
functions via argmin differentiation. Our approach nears or improves upon recent work in both
supervised learning and hierarchical clustering. We believe there are many exciting avenues for future
work. One particularly interesting direction would be to unify recent advances in tight relaxations of
nearest neighbor classifiers with this approach to learn efficient neighbor querying structures such as
ball trees. Another idea is to adapt this method to learn instance-specific trees such as parse-trees.

REFERENCES

Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair decision trees
for non-discriminative decision-making. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 1418–1426, 2019.

Sina Aghaei, Andres Gomez, and Phebe Vayanos. Learning optimal classification trees: Strong
max-flow formulations. arXiv preprint arXiv:2002.09142, 2020.

9

Under review as a conference paper at ICLR 2021

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable convex optimization layers. In Proc. of NeurIPS, 2019a.

Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differentiating
through a cone program. Journal of Applied and Numerical Optimization, 2019(2), 2019b.
ISSN 25625527. doi: 10.23952/jano.1.2019.2.02. URL http://jano.biemdas.com/
archives/931.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Brandon Amos. Differentiable Optimization-Based Modeling for Machine Learning. PhD thesis,
Carnegie Mellon University, May 2019.

Brandon Amos and J Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In Proc. of ICML, 2017.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
certifiably optimal rule lists for categorical data. The Journal of Machine Learning Research, 18
(1):8753–8830, 2017.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature Communications, 5(1):1–9, 2014.

RE Barlow, DJ Bartholomev, JM Brenner, and HD Brunk. Statistical inference under order restrictions:
The theory and application of isotonic regression, 1972.

Kristin P Bennett. Decision tree construction via linear programming. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 1992.

Kristin P Bennett and Jennifer A Blue. Optimal decision trees. Rensselaer Polytechnic Institute Math
Report, 214:24, 1996.

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In Proc. of ISMIR, 2011.

Dimitri P Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7):1039–
1082, 2017.

Jock A Blackard and Denis J Dean. Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers and
electronics in agriculture, 24(3):131–151, 1999.

Jonathan Borwein and Adrian S Lewis. Convex analysis and nonlinear optimization: theory and
examples. Springer Science & Business Media, 2010.

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression
trees. CRC press, 1984.

Miguel A Carreira-Perpinán and Pooya Tavallali. Alternating optimization of decision trees, with
application to learning sparse oblique trees. In Advances in Neural Information Processing Systems,
pp. 1211–1221, 2018.

Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of the
learning to rank challenge, pp. 1–24, 2011.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi:
10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

10

http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
https://arxiv.org/abs/1904.09043
https://arxiv.org/abs/1904.09043
http://jano.biemdas.com/archives/931
http://jano.biemdas.com/archives/931
https://github.com/bamos/thesis
https://arxiv.org/abs/1703.00443
http://www.athenasc.com/nonlinbook.html
https://link.springer.com/book/10.1007/978-0-387-31256-9
https://link.springer.com/book/10.1007/978-0-387-31256-9
http://doi.acm.org/10.1145/2939672.2939785

Under review as a conference paper at ICLR 2021

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied Mathematics,
14(4):641–664, 1966.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pp. 118–127, 2016.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. In Proc. of
NeurIPS, 2017.

Justin Domke. Learning graphical model parameters with approximate marginal inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(10):2454–2467, 2013.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

Jack William Dunn. Optimal trees for prediction and prescription. PhD thesis, Massachusetts
Institute of Technology, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272, 2017.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. preprint arXiv:1607.05447, 2016. URL http://arxiv.org/abs/1607.
05447.

Oktay Günlük, Jayant Kalagnanam, Matt Menickelly, and Katya Scheinberg. Optimal decision trees
for categorical data via integer programming. arXiv preprint arXiv:1612.03225, 2018.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.gurobi.
com.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International Conference on Machine Learning, pp. 1225–1234, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pp. 1731–1741, 2017.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In NeurIPS, pp.
7267–7275, 2019.

Ozan İrsoy, Olcay Taner Yıldız, and Ethem Alpaydın. Soft decision trees. In Proceedings of the 21st
International Conference on Pattern Recognition (ICPR2012), pp. 1819–1822. IEEE, 2012.

Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum. A hierarchical algo-
rithm for extreme clustering. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 255–264, 2017.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision, pp.
1467–1475, 2015.

11

http://epubs.siam.org/doi/book/10.1137/1.9781611971309
https://epubs.siam.org/doi/abs/10.1137/0114053
http://papers.nips.cc/paper/6702-differentiable-learning-of-submodular-models
https://arxiv.org/abs/1301.3193
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/1607.05447
http://arxiv.org/abs/1607.05447
http://arxiv.org/abs/1607.05447
http://www.gurobi.com
http://www.gurobi.com

Under review as a conference paper at ICLR 2021

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

Akshay Krishnamurthy, Sivaraman Balakrishnan, Min Xu, and Aarti Singh. Efficient active algorithms
for hierarchical clustering. In ICML, 2012.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2019.

Nathan Lay, Adam P Harrison, Sharon Schreiber, Gitesh Dawer, and Adrian Barbu. Random hinge
forest for differentiable learning. arXiv preprint arXiv:1802.03882, 2018.

Benjamin Letham, Cynthia Rudin, Tyler H McCormick, David Madigan, et al. Interpretable classifiers
using rules and bayesian analysis: Building a better stroke prediction model. The Annals of Applied
Statistics, 9(3):1350–1371, 2015.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable
optimal sparse decision trees. In Intern, pp. Proc. of ICML, 2020.

Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. arXiv preprint
arXiv:1810.06801, 2018.

Patrick Mair, Kurt Hornik, and Jan de Leeuw. Isotone optimization in r: pool-adjacent-violators
algorithm (pava) and active set methods. Journal of statistical software, 32(5):1–24, 2009.

Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr Ahmed. Gradient-
based hierarchical clustering using continuous representations of trees in hyperbolic space. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 714–722, 2019.

Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering: Average
linkage, bisecting k-means, and local search. In Advances in Neural Information Processing
Systems, pp. 3094–3103, 2017.

Vlad Niculae, André FT Martins, Mathieu Blondel, and Claire Cardie. SparseMAP: Differentiable
sparse structured inference. In Proc. of ICML, 2018.

Harold J. Payne and William S. Meisel. An algorithm for constructing optimal binary decision trees.
IEEE Transactions on Computers, (9):905–916, 1977.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Proc. of ICML, 2016.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597, 2013. URL
http://arxiv.org/abs/1306.2597.

J Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

J Ross Quinlan. C4. 5: Programs for machine learning. 1993.

Aravind Rajeswaran, Chelsea Finn, Sham Kakade, and Sergey Levine. Meta-learning with implicit
gradients. In Proc. of NeurIPS, 2019.

Cynthia Rudin and Şeyda Ertekin. Learning customized and optimized lists of rules with mathematical
programming. Mathematical Programming Computation, (4):659–702, 2018.

Jeffrey C Schlimmer. Concept acquisition through representational adjustment. 1987.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An operator splitting solver for quadratic programs. Mathematical Programming Compu-
tation, 2020. doi: 10.1007/s12532-020-00179-2. URL https://doi.org/10.1007/
s12532-020-00179-2.

12

https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1802.04223
http://arxiv.org/abs/1306.2597
http://arxiv.org/abs/1909.04630
http://arxiv.org/abs/1909.04630
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2

Under review as a conference paper at ICLR 2021

Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure. In Proc. of
AISTATS, 2011.

Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori. Adaptive
neural trees. In International Conference on Machine Learning, pp. 6166–6175. PMLR, 2019.

Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear program
formulation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp.
1625–1632, 2019.

Dwi H Widyantoro, Thomas R Ioerger, and John Yen. An incremental approach to building a
cluster hierarchy. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pp.
705–708. IEEE, 2002.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. arXiv
preprint arXiv:1806.06988, 2018.

Yao-Liang Yu and Eric P Xing. Exact algorithms for isotonic regression and related. In Journal of
Physics: Conference Series, volume 699, pp. 1–9, 2016.

Constantin Zalinescu. Convex analysis in general vector spaces. World Scientific, 2002.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for
very large databases. ACM sigmod record, 25(2):103–114, 1996.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clustering algorithm and its
applications. Data Mining and Knowledge Discovery, 1(2):141–182, 1997.

A APPENDIX

A.1 PROOF OF PROPOSITION 2

Let G ⊂ T be a subset of (pooled) node indices. We seek to solve

arg min
a∈R

∑
t∈G

gt(a) := arg min
a∈[0,1]

∑
t∈G

1/2(a− ηt)2
+
∑

i:a≤qit

1/2(a− qit)2 (11)

Note that the final summation implicitly depends on the unknown a. But, regardless of the value of a,
if qit ≤ qi′t′ and qit is included in the sum, then qi′t′ must also be included by transitivity. We may
therefore characterize the solution a? via the number of active inequality constraints k? =

∣∣{(i, t) :

a? ≤ qi,t}
∣∣. We do not know a?, but it is trivial to find by testing all possible values of k. For each k,

we may find the set S(k) defined in the proposition. For a given k, the candidate objective is

Jk(a) =
∑
t∈G

1/2(a− ηt)2 +
∑

(i,t)∈S(k)

1/2(a− qit)2 (12)

and the corresponding a(k) minimizing it can be found by setting the gradient to zero:

J ′k(a) =
∑
t∈G

(a− ηt) +
∑

(i,t)∈S(k)

(a− qi,t) := 0 ⇐⇒ a(k) =

∑
t∈G ηt +

∑
(i,t)∈S(k) qit

|G|+ k
.

(13)
Since |S(k)| = k and each increase in k adds a non-zero term to the objective, we must have
J1

(
a(1)

)
≤ J1

(
a(2)

)
≤ J2

(
a(2)

)
≤ . . ., so we must take k to be as small as possible, while also

ensuring the condition |{(i, t) : a(k) ≤ qit}| = k, or, equivalently, that a(k) > qj([k+1]) . The box
constraints may be integrated at this point via clipping, yielding a? = Proj[0,1]

(
a(k?)

)
.

13

http://proceedings.mlr.press/v15/stoyanov11a.html
http://proceedings.mlr.press/v15/stoyanov11a.html
http://www.worldscientific.com/worldscibooks/10.1142/5021

Under review as a conference paper at ICLR 2021

0 1 2 3 4 5 6
D

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

tim
e

(s
)

cvxpy
ours

(a) Fixed number of points n = 100

100 101 102 103

n

10 21

10 18

10 15

10 12

10 9

10 6

10 3

100

tim
e

(s
)

cvxpy
ours

(b) Fixed tree depth D = 3

Figure 5: Comparison of Algorithm 1’s running time (ours) with the running time of Cvxpy with OSQP
solver. n takes values in a range that covers common choices of batch size. Time and n axis are represented in
logarithmic scale.

A.2 BENCHMARKING SOLVER TIMES

We study the running time of Algorithm 1 depending on the number of data points n and the chosen
tree depth D. We compare its solving time with the time needed by the popular convex optimization
framework Cvxpy (Diamond & Boyd, 2016; Agrawal et al., 2018) to solve Problem 3 with OSQP
solver (Stellato et al., 2020)5. As Cvxpy is based on solvers implemented in Objective C and C we
implement our approach in C++ for a fair comparison. We report the solving times in Figure 5, where
we vary one parameter n or D at a time and fix the other. The algorithm that we specifically designed
to solve Problem (3) is indeed several magnitude faster than the considered generic solver.

A.3 FURTHER EXPERIMENTAL DETAILS

We tune the hyper-parameters of all methods with Optuna Bayesian optimizer (Akiba et al., 2019),
fixing the number of trials to 100. For all back-propagation-based methods, we fix the learning rate to
0.001, use a scheduler reducing this parameter of a factor of 10 every 2 epochs where the validation
loss has not improved, and fix the maximal number of epochs to 100 and patience equal to 10 for
early stopping. For our method, we further initialize the bias b ∈ R|T | for the split function sθ(x)
(explicitly defining sθ(x) = sθ\b(x) + b) to ensure that points are equally distributed over the leaves
at initialization. We hence initialize the bias to minus the initial average value of the training points
traversing each node: bt = − 1

|{xi|qit>0}ni=1|
∑n
i=1 sθt\bt(xi)1[qit > 0].

Experiments on tabular datasets The other hyper-parameters for these experiments are chosen
as follows:

• Ours: we tune D in {2, . . . , 6}, λ in [1e-3, 1e+3] with log-uniform draws, the number of
layers of the MLP L in {2, . . . , 5} and its dropout probability uniformly in [0, 0.5], and the
choice of activation for the splitting functions as linear or Elu;
• Optree-LS: we fix the tree depth D = 6;
• CART: we tune D in {2, . . . , 10}, feature rate uniformly in [0.5, 1], minimal impurity

decrease in [0, 1], α log-uniformly in [1e-16, 1e+2] and splitter chosen between best or
random;
• Node and XGBoost: all results are reported from Popov et al. (2019), where they used the

same experimental set-up;
• DNDT: we tune the softmax temperature uniformly between [0, 1] and the number of feature

cuts in {1, 2};
• NDF: we tune D in {2, . . . , 6} and fix the feature rate to 1;

5We ran experiments with the commercial solver GUROBI (Gurobi Optimization, 2020) but didn’t find
significant differences with using OSQP.

14

Under review as a conference paper at ICLR 2021

Table 4: Number of parameters for single-tree methods on tabular datasets.

method YEAR MICROSOFT YAHOO CLICK HIGGS

Si
ng

le
Tr

ee

CART 164 58 883 12 80
DNDT - - - 4096 -
OPTREE-LS - - - 3060 -
NDF-1 - - - 78016 47168
ANT 179265 17217 53249
Ours 15892 19158 59131 239 255

• ANT: for the sake of fairness, we choose as transformer the identity function, as router a
linear layer followed by the Relu activation and with soft (sigmoid) traversals, and as solver
a MLP with L hidden layers, as defined for our method; we hence tune L in {2, . . . , 5}
and its dropout probability uniformly in [0, 0.5], and fix the maximal tree depth D to 6;
we finally fix the number of epochs for growing the tree and the number of epochs for
fine-tuning it both to 50.

Experiments on small datasets We chose the hyper-parameters as follows:

• Ours: we tune D in {2, . . . , 6}, λ in [1e-3, 1e+3] with log-uniform draws, and make use of
a linear predictor and of linear splitting functions without activation;
• Optree-MIP/Optree-LS: we fix the tree depth to D = 6;
• GOSDT: we tune the regularization parameter λ in [1e-3, 1e+3] with log-uniform draws,

and set accuracy as the objective function.

Experiments on hierarchical clustering For this set of experiments, we make us of a linear
predictor and of linear splitting functions without activation. The other hyper-parameters of our
method are chosen as follows: we tune D in {2, . . . , 6}, λ in [1e-3, 1e+3] with log-uniform draws.
The results of the baselines are reported from Monath et al. (2019).

A.4 ADDITIONAL EXPERIMENTS

In Figure 6 we represent the average test Error Rates or Mean Square Error as a function of the
training time for each single-tree method on the tabular datasets of Section 4.1. Notice that our method
provides the best trade-off between time complexity and accuracy over all datasets. In particular,
it achieves Error Rates comparable on Click and significantly better on Higgs w.r.t. NDF-1 while
being several times faster. Table 4 shows that this speed-up is principally due to a smaller number of
model’s parameters. Despite having model sizes comparable to ANT’s ones on Microsoft and Yahoo,
our method is significantly faster than this baseline as it offers an efficient way for optimizing the
tree structure (via the optimization of pruning vector a). In comparison, ANT needs to incrementally
grow trees in a first phase, to then fine-tune them in a second phase, resulting in a computational
overhead.

15

Under review as a conference paper at ICLR 2021

0 500 1000 1500 2000 2500 3000 3500
training time (s)

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Er
ro

r R
at

e

method
CART
NDF-1
Ours
DNDT

(a) Click

0 10000 20000 30000 40000
training time (s)

0.22

0.24

0.26

0.28

0.30

0.32

Er
ro

r R
at

e

method
CART
NDF-1
Ours

(b) Higgs

0 1000 2000 3000 4000
training time (s)

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

M
ea

n
Sq

ua
re

 E
rro

r method
CART
ANT
Ours

(c) Year

0 200 400 600 800 1000 1200 1400
training time (s)

0.57

0.58

0.59

0.60

0.61

0.62

M
ea

n
Sq

ua
re

 E
rro

r method
CART
ANT
Ours

(d) Microsoft

0 1000 2000 3000 4000
training time (s)

0.60

0.62

0.64

0.66

0.68

M
ea

n
Sq

ua
re

 E
rro

r method
CART
ANT
Ours

(e) Yahoo

Figure 6: Average (a,b) Error Rate (c-e) Mean Square Error vs average training time required by each method.

16

	Introduction
	Related Work
	Method
	Tree-Traversal & Pruning Programs
	Learning Tree Parameters
	The Overall Objective

	Experiments
	Supervised Learning on Tabular Datasets
	Self-Supervised Hierarchical Clustering

	Discussion
	Appendix
	Proof of Proposition 2
	Benchmarking solver times
	Further experimental details
	Additional experiments

