
Under review as submission to TMLR

A Reproducible and Realistic Evaluation of Partial Domain
Adaptation Methods

Anonymous authors

Paper under double-blind review

Abstract

Unsupervised Domain Adaptation (UDA) aims at classifying unlabeled target images lever-
aging source labeled ones. In the case of an extreme label shift scenario between the source
and target domains, where we have extra source classes not present in the target domain, the
UDA problem becomes a harder problem called Partial Domain Adaptation (PDA). While
di�erent methods have been developed to solve the PDA problem, most successful algorithms
use model selection strategies that rely on target labels to find the best hyper-parameters
and/or models along training. These strategies violate the main assumption in PDA: only
unlabeled target domain samples are available. In addition, there are also experimental in-
consistencies between developed methods - di�erent architectures, hyper-parameter tuning,
number of runs - yielding unfair comparisons. The main goal of this work is to provide a
realistic evaluation of PDA methods under di�erent model selection strategies and a con-
sistent evaluation protocol. We evaluate 7 state-of-the-art PDA algorithms on 2 di�erent
real-world datasets using 7 di�erent model selection strategies. Our two main findings are:
(i) without target labels for model selection, the accuracy of the methods decreases up
to 30 percentage points; (ii) only one method and model selection pair performs well on
both datasets. Experiments were performed with our PyTorch framework, BenchmarkPDA,
which we open source.

1 Introduction

Domain adaptation. Deep neural networks are highly successful in image recognition for in-distribution
samples (He et al., 2016) with this success being intrinsically tied to the large number of labeled training
data. However, they tend to not generalize as well on images with di�erent backgrounds or colors not seen
during training. Such shift in the samples is referred to as domain shift in the literature. Unfortunately,
enriching the training set with new samples from di�erent domains is challenging as labeling data is both
an expensive and time-consuming task. Thus, researchers have focused on unsupervised domain adaptation
(UDA) where we have access to unlabelled samples from a di�erent domain, known as the target domain.
The purpose of UDA is to classify these unlabeled samples by leveraging the knowledge given by the labeled
samples from the source domain (Pan & Yang, 2010; Patel et al., 2015). In the standard UDA problem,
the source and target domains are assumed to share the same classes. In this paper, we consider a more
challenging variant of the problem called partial domain adaptation (PDA): the classes in the target domain
Yt form a subset of the classes in the source domain Ys (Cao et al., 2018), i.e., Yt µ Ys. The number of
target classes is unknown as we do not have access to the labels. The extra source classes, not present in the
target domain, make the PDA problem more di�cult: simply aligning the source and target domains forces
a negative transfer where target samples are matched to outlier source-only labels.

Realistic evaluations. Most recent PDA methods report an increase of the target accuracy up to 15
percentage points on average when compared to the baseline approach that is trained only on source samples.
While these successes constitute important breakthroughs in the DA research literature, target labels are used
for model selection, violating the main UDA assumption. In their absence, the e�ectiveness of PDA methods
remains unclear and model selection still constitutes an open problem as we show in this work. Moreover, the
hyper-parameter tuning is either unknown or lacks details and sometimes requires labeled target data, which
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Dataset Model Selection s. only pada safn ba3us ar jumbot mpot

office-
Worst (w/o target labels) 59.55 (-2.31) 52.72 (-11.00) 61.37 (-1.93) 62.25 (-13.73) 64.32 (-8.42) 61.28 (-15.87) 46.92 (-30.38)

home
Best (w/o target labels) 60.73 (-1.14) 63.08 (-0.64) 62.59 (-0.71) 75.37 (-0.61) 70.58 (-2.16) 74.61 (-2.54) 66.24 (-11.07)

oracle 61.87 63.72 63.30 75.98 72.73 77.15 77.31

visda
Worst (w/o target labels) 55.02 (-4.46) 32.32 (-22.26) 42.83 (-19.81) 51.07 (-16.60) 55.69 (-18.15) 59.86 (-24.15) 61.62 (-25.33)
Best (w/o target labels) 55.24 (-4.24) 56.83 (2.26) 58.62 (-4.02) 65.58 (-2.09) 67.20 (-6.65) 77.69 (-6.31) 78.40 (-8.54)

oracle 59.48 54.57 62.64 67.67 73.85 84.01 86.95

Table 1: Task accuracy average computed over three di�erent seeds (2020, 2021, 2022) on Partial office-

home and Partial-visda. For each dataset and PDA method, we display the results of the worst and best
performing model selection that do not use target labels as well as the oracle model selection strategy. All
results can be found in Table 6.

makes it challenging to apply PDA methods to new datasets. Recent work has highlighted the importance of
model selection in the presence of domain shift. Gulrajani & Lopez-Paz (2021) showed that when evaluating
domain generalization (DG) algorithms, whose goal is to generalize to a completely unseen domain, in a
consistent and realistic setting no method outperforms the baseline ERM method by more than 1 percentage
point. They argue that DG methods without a model selection strategy remain incomplete and should
therefore be specified as part of the method. A similar recommendation was done by Saito et al. (2021) for
domain adaptation.

PDA methods have been designed using target labels at test time to select the best models. Related work
(Saito et al., 2021; You et al., 2019) on model selection strategies for domain adaptation claimed to select the
best models without using target labels. However, a realistic empirical study of these strategies in PDA is
still lacking. In this work, we conduct extensive experiments to study the impact of model selection strategies
on the performance of partial domain adaptation methods. We evaluate 7 di�erent PDA methods over 7
di�erent model selection strategies, 4 of which do not use target labels, and 2 di�erent datasets under the
same experimental protocol for a fair comparison. We list below our major findings:

• The accuracy attained by models selected without target labels can decrease up to 30 percentage points
compared to the one reported using target labels (See Table 1 for a summary of results).

• Only 1 pair of PDA methods and target label-free model selection strategies achieve comparable accuracies
to when target labels are used, while still improving over a source only baseline.

• Random seed plays an important role in the selection of hyper-parameters. Selected parameters are not
stable across di�erent seeds and the standard deviation between accuracies on the same task can be up
to 8.4% even when relying on target labels for model selection.

• Under a more realistic scenario where some target labels are available, 100 random samples is enough
to see only a drop of 1 percentage point in accuracy (when compared to using all target samples).
However, the extreme case of using only one labeled target sample per class leads to a significant drop
in performance.

Outline. In Section 2, we provide an overview of the di�erent model selection strategies considered in this
work. Then in Section 3, we discuss the PDA methods that we consider. In Section 4 we describe the
training procedures, hyper-parameter tuning and evaluation protocols used to evaluate all methods fairly. In
Section 5, we discuss the results of the di�erent benchmarked methods and the performance of the di�erent
model selection strategies. Finally in Section 6, we give some recommendations for future work in partial
domain adaptation.

2 Model Selection Strategies: An Overview

Model selection (choosing hyper-parameters, training checkpoints, neural network architectures) is a crucial
part of training neural networks. In the supervised learning setting, a validation set is used to estimate the
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model’s accuracy. However, in UDA such approach is not possible as we have unlabeled target samples.
Several strategies have been designed to address this issue. Below, we discuss the ones used in this work.

Source Accuracy (s-acc). Ganin & Lempitsky (2015) used the accuracy estimated on a small validation
set from the source domain to perform the model selection. While the source and target accuracies are
related, there are no theoretical guarantees. You et al. (2019) showed that when the domain gap is large
this approach fails to select competitive models.

Deep Embedded Validation (dev). Sugiyama et al. (2007) and Long et al. (2018) perform model
selection through Importance-Weighted Cross-Validation (IWCV). Under the assumption that the source
and target domain follow a covariate shift, the target risk can be estimated from the source risk through
importance weights that give increased importance to source samples that are closer to target samples.
These importance weights correspond to the ratio of the target and source densities and are estimated using
Gaussian kernels. Recently, You et al. (2019) proposed an improved variant, Deep Embedded Validation
(dev), that controls the variance of the estimator and estimates the importance weights with a discriminative
model that distinguish source samples from target samples leading to a more stable and e�ective method.

Entropy (ent). While minimizing the entropy of the target samples has been used in domain adaptation
to improve accuracy by promoting tighter clusters, Morerio et al. (2018) showed that it can also be used for
model selection. The intuition is that a lower entropy model corresponds to a highly confident model with
discriminative target features and therefore reliable predictions.

Soft Neighborhood Density (snd). Saito et al. (2021) argue that a good UDA model will have a cluster
structure where nearby target samples are in the same class. They claim that entropy is not able to capture
this property and propose the Soft Neighborhood Density (snd) score to address it.

Target Accuracy (oracle). We consider as well the target accuracy on all target samples. While we
emphasize once again its use is not realistic in unsupervised domain adaptation (hence why we will refer
to it as oracle), it has nonetheless been used to report the best accuracy achieved by the model along
training in several previous works (Cao et al., 2018; Xu et al., 2019; Jian et al., 2020; Gu et al., 2021; Nguyen
et al., 2022). Here, we use it as an upper bound for all the other model selection strategies and to check the
reproducibility of previous works.

Small Labeled Target Set (1-shot and 100-rnd). For real-world applications in an industry setting,
it is unlikely that a model will be deployed without an estimation of its performance on the target domain.
Therefore, one can imagine a situation where a PDA method is used and a small set of target samples is
available. Thus, we will compute the target accuracy with 1 labeled sample per class (1-shot) and 100
random labeled target samples (100-rnd) as model selection strategies. One could argue that the 100
random samples could have been used in the training with semi-supervised domain adaptation methods.
However, note that we do not know how many classes we have on the target domain so it is hard to form a
split when we have uncertainty of classes. For instance, 100-rnd represents possibly less than 2 samples per
class for one of our real-world dataset, as we do not know the number of classes, making a potential split
between a train and validation target sets not possible.

3 Partial Domain Adaptation Methods

In this section, we give a brief description of the PDA methods considered in our study. They can be grouped
into two families: adversarial training and divergence minimization.

Adversarial training. To solve the UDA problem, Ganin et al. (2016) aligned the source and target
domains with the help of a domain discriminator trained adversarially to be able to distinguish the samples
from the two domains. However, when applied to the PDA problem this strategy leads to negative transfer
and the model performs worse than a model trained only on source data. Cao et al. (2018) proposed pada

that introduces a PDA specific solution to adversarial domain adaptation: the contribution of the source-only
class samples to the training of both the source classifier and the domain adversarial network is decreased.
This is achieved through class weights that are calculated by simply averaging the classifier prediction on all
target samples. As the source-only classes should not be predicted in the target domain, they should have
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PDA Methods pada, safn, ba3us ar, jumbot, mpot

Model Selection Strategies s-acc, ent, dev, snd, 1-shot, 100-rnd, oracle

Architecture ResNet50 backbone ü linear bottleneck ü linear classification head
Experimental protocol 3 seeds on the 12 tasks of office-home and 2 tasks of VisDA

Table 2: Summary of our considered methods, model selection strategies, architecture and datasets.

Method Architecture Runs Model Selection
(bottleneck) per task Hyper-Parameters Along Training

pada Linear 1 IWCV (lacks details) oracle

safn Non-Linear 3 Unknown oracle

ba3us Linear 3 Unknown oracle

ar Non-Linear 1 IWCV (lacks details) oracle

jumbot Linear 1 oracle final

mpot Linear 3 Unknown oracle

Table 3: Summary of the experimental protocol used for SOTA partial domain adaptation methods. We
refer to Appendix A.1 for additional details.

lower weights. More recently, Jian et al. (2020) proposed ba3us which augments the target mini-batch with
source samples to transform the PDA problem into a vanilla DA problem. In addition, an adaptive weighted
entropy objective is used to encourage incorrect classes to have uniform and low prediction scores.

Divergence minimization. Another standard direction to align the source and target distributions in
the feature space of a neural network is to minimize a given divergence between distributions of domains.
Xu et al. (2019) empirically found that target samples have low feature norm compared to source samples.
Based on this insight, they proposed safn which progressively adapts the feature norms of the two domains
by minimizing the Maximum Mean Feature Norm Discrepancy (Gretton et al., 2012). Other approaches are
based on optimal transport (OT) (Bhushan Damodaran et al., 2018) with mini-batches (Peyré & Cuturi,
2019; Fatras et al., 2020; 2021b). For the PDA problem in specific, (Fatras et al., 2021a) developed jumbot,
a mini-batch unbalanced optimal transport that learns a joint distribution of the embedded samples and
labels. The use of unbalanced OT is critical for the PDA problem as it allows to transport only a portion
of the mass limiting the negative transfer between distributions. Based on this work, (Nguyen et al., 2022)
investigated the partial OT variant (Chapel et al., 2020), a particular case of unbalanced OT, proposing
m-pot. Finally, another line of work is to use the Kantorovich-Rubenstein duality of optimal transport to
perform the alignment similarly to WGAN (Arjovsky et al., 2017). This is precisely the work of Gu et al.
(2021) that proposed, ar. In addition, source samples are reweighted in order to reduce the negative transfer
from the source-only class samples. The Kantorovich-Rubenstein duality relies on a one Lipschitz function
which is approximated using adversarial training like the PDA methods described above.

4 Experimental Protocol

In this section, we discuss our choices regarding the training details, datasets and neural network architecture.
We then discuss the hyper-parameter tuning used in this work. We summarize the PDA methods, model
selection strategies and experimental protocol used in this work in Table 2. The main di�erences in the
experimental protocol of the di�erent published state-of-the-art (SOTA) methods is summarized in Table 3.
To perform our experiments we developed a PyTorch (Paszke et al., 2019) framework: BenchmarkPDA. We
make it available for researchers to use and contribute with new algorithms and model selection strategies:

https://anonymous.4open.science/r/BenchmarkPDA-7F73

It is the standard in the literature when proposing a new method to report directly the results of its
competitors from the original papers (Cao et al., 2018; Xu et al., 2019; Jian et al., 2020; Gu et al., 2021;
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Method A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
s. only

† 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
s. only (Ours) 45.43 68.91 79.53 55.59 57.42 65.23 59.32 40.80 75.80 69.88 47.20 77.31 61.87

pada
† 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.60 77.09 62.06

pada (Ours) 50.53 67.45 80.14 57.30 54.47 64.55 61.07 40.94 79.55 73.09 54.63 80.93 63.72

safn
†ú 58.93 76.25 81.42 70.43 72.97 77.78 72.36 55.34 80.40 75.81 60.42 79.92 71.84

safn* (Ours) 59.98 79.85 85.18 72.02 73.73 78.54 76.09 59.32 83.25 80.04 64.20 84.44 74.72
safn (Ours) 49.57 68.55 78.26 57.91 59.29 66.81 59.87 45.29 75.98 69.08 51.68 77.29 63.30

ba3us
† 60.62 83.16 88.39 71.75 72.79 83.40 75.45 61.59 86.53 79.25 62.80 86.05 75.98

ba3us (Ours) 63.26 82.75 89.16 69.91 71.93 77.58 75.73 59.94 86.89 80.93 66.77 86.93 75.98

ar
†ú 62.13 79.22 89.12 73.92 75.57 84.37 78.42 61.91 87.85 82.19 65.37 85.27 77.11

ar* (Ours) 62.75 81.55 89.07 71.63 73.41 82.94 75.88 61.03 85.70 79.86 62.93 85.30 76.00
ar (Ours) 57.33 79.61 86.31 69.45 71.88 79.94 70.28 53.57 83.78 77.26 59.68 83.72 72.73

jumbot
† 62.70 77.50 84.40 76.00 73.30 80.50 74.70 60.80 85.10 80.20 66.50 83.90 75.47

jumbot (Ours) 61.87 78.19 88.11 77.69 76.75 84.15 76.83 63.72 84.80 81.79 64.70 87.17 77.15

mpot
† 64.60 80.62 87.17 76.43 77.61 83.58 77.07 63.74 87.63 81.42 68.50 87.38 77.98

mpot (Ours) 64.48 80.88 86.78 76.22 77.95 82.59 75.18 64.60 84.87 80.59 67.04 86.52 77.31

Table 4: Comparison between reported (†) accuracies on partial office-home from published methods with
our implementation using the oracle model selection strategy. * denotes di�erent bottleneck architectures.

Nguyen et al., 2022). As a result some methods di�er for instance in the neural network architecture
implementation (ar (Gu et al., 2021), safn (Xu et al., 2019)) or evaluation protocol jumbot (Fatras et al.,
2021a) with other methods. These changes often contribute to an increased performance of the newly
proposed method leaving previous methods at a disadvantage. Therefore we chose to implement all methods
with the same commonly used neural network architecture, optimizer, learning rate schedule and evaluation
protocol. We discuss the details below.

4.1 Methods, Datasets, Training and Evaluation Details

Methods. We implemented 7 PDA methods by adapting the code from the O�cial GitHub repositories of
each method: Source Only, pada (Cao et al., 2018), safn (Xu et al., 2019), ba3us (Jian et al., 2020), ar

(Gu et al., 2021), jumbot (Fatras et al., 2021a), mpot (Nguyen et al., 2022). We provide the links to the
di�erent o�cial repositories in Appendix A.1. A comparison with previous reported results can be found in
Table 4 and we postpone the discussion to Section 5.

Datasets. We consider two standard real-world datasets used in DA. Our first dataset is office-home

(Venkateswara et al., 2017). It is a di�cult dataset for unsupervised domain adaptation (UDA), it has 15,500
images from four di�erent domains: Art (A), Clipart (C), Product (P) and Real-World (R). For each domain,
the dataset contains images of 65 object categories that are common in o�ce and home scenarios. For the
partial office-home setting, we follow Cao et al. (2018) and select the first 25 categories (in alphabetic
order) in each domain as a partial target domain. We evaluate all methods in all 12 adaptation scenarios.
visda (Peng et al., 2017) is a large-scale dataset for UDA. It has 152,397 synthetic images and 55,388 real-
world images, where 12 object categories are shared by these two domains. For the partial VisDA setting,
we follow Cao et al. (2018) and select the first 6 categories, taken in alphabetic order, in each domain as a
partial target domain. We evaluate the models in the two possible scenarios. We highlight that we are the
first to investigate the performance of jumbot and mpot on partial visda.

Model Selection Strategies We consider the 7 di�erent strategies for model selection described in Section
2: s-acc, dev, ent, snd, oracle, 1-shot, 100-rnd. We use them both for hyper-parameter tuning as
well selecting the best model along training. Since s-acc, dev and snd require a source validation set, we
divide the source samples into a training subset (80%) and validation subset (20%). Regardless of the model
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Dataset Variant ba3us jumbot mpot safn

ent dev snd ent dev snd ent dev snd ent dev snd

office-home
Naive 52.60 63.10 44.48 52.30 26.75 17.67 49.01 16.72 30.63 32.12 49.67 5.01

Heuristic 58.45 63.10 60.96 56.24 45.79 55.16 49.01 45.61 30.63 46.27 49.67 49.67

visda
Naive 39.06 36.99 1.14 35.89 54.53 11.99 75.04 55.33 36.11 52.82 53.26 0.83

Heuristic 67.50 34.94 38.76 47.23 54.53 66.42 75.04 55.33 85.36 52.82 53.26 52.82

Table 5: Comparison between the naive model selection strategy and our heuristic approach. Accuracy on
AC task for office-home and SR task for visda. Best results in bold.

selection strategy used, all methods are trained using the source training subset. This is in contrast with
previous work that uses all source samples, but necessary to ensure a fair comparison of the model selection
strategies. We refer to Appendix A.2 for additional details.

Architecture. Our network is composed of a feature extractor with a linear classification layer on top of
it. The feature extractor is a ResNet50 (He et al., 2016), pre-trained on ImageNet (Deng et al., 2009), with
its last linear layer removed and replaced by a linear bottleneck layer of dimension 256.

Optimizer. We use the SGD (Robbins & Monro, 1951) algorithm with momentum of 0.9, a weight decay
of 5e≠4 and Nesterov acceleration. As the bottleneck and classifier layers are randomly initialized, we set
their learning rates to be 10 times that of the pre-trained ResNet50 backbone. We schedule the learning rate
with a strategy similar to the one in (Ganin et al., 2016): ‰p = ‰0

(1+µi)≠‹ , where i is the current iteration,
‰0 = 0.001, “ = 0.001, ‹ = 0.75. While this schedule is slightly di�erent than the one reported in previous
work, it is the one implemented in the di�erent o�cial code implementations. We elaborate in the Appendix
A.3 on the di�erences and provide additional details. Finally, as for the mini-batch size, jumbot and m-pot

were designed with a stratified sampling, i.e., a balanced source mini-batch with the same number of samples
per class. This allows to reduce the negative transfer between domains and is crucial to their success. On
the other hand, it was shown that for some methods (e.g. BA3US) using a larger mini-batch, than what was
reported, leads to a decreased performance (Fatras et al., 2021a). As a result, we used the default mini-batch
strategies for each method. jumbot and m-pot use stratified mini-batches of size 65 for office-home and
36 for visda. All other methods use a random uniform sampling strategy with a mini-batch size of 36.

Evaluation Protocol. For the hyper-parameters chosen with each model selection strategy, we run the
methods for each task 3 times, each with a di�erent seed (2020, 2021, 2022). We tried to control for the
randomness across methods by setting the seeds at the beginning of training. Interestingly, as we discuss
in more detail in Section 5, some methods demonstrated a non-negligible variance across the di�erent seeds
showing that some hyper-parameters and methods are not robust to randomness.

4.2 Hyper-Parameter Tuning

Previous works (Gulrajani & Lopez-Paz, 2021; Musgrave et al., 2021; 2022) perform random searches with
the same number of runs for each method. In contrast, we perform hyper-parameter grid searches for each
method. As a result, the hyper-parameter tuning budgets di�ers across the methods depending on the
number of hyper-parameters and the chosen grid. While one can argue this leads to an unfair comparison
of the methods, in practice in most real-world applications one will be interested in using the best method
that our approach will precisely capture.

The hyper-parameter tuning needs to be performed for each task of each dataset, but that would require a
significant computational resources without a clear added benefit. Instead for each dataset, we perform the
hyper-parameter tuning on a single task: A2C for office-home and S2R for visda. This same strategy was
adopted in (Fatras et al., 2021a) and the hyper-parameters were found to generalize to the remaining tasks
in the dataset. We conjecture that this may be due to the fact that information regarding the number of
target only classes is implicitly hidden in the hyper-parameters. See Appendix A.4 for more details regarding
the hyper-parameters.
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Dataset Method s-acc ent dev snd 1-shot 100-rnd oracle

office-home

s. only 60.38±0.5 60.73±0.2 60.22±0.3 59.55±0.3 58.92±0.4 60.34±0.4 61.87±0.3
pada 63.08±0.3 59.74±0.5 52.72±2.8 62.36±0.4 62.00±0.5 63.22±0.1 63.72±0.3
safn 62.09±0.2 61.37±0.3 62.03±0.4 62.59±0.1 49.30±0.7 62.36±0.2 63.30±0.2

ba3us 68.32±1.1 73.36±0.6 62.25±7.1 75.37±0.8 65.56±7.6 75.19±0.4 75.98±0.3
ar 65.68±0.3 70.58±0.4 64.32±0.9 70.25±0.2 70.56±0.7 70.34±0.2 72.73±0.3

jumbot 62.89±0.2 74.61±0.8 61.28±0.1 72.29±0.2 74.95±0.1 75.74±0.3 77.15±0.4
mpot 66.24±0.1 64.46±0.1 61.37±0.2 46.92±0.4 68.28±0.2 73.06±0.3 77.31±0.5

visda

s. only 55.15±2.4 55.24±3.2 55.07±1.2 55.02±2.9 55.72±2.2 58.16±0.6 59.48±0.4
pada 47.48±4.8 32.32±4.9 43.43±5.3 56.83±1.0 53.15±2.9 54.38±2.7 54.57±2.6
safn 58.20±1.7 42.83±6.3 58.62±1.3 44.82±8.8 56.89±2.1 59.09±2.8 62.64±1.5

ba3us 55.10±3.7 65.58±1.4 58.40±1.4 51.07±4.3 64.77±1.4 67.44±1.2 67.67±1.3
ar 66.68±1.0 64.27±3.6 67.20±1.5 55.69±0.9 70.29±1.7 72.60±0.8 73.85±0.9

jumbot 60.63±0.7 62.42±2.4 59.86±0.6 77.69±4.2 78.34±1.9 83.49±1.9 84.01±1.9
mpot 70.02±2.0 74.64±4.4 61.62±1.3 78.40±3.9 70.96±3.7 86.69±5.1 86.95±5.0

Table 6: Task accuracy average over seeds 2020, 2021, 2022 on Partial office-home and Partial visda for
the PDA methods and model selection strategy. For each method, we highlight the best and worst label-free
model selection strategies in green and red, respectively.

Several runs in our hyper-parameter search for jumbot, m-pot and ba3us were unsuccessful with the
optimization reaching its end without the model being trained at all. This poses a challenge to dev, snd and
ent and its one of the failures modes accounted for in (Saito et al., 2021). Following their recommendations,
for jumbot, m-pot and ba3us, before applying the model selection strategy, we discard models whose
source domain accuracy is below a certain threshold thr, which is set with the heuristic as thr = 0.9 · Acc.
Here Acc denotes the source domain accuracy of the Source-Only model. In our experiments, this leads
to select models whom the source accuracy is at least of thr = 69.01% for the A2C task on office-home

and thr = 89.83% for the S2R task on visda. We choose this heuristic because the ablation study of some
methods showed that doing the adaptation decreased slightly the source accuracy (Bhushan Damodaran
et al., 2018). Table 5 shows that our heuristic leads to improved results.

Lastly, when choosing the hyper-parameters, we only consider the model at the end of training, discarding
the intermediate checkpoint models in order to select hyper-parameters which do not lead to overfitting at
the end of training and better generalize to the other tasks. Following the above protocol, for each dataset
we trained 468 models in total in order to find the best hyper-parameters. Then, to obtain the results
with our neural network architecture on all tasks of each dataset, we trained an additional 1224 models
for office-home and 156 models for visda. We additionally trained 231 models with the di�erent neural
network architectures for ar and safn. In total, 2547 models were trained to make this study and we
present the di�erent results in the next section.

5 Partial domain adaptation experiments

We start the results section by discussing the di�erences between our reproduced results and the published
results from the di�erent PDA methods. Then, we compare the performance of the di�erent model selection
strategies. Finally, we discuss the sensitivity of methods to the random seed.

5.1 Reproducibility Of Previous Results

We start by ensuring that our reimplementation of PDA methods was done correctly by comparing our
reproduced results with previously reported results in Table 4. As such the model selection strategy used
is oracle. On office-home, both pada and jumbot achieved higher average task accuracy (1.6 and 1.7
percentage points, respectively) in our reimplementation, while for ba3us and mpot we recover the reported
accuracy in their respective papers. However, we saw a decrease in performance for both safn and ar of
roughly 8 and 5 percentage points respectively. This is to be expected due to the di�erences in the neural
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network architectures. While we use a linear bottleneck layer, safn uses a nonlinear bottleneck layer. As
for ar, they make two significant changes: the linear classification head is replaced by a spherical logistic
regression (SLR) layer (Gu et al., 2020) and the features are normalized (the 2-norm is set to a dataset
dependent value, another hyper-parameter that requires tuning) before feeding them to the classification
head. While we account for the first change by comparing to AR (w/ linear) results reported in (Gu
et al., 2021), in our neural network architecture we do not normalize the features. These changes, nonlinear
bottleneck layer for safn and feature normalization for ar, significantly boost the performance of both
methods. When now comparing our reimplementation with the same neural network architectures, our
SAFN reimplementation achieves a higher average task accuracy by 3 percentage points, while our AR
reimplementation is now only 1 percentage points below. The fact that AR reported results are from only
one run, while ours are averaged across 3 distinct seeds, justifies the small remaining gap. Moreover, we
report higher accuracy or on par on 4 of the 12 tasks. Given all the above and further discussion of the
visda dataset results in Appendix B, our reimplementations are trustworthy and give validity to the results
we discuss in the next sections.

5.2 Results for Model Selection Strategies

Model Selection Strategies (w/ vs w/o target labels) All average accuracies on the office-home

and visda datasets can be found in Table 6. For all methods on office-home, we can see that the results
for model selection strategies which do not use target labels are below the results given by oracle. For
some pairs, the drop of performance can be significant, leading some methods to perform on par with the
s. only method. That is the case on office-home when dev is paired with either ba3us, jumbot and
mpot. Even worse is mpot with snd as the average accuracy is more than 10 percentage points below that
of s. only with any model selection strategy. Overall on office-home, except for mpot, all methods when
paired with either ent or snd give results that are at most 2 percentage points below compared to when
paired with oracle.

A similar situation can be seen over the visda dataset where the accuracy without target labels can be down
to 25 percentage points. Yet again, some model selection strategies can lead to scores even worse than s.

only. That is the case for pada, safn and ba3us. Contrary to office-home, all model selection strategies
without target labels lead to at least one method with results on par or worse in comparison to the s. only

method. More generally, no model selection strategy without target labels can lead to score on par to the
oracle model selection strategy. Finally, pada performs worse than s. only for most model selection
strategies, including the ones which use target labels. However, when combined with snd it performs better
than with oracle on average, although still within the standard deviation. This is a consequence of the
random seed dependence mentioned before on visda: as the hyper-parameters were chosen by performing
just one run, we were simply “unlucky”. In general, all of this confirms the standard assumption in the
literature regarding the di�culty of the visda dataset.

Model Selection Strategies (w/ target labels) We recall that the oracle model selection strategy
uses all the target samples to compute the accuracy while 1-shot and 100-rnd use only subsets: 1-shot has
only one sample per class for a total of 25 and 6 on office-home and visda, respectively, while 100-rnd has
100 random target samples. Our results show that using only 100 random target labeled samples is enough
to reasonably approximate the target accuracy leading to only a small accuracy drop (one percentage point
in almost all cases) for both datasets. Not surprisingly, the gap between the 1-shot and oracle model
selection strategies is even bigger, leading in some instances to worse results than with a model selection
strategy that uses no target labels. This poor performance of the 1-shot model selection strategy also
highlights that semi-supervised domain adaptation (SSDA) methods are not a straightforward alternative to
the 100-rnd model selection strategy. While one could argue that the target labels could be leveraged during
training like in SSDA methods, one still needs labeled target data to perform model selection. However our
results suggest that we would need at least 3 samples per class for SSDA methods. In addition, knowing
that we have a certain number of labeled samples per class provides information regarding which classes
are target only, one of the main assumptions in PDA. In that case, PDA methods could be tweaked. This
warrants further study that we leave as future work. Finally, we have also investigated a smaller labeled
target set of 50 random samples (50-rnd) instead of 100 random samples. The accuracies of methods using
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Task Method s-acc ent dev snd 1-shot 100-rnd oracle

S2R

s. only 46.96 ± 1.5 48.17 ± 3.9 49.00 ± 0.9 48.17 ± 3.9 49.43 ± 0.8 50.01 ± 1.6 51.86 ± 1.4
pada 44.56 ± 5.9 40.83 ± 11.3 41.04 ± 4.3 56.14 ± 9.7 52.94 ± 4.3 49.34 ± 8.4 49.34 ± 8.4
safn 52.04 ± 3.5 29.86 ± 16.7 52.42 ± 2.9 28.46 ± 16.5 49.97 ± 3.3 47.83 ± 0.6 56.88 ± 2.1

ba3us 44.21 ± 3.0 71.17 ± 1.9 48.78 ± 1.9 46.12 ± 7.8 66.79 ± 1.5 71.45 ± 0.8 71.77 ± 1.1
ar 68.39 ± 1.3 75.28 ± 2.9 68.54 ± 1.3 57.61 ± 0.4 70.11 ± 1.4 75.09 ± 5.2 76.33 ± 4.5

jumbot 55.23 ± 2.3 56.25 ± 2.1 54.35 ± 2.0 75.23 ± 8.4 81.27 ± 6.9 89.94 ± 1.1 90.55 ± 0.5
mpot 64.57 ± 2.9 82.10 ± 2.0 57.02 ± 1.5 84.45 ± 0.4 71.33 ± 4.4 87.20 ± 2.3 87.23 ± 2.3

R2S

s. only 63.34 ± 3.4 62.32 ± 2.7 61.13 ± 3.3 61.88 ± 2.3 62.00 ± 3.9 66.30 ± 2.0 67.11 ± 2.1
pada 50.39 ± 3.8 23.80 ± 1.6 45.82 ± 9.2 57.53 ± 10.3 53.36 ± 1.7 59.43 ± 5.8 59.81 ± 6.2
safn 64.37 ± 0.7 55.80 ± 5.2 64.82 ± 0.5 61.19 ± 3.3 63.82 ± 1.0 70.34 ± 5.8 68.40 ± 1.2

ba3us 65.99 ± 4.6 59.99 ± 1.3 68.01 ± 1.9 56.01 ± 2.9 62.75 ± 2.6 63.44 ± 1.9 63.56 ± 1.8
ar 64.97 ± 0.8 53.26 ± 9.7 65.86 ± 3.5 53.78 ± 2.1 70.46 ± 4.7 70.11 ± 5.0 71.36 ± 5.5

jumbot 66.04 ± 1.0 68.59 ± 4.6 65.36 ± 0.8 80.16 ± 1.1 75.42 ± 4.8 77.03 ± 2.7 77.46 ± 3.3
mpot 75.47 ± 3.8 67.18 ± 9.1 66.21 ± 1.2 72.36 ± 7.4 70.58 ± 3.1 86.18 ± 8.1 86.67 ± 7.8

Avg

s. only 55.15 ± 2.4 55.24 ± 3.2 55.07 ± 1.2 55.02 ± 2.9 55.72 ± 2.2 58.16 ± 0.6 59.48 ± 0.4
pada 47.48 ± 4.8 32.32 ± 4.9 43.43 ± 5.3 56.83 ± 1.0 53.15 ± 2.9 54.38 ± 2.7 54.57 ± 2.6
safn 58.20 ± 1.7 42.83 ± 6.3 58.62 ± 1.3 44.82 ± 8.8 56.89 ± 2.1 59.09 ± 2.8 62.64 ± 1.5

ba3us 55.10 ± 3.7 65.58 ± 1.4 58.40 ± 1.4 51.07 ± 4.3 64.77 ± 1.4 67.44 ± 1.2 67.67 ± 1.3
ar 66.68 ± 1.0 64.27 ± 3.6 67.20 ± 1.5 55.69 ± 0.9 70.29 ± 1.7 72.60 ± 0.8 73.85 ± 0.9

jumbot 60.63 ± 0.7 62.42 ± 2.4 59.86 ± 0.6 77.69 ± 4.2 78.34 ± 1.9 83.49 ± 1.9 84.01 ± 1.9
mpot 70.02 ± 2.0 74.64 ± 4.4 61.62 ± 1.3 78.40 ± 3.9 70.96 ± 3.7 86.69 ± 5.1 86.95 ± 5.0

Table 7: Accuracy of di�erent PDA methods based on di�erent model selection strategies on the 2 Partial
visda tasks. Average is done over three seeds (2020, 2021, 2022). For each method, we highlight the best
and worst label-free model selection strategies in green and red, respectively.

50-rnd were not as good as when using 100-rnd. All results of pairs of methods and 50-rnd can be found
in Appendix B. The smaller performance show that the size of the labeled target set is an important element
and we suggest to use at least 100 random samples.

Model Selection Strategies (w/o target labels) Only the (ba3us, ent) pair achieved average task
accuracies within 3 percentage points of its oracle counterpart (i.e., (ba3us, oracle)), while still improv-
ing over S. Only model. Our experiments show that there is no model selection strategy which performs
well for all methods. That is why to deploy models in a real-world scenario, we advise to test selected models
on a small labeled target set (i.e., 100-rnd)) to assess the performance of the models as model selection
strategies without target labels can perform poorly.

Our conclusion is that the model selection for PDA methods is still an open problem. We conjecture that
it is also the case for domain adaptation as the considered metrics were developed first for this setting. For
future proposed methods, researchers should specify not only which model selection strategy should be used,
but also which hyper-parameter search grid should be considered, to deploy them in a real-world scenario.

5.3 Random Seed Dependence

Ideally, PDA methods should be robust to the choice of random seed. This is of particular importance when
performing hyper-parameter tuning since typically only one run per set of hyper-parameters is done (that
was the case in our work as well). We investigate this robustness by averaging all the results presented over
three di�erent seeds (2020, 2021 and 2022) and reporting the standard deviations. This is in contrast with
previous work where only a single run is reported (Fatras et al., 2021a; Gu et al., 2021). Other works (Cao
et al., 2018; Xu et al., 2019; Jian et al., 2020) that report standard deviations do not specify if the random
seed is di�erent across runs. Results for all tasks on visda dataset are in Table 7 and on office-home in
Appendix B due to space constraints.
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Our experiments show that some methods express a non-negligible instabilities over randomness with respect
to any model selection methods. This is particularly true for ba3us when paired with dev and 1-shot as
model selection strategies: there are several tasks where the standard deviation is above 10%. While in this
case this instability may stem from the poor performance of the model selection strategies, it is also visible
when oracle is the model selection strategy used. For instance, the m-pot has a standard deviation of
3.3% on the AP task of office-home which corresponds to a variance of 11%. On visda this instability
and seed dependence is even larger.

6 Conclusion

In this paper, we investigated how model selection strategies a�ect the performance of PDA methods. We
performed a quantitative study with seven PDA methods and seven model selection strategies on two real-
word datasets. Based on our findings, we provide the following recommendations:

i) Target label samples should be used to test models before using them in real-world scenario. While this
breaks the main PDA assumption, it is impossible to confidently deploy PDA models selected without the
use of target labels. Indeed, model selection strategies without target labels lead to a significant drop in
performance in most cases in comparison to using a small validation set. We argue that the cost of labeling
it outweighs the uncertainty in current model selection strategies.

ii) The robustness of new PDA method to randomness should be tested over at least three di�erent seeds. We
suggest to use the seeds (2020, 2021, 2022) to allow for a fair comparison with our results.

iii) An ablation study should be considered when a novel architecture is proposed to quantify the associated
increase of performance.
As our work focus on a quantitative study of model selection methods and reproducibility of state-of-the-art
partial domain adaptation methods, we do not see any potential ethical concern. Future work will investigate
new model selection strategies which can achieve similar results as model selection strategies which use label
target samples.
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