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Abstract

We study pre-trained sequence-to-sequence001
model for a specific-language family with a fo-002
cus on Indic languages. We present IndicBART,003
a multilingual, sequence-to-sequence pre-004
trained model focusing on 11 Indic languages005
and English. IndicBART utilizes the ortho-006
graphic similarity between Indic scripts to im-007
prove transfer learning between similar In-008
dic languages. We evaluate IndicBART on009
two NLG tasks: Neural Machine Translation010
(NMT) and extreme summarization. Our exper-011
iments on NMT and extreme summarization012
show that a language family-specific model013
like IndicBART is competitive with large pre-014
trained models like mBART50 despite being015
significantly smaller. It also performs well on016
very low-resource translation scenarios: lan-017
guages not included in pre-training or fine-018
tuning. Script sharing, multilingual training019
and better utilization of limited model capac-020
ity contribute to the good performance of the021
compact IndicBART model.022

1 Introduction023

Recently, there has been significant progress in024

deep learning based natural language generation025

(NLG) for machine translation, abstractive sum-026

marization, data-to-text generation etc. due to the027

adoption of attention-based sequence-to-sequence028

(S2S) models (conditional language models) (Wu029

et al., 2016; Paulus et al., 2018; Puduppully et al.,030

2019). Pre-trained S2S models have been shown031

to be useful to improve performance on various032

NLG tasks (Rothe et al., 2020; Kale and Rastogi,033

2020; Lewis et al., 2020). Specifically, multilingual034

pre-trained S2S models jointly trained on mono-035

lingual corpora from multiple languages such as036

mBART25 (Liu et al., 2020), mBART50 (Tang037

et al., 2020a) and mT5 (Xue et al., 2021) have seen038

increased adoption and low-resource languages039

have benefitted from cross-lingual transfer. How-040

ever, these massively multilingual massive (M3)041

models have major limitations. They serve only 042

a few of the world’s languages (<100 languages), 043

the pre-training corpora are dominated by high- 044

resource languages, the vocabulary representation 045

for low-resource languages is inadequate, and the 046

models are large, making them expensive and slow 047

to train, fine-tune and decode. 048

An alternative approach is to build pre-trained 049

S2S models for a group of related languages. Pre- 050

vious work has shown the benefits of pre-trained 051

language models as well as NMT models that cater 052

to a set of related languages (Kakwani et al., 2020; 053

Tan et al., 2019; Khanuja et al., 2021). However, 054

such a study on multilingual pre-trained S2S mod- 055

els is missing in the literature. In this work, we 056

address this gap in the literature by studying multi- 057

lingual pre-trained S2S models for Indic languages. 058

The result of this study is IndicBART, a mul- 059

tilingual pre-trained sequence to sequence model 060

specifically trained for Indic languages, which are 061

spoken by more than a billion users1. It sup- 062

ports English and 11 Indian languages includ- 063

ing 7 Indo-Aryan (Assamese, Bengali, Gujarati, 064

Hindi, Marathi, Odiya, Punjabi) and 4 Dravidian 065

(Kannada, Malayalam, Tamil, Telugu) languages. 066

Of these, mBART25, mBART50 and mT5 sup- 067

port only 2, 7 and 9 languages respectively. It is 068

a compact model with just 244M parameters, 069

which is much smaller than the M3 models such as 070

mBART50 and mT5(-base) which contain 611M 071

and 580M parameters respectively. We also pro- 072

pose a variant of IndicBART, i.e. IndicALBART, 073

that is highly compact with just 97M parameters. 074

We compare IndicBART with M3 models on two 075

downstream generation tasks: machine translation 076

and extreme summarization (Narayan et al., 2018). 077

The results indicate that IndicBART is competi- 078

tive or better by up to 2 BLEU/ROUGE compared 079

to M3 models like mBART50. IndicBART also 080

1https://en.wikipedia.org/wiki/
Demographics_of_India
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performs well in the following zeroshot scenarios:081

(a) on languages not included in pre-training, and082

(b) languages for which there is no finetuning data.083

The following aspects of the IndicBART model084

contribute to its strong performance and increased085

language coverage within the Indic family vis-à-vis086

M3 models, while being highly compact:087

1. It is trained on a smaller set of related languages088

which reduces model capacity requirements. More-089

over, available model capacity is effectively uti-090

lized since transfer learning works when languages091

share linguistic features and data represents shared092

topical themes.093

2. It is trained on the largest publicly available094

Indic language corpora, IndicCorp (Kakwani et al.,095

2020), which includes large, high-quality news096

crawls for Indian languages as well as English097

content from Indian websites - thus being repre-098

sentative of Indian English and topics.099

3. We utilize the orthographic similarity between100

Indic scripts (Kunchukuttan et al., 2018) to map all101

the Indic language data to a single script, effectively102

reducing the number of scripts from 9 to 1 (each103

script having approximately 50 characters). This104

increases the shared subwords in the vocabulary,105

and we observe that single script models enable bet-106

ter cross-lingual transfer while finetuning. Since107

subwords embeddings consume a significant frac-108

tion of the parameter space, single script models109

also better utilize available vocabulary budget.110

4. Extremely compressed pre-trained S2S mod-111

els (IndicALBART) suitable for deployment can112

be trained by sharing parameters across layers of113

the transformer layers. For related languages, we114

show compressed pre-trained models are compet-115

itive with full models on downstream tasks when116

finetuned on distilled data.117

The IndicBART model and its variants will be118

made available under an MIT license to spur further119

innovation in NLG for Indic languages and study120

of pre-trained S2S models for related languages.121

2 Related Work122

Pre-trained models. Pre-trained models learnt123

using self-supervised objectives and large monolin-124

gual corpora have contributed to rapid advances125

in NLU (Devlin et al., 2019) and NLG (Lewis126

et al., 2020). Following initial work on English pre-127

trained models, multilingual pre-trained models128

have been proposed for NLU (Devlin et al., 2019;129

Conneau et al., 2020) as well as NLG (Liu et al.,130

2020; Tang et al., 2020a; Xue et al., 2021) sup- 131

porting around 100 languages. These pre-trained 132

M3 models have proven to be very useful in im- 133

proving NLG performance in low-resource settings, 134

especially for applications other than translation. 135

Language family-specific models. The proposed 136

IndicBART model is also a multilingual pre-trained 137

S2S model similar in architecture and training to 138

mBART. However, in contrast to mBART and mT5, 139

the proposed IndicBART caters specifically to Indic 140

languages. While language-family specific NLU 141

language models like IndicBERT (Kakwani et al., 142

2020) and MuRIL (Khanuja et al., 2021) and NMT 143

models (Tan et al., 2019) have been proposed, ours 144

is one of the first efforts to create a pre-trained S2S 145

model for a specific language family (and the first 146

for Indic languages). AfroMT (Reid et al., 2021) is 147

a concurrent effort focussed on African languages 148

and low monolingual corpora scenarios. While 149

AfroMT effort is focussed on MT, we investigate In- 150

dicBART on another NLG task as well - abstractive 151

summarization. Interestingly, the publicly available 152

family-specific language models (IndicBERT and 153

MuRIL) both cater to Indic languages, pointing to 154

perceived need for Indic language specific models. 155

Language relatedness. Language-family specific 156

models are motivated from previous work that em- 157

phasizes the role of language relatedness in cross- 158

lingual transfer for NMT (Nguyen and Chiang, 159

2017; Dabre et al., 2017; Aharoni et al., 2019; 160

Kudugunta et al., 2019; Dabre et al., 2020) and 161

NLU (Kakwani et al., 2020; Khemchandani et al., 162

2021; Dhamecha et al., 2021). We use a single 163

script for representing Indic data since orthographic 164

similarity between Indic languages has been uti- 165

lized to represent data in a common script and im- 166

prove cross-lingual transfer for machine translitera- 167

tion (Kunchukuttan et al., 2018), machine transla- 168

tion (Dabre et al., 2018; Goyal et al., 2020; Ramesh 169

et al., 2021) and NLU (Khemchandani et al., 2021; 170

Dhamecha et al., 2021). 171

Parameter Sharing and Distillation. Parame- 172

ter sharing across layers has shown promise for 173

NMT (Dabre and Fujita, 2019) and pre-trained 174

LMs (Lan et al., 2020) in building compressed mod- 175

els while maintaining end-task performance. The 176

IndicALBART model proposed in this work is the 177

first model to explore parameter-sharing across lay- 178

ers for pre-trained S2S models. For NMT models 179

trained from scratch, sequence-to-sequence distil- 180

lation (Kim and Rush, 2016) has been shown as 181
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an effective way to transfer knowledge to smaller182

models, while training large models on distilled183

data (a form of self-training) has been shown to im-184

prove translation quality (Dabre and Fujita, 2020).185

Our results indicate that these results hold when186

fine-tuning on pre-trained S2S models as well.187

3 IndicBART188

The IndicBART model is conceptually based on189

the mBART25/50 model family which are Trans-190

former models (Vaswani et al., 2017) trained on191

monolingual corpora with masked span reconstruc-192

tion objective. We refer the readers to the mBART193

literature (Lewis et al., 2020; Liu et al., 2020) for194

architectural details and highlight specific details195

and differences from the mBART25/50 setup.196

3.1 Design Considerations for IndicBART197

Considerations that drove our model choices are:198

Compactness: The model should be compact199

given our focus on a smaller set of related lan-200

guages, as well as to accelerate training and fine-201

tuning. Such a model will be usable by a larger202

base of users with limited computational resources.203

Content Relevance: In addition to Indian lan-204

guages, we include English since transfer-learning205

from English is a natural use case, and English is206

widely used in the Indian subcontinent. We also207

use English content from the Indian subcontinent208

to reflect relevant content.209

Leveraging Relatedness: We utilize orthographic210

similarity between Indian languages, most of which211

use abugida scripts derived from the Brahmi script.212

The logical character set has high overlaps, though213

each script has its own code-point range in the Uni-214

code standard. We map all the data to Devanagari,215

enabling better transfer learning with a more com-216

pact vocabulary compared to mBART.217

3.2 Model and Training Details218

IndicBART uses (N=) 6 encoder and decoder lay-219

ers with hidden and filter sizes of 1024 and 4096,220

respectively, and 16 attention heads (244M param-221

eters). Similar to mBART, we mask (p=)35% of222

the words in each sentence by randomly sampling223

a span length according to a Poisson distribution224

(λ = 3.5). We use dropouts of 0.1, label smoothing225

of 0.1, Adam optimizer with a maximum learning226

rate of 0.001, weight decay of 0.00001, linear learn-227

ing rate warmup and decay with 16,000 warmup228

steps, batch sizes of 4096 tokens. We train for229

750,000 iterations on 48 NVIDIA V-100 GPUs, 230

corresponding to roughly 2 epochs, taking around 5 231

days2. In comparison, mBART25/50 models need 232

much longer time (2+ weeks) on 256 GPUs. 233

To explore more compressed pre-trained models, 234

we train IndicALBART, a variant of IndicBART 235

with cross-layer parameter sharing, i.e., sharing 236

parameters across layers. For ablation studies on 237

the impact of single script representation we also 238

train a variant of IndicBART with a 64K vocabulary 239

using the original scripts, which we call separate 240

script IndicBART (SSIndicBART). 241

The models have been trained with the YAN- 242

MTT toolkit3 (Dabre and Sumita, 2021) which is 243

based on the mBART implementation of the Hug- 244

gingFace Transformers library (Wolf et al., 2020). 245

3.3 Training Data and Pre-processing 246

We train the IndicBART model on the IndicCorp 247

(IC) dataset (Kakwani et al., 2020) which contains 248

11 Indic languages and English. The Indic lan- 249

guages are: Assamese (as), Bengali (bn), Gujarati 250

(gu), Hindi (hi), Kannada (kn), Malayalam (ml), 251

Marathi (mr), Oriya (or), Punjabi (pa), Tamil (ta) 252

and Telugu (te). The corpora statistics are men- 253

tioned in Table 7 of the appendix. We train the 254

model on a total of approx. 450 million sentences 255

and 9 billion tokens where corpora sizes are bal- 256

anced with temperature (T=5) based sampling (Ari- 257

vazhagan et al., 2019). All the Indic language data 258

is represented in a single script, i.e., the Devana- 259

gari script using the IndicNLP library4 (Kunchukut- 260

tan, 2020). We use a vocabulary of 64K subwords 261

learned using SentencePiece (Kudo, 2018; Kudo 262

and Richardson, 2018) on randomly sampled 1M 263

raw sentences from the IndicCorp for each lan- 264

guage, for a total of 12M sentences. The model is 265

trained at the sentence-level, unlike the mBART50 266

model, which is trained on contiguous text chunks 267

potentially spanning multiple sentences. 268

4 Experiments: NMT 269

Machine Translation is a standard, popular, cross- 270

lingual generation task for which various pre- 271

trained models are evaluated. We compare In- 272

dicBART and its variants with mBART50 which 273

should be the most directly comparable model. We 274

2Longer training was limited by the availability of many
GPUs simultaneously.

3https://github.com/prajdabre/yanmtt
4https://github.com/anoopkunchukuttan/indic_nlp_library
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study their performance in: (a) low-resource, (b)275

multilingual and (c) zero-shot training settings.276

4.1 Models Compared277

We study IndicBART via the following models:278

Models trained from scratch: We train bilingual279

(Bi) as well as multilingual many-to-one (M2O)280

and one-to-many (O2M) transformer models.281

Fine-tuned models: We fine-tune mBART50282

(MB50), IndicBART (IB) and its variants namely283

IndicALBART (IALB) and separate script In-284

dicBART (SSIB). The type of fine-tuning is in-285

dicated by +type which can be Bi, O2M or M2O.286

If needed, the corpus is indicated by +corpus.287

Distilled models: We use the multilingually fine-288

tuned IndicBART model and translate the training289

data source sentences which yields distillation data290

(Kim and Rush, 2016). We use this data to train291

M2O and O2M models from scratch, as well as292

by fine-tuning on mBART50, IndicBART and Indi-293

cALBART. This was motivated by Dabre and Fujita294

(2020) who show that the distillation data gener-295

ated using models employing transfer learning sig-296

nificantly improves the performance of compact297

models for low-resource languages.298

4.2 Datasets and Preprocessing299

The statistics of training corpora are in Table 7 in300

the appendix.301

Training: For a low-resource setting (LR), we302

use the PMI subset (Haddow and Kirefu, 2020)303

of the WAT 2021 MultiIndicMT5 (Nakazawa et al.,304

2021) training set for finetuning. This represents305

an extremely low-resource parallel corpus setting306

where we expect IndicBART to be the most help-307

ful. We experiment with extending the PMI data308

( 326K pairs) with the CVIT-PIB (henceforth PIB:309

930K pairs) data (Siripragrada et al., 2020) which310

is similar in domain to the former. We also use the311

high-resource, general domain Samanantar corpus312

(Ramesh et al., 2021) (46.2M pairs) to compare313

with the generalization capabilities of pre-trained314

models which are fine-tuned with small corpora315

(PMI, PIB).316

Testing: We use the WAT 2021 MultiIndicMT test-317

set and the FLORES101 devtest (Goyal et al., 2021)318

for evaluation of our models. Both these testsets319

are n-way parallel (2,390 and 1,012 sentences re-320

spectively). The WAT 2021 testset shares the same321

domain as the training set. The FLORES devtest322

5http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual

comes from a different, general domain. We rely 323

on the FLORES dataset to evaluate performance of 324

models trained on the PMI/PIB domain on a more 325

general domain. 326

Validation: We use the WAT2021 development set 327

of 1,000 sentences. 328

Preprocessing: For IndicBART and IndicAL- 329

BART, we use the Indic NLP library to convert 330

the Indic side of the parallel data to the Devana- 331

gari script. For mBART50, only Kannada, Punjabi 332

and Oriya scripts are converted to Devanagari as 333

mBART50 does not support these languages. Re- 334

sults for these are italicized. For separate script 335

IndicBART we do not do script conversion. 336

With this setup, we study the benefits of pre- 337

training in low-resource settings (finetuned on 338

PMI and PIB) and compare it with high-resource 339

settings (trained on Samanantar) on in-domain 340

(WAT2021) and general (FLORES) testsets. Unless 341

explicitly mentioned, our models are assumed to be 342

trained/fine-tuned/distilled with the PMI training 343

data. 344

4.3 Model Training Settings 345

We use a single GPU for bilingual and 8 GPUs for 346

multilingual models, all of which are Transformers. 347

Multilingual models are trained using the approach 348

in Johnson et al. (2017) where corpora for various 349

language pairs are first balanced according to their 350

size, then concatenated after appending target lan- 351

guage indicator tokens, and finally fed to the NMT 352

model for training. Wherever possible and appli- 353

cable, we tuned hyperparameters such as hidden 354

sizes, dropout, label smoothing, warmup, tokens 355

per batch, per GPU, learning rate and weight de- 356

cay. The ADAM optimizer was used. We train 357

our models till convergence on the development 358

set BLEU scores (Papineni et al., 2002). We de- 359

code train/tests sets using beam search with a beam 360

of size 4 and a length penalty of 0.8. We report 361

the BLEU scores on the decoded results computed 362

using sacreBLEU6 (Post, 2018). For additional 363

details, refer to section B in the appendix. 364

4.4 Comparison of Pre-trained Models 365

We first describe the main results of using In- 366

dicBART and its variants for machine translation 367

and compare it with other relevant models. Table 1 368

shows results for models trained on the PMI corpus 369

and evaluated on the WAT21 testset. 370

6BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.5.1
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Model #Params bn gu hi kn ml mr or pa ta te
XX-En

Bilingual Models
Bi 78M 13.5 27.4 30.9 22.5 16.5 18.4 18.4 27.1 17.1 16.5
MB50+Bi 611M 23.2 35.4 38.3 26.8 29.2 27.7 27.8 35.8 27.1 30.8
IB+Bi 244M 23.6 35.5 36.8 31.6 27.9 26.8 28.3 36.3 27.0 29.9

Multilingual Models
M2O 78M 18.9 24.8 27.8 23.8 21.6 20.7 21.2 26.4 20.6 21.8
MB50+M2O 611M 24.8 33.9 36.8 30.1 28.8 28.1 27.5 34.5 27.0 29.2
IB+M2O 244M 24.8 33.9 37.2 32.4 28.5 28.5 28.8 35.7 27.3 29.5
IALB+M2O 97M 23.1 33.2 34.4 29.5 27.1 27.0 27.3 34.1 25.2 27.4

Distilled Large Models
MB50+M2O 611M 26.1 35.9 38.3 32.9 29.6 29.3 30.1 37.1 28.5 31.7
IB+M2O 244M 26.0 35.9 38.0 33.7 29.9 29.4 30.3 37.4 28.4 31.6

Distilled Compact Models
M2O 78M 23.6 33.3 36.0 30.2 26.0 26.9 27.7 34.0 25.6 27.8
IAIB+M2O 97M 24.9 34.4 36.6 31.9 27.7 28.1 28.6 35.5 26.5 29.0

En-XX
Bilingual Models

Bi 78M 4.5 17.9 21.7 12.1 3.9 10.0 9.2 17.9 7.2 2.1
MB50+Bi 611M 8.6 23.5 27.0 17.4 6.0 15.8 11.6 24.5 11.2 3.3
IB+Bi 244M 8.2 23.6 26.9 17.7 6.0 15.8 11.8 25.1 10.8 3.6

Multilingual Models
O2M 78M 7.4 22.5 25.9 16.2 5.6 14.7 11.4 21.9 10.0 2.7
MB50+O2M 611M 8.9 22.8 27.5 18.1 6.5 16.3 12.0 25.1 11.6 3.7
IB+O2M 244M 9.1 24.0 27.3 18.5 6.7 16.7 12.9 26.4 11.6 3.7
IALB+O2M 97M 8.1 22.3 26.3 17.0 5.8 15.3 11.6 24.2 10.5 3.2

Distilled Large Models
MB50+O2M 611M 9.4 24.5 27.5 17.5 6.1 16.4 12.8 26.3 11.6 2.9
IB+O2M 244M 9.3 25.0 28.2 19.2 6.7 17.0 13.2 26.5 11.8 3.7

Distilled Compact Models
O2M 78M 8.9 24.1 27.5 18.2 6.3 16.0 12.5 25.6 11.0 3.2
IAIB+O2M 97M 8.9 23.4 27.2 17.8 6.3 16.2 12.7 25.3 11.3 3.1

Table 1: Comparison of IndicBART with other models. Scores are reported on the WAT 2021 test set.

Language specific models are compact and371

competitive: Considering bilingual models, In-372

dicBART outperforms models trained from scratch373

and gives competitive results when compared374

to mBART50. For Indic to English translation,375

mBART50 tends to be better but this is not surpris-376

ing because it is trained on far larger amounts of377

English data in addition to being almost 3 times378

larger than IndicBART. For English to Indic trans-379

lation, both models tend to give similar scores. In380

the case of multilingual models, IndicBART is,381

once again, vastly better than its counterpart trained382

from scratch and when compared to mBART50383

the gap which existed in case of bilingual settings384

disappears and sometimes reverses in favor of In-385

dicBART. In both cases, IndicBART outperforms 386

mBART50 for Kannada, Punjabi and Oriya which 387

the latter is not trained for. This shows that hav- 388

ing a compact language family specific model can 389

be competitive with if not better than a general 390

purpose model trained on a larger number of lan- 391

guages while only having one-third the number of 392

parameters as the latter. 393

Extreme compression has its downside: Compar- 394

ing the performance of IndicBART and mBART50 395

against IndicALBART in multilingual settings, it 396

seems that a 60% and 84% reduction of param- 397

eters, respectively, has a negative impact on the 398

translation quality, which results in drops of up to 399

3 BLEU. However, this may be considered as a 400
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Model bn hi ml or ta
XX-En

IB+M2O 24.8 37.2 28.5 28.8 27.3
SSIB+M2O 24.1 35.5 27.9 28.1 26.9

En-XX
IB+O2M 9.1 27.3 6.7 16.9 11.6
SSIB+O2M 9.3 27.3 6.2 16.6 11.4

Table 2: Ablation studies on the impact of multilingual-
ism and script unification on downstream performance
of IndicBART. Scores are on the WAT 2021 test set.

reasonable tradeoff given the high levels of com-401

pression achieved. Especially given that IndicAL-402

BART is 84% smaller than mBART50, means that403

large capacity GPUs (which not everyone has easy404

access to) may not be needed. Furthermore, the405

drops in quality can be addressed via distillation.406

Distillation successfully transfers performance407

from large to smaller models: We see that fine-408

tuning the pre-trained IndicALBART on distilled409

data from IndicBART can match the performance410

of the IndicBART model. Finetuning pre-trained411

IndicALBART performs better than training a ran-412

domly initialized model on the same distilled data413

in the XX-En direction. On the other hand, both the414

approaches are competitive in the En-XX direction.415

Self-training on distilled data is beneficial:416

When IndicBART and MB50 are finetuned on dis-417

tillation data generated from a previously finetuned418

model, we see significant improvements in the XX-419

En direction, and modest improvements in the En-420

XX directions. These observations are mostly in421

line with Dabre and Fujita (2020).422

In summary, compact language family specific423

pre-trained models are competitive with large uni-424

versal language models. This can result in reason-425

able gains in fine-tuning multilingual models (3.3-426

3.5 hours for IndicBART variants vs 4.7-5 hours for427

mBART50) and significantly reduce the memory428

footprint (97-244M vs 611M) for deployment.429

4.5 Ablation Studies430

We now perform ablation experiments to study431

the (a.) impact of script unification on translation,432

(b.) impact of corpora sizes and domains on trans-433

lation, (c.) translation quality for languages unseen434

during fine-tuning, and (d.) translation quality on435

languages unseen during pre-training. Although436

we train models on all languages, we only report on437

a subset due to lack of space. Please see Sections C,438

D in the appendix for more detailed results.439

Model bn hi ml or ta
Test Set: WAT 2021

IB+PMI 24.8 37.2 28.5 28.8 27.3
IB+PMI+PIB 28.9 41.7 33.2 33.2 32.0
Samanantar 27.9 41.8 32.7 32.9 31.2
IB+Samanantar 27.1 41.0 31.6 32.3 30.1

Test Set: FLORES
IB+PMI 10.4 14.8 8.1 11.2 10.5
IB+PMI+PIB 13.0 22.0 12.7 15.1 13.8
Samanantar 30.7 36.0 30.4 28.6 27.7
IB+Samanantar 30.1 35.3 29.1 28.5 26.6

Table 3: Ablation study of the impact of using different
fine-tuning corpora sizes (PMI+PIB) and their compar-
ison against a model trained from scratch as well as
fine-tuned on a general domain corpus (Samanantar).
We evaluate Indic to English translation on the WAT
2021 as well as the FLORES test sets.

4.5.1 Impact Of Script Unification 440

Table 2 contains the ablation tests giving the re- 441

sults for the impact of script unification with 442

multilingual fine-tuning. Comparing scores of 443

models fine-tuned on unified script IndicBART 444

(IB+M2O/O2M) against separate script IndicBART 445

(SSIB+M2O/O2M) it is clear that overall, the for- 446

mer is better than the latter which could indicate 447

that script unification enables languages to better 448

benefit from each other. The case of Kannada, 449

Punjabi and Oriya further, illustrates the utility of 450

script unification. The results for these languages 451

are italicized in the rows labelled MB50+Bi and 452

MB50+O2M/M2O in Table 1. mBART50 was not 453

pre-trained on these languages so we converted 454

the training data in these languages in the Devana- 455

gari script7. With this trick, we still managed to get 456

large performance improvements over the baselines 457

trained from scratch, and these improvements are 458

often close to those exhibited by using IndicBART. 459

This shows that we may not need to pre-train on all 460

languages. However, explicitly training on the lan- 461

guages of interest should lead to better translation 462

quality (Tang et al., 2020b). 463

4.5.2 Impact Of Corpora Size and Domain 464

Table 3 shows the impact of corpora sizes as well 465

as training data domain on some Indic to English 466

pairs (complete results in Appendix D). All mod- 467

els are multilingual (M2O), have the same size 468

and are trained on unified script data. In order 469

to clearly assess the impact of domains, we eval- 470

7None of the pre-training languages use the same script as
kn, pa, or.
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Setting M2O O2M
kn-en pa-en en-kn en-pa

IB+Full 32.4 35.7 18.5 26.4
IB+Zero 27.5 31.5 6.1 10.4
SSIB+Zero 24.0 28.2 3.9 7.4

Table 4: Evaluation of Kannada and Punjabi to/from
English translation, which aren’t seen when fine-tuning.

uate on the WAT 2021 as well as the FLORES471

test sets. Regardless of the test sets or testing do-472

mains, comparing rows IB+PMI and IB+PMI+PIB,473

it is clear that increasing the amount of fine-tuning474

data has a positive impact on the final translation475

quality. However, PMI+PIB data is in-domain for476

the WAT 2021 test set but out-of-domain for the477

FLORES test set, and the performance on the latter478

test set still improves.Furthermore, comparing rows479

IB+PMI+PIB and Samanantar, we can see widely480

different results depending on the test set. For the481

WAT 2021 test set, fine-tuning on the PMI+PIB482

dataset is comparable to training on Samanantar483

from scratch indicating that for domain specific484

models, having a small in-domain fine-tuning data485

is sufficient. On the other hand, on the more gen-486

eral domain FLORES test sets training on the more487

diverse Samanantar data is clearly better. Finally,488

the scores in the row IB+Samanantar show that489

pre-training has minimal impact when the parallel490

corpora is large, an observation in line with Liu491

et al. (2020).492

4.5.3 Unseen Languages During Fine-Tuning493

We evaluate Kannada and Punjabi to/from English494

translation where the IndicBART model, with and495

without script unification, is fine-tuned on the mul-496

tilingual PMI data where the training data for these497

languages is missing (denoted by “Zero”). We498

compare against a setting where the training data is499

used (denoted by “Full”). Table 4 shows what hap-500

pens when languages are seen during pre-training501

but not during fine-tuning. There are two critical502

observations: First, despite not having seen any503

training data for the given language pairs, we still504

obtain a reasonable translation for translation into505

English. However, the quality of translation from506

English is poor due to the decoder not having seen507

those specific Indic languages during fine-tuning.508

Incorporating a monolingual de-noising objective509

for unseen target languages during finetuning could510

alleviate this problem. Second, script unification511

has a large impact on the final performance, often512

Model ne-en si-en
Bi (Scratch) 5.2 4.3
IB+Bi 10.5 8.5
(Liu et al., 2020) 14.5 13.7

Table 5: Evaluation of Nepali and Sinhala to English
translation where IndicBART hasn’t seen Nepali and
Sinhala during pre-training.

improving performance by up to 3.5 BLEU over a 513

separate script model. 514

4.5.4 Unseen Languages During Pre-Training 515

We study Nepalese (ne) and Sinhala (si) to English 516

translation using the parallel training data from 517

Guzmán et al. (2019) (also used in Liu et al. (2020)) 518

for bilingual fine-tuning, and evaluate on the FLO- 519

RES devtest set8. Note that for Sinhala we have to 520

resort to script mapping into Devanagari. Table 5 521

shows what happens when we perform fine-tuning 522

for languages that IndicBART is not trained on. 523

The baselines, trained using the unified script In- 524

dicBART vocabulary, will seem weaker than what 525

is reported in previous work, but it should be noted 526

that the vocabulary was not actually trained for 527

Nepali and Sinhala. Regardless, fine-tuning leads 528

to substantial improvements in translation quality, 529

which indicates the utility of IndicBART even for 530

unseen languages. Comparing against Liu et al. 531

(2020) who use the same fine-tuning data as us 532

but their mBART model is pre-trained on both lan- 533

guages, we can see that our models are not too far 534

behind. 535

5 Experiments: Extreme Summarization 536

We compare the performance of fine-tuning In- 537

dicBART, its variants and mBART50 on the chal- 538

lenging extreme summarization task (Narayan et al., 539

2018) for Indic languages. The small datasets, en- 540

able a good study of the utility of pre-training. 541

5.1 Models Trained 542

We fine-tune and compare the mBART50 (MB), 543

IndicBART (IB), IndicALBART (IALB) and the 544

separate script IndicBART model (SSIB) models. 545

Punjabi is not present in mBART50 and has its 546

script mapped to Devanagari before fine-tuning 547

(italicized results). 548

8https://github.com/facebookresearch/
flores
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Lang MB50 IB SSIB IALB

bn 21.87 21.46 20.52 19.86
gu 18.28 18.20 16.38 16.81
hi 31.71 30.94 30.33 30.04
mr 18.33 19.00 18.66 18.44
pa 22.14 24.82 25.08 23.29
ta 19.50 20.40 20.23 17.41
te 13.34 14.38 13.34 13.55

Table 6: Rouge-L scores for summarization on XL-Sum.

5.2 Datasets and Preprocessing549

We used the multilingual XL-Sum dataset (Hasan550

et al., 2021) for our experiments. The Indic lan-551

guages we focus on for evaluating our IndicBART552

models are: Bengali, Gujarati, Hindi, Marathi, Pun-553

jabi, Tamil and Telugu. We use the updated splits554

of Hasan et al. (2021), the statistics of which are555

given in their github page9. Since the splits are not556

n-way parallel, we do not conduct multilingual fine-557

tuning due to potential content overlaps between558

splits across languages. Like we did in NMT, we559

map all scripts to Devanagari as applicable for fine-560

tuning (only Punjabi for mBART50, all languages561

for IndicBART and IndicALBART and none for562

separate script IndicBART). Statistics are given in563

Table 10 in the appendix.564

5.3 Model Training Settings565

Similar to NMT, we use YANMTT for fine-tuning.566

We use maximum document-summary lengths of567

512-64 tokens which loosely follows previous work568

(Lewis et al., 2020). Most of the optimal hyperpa-569

rameters were the same as for NMT. We train our570

models till convergence on the development set571

Rouge-L F1 scores (RL) (Lin, 2004). For decoding572

test sets, we use beam size of 5, length penalty of573

1.2 and a decoding n-gram repetition limit of 410.574

We report RL scores on the decoded results com-575

puted using multilingual Rouge scoring toolkit11.576

Refer to section F in the appendix for details.577

5.4 Results578

Table 6 contains the results for the summarization579

experiments. IndicBART (IB) and mBART50 are580

competitive with each other where the former per-581

forms slightly better for Marathi, Punjabi, Tamil582

9https://github.com/csebuetnlp/xl-sum/
10This means that 4-grams wont be repeated in the output.
11https://github.com/csebuetnlp/xl-sum/

tree/master/multilingual_rouge_scoring

and Telugu. Once again, separate script IndicBART 583

(SSIB) fared poorer than IndicBART except for 584

Punjabi indicating the importance of script unifica- 585

tion. Similar to NMT, fine-tuning IndicALBART 586

gives poorer results often lagging 1-3 RL points 587

behind IndicBART which we consider to be a rea- 588

sonable tradeoff given the reduced parameter sizes. 589

We expect that distillation may help improve per- 590

formance, like it does for NMT. Overall, the major 591

conclusions are in line with the those observed for 592

the low-resource NMT task. 593

6 Conclusion and Future Work 594

We presented IndicBART, a multilingual, pre- 595

trained sequence-to-sequence model to support 596

development of NLG applications for Indian lan- 597

guages. IndicBART supports 11 Indian languages 598

and English, and utilizes the orthographic similar- 599

ity of Indic scripts to enable better cross-lingual 600

transfer. IndicBART presents a case-study for lan- 601

guage family-specific pre-trained S2S models. Our 602

experiments on fine-tuning IndicBART for NMT 603

and summarization showed that the model is com- 604

petitive with large models such as mBART50. We 605

further compressed IndicBART while maintaining 606

dowstream task performance via parameter sharing 607

(IndicALBART) combined with multilingual dis- 608

tillation. We showed that script unification has a 609

strong positive impact on translation and summa- 610

rization. We also showed that IndicBART, thanks 611

to its script independent nature, can be readily used 612

for enabling translation for languages such as Sin- 613

hala and Nepali which IndicBART has not been 614

explicitly pre-trained for. Furthermore, we showed 615

that fine-tuning IndicBART on one set of languages 616

enables translation for another unseen set of lan- 617

guages, which shows that pre-trained models en- 618

able translation without parallel corpora. 619

In the future, we plan to support more Indic lan- 620

guages in IndicBART; starting with all the 2212 lan- 621

guages listed in the 8th schedule of the Indian con- 622

stitution. Increased language coverage and models 623

with lower compute demands can democratize ac- 624

cess to NLP technologies. We also plan to focus on 625

training models on longer text chunks (documents) 626

and larger text corpora, incorporating advances in 627

multilingual pre-training, cross-lingual transfer and 628

cross-lingual tasks for Indian languages. 629

12https://www.mha.gov.in/sites/default/
files/EighthSchedule_19052017.pdf
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Lang Mono Parallel (XX-En)
LR HR

IC PMI PIB Total Sam
as 1.4M - - - -
bn 39.9M 23.3K 91.9K 115.2K 8.4M
en 54.3 - - - -
gu 41.1M 41.5K 58.2K 99.8K 3.0M
hi 63.1M 50.3K 266.5K 316.9K 8.4M
kn 53.3M 28.9K - 28.9K 4.0M
ml 50.2M 26.9K 43.1K 70.0K 5.8M
mr 34.0M 28.9K 114.2K 143.1K 3.2M
or 7.0M 31.9K 94.4K 126.4K 990.4K
pa 29.2M 28.2K 101,092 129.3K 2.4M
ta 31.5 32.6K 115.9K 148.6K 5.1M
te 47.9M 33.3K 44.7K 78.1K 4.7M
Total 450M 326.3K 930.3K 1.2M 46.2M

Table 7: Statistics of monolingual and parallel corpora
(#sentences) for pre-training IndicBART and fine-tuning
it, respectively.

A Corpora statistics957

Table 7 gives the statistics for the monolingual cor-958

pora, Indiccorp (IC), and parallel corpora, PMI,959

PIB and Samanantar (Sam) used in this paper. In-960

diccorp is used for pre-training IndicBART and961

the parallel corpora are used for fine-tuning or for962

training models from scratch. PMI and PIB have963

similar domains. PMI is used to simulate a realis-964

tic low-resource domain specific setting, and PIB965

is used to simulate a middle-resource domain spe-966

cific setting. Samanantar is used to simulate a high967

resource general domain setting.968

B NMT Model Training Settings969

We use a single GPU for bilingual and 8 GPUs for970

multilingual models, all of which are Transformers.971

Multilingual models are trained using the approach972

in Johnson et al. (2017). Due to the large number of973

models we train, we did not perform exhaustive hy-974

perparameter tuning. We mainly focused on tuning975

the learning rates, batch sizes and warmups. We976

found that high dropouts were surprisingly ineffec-977

tive, especially for multilingual settings, regardless978

of training from scratch or fine-tuning. Neverthe-979

less, for fine-tuning IndicBART and its variants, we980

determined the following optimal hyperparameters:981

dropouts of 0.1, label smoothing of 0.1, warmup of982

16,000 steps, 2048 tokens per batch per GPU, learn-983

ing rate of 0.001 and weight decay of 0.00001 with984

the ADAM optimizer for training. For mBART50,985

we used warmup of 2,500 steps, 512 tokens per986

batch per GPU, and learning rate of 0.00003.13 987

For bilingual and multilingual models trained from 988

scratch on the small PMI and PIB data, we use 989

smaller models with hidden and filter sizes of 512 990

and 2048, respectively, while keeping all other hy- 991

perparameters the same as for IndicBART which 992

we found to be highly effective. As Samanantar 993

data is much larger, we keep its size the same as 994

IndicBART. Except for separate script IndicBART 995

and mBART50, all models use the same vocabulary 996

as IndicBART for consistency. 997

We train our models till convergence on the de- 998

velopment set BLEU scores (Papineni et al., 2002) 999

which are computed via greedy decoding every 1000

1,000 batches. For multilingual models we use the 1001

global development set BLEU score, an average of 1002

BLEU scores for each language pair. During decod- 1003

ing the test sets, we use beam search with a beam 1004

of size 4 and a length penalty of 0.8. We report 1005

the BLEU scores on the decoded results computed 1006

using sacreBLEU14 (Post, 2018). 1007

C NMT Results: Impact of Script 1008

Unification 1009

Table 8 contains the results of ablation studies for 1010

the impact of script unification in bilingual and 1011

multilingual settings. Regardless of bilingual or 1012

multilingual fine-tuning, it is clear that script uni- 1013

fication tends to give better results on average as 1014

compared to using separate scripts to represent all 1015

languages. 1016

D NMT Results: Effect of Corpora Size 1017

and Domain 1018

Table 9 contains the results showing the impact of 1019

varying corpora sizes and domain on translation 1020

quality. In the main paper, we could not show re- 1021

sults for all languages and directions, due to lack of 1022

space. There are three key points to note: (a.) fine- 1023

tuning using small in-domain corpora (PMI) gives 1024

competitive results compared to using a large gen- 1025

eral domain corpus. (b.) Additional corpora from a 1026

related domain (PMI) leads to substantial improve- 1027

ments in translation quality for in- as well as out- 1028

of-domain performance indicating that fine-tuning 1029

a pre-trained model on a corpus belonging to a dif- 1030

ferent domain (PMI/PIB) is a viable option in case 1031

13A small learning rate is needed since we can train on very
small batches given the large model size.

14BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.5.1
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Model bn gu hi kn ml mr or pa ta te
XX-En

IB+M2O 24.8 33.9 37.2 32.4 28.5 28.5 28.8 35.7 27.3 29.5
IBnoSM+M2O 24.1 33.8 35.5 31.2 27.9 28.0 28.1 35.7 26.9 28.4
IB+Bi 23.6 35.5 36.8 31.6 27.9 26.8 28.3 36.3 27.0 29.9
IBnoSM+Bi 22.3 34.9 36.6 30.8 27.5 26.7 28.0 36.0 26.3 29.7

En-XX
IB+O2M 9.1 24.0 27.3 18.5 6.7 16.7 12.9 26.4 11.6 3.7
IBnoSM+O2M 9.3 24.0 27.3 17.9 6.2 16.4 16.6 23.4 11.4 3.0
IB+Bi 8.2 23.6 26.9 17.7 6.0 15.8 11.8 25.1 10.8 3.6
IBnoSM+Bi 8.2 22.9 26.6 17.3 5.8 14.6 14.8 22.9 10.5 3.6

Table 8: Ablation studies to study the impact of multilingualism and script unification on downstream performance
of IndicBART. Scores are reported on the WAT 2021 test set.

Test Set: WAT 2021

Model bn gu hi kn ml mr or pa ta te
XX-En

IB+PMI 24.8 33.9 37.2 32.4 28.5 28.5 28.8 35.7 27.3 29.5
IB+PMI+PIB 28.9 38.8 41.7 34.6 33.2 32.5 33.2 41.3 32.0 33.0
Samanantar 27.9 39.0 41.8 34.8 32.7 32.0 32.9 41.4 31.2 34.4
IB+Samanantar 27.1 38.0 41.0 34.1 31.6 31.1 32.3 40.1 30.1 32.4

En-XX
IB+PMI 9.1 24.0 27.3 18.5 6.7 16.7 12.9 26.4 11.6 3.7
IB+PMI+PIB 11.1 25.5 33.0 18.9 7.2 19.1 14.3 27.1 13.6 3.6
Samanantar 9.7 24.7 33.0 17.5 7.0 18.4 13.3 25.5 12.7 5.8
IB+Samanantar 9.4 24.2 33.0 17.2 6.5 17.7 13.5 25.6 11.8 5.6

Test Set: FLORES

Model bn gu hi kn ml mr or pa ta te
XX-En

IB+PMI 10.4 13.2 14.8 11.8 8.1 10.1 11.2 12.9 10.5 10.5
IB+PMI+PIB 13.0 18.4 22.0 13.1 12.7 16.1 15.1 18.5 13.8 16.2
Samanantar 30.7 33.6 36.0 27.4 30.4 30.0 28.6 34.2 27.7 32.7
IB+Samanantar 30.1 32.6 35.3 27.2 29.1 29.6 28.5 33.0 26.6 32.1

En-XX
IB+PMI 3.5 9.5 14.7 5.6 2.1 6.0 5.3 10.6 5.0 3.1
IB+PMI+PIB 5.4 13.5 22.8 7.5 2.8 9.1 6.4 15.5 6.9 3.5
Samanantar 17.3 22.6 31.3 16.7 14.2 14.7 10.1 21.9 14.9 20.4
IB+Samanantar 17.1 21.5 31.2 16.2 13.0 14.2 10.2 21.5 13.7 19.5

Table 9: Ablation study of the impact of using different sizes of fine-tuning corpora (PMI and its combination with
PIB) and their comparison against a model trained from scratch as well as fine-tuned on a general domain corpus
(Samanantar). We evaluate on the WAT 2021 as well as the FLORES test sets.

training corpus for the target domain (FLORES) is1032

unavailable. Furthermore, going from low-resource1033

to middle resource settings does not diminish the1034

contribution of pre-trained models. (c.) General1035

domain corpora inevitably lead to the best perfor-1036

mance, but since training large models on large1037

general domain corpora is more time-consuming,1038

fine-tuning is a more attractive option since pre- 1039

training needs to be done only once. 1040

E Corpora statistics for summarization 1041

experiments 1042

Table 10 contains statistics of the Indic section 1043

of the XL-sum dataset which we use for summa- 1044
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Language Train Dev Test
bn 8,102 1,012 1,012
gu 9,119 1,139 1,139
hi 70,778 8,847 8,847
mr 10,903 1,362 1,362
pa 8,215 1,026 1,026
ta 16,222 2,027 2,027
te 10,421 1,302 1,302

Table 10: Statistics of the Indic portion of the multilin-
gual XL-Sum dataset (Hasan et al., 2021) that we used
for training our summarization models.

rization experiments. We preprocess languages by1045

mapping their scripts to Devanagari as applicable1046

(all languages for IndicBART and IndicALBART;1047

none for separate script IndicBART; only Punjabi1048

for mBART50).1049

F Summarization Model Training1050

Settings1051

Similar to NMT, we use YANMTT for fine-tuning.1052

We use maximum document-summary lengths of1053

512-64 tokens which loosely follows previous work1054

(Lewis et al., 2020). Unlike NMT, we do not train1055

models from scratch as they would not work given1056

the small data sizes and difficulty of summarization.1057

For IndicBART and its variants, we determined the1058

following optimal hyperparameters: batch sizes of1059

4,096 tokens, dropouts of 0.1, label smoothing of1060

0.1, learning rate warmup steps of 4,000, learning1061

rate of 0.001 and weight decay of 0.00001 with the1062

ADAM optimizer. For mBART50 we use sentence1063

level batching with 2 document-summary pairs per1064

batch and learning rate of 0.00001 which we found1065

to be optimal. We train our models till convergence1066

on the development set Rouge scores (Rouge-L F1)1067

(Lin, 2004) for all languages, which are computed1068

via greedy decoding every 1,000 batches. Similar1069

to NMT, we save the best performing checkpoints1070

for each language. During decoding the test sets,1071

we use beam search with a beam of size 5, length1072

penalty of 1.2 and a decoding n-gram repetition1073

limit of 4-grams15. We report Rouge scores on1074

the decoded results computed using multilingual1075

Rouge scoring toolkit16.1076

15This means that 4-grams wont be repeated in the output.
16https://github.com/csebuetnlp/xl-sum/

tree/master/multilingual_rouge_scoring
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