

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LONG-TERM ACTION ANTICIPATION VIA TRANSCRIPT-BASED SUPERVISION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Long-Term Anticipation (LTA) from video is a crucial task in computer vision, with significant implications for human-machine interaction, robotics, and beyond. However, to date, it has been tackled exclusively in a fully supervised manner, by relying on dense frame-level annotations that hinder scalability and limit real-world applicability. To address this limitation, we introduce TbLTA (Transcript-based LTA), the first weakly-supervised approach for LTA, which relies solely on video transcripts during training. This high-level semantic supervision provides the narrative temporal structure that can guide the model toward understanding the relationships between events over time. Our model is built on an encoder-decoder architecture, which is trained using dense pseudo-labels generated by a temporal alignment module to supervise the predictions of both the segmentation head and the anticipation decoder. In addition, the video transcript itself is also used for 1) enhancing video features by contextually grounding them through cross-modal attention, 2) supplying a more global supervision to the model action segmentation predictions over the full video, which in turn helps to provide a better contextualized representation to the anticipation decoder. Through experiments on the Breakfast, 50Salads, and EGTEA benchmarks, we demonstrate that transcript-based supervision offers a very robust and less costly alternative to its fully supervised counterpart for the LTA task <sup>1</sup>.

## 1 INTRODUCTION

Understanding and anticipating human actions in videos is a fundamental capability for intelligent systems operating in dynamic environments (He et al., 2024; Dalal et al., 2025). In particular, the task of Long-Term Action Anticipation (LTA) aims to predict future actions several minutes ahead based on partial observations. Extracting meaningful information from such observations typically requires segmenting them into temporally aligned action labels, a task known as Temporal Action Segmentation (TAS).

Recent approaches for both TAS and LTA have achieved substantial progress by leveraging dense annotations (Gong et al., 2022b; Abu Farha et al., 2018; Gong et al., 2024; Nawhal et al., 2022b; Zhong et al., 2023a; Huang et al., 2025; Lu & Elhamifar, 2024; Bahrami et al., 2023). However, highly granular labeling is costly and difficult to scale, especially for long and fine-grained activity sequences. While recent efforts in TAS have increasingly embraced weakly-/unsupervised settings (Xu & Zheng, 2024; Zhang et al., 2023; Bueno-Benito & Dimiccoli, 2025; Xu & Gould, 2024; Spurio et al., 2024), LTA remains largely unexplored under weak / no supervision. The only attempt to address the annotation burden for LTA was proposed in Zhang et al. (2021). It combines a small set of fully labeled sequences with weak labels for the next action, using pseudo-label refinement to approximate future boundaries. Yet this approach still relies on temporally localized human annotations, which have a narrow focus on the present and lack a high-level temporal understanding.

In this work, we propose **TbLTA**, the first weakly-supervised LTA model trained exclusively with *video transcripts*—an ordered action list, without timing or duration information—which are significantly cheaper to obtain with respect to dense annotations. Since LTA is about understanding the logical progression of steps within a larger activity being performed, transcripts, with the power of semantic abstraction, are specially suited to this task. In addition to the supervision provided by the transcripts themselves, we explicitly temporally align action labels with the video sequences

<sup>1</sup>Code will be released in a *GitHub* repository upon acceptance.



Figure 1: Given video features and transcripts, TbLTA aligns the transcript to the video through a temporal alignment module, producing frame-level pseudo-labels for supervision. During training, the transcript further provides global guidance via a dedicated loss and enriches video features through cross-modal attention, enabling dense anticipation without frame-level annotations.

through a dedicated temporal alignment module, and we use the generated pseudolabels for frame-level supervision (see Figure 1). Furthermore, we leverage the transcripts to enrich video features by contextually grounding them with verbs and objects appearing on it through a cross-modal attention layer. Finally, following previous work Gong et al. (2024), we segment the full video during training instead of just the observation interval, to ensure that the decoder can learn long-range temporal dependencies occurring after the observation ends. Our main contributions are:

- We propose for the first time to train a model for LTA by using only video transcripts without boundary annotations as supervision.
- We introduce **TbLTA**, a novel encoder-decoder architecture for LTA transcript-based supervision, where the encoder learns to capture fine-grained long-range temporal relations between all frames of the video, and the decoder learns to capture global relations occurring after the observation ends, along with the observed features from the encoder.
- We propose to temporally align video transcripts to frame-level features and leverage the estimated pseudo-labels for supervising both segmentation and anticipation.
- We leverage transcripts not only as weak supervision, but also as semantic context to enrich video features through a dedicated cross-modal attention.
- We establish the first transcript-only supervision baseline for LTA on Breakfast (Kuehne et al., 2014), 50Salads (Stein & McKenna, 2013), and EGTEA (Li et al., 2018), showing that weak supervision can yield competitive long-horizon anticipation.

## 2 RELATED WORK

**Temporal Action Segmentation (TAS)** aims to assign an action label to every frame of long, untrimmed videos, producing coherent segments with accurate boundaries. Approaches are typically grouped by supervision level. Fully supervised methods achieve the most reliable performance but require dense frame-level annotations (Liu et al., 2023; Huang et al., 2025; Bahrami et al., 2023; Behrmann et al., 2022; Aziere et al., 2025). To improve generalization and scalability, recent research has shifted toward semi/weakly-supervised (Xu & Zheng, 2024; Zhang et al., 2023) and unsupervised paradigms (Li et al., 2024; Xu & Gould, 2024; Spurio et al., 2024), which reduce reliance on exhaustive annotations while maintaining competitive accuracy. Advances include weakly-supervised methods that mitigate noisy boundaries using transcript-level supervision and video-level regularization (Xu & Zheng, 2024), and unsupervised approaches such as CLOT (Bueno-Benito & Dimiccoli, 2025), which introduces an OT-based framework with multi-level cyclic feature learning to enforce segment-level consistency and improve generalization.

**Action Anticipation** has been widely studied under different conditions, varying in observable inputs, temporal horizons, and action granularity. The goal is to infer future actions from observed video data, with existing works addressing this through diverse formulations such as predicting the next action and its start time (Zhong et al., 2023a; Thakur et al., 2024; Zhang et al., 2024a), inferring the final goal (Wang et al., 2023), or planning procedural steps (Surís et al., 2021). Based on the prediction horizon (Zhong et al., 2023b), methods are broadly divided into short-term and long-term anticipation. Short-term approaches focus on predicting actions a few seconds ahead using low-level cues (Guo et al., 2024; Diko et al., 2024), whereas *long-term anticipation* (LTA) forecasts sequences of actions over extended horizons, facing challenges such as long-range dependency modeling, autoregressive error accumulation, and the uncertainty of plausible futures (Lai et al., 2024).

108 **Long-term Action Anticipation (LTA)** focuses on forecasting sequences of future actions over ex-  
 109 tended temporal horizons, has seen rapid progress across a variety of modeling paradigms. Early  
 110 works framed LTA as a duration-agnostic transcript prediction problem, often adopting transformer-  
 111 based architectures (Nawhal et al., 2022b). More recent approaches have incorporated object-centric  
 112 representations (Zhang et al., 2024b), integrated large language and video-language models (Zhao  
 113 et al., 2024; Mittal et al., 2024). In particular, Kim et al. (2024) explored language-based antici-  
 114 pation without explicit time annotations, using a vision-language model with in-context learning  
 115 and MMR to predict symbolic sequences of future actions. Within this landscape, we focus on the  
 116 task of *dense long-term action anticipation*, where the aim is to generate frame-level forecasts of  
 117 future actions for a predefined number of upcoming frames. The task of dense anticipation was  
 118 first introduced by Abu Farha et al. (2018) and propose two models (RNN and CNN), Abu Farha &  
 119 Gall (2019) introduces a GRU network to model the uncertainty of future activities in an autoregres-  
 120 sive way, and Sener et al. (2020) proposes TempAgg, an end-to-end model, employing the action  
 121 segmentation model for visual features in training with cycle consistency between past and future  
 122 actions. Abu Farha et al. (2020a) suggests a multi-scale temporal aggregation model that pools past  
 123 visual features in condensed vectors and then iteratively predicts future actions using the LSTM net-  
 124 work. More recent contributions can be broadly divided into *deterministic* approaches, which output  
 125 a single most likely future, and *stochastic* approaches, which explicitly model uncertainty by gener-  
 126 ating multiple plausible futures. Deterministic models include FUTR (Gong et al., 2022b), which  
 127 anticipates all future actions in parallel from fine-grained past features, and ANTICIPATR (Nawhal  
 128 et al., 2022b) which uses a two-stage training pipeline. On the other hand, stochastic methods have  
 129 leveraged diffusion-based generative modeling (Zatsarynna et al., 2024; 2025), producing diverse  
 130 yet consistent future sequences. A notable extension is Actfusion (Gong et al., 2024), which unifies  
 131 TAS and LTA into a diffusion-based framework.

132 Despite these advances, most dense anticipation methods still depend on costly frame-level anno-  
 133 tations. Zhang et al. (2021) took a step forward by exploring a method both semi- and weakly-  
 134 supervised for dense LTA, where a small set of fully-labelled data together with weak labels is used  
 135 for supervision. In the weakly annotated part of the data, the video segment is annotated only with  
 136 the first action class of the anticipated sequence, instead of all frames in the sequence. In contrast,  
 137 we completely eliminate dense annotations and propose **TbLTA**, the first fully weakly-supervised  
 138 framework for dense LTA, trained exclusively from transcripts (ordered action lists without timing  
 or duration), thereby avoiding expensive boundary labels.

139 **Sequence-to-sequence modeling in video understanding.** A substantial body of prior work ad-  
 140 dresses sequence-to-sequence alignment between video frames and action transcripts through the  
 141 use of structured objectives. Classical approaches include Hidden Markov Models (HMMs) with  
 142 Viterbi decoding, originally inspired by speech recognition, to capture action-frame transitions un-  
 143 der weak supervision (Kuehne et al., 2016). Similarly, Dynamic Time Warping (DTW) has long  
 144 been applied for temporal alignment and was recently revisited in a differentiable form to enable  
 145 end-to-end optimization (Chang et al., 2021). The Connectionist Temporal Classification (CTC)  
 146 loss (Graves, 2012) has been extensively adopted in sequence-to-sequence learning, particularly  
 147 when frame-level annotations are unavailable. Its application to weakly-supervised action segmen-  
 148 tation was pioneered by Huang et al. (2016), who proposed ECTC to enforce alignments consistent  
 149 with visual similarities. Building on this, Ng & Fernando (2021) combined CTC with attention to  
 150 better exploit transcript-level supervision. While these works primarily target segmentation, we ex-  
 151 tend the use of CTC-style objectives to the task of *dense long-term anticipation*, demonstrating that  
 152 transcript-only supervision can drive frame-level forecasting without costly boundary annotations.  
 153 In parallel, Conditional Random Fields (CRFs) further extended these ideas by modeling richer  
 154 temporal dependencies in sequence prediction (Huang et al., 2015; Mavroudi et al., 2018). More  
 155 recently, Maté & Dimiccoli (2024) introduced a CRF formulation specifically for long-term antici-  
 156 pation (LTA). While their approach is deterministic, we propose a stochastic variant that explicitly  
 157 captures the uncertainty inherent in LTA predictions.

### 3 METHODOLOGY

#### 158 **Problem Definition.**

159 We address the task of dense long-term action anticipation under weak supervision, where training  
 160 relies solely on transcripts that always refer to an action-sequence transcript, i.e., an ordered list of  
 161 action labels, without providing frame-level temporal annotations, boundaries, or durations.



Figure 2: **Overview of the proposed TbLTA framework.** During training, the model takes as input video features and the corresponding video transcript ( $X = [X_{obs}, X_{pred}], \mathcal{Y}$ ), and generates dense pseudo-labels for the full video  $\hat{Y} = [\hat{Y}_{obs}, \hat{Y}_{pred}]$ . These pseudolabels are used: 1) to supervise the prediction of action segmentation labels  $\hat{Y}_{TAS}$  on the full video and of action anticipation labels  $\hat{Y}_{LTA}$  in the anticipation interval through multiple cross-entropy losses; 2) to build an attention mask for cross-modal attention, ensuring that text embeddings attends only to the most aligned video segments rather than the entire sequence, with the goal of contextually grounding video features. The video transcript is also used to supervise globally the TAS predictions through a CTC loss  $\mathcal{L}_{ctc}$ .

Formally, a video is represented as a sequence of  $T$  frames with associated feature vectors  $X = \{x_1, x_2, \dots, x_T\} \in \mathbb{R}^{T \times d}$ , where  $x_t \in \mathbb{R}^d$  denotes the feature vector extracted from  $t$ -th frame and  $d$  dimension of embedding. Let  $\alpha, \beta \in (0, 1)$  with  $\alpha + \beta \leq 1$ . The observed temporal features are  $X_{obs} = \{x_1, \dots, x_{\lfloor \alpha T \rfloor}\}$  and  $X_{pred} = \{x_{\lfloor \alpha T \rfloor + 1}, \dots, x_{\lfloor (\alpha+\beta)T \rfloor}\}$ , with lengths  $T_{obs} = \lfloor \alpha T \rfloor$  and  $T_{pred} = \lfloor \beta T \rfloor$ . Each video is annotated with a transcript  $\mathcal{Y} = [y_1, \dots, y_N]$ , where  $y_n \in \mathcal{C}$ ,  $\mathcal{C}$  is the action vocabulary, and  $N$  is the number of action segments in the video.

In a weakly-supervised setting,  $\mathcal{Y}$  and  $X$  are not temporally aligned. To address this, we introduce a set of learnable class tokens  $E \in \mathbb{R}^{|\mathcal{C}| \times d}$ , which serve as latent action prototypes. During training, the input to the model is the concatenation of video features and class tokens, i.e.  $[E \parallel X]$ , allowing the encoder to jointly reason over visual evidence and class-level priors. At inference, only  $[E \parallel X_{obs}]$  is provided. The objective is twofold: (1) during training, by using  $[E \parallel X]$  and the transcript  $\mathcal{Y}$ , the model must align the continuous feature sequence with the discrete ordered list of actions, and generate frame-level pseudo-labels  $\hat{Y} = [\hat{Y}_{obs}, \hat{Y}_{pred}]$  for the full video. These pseudo-labels supervise the TAS head and the LTA decoder on the future interval; (2) At inference, given only the observed features  $X_{obs}$  and learned class token  $E$ , the model predicts the sequence of future actions  $\hat{Y}_{LTA} = [\hat{y}_{k+1}, \dots, \hat{y}_N]$  and their durations  $D = [d_{k+1}, \dots, d_N] \in \mathbb{R}^{N-k^*}$ , with  $\sum_{j=k+1}^N d_j = 1$  following Abu Farha et al. (2018), where  $k^*$  denotes the (unknown) boundary index between observed and future actions. Since  $k^*$  is not observed, the model must implicitly estimate both the boundary and the corresponding observed pseudolabels  $\hat{Y}_{obs} = [\hat{y}_1, \dots, \hat{y}_{k^*}]$  by temporal alignment. Thus, the task is to learn a parametric function  $f_\theta : \mathbb{R}^{T_{obs} \times d} \rightarrow (\hat{Y}_{LTA}, \hat{D})$  that, given observed features, anticipates future actions and their durations while jointly inferring actions and their boundaries under weak supervision.

### 3.1 MODEL ARCHITECTURE

We propose **TbLTA**, illustrated in Fig.2, a modular transformer-based architecture designed for the LTA task and trained exclusively via video transcripts. The architecture consists of a transformer encoder, a weakly-supervised temporal alignment module, a cross-attention layer between video and transcript, a segmentation head, and an anticipation decoder.

**Transformer encoder.** The input video features  $X$  are first projected to the model dimension and concatenated with a set of learnable class tokens  $E$ , which act as latent action prototypes. The resulting sequence is processed by a temporal network. Following prior work, we adopt a transformer encoder with learnable positional embeddings and a pyramid hierarchical local attention mechanism (Vaswani et al., 2017). To enable the decoder to acquire a comprehensive representation of the future’s temporal structure, the encoder is trained over the entire video sequence. This design explicitly links the encoder’s outputs to future actions, thereby strengthening the connection between past observations and anticipated events.

216 **Weakly-supervised temporal alignment module.** In the absence of frame-level annotations, our  
 217 framework introduces an intermediate weakly-supervised temporal alignment stage to bridge the  
 218 gap between symbolic transcripts and frame-level features. In practice, we adopt the ATBA module  
 219 proposed in (Xu & Zheng, 2024) to partition the full transcript  $\mathcal{Y}$  into observed and future sub-  
 220 transcripts,  $\mathcal{Y}_{\text{obs}}$  and  $\mathcal{Y}_{\text{future}}$ , corresponding to the observed and anticipated portions of the video.  
 221 The advantage of ATBA is that it generates soft per-frame pseudo-labels that preserve boundary  
 222 uncertainty, crucial for long-horizon anticipation, where hard labels are often unreliable near transi-  
 223 tions. Jointly with the generated pseudo-labels  $\hat{\mathcal{Y}}$ , the temporal alignment module also contributes  
 224 to learn a new encoding for the initial features that are more suited for the task of action anticipation.

225 **Segmentation head.** For the full video features  $X$ , a linear classifier predicts frame-level logits  
 226  $\mathcal{Y}_{\text{TAS}}$ . This module also stabilizes encoder representations for downstream anticipation.

227 **Cross-attention layer between modalities.** Transcripts are typically exploited only as sequence-  
 228 level ordering constraints. In contrast, we explicitly couple them with video features through a *local*  
 229 *cross-modal mechanism*. Let  $A = [a_1, \dots, a_N] \in \mathbb{R}^{N \times d}$  denote transcript embeddings, where each  
 230  $a_i$  is obtained from a pre-trained language model applied to the natural-language action label (Sanh  
 231 et al., 2019). Given encoder features  $\hat{X} \in \mathbb{R}^{T \times d}$  and pseudo-labels  $\hat{\mathcal{Y}}$ , we construct a binary local  
 232 mask  $M \in \{0, 1\}^{N \times T}$  that restricts each action  $a_i$  to a temporal neighborhood around its predicted  
 233 occurrence. Cross-attention is then defined as

$$234 \quad A \leftarrow \text{softmax} \left( \frac{AW_Q(\hat{X}W_K)^\top}{\sqrt{d}} + \log M \right) \hat{X}W_V, \quad (1)$$

237 and injected back into the video stream via a gated residual update

$$238 \quad \hat{X} \leftarrow \hat{X} + (M^\top \odot \sigma(AW_g)) A, \quad (2)$$

240 where  $\sigma$  denotes a sigmoid gate. Here,  $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$  are standard query, key, and value  
 241 projection matrices, and  $W_g \in \mathbb{R}^{d \times 1}$  is a gating projection. The enriched features  $\hat{X}$ , contextually  
 242 grounded by the actions and objects described in the transcript, are then used for both TAS and LTA.

243 **Anticipation decoder.** Building upon these representations, we design a transformer-based parallel  
 244 decoder adapted from Gong et al. (2022a) and Nawhal et al. (2022a), that operates on the fused  
 245 encoder output, defined as  $\tilde{F} \in \mathbb{R}^{T_{\text{obs}} \times d_{\text{TAS}}}$ . This fused output is projected into the anticipation space  
 246 and enriched with learnable positional embeddings, while a fixed set of queries  $Q \in \mathbb{R}^{C_{\text{LTA}} \times d_{\text{LTA}}}$   
 247 attends to  $\tilde{F}$  through cross-attention to hypothesize possible future action segments. The resulting  
 248 descriptors  $S$  are decoded to  $C \leq C_{\text{LTA}}$  action classes terminating when an  $\text{<EOS>}$  token is generated,  
 249 treating anticipation as structured prediction. To further promote coherence, we apply a Conditional  
 250 Random Field (CRF), inspired by TCCA (Maté & Dimiccoli, 2024), on top of the decoder outputs:  
 251 while the transformer effectively captures global context, it may produce fragmented or inconsistent  
 252 transitions. The CRF refines these predictions by modeling local dependencies between consec-  
 253 utive tokens, enforcing smooth and semantically valid action progressions across the anticipation  
 254 timeline. Unlike prior approaches, our decoder leverages *weakly-supervised pseudo-labels* to guide  
 255 training, making anticipation feasible without dense frame-level annotations.

### 257 3.2 TBLTA OBJECTIVE

258 Learning under transcript-level supervision poses a particularly challenging problem, as the model  
 259 must jointly infer action boundaries and their durations in the observable part, and future continu-  
 260 ations without access to frame-level annotations. In this context, the choice of loss functions be-  
 261 comes a central mechanism that enables effective training. The TBLTA framework is optimized  
 262 through three complementary groups of losses: (i) *alignment-oriented losses*, which establish reli-  
 263 able alignments between transcripts and observed features; (ii) *segmentation-oriented losses* which  
 264 ensure learning long-range temporal dependencies over the full video, and (iii) *anticipation-oriented*  
 265 *losses*, which directly supervise the prediction of future sequences; The total objective is formulated  
 266 as:

$$267 \quad \mathcal{L} = \mathcal{L}_A + \mathcal{L}_{\text{TAS}} + \mathcal{L}_{\text{LTA}}, \quad (3)$$

268 where  $\mathcal{L}_A$  aligns the transcripts,  $\mathcal{L}_{\text{TAS}}$  makes transcripts actionable on the video and  $\mathcal{L}_{\text{LTA}}$  enforces  
 269 long-horizon structure on the future.

270 3.2.1 ALIGNMENT-ORIENTED LOSSES  
271

272 We adopt an ATBA-style (Xu & Zheng, 2024) surrogate to obtain frame-wise pseudo-labels by aligning  
273 predictions to the observed transcript via dynamic programming over candidate boundaries. On  
274 top of these pseudo-labels, we apply a compact set of regularizers that proved crucial for stable  
275 training: (1) *Frame-wise cross-entropy* supervises per-frame predictions with ATBA pseudo-labels,  
276 (2) *Video-level multi-label classification* mitigates pseudo-label noise by supervising class presence  
277 at the clip level, and (3) *Global-local contrast* aligns class tokens with class-specific feature cen-  
278 troids to tighten semantics. We denote the weighted sum of these terms as  $\mathcal{L}_{\text{atba}}$ , and the total loss is  
279 defined as  $\mathcal{L}_A = \gamma_1 \mathcal{L}_{\text{atba}}$ . More details in the supplementary material.  
280

281 3.2.2 SEGMENTATION-ORIENTED LOSSES  
282

283 The Connectionist Temporal Classification (CTC) loss (Graves, 2012) was originally introduced for  
284 sequence labeling tasks where the alignment between input frames and target labels is unknown.  
285 Unlike hybrid approaches requiring Hidden Markov models, CTC enables end-to-end alignment by  
286 marginalizing over all possible frame-to-label paths that collapse to the transcript. This property  
287 makes it particularly suitable for weakly-supervised action learning, where only transcript-level an-  
288 notations are available. By allowing flexible alignments between the transcript and the predicted  
289 action probabilities, CTC provides robust supervision for both the TAS head and the anticipation  
290 decoder, accommodating variable action durations without boundary annotations.  
291

292 Formally, let  $\mathcal{Y}$  denote the action transcript. We define the predicted action probabilities from the  
293 segmentation head as  $\pi = [\pi_1, \dots, \pi_{\alpha T}]$ , with  $\pi_t \in \mathcal{C} \cup \{\emptyset\}$ , where  $\emptyset$  denotes the blank label. The  
294 collapsing operator  $\mathcal{B}(\pi)$  removes blanks and repeated labels to map a path  $\pi$  into a valid transcript.  
295 The CTC objective that enforces transcript consistency is formulated as:  
296

$$297 \mathcal{L}_{CTC} = -\log P(\mathcal{Y} | \pi), \quad \text{where } P(\mathcal{Y} | X) = \sum_{\pi \in \mathcal{B}^{-1}(\mathcal{Y})} \prod_{t=1}^T P(\pi_t | x_t). \quad (4)$$

298 is the probability of generating transcript  $\mathcal{Y}$  given a sequence of probability predictions. Here,  
299  $P(\pi_t | x_t)$  denotes the probability assigned to label  $\pi_t$  at frame  $t$ . This alignment anchors the model  
300 by ensuring that the TAS heads remain consistent with the same transcript. As a result, the observed  
301 segment provides stable frame-level supervision, while the anticipated segment is constrained to  
302 follow the correct symbolic sequence. By marginalizing over all possible alignments, CTC removes  
303 the need for boundary annotations, prevents error propagation across modules, and becomes a su-  
304 pervisory signal that makes weakly-supervised long-term action anticipation feasible. We defined  
305 the  $\mathcal{L}_{TAS} = \gamma_2 \mathcal{L}_{CTC}$ .  
306

307 3.2.3 ANTICIPATION-ORIENTED LOSSES  
308

309 The total anticipation loss is a weighted combination of a global action sequence coherence loss  
310 ( $\mathcal{L}_{\text{crf}}$ ) and a duration loss ( $\mathcal{L}_{\text{dur}}$ ):  $\mathcal{L}_{LTA} = \mathcal{L}_{\text{crf}} + \gamma_3 \mathcal{L}_{\text{dur}}$ .  
311

312 **Global action sequence coherence loss.** To promote temporally coherent forecasts, we place  
313 a linear-chain CRF on top of the anticipation decoder logits. Let the decoder output emission  
314 scores  $Z \in \mathbb{R}^{T_{\text{pred}} \times |\mathcal{C}|}$ , and let  $\mathcal{Y}_{\text{LTA}}$  the target anticipate transcript. For a candidate sequence  
315  $c = (c_1, \dots, c_{T_{\text{pred}}})$ , the CRF score is  
316

$$317 s(Z, c) = \sum_{t=1}^{T_{\text{pred}}} Z_{t, c_t} + \sum_{t=1}^{T_{\text{pred}}-1} M_{c_t, c_{t+1}}, \quad (5)$$

318 where  $M$  is a learnable transition matrix. The training objective is the negative log-likelihood of the  
319 ground-truth anticipation sequence:  
320

$$321 \mathcal{L}_{\text{crf}} = -\log p(\mathcal{Y}_{\text{LTA}} | Z) = \log \sum_{c' \in \mathcal{C}^{T_{\text{pred}}}} e^{s(Z, c')} - s(Z, \mathcal{Y}_{\text{LTA}}). \quad (6)$$

322 This loss enforces global sequence-level consistency and complements CTC, which ensures align-  
323 ment at the frame level.  
324

324 **Affinity-based duration loss** Inspired by the affinity property of procedural videos, firstly introduced in Ding & Yao (2022), following which videos depicting the same activity share resembling action temporal portions, we propose a duration prediction head that is trained without any temporal ground truth. During training, we compute per-class duration estimates from the observed segments by counting the frequency of predicted labels from the segmentation head. These estimates are stored in a momentum-based buffer  $\hat{d} \in \mathbb{R}^{|C|}$  that captures temporal priors in a self-supervised fashion. During inference, the decoder outputs the predicted class probabilities, and the class duration priors  $\hat{d}$  are concatenated and passed to a regression head to obtain a per-segment predicted duration  $\hat{\delta}_i$ . The self-supervised duration loss is formulated as:

$$\mathcal{L}_{\text{dur}} = \frac{1}{T_{\text{pred}}} \sum_{i=1}^{T_{\text{pred}}} (\hat{\delta}_i - \hat{d}_{y_i})^2, \quad (7)$$

337 where  $\hat{\delta}_i$  is the per-segment predicted duration and the ground truth target is approximated by the  
338 class-wise prior  $\hat{d}_{y_i}$ . This term encourages consistent duration estimates aligned with implicitly  
339 learned temporal statistics.

## 4 EXPERIMENTS

### 4.1 EXPERIMENTAL SETUP

345 **Datasets.** We evaluate our approach on two widely used benchmarks for long-term action ant-  
346 *Breakfast* dataset (Kuehne et al., 2014) comprises 1,712 videos of 52 participants  
347 performing breakfast-related activities in diverse kitchen environments. Each video is annotated  
348 at two levels: 10 coarse activities and 48 fine-grained action classes. The average duration is 2.3  
349 minutes, and the dataset exhibits a highly imbalanced action distribution (Ding & Yao, 2022). The  
350 *50Salads* dataset (Stein & McKenna, 2013) consists of 50 top-view RGB-D recordings of individ-  
351 uals preparing mixed salads, totaling over 4 hours of annotated footage and covering 17 fine-grained  
352 action classes. Compared to *Breakfast*, the videos are longer and typically contain around 20 ac-  
353 tion instances. The *EGTEA Gaze+* dataset (Li et al., 2018) comprises 28 hours of egocentric video  
354 with 10.3K annotated action instances, spanning 19 verbs, 51 nouns, and 106 distinct verb–noun  
355 action classes. For all datasets, we used pre-extracted 2048-dimensional I3D features (Carreira &  
356 Zisserman, 2018) as visual input  $X$ .

357 **Metrics.** For *Breakfast* and *50Salads*, we report Mean over Classes (MoC) accuracy, which com-  
358 putes frame-wise accuracy per class and averages across classes (Abu Farha et al., 2018). Anticipa-  
359 tion is evaluated at different horizons: the model observes an initial portion of the video ( $\alpha = 20\%$   
360 or 30%) and predicts the next  $\beta = 10\%, 20\%, 30\%$ , or 50% of the sequence. Results are averaged  
361 over four standard splits for *Breakfast* and five for *50Salads*. For *EGTEA Gaze+*, we adopt mean Av-  
362 erage Precision (mAP) following the multi-label classification protocol of Nagarajan et al. (2020),  
363 where  $\alpha \in 25\%, 50\%, 75\%$  of each video is observed and the remaining segment ( $100\% - \alpha$ ) is  
364 predicted. We report mAP over all actions (All), low-shot (Rare), and many-shot (Freq) classes,  
365 restricting evaluation to verb prediction.

366 **Implementation details** The overall architecture is illustrated in Fig. 2. The transformer en-  
367 encoder used for the *Breakfast* dataset employs 4 layers, a hidden dimension of 128, and 4 attention  
368 heads. For the *50Salads* dataset, we use a hidden dimension of 512, with 4 attention heads and 8  
369 Transformer layers. For the text embeddings, we employ a simple pretrained model such as Dis-  
370 tilBERT (Sanh et al., 2019). The LTA decoder employs a hidden dimension of 128 for *Breakfast*  
371 and 256 for *50Salads*, using 2 and 3 Transformer layers, respectively. The CRF module adopts the  
372 same configuration as in (Maté & Dimiccoli, 2024). The number of learned queries is set to 8 for  
373 *Breakfast* and 20 for *50Salads*. For *EGTEA Gaze+*, we apply the same configuration as *50Salads*.

374 **Training and Inference.** Since pseudo-labeling requires a reliable initialization, we adopt a pro-  
375 gressive training scheme. The model is first pre-trained for 10 epochs using only the video-level  
376 classification loss  $\mathcal{L}_{\text{vid}}$ , which enhances pseudo-label quality and yields a stable starting point. We  
377 then run a short stage of 30 epochs with segmentation- and alignment-oriented losses ( $\mathcal{L}_A + \mathcal{L}_{\text{TAS}}$ )  
378 to refine temporal structure. Finally, end-to-end optimization is performed with the complete set of  
379 losses in Eq. 3. At the beginning of each stage, both optimizer state and learning-rate schedule are  
380 re-initialized to secure stable convergence. During training, the segmentation head processes the full

| Dataset   | Category          | Method                                 | Obs 20%      |              |              |              | Obs 30%      |              |              |              | Avg.         |
|-----------|-------------------|----------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|           |                   |                                        | 10%          | 20%          | 30%          | 50%          | 10%          | 20%          | 30%          | 50%          |              |
| 50Salads  | Supervised        | Cycle Cons. Abu Farha et al. (2020b)   | 34.76        | 28.41        | 21.82        | 15.25        | 34.39        | 23.70        | 18.95        | 15.89        | 24.15        |
|           |                   | FUTR Gong et al. (2022b)               | <b>39.55</b> | 27.54        | 23.32        | 17.77        | <u>35.15</u> | 24.85        | <u>24.22</u> | 15.26        | 25.96        |
|           |                   | ObjectPrompt Zhang et al. (2024c)      | <u>37.40</u> | <b>28.90</b> | <b>24.20</b> | <u>18.10</u> | 28.00        | 24.00        | <b>24.30</b> | <u>19.30</u> | 25.53        |
|           |                   | ActFusion Guo et al. (2024)            | <u>39.55</u> | <u>28.60</u> | <u>23.61</u> | <b>19.90</b> | <b>42.80</b> | <b>27.11</b> | 23.48        | <b>22.07</b> | <b>28.39</b> |
|           | Weakly supervised | WS-DA <sup>†</sup> Zhang et al. (2021) | -            | -            | -            | -            | 21.30        | -            | -            | -            | -            |
|           |                   | <b>Ours (TbLTA)</b>                    | 24.90        | 21.12        | 19.00        | 14.45        | 27.67        | <b>25.32</b> | 20.27        | 14.65        | 20.92        |
| Breakfast | Supervised        | <b>Ours (TbLTA)* - Mean</b>            | 26.01        | 17.68        | 15.04        | 14.87        | 25.93        | 22.17        | 17.57        | 13.68        | 19.11        |
|           |                   | <b>Ours (TbLTA)* - Top1</b>            | 33.76        | 27.85        | 25.00        | <u>22.16</u> | 34.49        | 33.29        | 29.35        | 22.18        | 28.51        |
|           |                   | Cycle Cons. Abu Farha et al. (2020b)   | 25.88        | 23.42        | 22.42        | 21.54        | 29.66        | 27.37        | 25.58        | 25.20        | 25.13        |
|           |                   | FUTR Gong et al. (2022b)               | <u>27.70</u> | 24.55        | <u>22.83</u> | 22.04        | 32.37        | 29.88        | 27.49        | 25.87        | 26.59        |
|           |                   | ActFusion Guo et al. (2024)            | <b>28.25</b> | <u>25.52</u> | <b>24.66</b> | <b>23.25</b> | <u>35.79</u> | 31.76        | 29.64        | 28.78        | <b>28.45</b> |
|           | Weakly supervised | WS-DA <sup>†</sup> Zhang et al. (2021) | -            | -            | -            | -            | 15.65        | -            | -            | -            | -            |
|           |                   | <b>Ours (TbLTA)</b>                    | 27.47        | <b>26.21</b> | 21.62        | <u>20.53</u> | <b>40.28</b> | <b>35.76</b> | <b>31.67</b> | <b>28.79</b> | <b>29.03</b> |

Table 1: Comparisons of action anticipation on the Breakfast (Kuehne et al., 2014) and 50Salads (Stein & McKenna, 2013) benchmarks using our proposed models. The highest accuracy under a deterministic framework is indicated in **bold**, and the second highest is underlined. The highest accuracy under a probabilistic framework is indicated in **gray**. WS-DA <sup>†</sup> (Zhang et al., 2021) operates under a (semi-) weakly supervised setting, using frame-level labels only for the observed segment of the video during training. \* means stochastic protocol.

video, while at inference, only a fraction is observed, following the protocol of Gong et al. (2024). We also report the stochastic protocol of Abu Farha & Gall (2019) in the supp. mat.

## 4.2 COMPARATIVE RESULTS

To assess the effectiveness of TbLTA, we follow the protocol established in previous work (Farha & Gall, 2019; Sener et al., 2020; Gong et al., 2022b; 2024): we report comparative results on 50Salads and Breakfast datasets in Tab. 1 and additionally on EGTEA in Tab. 2. TbLTA consistently surpasses prior (semi-) weakly-supervised baselines of (Zhang et al., 2021), establishing the first transcript-only benchmark for dense LTA. Remarkably, despite the absence of frame-level supervision, our deterministic model attains performance competitive with, and occasionally superior to, fully supervised approaches. On Breakfast, TbLTA exhibits a pronounced gain at 30% observation, outperforming all supervised baselines. This result highlights the ability of transcript-based supervision to capture the procedural regularities of activities. Performance on 50Salads paints a complementary picture. Here, long videos, denser action distributions, and frequent transitions yield weaker temporal regularities, amplifying the impact of imprecise temporal alignment in the absence of boundary annotations. In addition, we also report stochastic results, where TbLTA achieves substantially higher accuracy by capturing multiple plausible futures. This dual view, deterministic for reproducibility and stochastic for diversity, illustrates both the flexibility and the limits of our approach. Tab. 2 evaluates TbLTA on EGTEA, where supervised models retain a clear edge overall, but our method proves to be competitive on rare classes. This suggests that high-level semantic supervision from transcripts can mitigate data imbalance, even without dense frame labels. Taken together, these results highlight our central contribution: TbLTA is the first framework to make dense long-term anticipation feasible with transcript supervision alone. While fully-supervised models still dominate the paradigm, TbLTA demonstrates that transcript-based supervision is a promising paradigm for more scalable and language-informed LTA.

## 4.3 ABLATION STUDY

All ablations are conducted on both Breakfast and 50Salads, and we report results using the Top-1 MoC metric. For clarity, we adopt this choice Top-1 MoC for ablations as it provides a stable reference point.

**Effect of CTC loss.** Removing the CTC supervision consistently degrades the quality, as shown in 3. On 50Salads, the average accuracy drops by  $\approx 0.6$  points, while on Breakfast, the decline is  $\approx 0.8$  points. This confirms that CTC helps to stabilize pseudo-labels and prevent error accumulation across tasks. Without this alignment, pseudo-label noise propagates more strongly into the anticipation stage.

**Effect of Multimodal Cross-Attention.** We contrast our multimodal cross-attention with two baselines: (i) cross-att simplex, which embeds the transcript and applies a single, unconstrained cross-attention to video features, and (ii) w/o cross-att, which removes cross-modal conditioning. Results in Table 3 (TAS) and Table 4 (LTA) show a consistent hierarchy: *w/o cross-att*  $<$  *cross-att simplex*  $<$  **TbLTA**. On 50Salads, the average score decreases by  $\approx 1.3$  points ( $\approx 0.8$  with cross attention simplex), while on Breakfast, the drop reaches  $\approx 5.7$  points ( $\approx 3.8$  with cross attention

| Model                              | All          | Freq         | Rare         |
|------------------------------------|--------------|--------------|--------------|
| Timeception (Hussein et al., 2019) | 74.10        | 79.70        | 59.70        |
| Anticipatr (Nawhal et al., 2022b)  | <b>76.80</b> | <b>83.30</b> | 55.10        |
| <b>TbLTA</b>                       | 65.37        | 73.46        | <b>60.11</b> |

Table 2: TbLTA results in EGTEA compared to supervised models.

| Dataset   | Model               | Obs 20% |      |      |      |      | Obs 30% |      |      |      |      | Avg. |
|-----------|---------------------|---------|------|------|------|------|---------|------|------|------|------|------|
|           |                     | 10%     | 20%  | 30%  | 50%  | 10%  | 20%     | 30%  | 50%  |      |      |      |
| 50Salads  | TbLTA               | 33.8    | 27.9 | 25.0 | 22.1 | 34.5 | 33.3    | 29.4 | 22.2 | 28.5 | 33.8 | 28.5 |
|           | w/o ctc loss        | 32.3    | 29.3 | 25.2 | 21.0 | 34.2 | 32.5    | 29.1 | 19.7 | 27.9 | 34.1 |      |
|           | w cross-att simplex | 31.1    | 26.8 | 24.3 | 21.8 | 33.6 | 33.1    | 29.3 | 21.7 | 27.7 | 31.7 |      |
| Breakfast | TbLTA               | 37.2    | 33.0 | 31.7 | 30.5 | 45.7 | 41.9    | 39.1 | 38.3 | 37.2 | 39.7 | 37.2 |
|           | w/o ctc loss        | 36.0    | 31.7 | 31.0 | 30.1 | 44.2 | 41.4    | 38.8 | 37.6 | 36.4 | 35.5 |      |
|           | w cross-att simplex | 30.4    | 26.7 | 27.0 | 27.9 | 42.7 | 38.7    | 37.1 | 36.7 | 33.4 | 33.1 |      |

Table 3: Ablation study on Alignment/TAS modules.

| P15_cam01_P15_sandwich.txt |  |
|----------------------------|--|
| GT                         |  |
| TbLTA                      |  |

(a) Breakfast dataset.

Figure 3: **Qualitative results.** We display the ground-truth (GT) and the results of TbLTA (Ours) on two datasets: (a) Breakfast and (b) 50Salads.

simplex). Overall, while the simplex variant provides some conditioning, it lacks the structural biases of our multimodal design—masking by transcript-derived neighborhoods and gated residual fusion—leading to inferior alignment and weaker long-horizon coherence.

**Effect of CRF loss.** The contribution of the CRF loss is particularly evident at longer horizons, as shown in Table 4. While short-term accuracy remains similar (even slightly higher on BF), its removal causes notable declines at longer horizons ( $\approx 5.3$  on 50Salads,  $\approx 4.1$  on Breakfast), underscoring its role in enforcing temporal coherence and stabilizing long-term forecasts.

**Effect of duration loss.** Table 4 shows that removing the duration loss reduces accuracy ( $\approx 0.2$  on 50Salads,  $\approx 3.3$  on Breakfast), indicating that it serves as a temporal regularizer that stabilizes long-horizon predictions by discouraging unrealistic segment durations. Since it is trained without temporal ground truth and relies on momentum-based class-wise priors, we use this term only as a weak duration prior rather than a precise per-instance predictor. Consistent with duration modeling in fully supervised LTA, its effect is most beneficial for actions with more concentrated duration statistics, while classes with high intra-class variability remain challenging.

#### 4.4 QUALITATIVE RESULTS

Figures 3b and 3a illustrate representative qualitative results of our framework. The left part of each timeline (before the vertical dashed line) corresponds to the segmentation of the observed interval, while the right part (after the dashed line) shows the anticipated sequence of future actions. As can be seen, the model produces accurate and temporally coherent segmentations of the observed portion, and the degradation in prediction quality for the future interval remains relatively small. It also appears clear that an accurate prediction of action durations is still a challenge. More qualitative results are provided in the supp. mat.

## 5 CONCLUSION

We introduced TbLTA, the first framework for dense long-term action anticipation trained exclusively from transcripts, without requiring frame-level annotations. By combining temporal alignment to generate pseudo-labels with cross-modal attention to semantically ground video features, our model enables anticipation without dense supervision while preserving temporal action consistency over long horizons. Through extensive experiments on Breakfast, 50Salads, and EGTEA, TbLTA establishes the first transcript-based supervision baseline for LTA. Remarkably, despite the absence of dense labels, our model achieves results that are competitive with, and in certain settings even superior to, fully supervised methods. A major challenge that remains is to correctly estimate future durations, especially for unseen actions. Importantly, this work demonstrates that dense LTA does not need to rely on exhaustive frame-level annotation, opening a new paradigm for scalable and language-informed anticipation in a weakly-supervised setting.

| Dataset   | Model         | Obs 20% |      |      |      |      | Obs 30% |      |      |      |      | Avg. |
|-----------|---------------|---------|------|------|------|------|---------|------|------|------|------|------|
|           |               | 10%     | 20%  | 30%  | 50%  | 10%  | 20%     | 30%  | 50%  |      |      |      |
| 50Salads  | TbLTA         | 33.8    | 27.9 | 25.0 | 22.1 | 34.5 | 33.3    | 29.4 | 22.2 | 28.5 | 33.8 | 28.5 |
|           | w/o duration  | 31.1    | 29.2 | 24.7 | 20.2 | 38.2 | 33.8    | 29.2 | 19.8 | 28.3 | 34.1 |      |
|           | w/o cross-att | 30.2    | 28.2 | 25.0 | 20.7 | 33.2 | 32.2    | 28.8 | 19.5 | 27.2 | 31.7 |      |
|           | w/o CRF       | 26.4    | 26.2 | 21.0 | 16.0 | 35.8 | 25.7    | 21.1 | 13.3 | 23.2 | 39.7 |      |
| Breakfast | TbLTA         | 37.2    | 33.0 | 31.7 | 30.5 | 45.7 | 41.9    | 39.1 | 38.3 | 37.2 | 39.7 |      |
|           | w/o duration  | 34.1    | 30.4 | 27.6 | 22.5 | 46.6 | 41.7    | 37.1 | 30.8 | 33.9 | 35.5 |      |
|           | w/o cross-att | 31.7    | 27.5 | 25.8 | 24.8 | 39.9 | 33.1    | 33.6 | 31.5 | 31.7 | 37.2 |      |
|           | w/o CRF       | 39.7    | 33.1 | 28.1 | 20.0 | 47.2 | 40.2    | 32.9 | 22.9 | 33.0 | 33.0 |      |

Table 4: Ablation study on LTA module on 50Salads and Breakfast datasets.



486 REFERENCES  
487

488 Yazan Abu Farha and Juergen Gall. Uncertainty-aware anticipation of activities. In *Proceedings*  
489 *of the IEEE/CVF International Conference on Computer Vision Workshops (CVPRW)*, pp. 0–0,  
490 2019.

491 Yazan Abu Farha, Alexander Richard, and Juergen Gall. When will you do what? - anticipating  
492 temporal occurrences of activities. In *Proceedings of the IEEE/CVF Conference on Computer*  
493 *Vision and Pattern Recognition (CVPR)*, June 2018.

494 Yazan Abu Farha, QiuHong Ke, Bernt Schiele, and Juergen Gall. Long-term anticipation of activities  
495 with cycle consistency. In *DAGM German Conference on Pattern Recognition*, pp. 159–173.  
496 Springer, 2020a.

497 Yazan Abu Farha, QiuHong Ke, Bernt Schiele, and Juergen Gall. Long-term anticipation of activities  
498 with cycle consistency. In *DAGM German Conference on Pattern Recognition*, pp. 159–173.  
499 Springer, 2020b.

500 Nicolas Aziere, Tieqiao Wang, and Sinisa Todorovic. Difformer for action segmentation. In *Pro-  
501 ceedings of IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025.

502 Emad Bahrami, Gianpiero Francesca, and Juergen Gall. How much temporal long-term context  
503 is needed for action segmentation? In *Proceedings of IEEE/CVF International Conference on*  
504 *Computer Vision (ICCV)*, 2023.

505 Nadine Behrmann, S Alireza Golestaneh, Zico Kolter, Juergen Gall, and Mehdi Noroozi. Unified  
506 fully and timestamp supervised temporal action segmentation via sequence to sequence transla-  
507 tion. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2022.

508 Elena Bueno-Benito and Mariella Dimiccoli. Clot: Closed loop optimal transport for unsupervised  
509 action segmentation. In *Proceedings of IEEE/CVF International Conference on Computer Vision*  
510 (*ICCV*), 2025.

511 Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics  
512 dataset, 2018. URL <https://arxiv.org/abs/1705.07750>.

513 Xiaobin Chang, Frederick Tung, and Greg Mori. Learning discriminative prototypes with dynamic  
514 time warping. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
515 *Recognition*, pp. 8395–8404, 2021.

516 Mohamad Dalal, Artur Xarles, Anthony Cioppa, Silvio Giancola, Marc Van Droogenbroeck,  
517 Bernard Ghanem, Albert Clapés, Sergio Escalera, and Thomas B. Moeslund. Action anticipa-  
518 tion from soccernet football video broadcasts. In *CVPRW*, pp. 6080–6091, June 2025.

519 Anxhelo Diko, Danilo Avola, Bardh Prenkaj, Federico Fontana, and Luigi Cinque. Semantically  
520 guided representation learning for action anticipation. In *European Conference on Computer*  
521 *Vision (ECCV)*, pp. 448–466. Springer, 2024.

522 Guodong Ding and Angela Yao. Leveraging action affinity and continuity for semi-supervised tem-  
523 poral action segmentation. In *European Conference on Computer Vision*, pp. 17–32. Springer,  
524 2022.

525 Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage temporal convolutional network for ac-  
526 tion segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
527 *recognition*, pp. 3575–3584, 2019.

528 Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha, and Minsu Cho. Future transformer for  
529 long-term action anticipation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*  
530 *and Pattern Recognition (CVPR)*, pp. 3052–3061, 2022a.

531 Dayoung Gong, Joonseok Lee, Manjin Kim, Seong Jong Ha, and Minsu Cho. Future transformer for  
532 long-term action anticipation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*  
533 *and Pattern Recognition (CVPR)*, pp. 3052–3061, 2022b.

540 Dayoung Gong, Suha Kwak, and Minsu Cho. Actfusion: a unified diffusion model for action  
 541 segmentation and anticipation. In *NeurIPS*, volume 37, pp. 89913–89942, 2024.

542

543 Alex Graves. Connectionist temporal classification. In *Supervised sequence labelling with recurrent*  
 544 *neural networks*, pp. 61–93. Springer, 2012.

545

546 Hongji Guo, Nakul Agarwal, Shao-Yuan Lo, Kwonjoon Lee, and Qiang Ji. Uncertainty-aware action  
 547 decoupling transformer for action anticipation. In *Proceedings of the IEEE/CVF Conference on*  
 548 *Computer Vision and Pattern Recognition (CVPR)*, pp. 18644–18654, 2024.

549

550 Yuchen He, Zeqing Yuan, Yihong Wu, Liqi Cheng, Dazhen Deng, and Yingcai Wu. Vistec: Video  
 551 modeling for sports technique recognition and tactical analysis. In *AAAI*, 2024.

552

553 De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Connectionist temporal modeling for weakly  
 554 supervised action labeling. In *European Conference on Computer Vision*, pp. 137–153. Springer,  
 555 2016.

556

557 Feng Huang, Xiao-Diao Chen, Wen Wu, and Weiyin Ma. Not all samples are equal: Boosting  
 558 action segmentation via selective incremental learning. In *Engineering Applications of Artificial*  
 559 *Intelligence*, volume 147, pp. 110334. Elsevier, 2025.

560

561 Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. In *arXiv*  
 562 *preprint arXiv:1508.01991*, 2015.

563

564 Nouredien Hussein, Efstratios Gavves, and Arnold WM Smeulders. Timeception for complex ac-  
 565 tion recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
 566 *Recognition (CVPR)*, pp. 254–263, 2019.

567

568 Sanghwan Kim, Daoji Huang, Yongqin Xian, Otmar Hilliges, Luc Van Gool, and Xi Wang. Palm:  
 569 Predicting actions through language models. In *European Conference on Computer Vision*, pp.  
 570 140–158. Springer, 2024.

571

572 Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and  
 573 semantics of goal-directed human activities. In *Proceedings of the Computer Vision and Pattern*  
 574 *Recognition Conference (CVPR)*, June 2014.

575

576 Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-end generative framework for video  
 577 segmentation and recognition. In *IEEE Winter Conference on Applications of Computer Vision*  
 578 (WACV), pp. 1–8. IEEE, 2016.

579

580 Bolin Lai, Sam Toyer, Tushar Nagarajan, Rohit Girdhar, Shengxin Zha, James M Rehg, Kris Kitani,  
 581 Kristen Grauman, Ruta Desai, and Miao Liu. Human action anticipation: A survey. In *arXiv*  
 582 *preprint arXiv:2410.14045*, 2024.

583

584 Yin Li, Miao Liu, and James M Rehg. In the eye of beholder: Joint learning of gaze and actions in  
 585 first person video. In *Proceedings of the European Conference on Computer Vision*, pp. 619–635,  
 586 2018.

587

588 Yuerong Li, Zhengrong Xue, and Huazhe Xu. Otas: Unsupervised boundary detection for object-  
 589 centric temporal action segmentation. In *IEEE Winter Conference on Applications of Computer*  
 590 *Vision (WACV)*, 2024.

591

592 Daochang Liu, Qiyue Li, Anh-Dung Dinh, Tingting Jiang, Mubarak Shah, and Chang Xu. Diffu-  
 593 sion action segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
 594 *Pattern Recognition (CVPR)*, pp. 10139–10149, 2023.

595

596 Zijia Lu and Ehsan Elhamifar. Fact: Frame-action cross-attention temporal modeling for efficient  
 597 action segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-  
 598 tern Recognition (CVPR)*, 2024.

599

600 Alberto Maté and Mariella Dimiccoli. Temporal context consistency above all: Enhancing long-term  
 601 anticipation by learning and enforcing temporal constraints. In *arXiv preprint arXiv:2412.19424*,  
 602 2024.

594 Effrosyni Mavroudi, Divya Bhaskara, Shahin Sefati, Haider Ali, and René Vidal. End-to-end fine-  
 595 grained action segmentation and recognition using conditional random field models and discrim-  
 596 inative sparse coding. In *2018 IEEE Winter Conference on Applications of Computer Vision*  
 597 (*WACV*), pp. 1558–1567. IEEE, 2018.

598  
 599 Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwonjoon Lee. Can’t make an omelette with-  
 600 out breaking some eggs: Plausible action anticipation using large video-language models. In  
 601 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,  
 602 pp. 18580–18590, 2024.

603 Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, and Kristen Grauman. Ego-topo: Envi-  
 604 ronment affordances from egocentric video. In *Proceedings of the IEEE/CVF Conference on*  
 605 *Computer Vision and Pattern Recognition*, pp. 163–172, 2020.

606 Megha Nawhal, Akash Abdu Jyothi, and Greg Mori. Rethinking learning approaches for long-term  
 607 action anticipation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp.  
 608 558–576. Springer, 2022a.

609  
 610 Megha Nawhal, Akash Abdu Jyothi, and Greg Mori. Rethinking learning approaches for long-term  
 611 action anticipation. In *European Conference on Computer Vision*, pp. 558–576. Springer, 2022b.

612 Yan Bin Ng and Basura Fernando. Weakly supervised action segmentation with effective use of  
 613 attention and self-attention. *Computer Vision and Image Understanding*, 213:103298, 2021.

614  
 615 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of  
 616 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

617 Fadime Sener, Dipika Singhania, and Angela Yao. Temporal aggregate representations for long-  
 618 range video understanding. In *European Conference on Computer Vision (ECCV)*, pp. 154–171.  
 619 Springer, 2020.

620  
 621 Federico Spurio, Emad Bahrami, Gianpiero Francesca, and Juergen Gall. Hierarchical vector quanti-  
 622 zation for unsupervised action segmentation. In *Proceedings of the AAAI Conference on Artificial*  
 623 *Intelligence*, 2024.

624 Sebastian Stein and Stephen J McKenna. Combining embedded accelerometers with computer vi-  
 625 sion for recognizing food preparation activities. In *Proceedings of the 2013 ACM international*  
 626 *joint conference on Pervasive and ubiquitous computing*, pp. 729–738, 2013.

627  
 628 Dídac Surís, Ruoshi Liu, and Carl Vondrick. Learning the predictability of the future. In *Proceedings*  
 629 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12607–  
 630 12617, 2021.

631 Sanket Thakur, Cigdem Beyan, Pietro Morerio, Vittorio Murino, and Alessio Del Bue. Leverag-  
 632 ing next-active objects for context-aware anticipation in egocentric videos. In *Proceedings of*  
 633 *the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 8657–8666,  
 634 2024.

635  
 636 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 637 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*  
 638 *tion processing systems*, 30, 2017.

639 Hanlin Wang, Yilu Wu, Sheng Guo, and Limin Wang. Pdpp: Projected diffusion for procedure  
 640 planning in instructional videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision*  
 641 *and Pattern Recognition (CVPR)*, pp. 14836–14845, 2023.

642 Angchi Xu and Wei-Shi Zheng. Efficient and effective weakly-supervised action segmentation via  
 643 action-transition-aware boundary alignment. In *Proceedings of the IEEE/CVF Conference on*  
 644 *Computer Vision and Pattern Recognition (CVPR)*, 2024.

645  
 646 Ming Xu and Stephen Gould. Temporally consistent unbalanced optimal transport for unsuper-  
 647 vised action segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
 648 *Pattern Recognition (CVPR)*, 2024.

648 Olga Zatsarynna, Emad Bahrami, Yazan Abu Farha, Gianpiero Francesca, and Juergen Gall. Gated  
 649 temporal diffusion for stochastic long-term dense anticipation. In *European Conference on Com-*  
 650 *puter Vision (ECCV)*, pp. 454–472. Springer, 2024.

651

652 Olga Zatsarynna, Emad Bahrami, Yazan Abu Farha, Gianpiero Francesca, and Juergen Gall. Manta:  
 653 Diffusion mamba for efficient and effective stochastic long-term dense action anticipation. In  
 654 *Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 3438–  
 655 3448, 2025.

656 Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee, Chiho Choi, and Chen  
 657 Sun. Object-centric video representation for long-term action anticipation. In *Proceedings of*  
 658 *the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 6751–6761,  
 659 2024a.

660 Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee, Chiho Choi, and Chen  
 661 Sun. Object-centric video representation for long-term action anticipation. In *Proceedings of*  
 662 *the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 6751–6761,  
 663 2024b.

664 Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee, Chiho Choi, and Chen  
 665 Sun. Object-centric video representation for long-term action anticipation. In *Proceedings of the*  
 666 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6751–6761, 2024c.

667 Haotong Zhang, Fuhai Chen, and Angela Yao. Weakly-supervised dense action anticipation. In  
 668 *British Machine Vision Conference (BMVC)*, 2021.

669 Runzhong Zhang, Suchen Wang, Yueqi Duan, Yansong Tang, Yue Zhang, and Yap-Peng Tan. Hoi-  
 670 aware adaptive network for weakly-supervised action segmentation. In *Proceedings of the AAAI*  
 671 *Conference on Artificial Intelligence*, 2023.

672 Qi Zhao, Shijie Wang, Ce Zhang, Changcheng Fu, Minh Quan Do, Nakul Agarwal, Kwonjoon  
 673 Lee, and Chen Sun. Antgpt: Can large language models help long-term action anticipation from  
 674 videos? In *International Conference on Learning Representations (ICLR)*, 2024.

675 Yiwu Zhong, Licheng Yu, Yang Bai, Shangwen Li, Xuetong Yan, and Yin Li. Learning procedure-  
 676 aware video representation from instructional videos and their narrations. In *Proceedings of the*  
 677 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14825–14835,  
 678 2023a.

679 Zeyun Zhong, Manuel Martin, Michael Voit, Juergen Gall, and Jürgen Beyerer. A survey on deep  
 680 learning techniques for action anticipation. In *arXiv preprint arXiv:2309.17257*, 2023b.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701