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ABSTRACT

Long-Term Anticipation (LTA) from video is a crucial task in computer vision,
with significant implications for human-machine interaction, robotics, and be-
yond. However, to date, it has been tackled exclusively in a fully supervised
manner, by relying on dense frame-level annotations that hinder scalability and
limit real-world applicability. To address this limitation, we introduce TbLTA
(Transcript-based LTA), the first weakly-supervised approach for LTA, which re-
lies solely on video transcripts during training. This high-level semantic supervi-
sion provides the narrative temporal structure that can guide the model toward
understanding the relationships between events over time. Our model is built
on an encoder-decoder architecture, which is trained using dense pseudo-labels
generated by a temporal alignment module to supervise the predictions of both
the segmentation head and the anticipation decoder. In addition, the video tran-
script itself is also used for 1) enhancing video features by contextually ground-
ing them through cross-modal attention, 2) supplying a more global supervision
to the model action segmentation predictions over the full video, which in turn
helps to provide a better contextualized representation to the anticipation decoder.
Through experiments on the Breakfast, 50Salads, and EGTEA benchmarks, we
demonstrate that transcript-based supervision offers a very robust and less costly
alternative to its fully supervised counterpart for the LTA task 1.

1 INTRODUCTION

Understanding and anticipating human actions in videos is a fundamental capability for intelligent
systems operating in dynamic environments (He et al., 2024; Dalal et al., 2025). In particular, the
task of Long-Term Action Anticipation (LTA) aims to predict future actions several minutes ahead
based on partial observations. Extracting meaningful information from such observations typically
requires segmenting them into temporally aligned action labels, a task known as Temporal Action
Segmentation (TAS).

Recent approaches for both TAS and LTA have achieved substantial progress by leveraging dense
annotations (Gong et al., 2022b; Abu Farha et al., 2018; Gong et al., 2024; Nawhal et al., 2022b;
Zhong et al., 2023a; Huang et al., 2025; Lu & Elhamifar, 2024; Bahrami et al., 2023). However,
highly granular labeling is costly and difficult to scale, especially for long and fine-grained ac-
tivity sequences. While recent efforts in TAS have increasingly embraced weakly-/unsupervised
settings (Xu & Zheng, 2024; Zhang et al., 2023; Bueno-Benito & Dimiccoli, 2025; Xu & Gould,
2024; Spurio et al., 2024), LTA remains largely unexplored under weak / no supervision. The only
attempt to address the annotation burden for LTA was proposed in Zhang et al. (2021). It combines
a small set of fully labeled sequences with weak labels for the next action, using pseudo-label refine-
ment to approximate future boundaries. Yet this approach still relies on temporally localized human
annotations, which have a narrow focus on the present and lack a high-level temporal understanding.

In this work, we propose TbLTA, the first weakly-supervised LTA model trained exclusively with
video transcripts—an ordered action list, without timing or duration information—which are sig-
nificantly cheaper to obtain with respect to dense annotations. Since LTA is about understanding
the logical progression of steps within a larger activity being performed, transcripts, with the power
of semantic abstraction, are specially suited to this task. In addition to the supervision provided
by the transcripts themselves, we explicitly temporally align action labels with the video sequences

1Code will be released in a GitHub repository upon acceptance.
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Figure 1: Given video features and transcripts, TbLTA aligns the transcript to the video through
a temporal alignment module, producing frame-level pseudo-labels for supervision. During train-
ing, the transcript further provides global guidance via a dedicated loss and enriches video features
through cross-modal attention, enabling dense anticipation without frame-level annotations.

through a dedicated temporal alignment module, and we use the generated pseudolabels for frame-
level supervision (see Figure 1). Furthermore, we leverage the transcripts to enrich video features by
contextually grounding them with verbs and objects appearing on it through a cross-modal attention
layer. Finally, following previous work Gong et al. (2024), we segment the full video during train-
ing instead of just the observation interval, to ensure that the decoder can learn long-range temporal
dependencies occurring after the observation ends. Our main contributions are:

• We propose for the first time to train a model for LTA by using only video transcripts
without boundary annotations as supervision.

• We introduce TbLTA, a novel encoder-decoder architecture for LTA transcript-based su-
pervision, where the encoder learns to capture fine-grained long-range temporal relations
between all frames of the video, and the decoder learns to capture global relations occurring
after the observation ends, along with the observed features from the encoder.

• We propose to temporally align video transcripts to frame-level features and leverage the
estimated pseudo-labels for supervising both segmentation and anticipation.

• We leverage transcripts not only as weak supervision, but also as semantic context to enrich
video features through a dedicated cross-modal attention.

• We establish the first transcript-only supervision baseline for LTA on Breakfast (Kuehne
et al., 2014), 50Salads (Stein & McKenna, 2013), and EGTEA (Li et al., 2018), showing
that weak supervision can yield competitive long-horizon anticipation.

2 RELATED WORK

Temporal Action Segmentation (TAS) aims to assign an action label to every frame of long,
untrimmed videos, producing coherent segments with accurate boundaries. Approaches are typi-
cally grouped by supervision level. Fully supervised methods achieve the most reliable performance
but require dense frame-level annotations (Liu et al., 2023; Huang et al., 2025; Bahrami et al., 2023;
Behrmann et al., 2022; Aziere et al., 2025). To improve generalization and scalability, recent re-
search has shifted toward semi/weakly-supervised (Xu & Zheng, 2024; Zhang et al., 2023) and
unsupervised paradigms (Li et al., 2024; Xu & Gould, 2024; Spurio et al., 2024), which reduce re-
liance on exhaustive annotations while maintaining competitive accuracy. Advances include weakly-
supervised methods that mitigate noisy boundaries using transcript-level supervision and video-level
regularization (Xu & Zheng, 2024), and unsupervised approaches such as CLOT (Bueno-Benito &
Dimiccoli, 2025), which introduces an OT-based framework with multi-level cyclic feature learning
to enforce segment-level consistency and improve generalization.
Action Anticipation has been widely studied under different conditions, varying in observable in-
puts, temporal horizons, and action granularity. The goal is to infer future actions from observed
video data, with existing works addressing this through diverse formulations such as predicting the
next action and its start time (Zhong et al., 2023a; Thakur et al., 2024; Zhang et al., 2024a), inferring
the final goal (Wang et al., 2023), or planning procedural steps (Surı́s et al., 2021). Based on the
prediction horizon (Zhong et al., 2023b), methods are broadly divided into short-term and long-term
anticipation. Short-term approaches focus on predicting actions a few seconds ahead using low-level
cues (Guo et al., 2024; Diko et al., 2024), whereas long-term anticipation (LTA) forecasts sequences
of actions over extended horizons, facing challenges such as long-range dependency modeling, au-
toregressive error accumulation, and the uncertainty of plausible futures (Lai et al., 2024).
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Long-term Action Anticipation (LTA) focuses on forecasting sequences of future actions over ex-
tended temporal horizons, has seen rapid progress across a variety of modeling paradigms. Early
works framed LTA as a duration-agnostic transcript prediction problem, often adopting transformer-
based architectures (Nawhal et al., 2022b). More recent approaches have incorporated object-centric
representations (Zhang et al., 2024b), integrated large language and video–language models (Zhao
et al., 2024; Mittal et al., 2024). In particular, Kim et al. (2024) explored language-based antici-
pation without explicit time annotations, using a vision–language model with in-context learning
and MMR to predict symbolic sequences of future actions. Within this landscape, we focus on the
task of dense long-term action anticipation, where the aim is to generate frame-level forecasts of
future actions for a predefined number of upcoming frames. The task of dense anticipation was
first introduced by Abu Farha et al. (2018) and propose two models (RNN and CNN), Abu Farha &
Gall (2019) introduces a GRU network to model the uncertainty of future activities in an autoregres-
sive way, and Sener et al. (2020) proposes TempAgg, an end-to-end model, employing the action
segmentation model for visual features in training with cycle consistency between past and future
actions. Abu Farha et al. (2020a) suggests a multi-scale temporal aggregation model that pools past
visual features in condensed vectors and then iteratively predicts future actions using the LSTM net-
work. More recent contributions can be broadly divided into deterministic approaches, which output
a single most likely future, and stochastic approaches, which explicitly model uncertainty by gen-
erating multiple plausible futures. Deterministic models include FUTR (Gong et al., 2022b), which
anticipates all future actions in parallel from fine-grained past features, and ANTICIPATR (Nawhal
et al., 2022b) which uses a two-stage training pipeline. On the other hand, stochastic methods have
leveraged diffusion-based generative modeling (Zatsarynna et al., 2024; 2025), producing diverse
yet consistent future sequences. A notable extension is Actfusion (Gong et al., 2024), which unifies
TAS and LTA into a diffusion-based framework.

Despite these advances, most dense anticipation methods still depend on costly frame-level anno-
tations. Zhang et al. (2021) took a step forward by exploring a method both semi- and weakly-
supervised for dense LTA, where a small set of fully-labelled data together with weak labels is used
for supervision. In the weakly annotated part of the data, the video segment is annotated only with
the first action class of the anticipated sequence, instead of all frames in the sequence. In contrast,
we completely eliminate dense annotations and propose TbLTA, the first fully weakly-supervised
framework for dense LTA, trained exclusively from transcripts (ordered action lists without timing
or duration), thereby avoiding expensive boundary labels.

Sequence-to-sequence modeling in video understanding. A substantial body of prior work ad-
dresses sequence-to-sequence alignment between video frames and action transcripts through the
use of structured objectives. Classical approaches include Hidden Markov Models (HMMs) with
Viterbi decoding, originally inspired by speech recognition, to capture action–frame transitions un-
der weak supervision (Kuehne et al., 2016). Similarly, Dynamic Time Warping (DTW) has long
been applied for temporal alignment and was recently revisited in a differentiable form to enable
end-to-end optimization (Chang et al., 2021). The Connectionist Temporal Classification (CTC)
loss (Graves, 2012) has been extensively adopted in sequence-to-sequence learning, particularly
when frame-level annotations are unavailable. Its application to weakly-supervised action segmen-
tation was pioneered by Huang et al. (2016), who proposed ECTC to enforce alignments consistent
with visual similarities. Building on this, Ng & Fernando (2021) combined CTC with attention to
better exploit transcript-level supervision. While these works primarily target segmentation, we ex-
tend the use of CTC-style objectives to the task of dense long-term anticipation, demonstrating that
transcript-only supervision can drive frame-level forecasting without costly boundary annotations.
In parallel, Conditional Random Fields (CRFs) further extended these ideas by modeling richer
temporal dependencies in sequence prediction (Huang et al., 2015; Mavroudi et al., 2018). More
recently, Maté & Dimiccoli (2024) introduced a CRF formulation specifically for long-term antici-
pation (LTA). While their approach is deterministic, we propose a stochastic variant that explicitly
captures the uncertainty inherent in LTA predictions.

3 METHODOLOGY

Problem Definition.

We address the task of dense long-term action anticipation under weak supervision, where training
relies solely on transcripts that always refer to an action-sequence transcript, i.e., an ordered list of
action labels, without providing frame-level temporal annotations, boundaries, or durations.
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Figure 2: Overview of the proposed TbLTA framework. During training, the model takes as input
video features and the corresponding video transcript (X = [Xobs, Xpred],Y), and generates dense
pseudo-labels for the full video Ŷ = [Ŷobs, Ŷpred)]. These pseudolabels are used: 1) to supervise
the prediction of action segmentation labels ŶTAS on the full video and of action anticipation labels
ŶLTA in the anticipation interval through multiple cross-entropy losses; 2) to build an attention mask
for cross-modal attention, ensuring that text embeddings attends only to the most aligned video
segments rather than the entire sequence, with the goal of contextually grounding video features.
The video transcript is also used to supervise globally the TAS predictions through a CTC loss Lctc.

Formally, a video is represented as a sequence of T frames with associated feature vectors X =
{x1, x2, . . . , xT } ∈ RT×d, where xt ∈ Rd denotes the feature vector extracted from t-th frame and
d dimension of embedding. Let α, β ∈ (0, 1) with α + β ≤ 1. The observed temporal features are
Xobs = {x1, . . . , x⌊αT⌋} and Xpred = {x⌊αT⌋+1, . . . , x⌊(α+β)T⌋}, with lengths Tobs = ⌊αT ⌋ and
Tpred = ⌊βT ⌋. Each video is annotated with a transcript Y = [y1, . . . , yN ], where yn ∈ C, C is the
action vocabulary, and N is the number of action segments in the video.

In a weakly-supervised setting, Y and X are not temporally aligned. To address this, we introduce
a set of learnable class tokens E ∈ R|C|×d, which serve as latent action prototypes. During train-
ing, the input to the model is the concatenation of video features and class tokens, i.e. [E ∥ X],
allowing the encoder to jointly reason over visual evidence and class-level priors. At inference,
only [E ∥ Xobs] is provided. The objective is twofold: (1) during training, by using [E ∥ X] and
the transcript Y , the model must align the continuous feature sequence with the discrete ordered
list of actions, and generate frame-level pseudo-labels Ŷ = [Ŷobs, Ŷpred] for the full video. These
pseudo-labels supervise the TAS head and the LTA decoder on the future interval; (2) At inference,
given only the observed features Xobs and learned class token E, the model predicts the sequence
of future actions ŶLTA = [ŷk+1, . . . , ŷN ] and their durations D = [dk+1, . . . , dN ] ∈ RN−k∗

, with∑N
j=k+1 dj = 1 following Abu Farha et al. (2018), where k∗ denotes the (unknown) boundary index

between observed and future actions. Since k∗ is not observed, the model must implicitly estimate
both the boundary and the corresponding observed pseudolabels Ŷobs = [ŷ1, . . . , ŷk∗ ] by temporal
alignment. Thus, the task is to learn a parametric function fθ : RTobs×d → (ŶLTA, D̂) that, given
observed features, anticipates future actions and their durations while jointly inferring actions and
their boundaries under weak supervision.

3.1 MODEL ARCHITECTURE

We propose TbLTA, illustrated in Fig.2, a modular transformer-based architecture designed for the
LTA task and trained exclusively via video transcripts. The architecture consists of a transformer
encoder, a weakly-supervised temporal alignment module, a cross-attention layer between video and
transcript, a segmentation head, and an anticipation decoder.

Transformer encoder. The input video features X are first projected to the model dimension and
concatenated with a set of learnable class tokens E, which act as latent action prototypes. The re-
sulting sequence is processed by a temporal network. Following prior work, we adopt a transformer
encoder with learnable positional embeddings and a pyramid hierarchical local attention mecha-
nism (Vaswani et al., 2017). To enable the decoder to acquire a comprehensive representation of the
future’s temporal structure, the encoder is trained over the entire video sequence. This design ex-
plicitly links the encoder’s outputs to future actions, thereby strengthening the connection between
past observations and anticipated events.
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Weakly-supervised temporal alignment module. In the absence of frame-level annotations, our
framework introduces an intermediate weakly-supervised temporal alignment stage to bridge the
gap between symbolic transcripts and frame-level features. In practice, we adopt the ATBA module
proposed in (Xu & Zheng, 2024) to partition the full transcript Y into observed and future sub-
transcripts, Yobs and Yfuture, corresponding to the observed and anticipated portions of the video.
The advantage of ATBA is that it generates soft per-frame pseudo-labels that preserve boundary
uncertainty, crucial for long-horizon anticipation, where hard labels are often unreliable near transi-
tions. Jointly with the generated pseudo-labels Ŷ , the temporal alignment module also contributes
to learn a new encoding for the initial features that are more suited for the task of action anticipation.
Segmentation head. For the full video features X , a linear classifier predicts frame-level logits
YTAS. This module also stabilizes encoder representations for downstream anticipation.
Cross-attention layer between modalities. Transcripts are typically exploited only as sequence-
level ordering constraints. In contrast, we explicitly couple them with video features through a local
cross-modal mechanism. Let A = [a1, . . . , aN ] ∈ RN×d denote transcript embeddings, where each
ai is obtained from a pre-trained language model applied to the natural-language action label (Sanh
et al., 2019). Given encoder features X̂ ∈ RT×d and pseudo-labels Ŷ , we construct a binary local
mask M ∈ {0, 1}N×T that restricts each action ai to a temporal neighborhood around its predicted
occurrence. Cross-attention is then defined as

A← softmax

(
AWQ(X̂WK)⊤√

d
+ logM

)
X̂WV , (1)

and injected back into the video stream via a gated residual update

X̂ ← X̂ +
(
M⊤ ⊙ σ(AWg)

)
A, (2)

where σ denotes a sigmoid gate. Here, WQ,WK ,WV ∈ Rd×d are standard query, key, and value
projection matrices, and Wg ∈ Rd×1 is a gating projection. The enriched features X̂ , contextually
grounded by the actions and objects described in the transcript, are then used for both TAS and LTA.
Anticipation decoder. Building upon these representations, we design a transformer-based paral-
lel decoder adapted from Gong et al. (2022a) and Nawhal et al. (2022a), that operates on the fused
encoder output, defined as F̃ ∈ RTobs×dTAS . This fused output is projected into the anticipation space
and enriched with learnable positional embeddings, while a fixed set of queries Q ∈ RCLTA×dLTA

attends to F̃ through cross-attention to hypothesize possible future action segments. The resulting
descriptors S are decoded to C ≤ CLTA action classes terminating when an <EOS> token is generated,
treating anticipation as structured prediction. To further promote coherence, we apply a Conditional
Random Field (CRF), inspired by TCCA (Maté & Dimiccoli, 2024), on top of the decoder outputs:
while the transformer effectively captures global context, it may produce fragmented or inconsistent
transitions. The CRF refines these predictions by modeling local dependencies between consec-
utive tokens, enforcing smooth and semantically valid action progressions across the anticipation
timeline. Unlike prior approaches, our decoder leverages weakly-supervised pseudo-labels to guide
training, making anticipation feasible without dense frame-level annotations.

3.2 TBLTA OBJETIVE

Learning under transcript-level supervision poses a particularly challenging problem, as the model
must jointly infer action boundaries and their durations in the observable part, and future continu-
ations without access to frame-level annotations. In this context, the choice of loss functions be-
comes a central mechanism that enables effective training. The TbLTA framework is optimized
through three complementary groups of losses: (i) alignment-oriented losses, which establish reli-
able alignments between transcripts and observed features; (ii) segmentation-oriented losses which
ensure learning long-range temporal dependencies over the full video, and (iii) anticipation-oriented
losses, which directly supervise the prediction of future sequences; The total objective is formulated
as:

L = LA + LTAS + LLTA, (3)

where LA aligns the transcripts, LTAS makes transcripts actionable on the video and LLTA enforces
long-horizon structure on the future.
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3.2.1 ALIGNMENT-ORIENTED LOSSES

We adopt an ATBA-style (Xu & Zheng, 2024) surrogate to obtain frame-wise pseudo-labels by align-
ing predictions to the observed transcript via dynamic programming over candidate boundaries. On
top of these pseudo-labels, we apply a compact set of regularizers that proved crucial for stable
training: (1) Frame-wise cross-entropy supervises per-frame predictions with ATBA pseudo-labels,
(2) Video-level multi-label classification mitigates pseudo-label noise by supervising class presence
at the clip level, and (3) Global–local contrast aligns class tokens with class-specific feature cen-
troids to tighten semantics. We denote the weighted sum of these terms as Latba, and the total loss is
defined as LA = γ1Latba. More details in the supplementary material.

3.2.2 SEGMENTATION-ORIENTED LOSSES

The Connectionist Temporal Classification (CTC) loss (Graves, 2012) was originally introduced for
sequence labeling tasks where the alignment between input frames and target labels is unknown.
Unlike hybrid approaches requiring Hidden Markov models, CTC enables end-to-end alignment by
marginalizing over all possible frame-to-label paths that collapse to the transcript. This property
makes it particularly suitable for weakly-supervised action learning, where only transcript-level an-
notations are available. By allowing flexible alignments between the transcript and the predicted
action probabilities, CTC provides robust supervision for both the TAS head and the anticipation
decoder, accommodating variable action durations without boundary annotations.

Formally, let Y denote the action transcript. We define the predicted action probabilities from the
segmentation head as π = [π1, . . . , παT ], with πt ∈ C ∪ {∅}, where ∅ denotes the blank label. The
collapsing operator B(π) removes blanks and repeated labels to map a path π into a valid transcript.
The CTC objective that enforces transcript consistency is formulated as:

LCTC = − logP (Y | π), where P (Y | X) =
∑

π∈B−1(Y)

T∏
t=1

P (πt | xt). (4)

is the probability of generating transcript Y given a sequence of probability predictions. Here,
P (πt | xt) denotes the probability assigned to label πt at frame t.This alignment anchors the model
by ensuring that the TAS heads remain consistent with the same transcript. As a result, the observed
segment provides stable frame-level supervision, while the anticipated segment is constrained to
follow the correct symbolic sequence. By marginalizing over all possible alignments, CTC removes
the need for boundary annotations, prevents error propagation across modules, and becomes a su-
pervisory signal that makes weakly-supervised long-term action anticipation feasible. We defined
the LTAS = γ2LCTC .

3.2.3 ANTICIPATION-ORIENTED LOSSES

The total anticipation loss is a weighted combination of a global action sequence coherence loss
(Lcrf) and a duration loss (Ldur): LLTA = Lcrf + γ3Ldur.
Global action sequence coherence loss. To promote temporally coherent forecasts, we place
a linear-chain CRF on top of the anticipation decoder logits. Let the decoder output emission
scores Z ∈ RTpred×|C|, and let YLTA the target anticipate transcript. For a candidate sequence
c = (c1, . . . , cTpred), the CRF score is

s(Z, c) =

Tpred∑
t=1

Zt,ct +

Tpred−1∑
t=1

Mct,ct+1
, (5)

where M is a learnable transition matrix. The training objective is the negative log-likelihood of the
ground-truth anticipation sequence:

Lcrf = − log p(YLTA | Z) = log
∑

c′∈CTpred

es(Z,c′) − s(Z,YLTA). (6)

This loss enforces global sequence-level consistency and complements CTC, which ensures align-
ment at the frame level.
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Affinity-based duration loss Inspired by the affinity property of procedural videos, firstly intro-
duced in Ding & Yao (2022), following which videos depicting the same activity share resembling
action temporal portions, we propose a duration prediction head that is trained without any temporal
ground truth. During training, we compute per-class duration estimates from the observed segments
by counting the frequency of predicted labels from the segmentation head. These estimates are
stored in a momentum-based buffer d̂ ∈ R|C| that captures temporal priors in a self-supervised fash-
ion. During inference, the decoder outputs the predicted class probabilities, and the class duration
priors d̂ are concatenated and passed to a regression head to obtain a per-segment predicted duration
δ̂i. The self-supervised duration loss is formulated as:

Ldur =
1

Tpred

Tpred∑
i=1

(
δ̂i − d̂yi

)2
, (7)

where δ̂i is the per-segment predicted duration and the ground truth target is approximated by the
class-wise prior d̂yi . This term encourages consistent duration estimates aligned with implicitly
learned temporal statistics.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on two widely used benchmarks for long-term action an-
ticipation. The Breakfast dataset (Kuehne et al., 2014) comprises 1,712 videos of 52 participants
performing breakfast-related activities in diverse kitchen environments. Each video is annotated
at two levels: 10 coarse activities and 48 fine-grained action classes. The average duration is 2.3
minutes, and the dataset exhibits a highly imbalanced action distribution (Ding & Yao, 2022). The
50Salads dataset (Stein & McKenna, 2013) consists of 50 top-view RGB-D recordings of individu-
als preparing mixed salads, totaling over 4 hours of annotated footage and covering 17 fine-grained
action classes. Compared to Breakfast, the videos are longer and typically contain around 20 ac-
tion instances. The EGTEA Gaze+ dataset (Li et al., 2018) comprises 28 hours of egocentric video
with 10.3K annotated action instances, spanning 19 verbs, 51 nouns, and 106 distinct verb–noun
action classes. For all datasets, we used pre-extracted 2048-dimensional I3D features (Carreira &
Zisserman, 2018) as visual input X .
Metrics. For Breakfast and 50Salads, we report Mean over Classes (MoC) accuracy, which com-
putes frame-wise accuracy per class and averages across classes (Abu Farha et al., 2018). Anticipa-
tion is evaluated at different horizons: the model observes an initial portion of the video (α = 20%
or 30%) and predicts the next β = 10%, 20%, 30%, or 50% of the sequence. Results are averaged
over four standard splits for Breakfast and five for 50Salads. For EGTEA Gaze+, we adopt mean Av-
erage Precision (mAP) following the multi-label classification protocol of Nagarajan et al. (2020),
where α ∈ 25%, 50%, 75% of each video is observed and the remaining segment (100% − α) is
predicted. We report mAP over all actions (All), low-shot (Rare), and many-shot (Freq) classes,
restricting evaluation to verb prediction.
Implementation details The overall architecture is illustrated in Fig. 2. The transformer en-
coder used for the Breakfast dataset employs 4 layers, a hidden dimension of 128, and 4 attention
heads. For the 50Salads dataset, we use a hidden dimension of 512, with 4 attention heads and 8
Transformer layers. For the text embeddings, we employ a simple pretrained model such as Dis-
tilBERT (Sanh et al., 2019). The LTA decoder employs a hidden dimension of 128 for Breakfast
and 256 for 50Salads, using 2 and 3 Transformer layers, respectively. The CRF module adopts the
same configuration as in (Maté & Dimiccoli, 2024). The number of learned queries is set to 8 for
Breakfast and 20 for 50Salads. For EGTEA Gaze+, we apply the same configuration as 50Salads.
Training and Inference. Since pseudo-labeling requires a reliable initialization, we adopt a pro-
gressive training scheme. The model is first pre-trained for 10 epochs using only the video-level
classification loss Lvid, which enhances pseudo-label quality and yields a stable starting point. We
then run a short stage of 30 epochs with segmentation- and alignment-oriented losses (LA + LTAS)
to refine temporal structure. Finally, end-to-end optimization is performed with the complete set of
losses in Eq. 3. At the beginning of each stage, both optimizer state and learning-rate schedule are
re-initialized to secure stable convergence. During training, the segmentation head processes the full
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Dataset Category Method Obs 20% Obs 30% Avg.
10% 20% 30% 50% 10% 20% 30% 50%

50Salads
Supervised

Cycle Cons. Abu Farha et al. (2020b) 34.76 28.41 21.82 15.25 34.39 23.70 18.95 15.89 24.15
FUTR Gong et al. (2022b) 39.55 27.54 23.32 17.77 35.15 24.85 24.22 15.26 25.96
ObjectPrompt Zhang et al. (2024c) 37.40 28.90 24.20 18.10 28.00 24.00 24.30 19.30 25.53
ActFusion Guo et al. (2024) 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07 28.39

Weakly supervised WS-DA † Zhang et al. (2021) - - - - 21.30 - - - -
Ours (TbLTA) 24.90 21.12 19.00 14.45 27.67 25.32 20.27 14.65 20.92

Ours (TbLTA)* - Mean 26.01 17.68 15.04 14.87 25.93 22.17 17.57 13.68 19.11
Ours (TbLTA)* - Top1 33.76 27.85 25.00 22.16 34.49 33.29 29.35 22.18 28.51

Breakfast
Supervised

Cycle Cons. Abu Farha et al. (2020b) 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20 25.13
FUTR Gong et al. (2022b) 27.70 24.55 22.83 22.04 32.37 29.88 27.49 25.87 26.59
ActFusion Guo et al. (2024) 28.25 25.52 24.66 23.25 35.79 31.76 29.64 28.78 28.45

Weakly supervised WS-DA † Zhang et al. (2021) - - - - 15.65 - - - -
Ours (TbLTA) 27.47 26.21 21.62 20.53 40.28 35.76 31.67 28.79 29.03
Ours (TbLTA)* - Mean 28.92 25.63 24.61 21.80 38.38 35.06 31.89 28.67 29.37
Ours (TbLTA)* - Top1 37.18 32.92 31.66 30.45 45.72 41.92 39.06 38.27 37.15

Table 1: Comparisons of action anticipation on the Breakfast (Kuehne et al., 2014) and 50Salads (Stein &
McKenna, 2013) benchmarks using our proposed models. The highest accuracy under a deterministic frame-
work is indicated in bold, and the second highest is underlined. The highest accuracy under a probabilistic
framework is indicated in gray. WS-DA † (Zhang et al., 2021) operates under a (semi-) weakly supervised
setting, using frame-level labels only for the observed segment of the video during training. * means stochastic
protocol.

video, while at inference, only a fraction is observed, following the protocol of Gong et al. (2024).
We also report the stochastic protocol of Abu Farha & Gall (2019) in the supp. mat.

4.2 COMPARATIVE RESULTS

To assess the effectiveness of TbLTA, we follow the protocol established in previous work (Farha &
Gall, 2019; Sener et al., 2020; Gong et al., 2022b; 2024): we report comparative results on 50Salads
and Breakfast datasets in Tab. 1 and additionally on EGTEA in Tab. 2. TbLTA consistently surpasses
prior (semi-) weakly-supervised baselines of (Zhang et al., 2021), establishing the first transcript-
only benchmark for dense LTA. Remarkably, despite the absence of frame-level supervision, our
deterministic model attains performance competitive with, and occasionally superior to, fully su-
pervised approaches. On Breakfast, TbLTA exhibits a pronounced gain at 30% observation, outper-
forming all supervised baselines. This result highlights the ability of transcript-based supervision to
capture the procedural regularities of activities. Performance on 50Salads paints a complementary
picture. Here, long videos, denser action distributions, and frequent transitions yield weaker tempo-
ral regularities, amplifying the impact of imprecise temporal alignment in the absence of boundary
annotations. In addition, we also report stochastic results, where TbLTA achieves substantially
higher accuracy by capturing multiple plausible futures. This dual view, deterministic for repro-
ducibility and stochastic for diversity, illustrates both the flexibility and the limits of our approach.
Tab. 2 evaluates TbLTA on EGTEA, where supervised models retain a clear edge overall, but our
method proves to be competitive on rare classes. This suggests that high-level semantic supervision
from transcripts can mitigate data imbalance, even without dense frame labels. Taken together, these
results highlight our central contribution: TbLTA is the first framework to make dense long-term an-
ticipation feasible with transcript supervision alone. While fully-supervised models still dominate
the paradigm, TbLTA demonstrates that transcript-based supervision is a promising paradigm for
more scalable and language-informed LTA.

4.3 ABLATION STUDY

All ablations are conducted on both Breakfast and 50Salads, and we report results using the Top-1
MoC metric. For clarity, we adopt this choice Top-1 MoC for ablations as it provides a stable
reference point.
Effect of CTC loss. Removing the CTC supervision consistently degrades the quality, as shown
in 3. On 50Salads, the average accuracy drops by ≈0.6 points, while on Breakfast, the decline is
≈0.8 points. This confirms that CTC helps to stabilize pseudo-labels and prevent error accumu-
lation across tasks. Without this alignment, pseudo-label noise propagates more strongly into the
anticipation stage.
Effect of Multimodal Cross-Attention. We contrast our multimodal cross-attention with two
baselines: (i) cross-att simplex, which embeds the transcript and applies a single, unconstrained
cross-attention to video features, and (ii) w/o cross-att, which removes cross-modal conditioning.
Results in Table 3 (TAS) and Table 4 (LTA) show a consistent hierarchy: w/o cross-att < cross-
att simplex < TbLTA. On 50Salads, the average score decreases by ≈1.3 points (≈0.8 with cross
attention simplex), while on Breakfast, the drop reaches ≈5.7 points (≈3.8 with cross attention
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Model All Freq Rare

Timeception (Hussein et al., 2019) 74.10 79.70 59.70
Anticipatr (Nawhal et al., 2022b) 76.80 83.30 55.10

TbLTA 65.37 73.46 60.11

Table 2: TbLTA results in EGTEA compared to
supervised models.
Dataset Model Obs 20% Obs 30% Avg.

10% 20% 30% 50% 10% 20% 30% 50%

50Salads TbLTA 33.8 27.9 25.0 22.1 34.5 33.3 29.4 22.2 28.5
w/o ctc loss 32.3 29.3 25.2 21.0 34.2 32.5 29.1 19.7 27.9
w cross-att simplex 31.1 26.8 24.3 21.8 33.6 33.1 29.3 21.7 27.7

Breakfast TbLTA 37.2 33.0 31.7 30.5 45.7 41.9 39.1 38.3 37.2
w/o ctc loss 36.0 31.7 31.0 30.1 44.2 41.4 38.8 37.6 36.4
w cross-att simplex 30.4 26.7 27.0 27.9 42.7 38.7 37.1 36.7 33.4

Table 3: Ablation study on Alignment/TAS
modules.

Dataset Model Obs 20% Obs 30% Avg.
10% 20% 30% 50% 10% 20% 30% 50%

50Salads TbLTA 33.8 27.9 25.0 22.1 34.5 33.3 29.4 22.2 28.5
w/o duration 31.1 29.2 24.7 20.2 38.2 33.8 29.2 19.8 28.3
w/o cross-att 30.2 28.2 25.0 20.7 33.2 32.2 28.8 19.5 27.2
w/o CRF 26.4 26.2 21.0 16.0 35.8 25.7 21.1 13.3 23.2

Breakfast TbLTA 37.2 33.0 31.7 30.5 45.7 41.9 39.1 38.3 37.2
w/o duration 34.1 30.4 27.6 22.5 46.6 41.7 37.1 30.8 33.9
w/o cross-att 31.7 27.5 25.8 24.8 39.9 35.5 33.1 33.6 31.5
w/o CRF 39.7 33.1 28.1 20.0 47.2 40.2 32.9 22.9 33.0

Table 4: Ablation study on LTA module on 50Sal-
ads and Breakfast datasets.

SIL smear_buttercut_bun put_toppingOnTop

GT

TbLTA

(a) Breakfast dataset.

place_tomato_into_bowl
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place_cheese_into_bowl
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add_dressing

peel_cucumber


cut_cucumber

place_cucumber_into_bowl
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cut_tomato

action_start


add_oil


add_vinegar


add_pepper


add_salt

mix_dressing

cut_lettuce

GT

TbLTA

(b) 50Salads dataset.
Figure 3: Qualitative results. We display the ground-truth (GT) and the results of TbLTA (Ours)
on two datasets: (a) Breakfast and (b) 50Salads.

simplex). Overall, while the simplex variant provides some conditioning, it lacks the structural bi-
ases of our multimodal design—masking by transcript-derived neighborhoods and gated residual
fusion—leading to inferior alignment and weaker long-horizon coherence.
Effect of CRF loss. The contribution of the CRF loss is particularly evident at longer horizons,
as shown in Table 4. While short-term accuracy remains similar (even slightly higher on BF), its
removal causes notable declines at longer horizons (≈ 5.3 on 50Salads, ≈ 4.1 on Breakfast), under-
scoring its role in enforcing temporal coherence and stabilizing long-term forecasts.
Effect of duration loss. Table 4 shows that removing the duration loss reduces accuracy (≈0.2
on 50Salads, ≈3.3 on Breakfast), indicating that it serves as a temporal regularizer that stabilizes
long-horizon predictions by discouraging unrealistic segment durations. Since it is trained without
temporal ground truth and relies on momentum-based class-wise priors, we use this term only as a
weak duration prior rather than a precise per-instance predictor. Consistent with duration modeling
in fully supervised LTA, its effect is most beneficial for actions with more concentrated duration
statistics, while classes with high intra-class variability remain challenging.

4.4 QUALITATIVE RESULTS

Figures 3b and 3a illustrate representative qualitative results of our framework. The left part of each
timeline (before the vertical dashed line) corresponds to the segmentation of the observed interval,
while the right part (after the dashed line) shows the anticipated sequence of future actions. As
can be seen, the model produces accurate and temporally coherent segmentations of the observed
portion, and the degradation in prediction quality for the future interval remains relatively small. It
also appears clear that an accurate prediction of action durations is still a challenge. More qualitative
results are provided in the supp. mat.

5 CONCLUSION

We introduced TbLTA, the first framework for dense long-term action anticipation trained exclu-
sively from transcripts, without requiring frame-level annotations. By combining temporal align-
ment to generate pseudo-labels with cross-modal attention to semantically ground video features,
our model enables anticipation without dense supervision while preserving temporal action con-
sistency over long horizons. Through extensive experiments on Breakfast, 50Salads, and EGTEA,
TbLTA establishes the first transcript-based supervision baseline for LTA. Remarkably, despite the
absence of dense labels, our model achieves results that are competitive with, and in certain settings
even superior to, fully supervised methods. A major challenge that remains is to correctly estimate
future durations, especially for unseen actions. Importantly, this work demonstrates that dense LTA
does not needs to rely on exhaustive frame-level annotation, opening a new paradigm for scalable
and language-informed anticipation in a weakly-supervised setting.
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grained action segmentation and recognition using conditional random field models and discrim-
inative sparse coding. In 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 1558–1567. IEEE, 2018.

Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwonjoon Lee. Can’t make an omelette with-
out breaking some eggs: Plausible action anticipation using large video-language models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 18580–18590, 2024.

Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, and Kristen Grauman. Ego-topo: Envi-
ronment affordances from egocentric video. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 163–172, 2020.

Megha Nawhal, Akash Abdu Jyothi, and Greg Mori. Rethinking learning approaches for long-term
action anticipation. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
558–576. Springer, 2022a.

Megha Nawhal, Akash Abdu Jyothi, and Greg Mori. Rethinking learning approaches for long-term
action anticipation. In European Conference on Computer Vision, pp. 558–576. Springer, 2022b.

Yan Bin Ng and Basura Fernando. Weakly supervised action segmentation with effective use of
attention and self-attention. Computer Vision and Image Understanding, 213:103298, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Fadime Sener, Dipika Singhania, and Angela Yao. Temporal aggregate representations for long-
range video understanding. In European Conference on Computer Vision(ECCV), pp. 154–171.
Springer, 2020.

Federico Spurio, Emad Bahrami, Gianpiero Francesca, and Juergen Gall. Hierarchical vector quanti-
zation for unsupervised action segmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2024.

Sebastian Stein and Stephen J McKenna. Combining embedded accelerometers with computer vi-
sion for recognizing food preparation activities. In Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing, pp. 729–738, 2013.

Dı́dac Surı́s, Ruoshi Liu, and Carl Vondrick. Learning the predictability of the future. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12607–
12617, 2021.

Sanket Thakur, Cigdem Beyan, Pietro Morerio, Vittorio Murino, and Alessio Del Bue. Leverag-
ing next-active objects for context-aware anticipation in egocentric videos. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 8657–8666,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hanlin Wang, Yilu Wu, Sheng Guo, and Limin Wang. Pdpp: Projected diffusion for procedure
planning in instructional videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 14836–14845, 2023.

Angchi Xu and Wei-Shi Zheng. Efficient and effective weakly-supervised action segmentation via
action-transition-aware boundary alignment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

Ming Xu and Stephen Gould. Temporally consistent unbalanced optimal transport for unsuper-
vised action segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Olga Zatsarynna, Emad Bahrami, Yazan Abu Farha, Gianpiero Francesca, and Juergen Gall. Gated
temporal diffusion for stochastic long-term dense anticipation. In European Conference on Com-
puter Vision (ECCV), pp. 454–472. Springer, 2024.

Olga Zatsarynna, Emad Bahrami, Yazan Abu Farha, Gianpiero Francesca, and Juergen Gall. Manta:
Diffusion mamba for efficient and effective stochastic long-term dense action anticipation. In
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), pp. 3438–
3448, 2025.

Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee, Chiho Choi, and Chen
Sun. Object-centric video representation for long-term action anticipation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6751–6761,
2024a.

Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee, Chiho Choi, and Chen
Sun. Object-centric video representation for long-term action anticipation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 6751–6761,
2024b.

Ce Zhang, Changcheng Fu, Shijie Wang, Nakul Agarwal, Kwonjoon Lee, Chiho Choi, and Chen
Sun. Object-centric video representation for long-term action anticipation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6751–6761, 2024c.

Haotong Zhang, Fuhai Chen, and Angela Yao. Weakly-supervised dense action anticipation. In
British Machine Vision Conference (BMVC), 2021.

Runzhong Zhang, Suchen Wang, Yueqi Duan, Yansong Tang, Yue Zhang, and Yap-Peng Tan. Hoi-
aware adaptive network for weakly-supervised action segmentation. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2023.

Qi Zhao, Shijie Wang, Ce Zhang, Changcheng Fu, Minh Quan Do, Nakul Agarwal, Kwonjoon
Lee, and Chen Sun. Antgpt: Can large language models help long-term action anticipation from
videos? In International Conference on Learning Representations (ICLR), 2024.

Yiwu Zhong, Licheng Yu, Yang Bai, Shangwen Li, Xueting Yan, and Yin Li. Learning procedure-
aware video representation from instructional videos and their narrations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14825–14835,
2023a.

Zeyun Zhong, Manuel Martin, Michael Voit, Juergen Gall, and Jürgen Beyerer. A survey on deep
learning techniques for action anticipation. In arXiv preprint arXiv:2309.17257, 2023b.

13


	Introduction
	Related Work
	Methodology
	Model architecture
	TbLTA Objetive
	Alignment-Oriented Losses
	Segmentation-Oriented Losses
	Anticipation-Oriented Losses


	Experiments
	Experimental Setup
	Comparative Results
	Ablation study
	Qualitative Results

	Conclusion

