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ABSTRACT

Implicit Neural Representations (INR) provide a natural way to parametrize im-
ages as a continuous signal, using an MLP that predicts the RGB color at an (x, y)
image location. Recently, it has been shown that high-quality INR decoders can be
designed and integrated with Generative Adversarial Networks (GANs) to facili-
tate unconditional continuous image generation that is no longer bound to a par-
ticular spatial resolution. In this paper, we introduce HyperCGAN, a conceptually
simple approach for Adversarial Text to Continuous Image Generation based on
HyperNetworks, which produces parameters for another network. HyperCGAN
utilizes HyperNetworks to condition an INR-based GAN model on text. In this
setting, the generator and the discriminator weights are controlled by their corre-
sponding HyperNetworks, which modulate weight parameters using the provided
text query. We propose an effective Word-level hyper-modulation Attention op-
erator, termed WhAtt, which encourages grounding words to independent pixels
at input (x, y) coordinates. To the best of our knowledge, our work is the first
that explores Text to Continuous Image Generation (T2CI). We conduct compre-
hensive experiments on COCO 2562, CUB 2562, and ArtEmis 2562 benchmark,
which we introduce in this paper. HyperCGAN improves the performance of text-
controllable image generators over the baselines while significantly reducing the
gap between text-to-continuous and text-to-discrete image synthesis. Addition-
ally, we show that HyperCGAN, when conditioned on text, retains the desired
properties of continuous generative models (e.g., extrapolation outside of image
boundaries, accelerated inference of low-resolution images, out-of-the-box super-
resolution). Code and ArtEmis 2562 benchmark will be made publicly available.

1 INTRODUCTION
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Figure 1: Text Conditioned Extrapolation outside of Image Boundaries: The red rectangles
indicate the resolution boundaries that our HyperCGAN model was trained. On three datasets, our
model can synthesize meaningful pixels at surrounding (x, y) coordinates beyond these boundaries.
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Humans have the innate ability to connect what they visualize with language or textual descriptions.
Text-to-image (T2I) synthesis, an AI task inspired by this ability, aims to generate an image condi-
tioned on a textual input description. Compared to other possible inputs in the conditional generation
literature, sentences are an intuitive and flexible way to express visual content that we may want to
generate. The main challenge in traditional T2I synthesis lies in learning from the unstructured de-
scription and connecting the different statistical properties of vision and language inputs. This field
has seen significant progress in recent years in synthesis quality, the size and complexity of datasets
used as well as image-text alignment (Xu et al., 2018; Li et al., 2019; Zhu et al., 2019; Tao et al.,
2022; Zhang et al., 2021; Ramesh et al., 2021).

Existing methods for T2I can be broadly categorized based on the architecture innovations developed
to condition on text. Models that condition on a single caption input include stacked architectures
(Zhang et al., 2017), attention mechanisms (Xu et al., 2018), Siamese architectures (Yin et al., 2019),
cycle consistency approaches (Qiao et al., 2019), and dynamic memory networks (Zhu et al., 2019).
A parallel line of work (Yuan & Peng, 2019; Souza et al., 2020; Wang et al., 2020) looks at adapting
unconditional models for T2I synthesis. Despite the significant progress, images in existing ap-
proaches are typically represented as a discrete 2D pixel array which is a cropped, quantized version
of the true continuous underlying 2D signal. We take an alternative view, in which we use an implicit
neural representation (INR) to approximate the continuous signal. This paradigm accepts coordinate
locations (x, y) as input and produces RGB values at the corresponding location for the continuous
images. Working directly with continuous images enables several useful features such as extrapola-
tion outside of image boundaries, accelerated inference of low-resolution images and out-of-the-box
superresolution. Our proposed network, the HyperCGAN uses a HyperNetwork-based conditioning
mechanism that we developed for Text to continuous image generation. It extends the INR-GAN
(Skorokhodov et al., 2021a) backbone to efficiently generate continuous images conditioned on input
text while preserving the desired properties of the continuous signal. Figure 1 shows examples of im-
ages generated by our HyperCGAN model on the CUB (Wah et al., 2011), COCO(Lin et al., 2015),
and ArtEmis (Achlioptas et al., 2021) datasets. By design and while conditioning on the input text,
we can see that HyperCGAN, trained on the CUB dataset, can extend bird images with more natural
details like the tail and background (see Figure 1) and the branches (top right). We observe simi-
lar behavior on scene-level benchmarks, including COCO and ArtEmis (introduced in this paper).

Figure 2: Scalability limi-
tations in discrete decoders:
Increasing training resolution
decreases batch size/GPU hit-
ting GPU limits.

By representing signals as continuous functions, INRs do not de-
pend on spatial resolution. Thus, the memory requirements to pa-
rameterize the signal grow not with respect to spatial resolution
but only increase with the complexity of the signal. This type of
representation enables generated images to have arbitrary spatial
resolutions, keeping the memory requirements near constant. In
contrast, discrete-based models need both generator and discrimi-
nator to scale with respect to spatial resolution, making training of
these models impractical. Figure 2 shows that for discrete-based
models, increasing training resolution leads to decreasing effective
batch size during training due to GPU memory limits. Coupled with
the expressiveness of HyperNetworks, we believe that building con-
ditional generative models that are naturally capable of producing
images of arbitrary resolutions while maintaining visual semantic
consistency at low training costs is a promising paradigm in the fu-
ture progress of generative models. Our work introduces a step in this direction. The prevalent T2I
models in the literature like AttnGAN (Xu et al., 2018), ControlGAN (Li et al., 2019) and XMC-
GAN (Zhang et al., 2021) use architecture-specific ways to condition the generator and discriminator
on textual information and often introduce additional text-matching losses. These approaches use
text embeddings c to condition their model by updating a hidden representation h. Unlike these ap-
proaches, we explore a different paradigm in HyperCGAN, and use HyperNetworks (Ha et al., 2016)
to condition the model on textual information c by modulating the model weights. Such a procedure
can be viewed as creating a different instance of the model for each conditioning vector c and was re-
cently shown to be significantly more than the embedding-based conditioning approaches. (Galanti
& Wolf, 2020). A traditional HyperNetwork (Chang et al., 2020) generates the entire parameter
vector θ from the conditioning signal c ie. θ = F (c), where F (c) is a modulating HyperNet-
work. However, this quickly becomes infeasible in modern neural networks where |θ| can easily
span millions of parameters. Our HyperNetwork instead produces a tensor-decomposed modulation
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F (c) = M of the same size as the weight tensor W . This tensor is then used to alter W via an ele-
mentwise multiplicative operation Wc = W ⊙ F (c). Additionally, we develop an attention-based
word level modulation WhAtt to alter weight tensors W of both Generator and Discriminator using
F (c). Our primary contributions are as follows:

• We propose the HyperCGAN framework for synthesizing continuous images from text
input. The model is augmented with a novel language-guided mechanism termed WhAtt,
that modulates weights at the word level.

• We show that our method has the ability to meaningfully extrapolate outside the image
boundaries, and can outperform most existing discrete methods on the COCO and ArtEmis
datasets, including stacked generators and single generator methods.

• We establish a baseline on a new affective T2I benchmark based on the ArtEmis dataset
(Achlioptas et al., 2021), which has 455,000 affective utterances collected on more than
80K artworks. ArtEmis contains captions that explain emotions elicited by a visual stimu-
lus, which can lead to more human emotion-aware T2I synthesis generation models.

2 RELATED WORK

Text-to-Image Generation. T2I synthesis has been an active area of research since at least (Man-
simov et al., 2015; Reed et al., 2016a) proposed a DRAW-based (Gregor et al., 2015) model to
generate images from captions. (Reed et al., 2016a) first demonstrated improved fidelity of the gen-
erated images from text using GANs (Goodfellow et al., 2014). Several GAN-based approaches for
T2I synthesis have emerged since. StackGAN (Zhang et al., 2017) proposed decomposing the T2I
generation into two stages - a coarse to fine approach and used conditional augmentation of the con-
ditioning text. Later, (Xu et al., 2018) proposed AttnGAN, an extended version of StackGAN, and
adopted cross-modal attention mechanisms for improved visual-semantic alignment and grounding.
Following the architecture of AttnGAN, some approaches were proposed to improve the generation
quality (Li et al., 2019; Zhu et al., 2019). XMC-GAN (Zhang et al., 2021), DF-GAN (Tao et al.,
2022) proposes to use additional auxiliary losses to improve visual semantic alignment. Non-GAN
based generative models have also been explored in T2I, e.g autoregressive approaches (Reed et al.,
2016b; 2017; Ramesh et al., 2021; Gafni et al., 2022), flow-based models (Mahajan et al., 2020).

Diffusion Models. With the introduction of diffusion models (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020), which learns to perform denoising task, the breakthrough has
been made in T2I due to the emergence of diffusion-based models conditioned on text (Ramesh
et al., 2022; Nichol et al., 2021; Saharia et al., 2022; Rombach et al., 2022; Gu et al., 2022). These
methods cannot be directly compared with our work since they have a huge number of parameters
and requires a massive amount of data for training. The diffusion-based methods do not suffer
from mode collapse, but their compute cost and carbon footprint are much higher than GAN-based
approaches.

Art generation. Synthetically generating realistic artwork with conditional GAN is challenging
due to unstructured shapes and its metaphoric nature. Several works have explored learning artis-
tic style representations. ArtGAN (Tan et al., 2017; 2018) trained a conditional GAN on artist,
genre, and style labels. (Alvarez-Melis & Amores, 2017) proposed emotion-to-art generation by
training an AC-GAN (Odena et al., 2017) on ten classes of emotions. Another line of work in-
cludes CAN (Elgammal et al., 2017) and later H-CAN (Sbai et al., 2018), which generates creative
art by learning about styles and deviating from style norms. We extend prior work by applying
our HyperNetwork-based conditioning to the novel text-to-continuous-image generation task on the
challenging ArtEmis (Achlioptas et al., 2021) dataset, where we leverage verbal explanations as
conditioning signals to achieve better human cognition-aware T2I synthesis.

Implicit Neural Representation (INR). INRs parametrize any type of signal (e.g. images, audio
signals, 3D shapes) as a continuous function that maps the domain of the signal to values at a
specified coordinate (Genova et al., 2019; Mildenhall et al., 2020; Sitzmann et al., 2019; 2020).
For 2D image synthesis, several works have explored ways to enable INRs using generative models
(Anokhin et al., 2021; Skorokhodov et al., 2021a;b).

Connection to HyperNetworks. HyperNetworks are models that generate parameters for other
models. They have been applied to several tasks in architecture search (Zhang et al., 2019), few-
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shot learning (Bertinetto et al., 2016), and continual learning (von Oswald et al., 2020). Generative
HyperNetworks, also called implicit generators(Skorokhodov et al., 2021a; Anokhin et al., 2021)
were recently shown to rival StyleGAN2 (Karras et al., 2020) in generation quality. Our HyperC-
GAN generates continuous images conditioned on text using two types of Hypernetworks: (1) Image
generator HyperNetwork, which produces an image represented by its INR. (2) Text controlling Hy-
perNetwork that guides the learning mechanism of the image generator HyperNetwork using the
input text. Despite the progress in unconditional INR-based decoders (e.g., (Lin et al., 2019; Sko-
rokhodov et al., 2021a; Anokhin et al., 2021; Skorokhodov et al., 2021b)), generating high-quality
continuous images conditioned on text is less studied compared to discrete image generators. Our
HyperNetwork-augmented modulation approach facilitates conditioning the continuous image gen-
erator on text while preserving the desired INR properties (e.g., out-of-the-box-super resolution,
extrapolation outside image boundaries).

3 APPROACH

The T2I generation task can be formulated as modeling the data distribution of images Pr given a
conditioning signal c. We use a standard GAN training setup where we model the image distribution
using a generator G. In our case, c is text information in the form of sentence, or word embeddings.
During training, we alternate between optimizing the generator and discriminator objectives:

LD(c) = −Ex∼Pr [D(x, c)]− EG(z,c)∼Pg
[1−D(G(z, c), c)]

LG(c) = −EG(z,c)∼Pg
[D(G(z, c), c)] + λLcontrastive

(1)

where Pg is the generated image distribution, and Pr is its real distribution. LD(c) and LG(c) are
the discriminator and the generator losses, respectively. To facilitate continuous image generation,
HyperCGAN augments the unconditional baseline INR-GAN(Skorokhodov et al., 2021a) with an
effective modulation mechanism that encourages better sentence-level and word-level alignment.
To encourage fine-grained image-text matching, the generator is regularized with an auxiliary con-
trastive loss based on the Deep Attentional Multimodal Similarity Model (DAMSM) (Xu et al.,
2018), which measures the similarity between generated images and global sentence-level as well
as fine-grained word-level information. As shown in our experiments, our proposed modulation
helps DAMSM loss improve continuous image-text alignment at the word level while preserving
high image fidelity. We also explore integrating the CLIP (Radford et al., 2021) loss to improve
the alignment between the text and the generated continuous images. The following subsections
introduce INR-based decoders and describe how we adapted them in our HyperCGAN approach to
facilitate continuous image generation conditioned on text.

3.1 INR-BASED GENERATOR BACKBONE: INR-GAN (SKOROKHODOV ET AL., 2021A;
ANOKHIN ET AL., 2020)

INR is an implicit approach that can represent a 2D image, with a neural network to produce RGB
pixel values given image coordinate locations (x, y). We build our approach upon the INR-based
generator (Skorokhodov et al., 2021a; Anokhin et al., 2020), that consists of two main modules: a
hypernetwork H(z) and an MLP model Fθ(z)(x, y). The hypernetwork H(z) samples a noise vector
z ∼ N (0, I) and generates parameters for an MLP model Fθ(z)(x, y). The MLP model Fθ(z)(x, y)
then predicts RGB values at each location (x, y) of a predefined coordinate grid to synthesize an im-
age. The weights of the MLP model are modulated through a Factorized Multiplicative Modulation
(FMM) mechanism, where two matrices are multiplied together and passed through an activation
function to obtain a modulating tensor. Later, this modulating tensor is multiplied by the shared
parameters matrix of the MLP network.

3.2 HYPER-CONDITIONAL GANS (HYPERCGANS)

Architecture Overview. Our generator architecture is based on the multi-scale INR-GAN and
mainly consists of fully-connected linear layers followed by activations. The weights of these layers
are two-dimensional. i.e., W ℓ ∈ Rcout×cin×1×1 at layer l. We use the StyleGAN2 discriminator
during the training process, which comprises a series of ConvNet blocks. The convolutional weights
can be represented as a four-dimensional tensor W ℓ ∈ Rcout×cin×kh×kw . In the INR-GAN, these
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Figure 3: The architecture of the proposed HyperCGAN, with two ways of conditioning. a)
Sentence-Level Modulation: Generator is conditioned with a hypernetwork which takes concate-
nation of noise vector z and sentence embedding es. Then, the weights of every Linear layer of
the generator are modulated by modulating tensor. Discriminator’s convolutional weights at block
l are modulated by the hypernetwork operating at level l. The final projection head is conditioned
as hTF (es), where F (es) is two-layer MLP and h is the output of the last discriminator block.
b) Word-Level Modulation with WhAtt attention: Two hypernetworks are used to condition the
generator. The first is MLP which receives noise vector z and outputs modulating tensor Mz , and the
second is Conv1x1 followed by a Word-level hyper-Attention mechanism proposed in this work,
dubbed as WhAtt. Details are introduced in Section 3.2.2.

weights are not conditioned on the text. As our goal is to condition both generator and discriminator
on input text c, we apply the HyperCGAN conditional modulation framework to both the INR-GAN
generator and discriminator. In this framework, c is transformed by a HyperNetwork to produce
modulating tensors for the weight tensors. Figure 3 is an overview of our proposed HyperCGAN
approach.

3.2.1 LEVERAGING CONDITIONAL SIGNAL FOR WEIGHT MODULATION

When conditioning the generator, we use two strategies to generate the modulating tensor M for
linear layers depending on the language representation granularity (word-level or sentence level).
Sentence-level Conditioning: We also explore sentence-level conditioning on top of sentence em-
beddings es. In this case, the HyperNet backbone receives as input the concatenation of noise vector
z ∼ N (0, I) of size dz and sentence embedding vectors es of size dc; i.e., [z, s]. Then, for each
linear layer ℓ in the INR MLP-decoder, separate modulating tensors M l

z,s are generated through
fully-connected layers (FC) (see Figure 3.a). This tensor M l

z,s is further used to modulate the gen-
erator’s weight W ℓ

G at layer ℓ through element-wise multiplication; see Equation 5.

Word-level Conditioning: Word embeddings ew ∈ RΩ×dw are represented as a sequence of indi-
vidual vectors of size dw for each word in the sentence, where Ω denotes sequence length of the
word embeddings (i.e., the number of words). Two hypernetworks are used to condition the gener-
ator. The first is an MLP which receives noise vector z and outputs the modulating tensor Mz , and
the second is a Conv1x1 followed by a novel Word-level Hyper-Attention mechanism proposed in
this work, termed WhAtt, detailed later in this section.

Slightly different from the generator, hypernetworks of the discriminator are either FC which takes
sentence embedding es as an input and generate a tensor M l

s or Conv1x1 which receives word
embedding ew and generate a tensor M l

w for modulation.(see Figure 3.a,b). In addition, the final
projection head in the discriminator is conditioned through s = h⊤F (es), where h is the output
of the last discriminator block and F (es) is the vector produced by our hypernetwork. This form
resembles the traditional Projection Discriminator (Miyato & Koyama, 2018) that uses output s =
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h⊤j, (j one-hot), which we generalize to condition on beyond one-hot class labels (see dsicriminator
in Figure 3.a).

Extreme Modulating Tensor Factorization. Producing a full-rank tensor M ℓ for each block l is
memory-intensive and infeasible even for modestly sized architectures. For example, if the hidden
layer size of our hypernetwork is of size dh = 512 and the convolutional weight tensor at layer ℓ
is of dimensionality do = cout × cin × kh × kw = 512 × 512 × 3 × 3 ≈ 2.4 million, then the
output weight matrix in the hypernetwork will be of size do × dh = 1.2 billion. To overcome this
issue, we propose factorizing the modulating tensor with an extreme low-rank tensor decomposition
for learning efficiency. The canonical polyadic (CP) decomposition (Kiers, 2000) lets us express a
rank-R tensor T ∈ Rd1×...×dn as a sum of R rank-1 tensors:

T =

R∑
r=1

tr1 ⊗ ...⊗ trn (2)

where ⊗ is the tensor product and tkr is a vector of length dk. Going back to our example mentioned
above, if we instead generate separately low-rank factors and build modulating tensor out of the
factors do = cout + cin + kh + kw = 512+ 512+ 3+ 3 = 1030. So, the output weight matrix in the
hypernetwork will be of size do×dh = 527360 which leads to ≈ 99.95% decrease in the parameter
size of hypernetworks. Therefore, M l

z,s will be the tensor product of 4 low-rank rank-1 tensors t1,
t2, t3, and t4 of size cout, cin, kh and kw, respectively.

3.2.2 WORD-LEVEL MODULATION WITH WHATT ATTENTION

In contrast to sentence embedding where words are summarized in one vector, individual word
embeddings consist of sequences of individual word encodings, containing fine-grained information
that is typically visually grounded to the image. Hence, we focus on how to leverage this information
in our model. We introduce a Word-level Hyper Attention mechanism, denoted as WhAtt, that can
leverage this word-level as well as sentence-level information through self-attention.

WhAtt Attention. First, word embeddings from the text encoder are extracted. These embeddings
are of size Ω × d where Ω denotes sequence length of the word embeddings (i.e., the number of
words) and d is an embedding size. The word embeddings are further encoded with a different
HyperNetwork which consists of a single Conv1x1 layer for each layer l. From every hypernetwork
at layer l, a different tensor T ℓ ∈ RΩ×(cin+kh+kw) is obtained. Basically, a tensor T ℓ is composed of
Ω number of different vectors vi ∈ Rcin+kh+kw corresponding to the i-th word. Then, each vector
vi is ”sliced” into three low-rank factors vi

in, vi
h, vi

w of dimensions cin, kh, kw, respectively. From
the entire tensor T ℓ, we, therefore, derive a two dimensional matrix Qℓ ∈ RΩ×(cin×kh×kw) using
tensor factorization (Eq. 2) which can be expressed via an outer product operation:

Qℓ
i = vi

in ⊗ vi
h ⊗ vi

w (3)

where Qℓ
i is the i-th row in Qℓ, We apply scaled dot product attention mechanism (Vaswani et al.,

2017) to attend to the relevant words in the resulting tensor M ℓ
w ∈ RΩ×cin×kh×kw :

M ℓ
w = WhAtt(W ℓ, Qℓ) = softmax(

W ℓ(Qℓ)T
√
cout

)Qℓ, (4)

where W ℓ is the weight matrix at layer l, M ℓ
w is the word-level modulating tensor, W ℓ and

M ℓ
w ∈ Rcout×cin×kh×kw . Finally, the modulating tensors for the generator and discriminator for

both sentence and word based modulation are defined by Eq. 5 and Eq. 6, respectively:

Ŵ ℓ
G =M ℓ

z,s ⊙W ℓ
G

Ŵ ℓ
D =M l

s ⊙W ℓ
D

(5)
Ŵ ℓ

G =M ℓ
z ⊙M ℓ

w ⊙W ℓ
G

Ŵ ℓ
D =M l

w ⊙W ℓ
D

(6)

where Ŵ ℓ
G and Ŵ ℓ

D are the modulated weights at layer ℓ for the generator and the discriminator
respectively. W ℓ

G and W ℓ
D are the corresponding weights at layer ℓ before modulation. Note that

like sentence level modulation, kh = 1 and kw = 1 for the generator and are equal to the kernel size
in the discriminator as it is convolutional.

Our word-level modulation aims at grounding words to independent pixels at input (x, y) coor-
dinates, represented as low-res features in the earlier layers, and the final RGB value in the last
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layer. More generally, word-level conditioning benefit for visual-semantic consistency was first
demonstrated for discrete decoders in AttnGAN (Xu et al., 2018). Our word-level modulation is our
proposed mechanism to bring similar properties to text-conditioned continuous image generation.

4 EXPERIMENTS AND RESULTS

In this section, we first define the used datasets, metrics, and our baselines following which we
compare our model relative to the baselines on the benchmarks, and study the various properties and
limitations of our approach.

Datasets. We comprehensively evaluate HyperCGAN on the challenging MS-COCO (Lin et al.,
2015), ArtEmis (Achlioptas et al., 2021), and CUB (Wah et al., 2011) datasets.

– COCO 2562 contains over 80K images for training and more than 40K images for testing. Each
image has 5 associated captions that describe the visual content of the image. We use the splits
proposed in (Xu et al., 2018) to train and test our models.

– ArtEmis 2562 (introduced T2I benchmark) contains over 450K emotion attributes and expla-
nations from humans on more than 81K artworks from WikiArt dataset. Each image is associated
with at least 5 captions. The unique aspect of the dataset is that utterances are more affective and
subjective rather than descriptive. These aspects of the dataset impose additional challenges on our
T2I generation task. We use the train and test splits provided by the authors and benchmark recent
T2I methods on it. Both COCO and ArtEmis are scene-level T2I benchmarks.

– CUB 2562 contains 8,855 training and 2,933 test images of bird species. Each image has 10 cor-
responding text descriptions. In contrast to COCO and ArtEmis, CUB is an object-level benchmark,
yet challenging as the bird species are fine-grained.

Evaluation Metrics. We evaluate all models in terms of both Image Quality and Text-Image Align-
ment. Due to the limitations of the Inception score (IS) (Salimans et al., 2016) to capture the diversity
and quality of the generation, we report Frechet Inception Distance (FID) (Heusel et al., 2017) score
following previous works (Zhang & Schomaker, 2020; Tao et al., 2022). Additionally, we compute
R-precision since image quality scores alone cannot reflect whether the generated image is well con-
ditioned on the given text description. Given a generated image, R-precision measures the retrieval
rate for the corresponding caption using a surrogate multi-modal network which computes the sim-
ilarity score between image features and text features. (Zhu et al., 2019; Xu et al., 2018; Li et al.,
2019; Zhu et al., 2019) relied on a pretrained DAMSM model consisting of a text encoder and image
encoder to compute the similarity between generated image and text descriptions for R-precision,
termed as DAMSM-R. However, the same DAMSM model used during training and evaluation leads
to severely biased behavior towards this metric (see Table 9 in Appendix). Therefore, as suggested
in (Park et al., 2021), we also report R-precision score where image-text similarity is computed
with CLIP (Radford et al., 2021), dubbed as CLIP-R. Moreover, we conduct a human evaluation to
assess the meaningfulness and image-text alignment quality for the extrapolated regions facilitated
by the conditional continuous image generation ability of HyperCGAN.

Text to Continuous Image (T2CI) Generation Baselines. Since our work is the first attempt on
T2CI, we define the following baselines: INR-CGANsent: we transform unconditional INR-GAN
to be conditioned on sentence embeddings as a baseline. In this transformation, this baseline simply
takes the concatenated noise vector and sentence embeddings and then generates parameters for
the decoder to synthesize an image. We condition its discriminator via a projection head like in
our approach but do not modulate the convolution layers conditioned on text. This corresponds to
configuration B in Table 1. HyperCGANsent: This baseline is built on top of INR-CGANsent.
The generator stays unchanged, but the discriminator convolution weights are modulated with our
“Efficient Sentence level Modulation” (config E in Table 1). HyperCGANword: The generator
and discriminator of this model are conditioned via our proposed WhAtt mechanism (config H in
Table 1). For both HyperCGANsent and HyperCGANword, we either use DAMSM-based or CLIP-
based regularizers. When the model is trained with one of these regularizers, we indicate it with
subscript, e.g., HyperCGANword

DAMSM or HyperCGANword
CLIP .

T2CI Results. In Table 1, INR-CGANsent (config B) with naive conditioning achieves for 34.91%
for CLIP-R and 27.73 in terms of FID. When its discriminator changed to hyper-modulated one,
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Configuration name ↑ CLIP-R ↑ FID ↓
A Unconditional INR-GAN (Skorokhodov et al., 2021a) INR-GAN NA 24.74

B + sentence conditioning INR-CGANsent 34.91% 27.73
C + DAMSM regularizer INR-CGANsent

DAMSM 57.11% 18.51
D + CLIP regularizer INR-CGANsent

CLIP 49.71% 21.88

E + hyper-modulated D HyperCGANsent 40.81% 28.29
F + DAMSM regularizer HyperCGANsent

DAMSM 51.34% 29.66
G + CLIP regularizer HyperCGANsent

CLIP 55.41% 28.83

H + our word-conditioned WhAtt attention HyperCGANword 37.23% 25.39
L + DAMSM regularizer HyperCGANword

DAMSM 64.14% 18.58
M + CLIP regularizer HyperCGANword

CLIP 63.99% 27.21

Table 1: T2CI Performance on COCO 2562. Our hypernetwork-based conditioning makes it
possible to use word-level conditioning, which is crucial in achieving good results. Blue is for the
best result and green for 2nd best. Note that CLIP-R is meaningless for unconditional INR-GAN
(config A). Note that config F starts from unconditional INR-GAN, similar to config B and C.

CLIP-R is improved to 40.81%, and show comparable FID score 28.29 (config E). When both INR-
decoder and discriminator is conditioned via our WhAtt method on word embeddings (config H),
FID score improves from 28.25 to 25.39 and achieves slightly lower CLIP-R score 37.23% com-
pared to config B. Our WhAtt conditioning coupled with contrastive regularizers achieves CLIP-R
retrieval scores are improved much leading to the best scores 64.14% and 63.99%, while achieving
the better FID scores 18.91 and 27.21 for HyperCGANword

DAMSM and HyperCGANword
CLIP , respectively

configs L and M. The word-level modulation has significantly better performance due to the im-
proved granularity connecting the generated images to the input text. It is interesting to observe
that HyperCGANword

DAMSM even outperforms Unconditional INR-GAN by 5.83 FID points. Despite
that regularizers focus more on visual semantic alignment (CLIP-R) than image quality (FID), we
observe relative improvement also on FID in most cases, which could be due to the improved repre-
sentation guided by text.

Model CLIP-R ↑ FID ↓
HyperC-SGsent

DAMSM 54.45% 31.47
HyperC-SGword

DAMSM 61.49% 20.81
HyperCGANsent

DAMSM 51.34% 29.66
HyperCGANword

DAMSM 64.14% 18.58

Table 2: Discrete and continuous syn-
thesis performance with our hypernet-
based conditioning on COCO 2562.

WhAtt Attention Generalization on Discrete Decoders.
Our sentence-based modulation and word-level WhAtt
conditioning mechanism can easily be applied to con-
ventional convolution-based generators. In this case, our
hypernetwork-based methods modulate the convolution
weights of the generator, which has convolutional layers
with kernel sizes more than 1 (kh > 1 and kw > 1).
To show this, we enable the standard unconditional Style-
GAN2 (Karras et al., 2020) backbone to be conditioned on
either sentence or word embeddings dubbed as Table 2 shows that HyperC-SGword

DAMSM equipped with
our proposed WhAtt mechanism boosts CLIP-R results to 61.49% compared to HyperC-SGsent

DAMSM at
54.45%, while also significantly improving the image quality with FID score 20.81 from 31.47. We
also include the same comparison in Table 2 our continuous model HyperCGAN, which achieves the
best results, and the WhAtt mechanism improvement is more significant (18.58 FID, 64.14 CLIP-R).

Dataset meaningful not sure not meaningful

COCO 68.8% 10.4% 20.8%
ArtEmis 75.6% 8% 16.4%

Table 3: Human Subject Experiment on
Extrapolation meaningfulness.

Dataset more aligned or same less aligned

COCO 66.4% 33.6%
ArtEmis 69.2% 30.8%

Table 4: Human Subject Experiment on
Extrapolation alignment with text.

Properties of our conditional INR-based decoder. a)
Interpolation. We train our model in downsampled 1282

images and conduct either INR superresolution with a
denser coordinate grid or standard upsampling techniques
for comparison. Experimental results indicate our model,
beating classical interpolation methods on all datasets by
2.35 points on average (see Table 8 and Figure 9 for re-
sults). b) Extrapolation. Figure 1 shows the ability of
HyperCGAN to extrapolate outside of the training image
boundaries. After training on a coordinate grid with a
specific range, HyperCGAN can be evaluated on a wider
grid. We are interested in studying whether the extended
regions made sense beyond the training data coordinates. To validate this, we conducted user studies
where subjects were asked to indicate a) whether the extended area in the generations is meaningful
and b) whether the extended area makes the image more aligned with the text description. In Table 3,
for COCO, the results show that 68.8% of responses indicate that the out-of-the-region extrapolation
is meaningful while 20.8% of them say it is not. For ArtEmis, 75.6% of responses are in favor of
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Figure 4: HyperCGAN qualitative results on COCO 2562, CUB 2562, and ArtEmis 2562.

meaningful; meanwhile, 16.4% of them show the opposite. In Table 4, more than 65% of responses
suggested that the alignment between the image and text description improved or remained the same
for both COCO and ArtEmis.

Comparison to the State-of-the-Art. To demonstrate the gap we reduced compared to T2I discrete
decoder, We compare HyperCGAN with discrete state-of-the-art approaches (Xu et al., 2018; Li
et al., 2019; Zhu et al., 2019; Zhang et al., 2021; Tao et al., 2022). Note that AttnGAN(Xu et al.,
2018) and DM-GAN (Zhu et al., 2019) are multi-stage generations. Figure 4 shows qualitative
results of our model compared to baselines. Generation qualities are comparable to the state-of-the-
art. Table 5 shows that our models achieve the highest CLIP-R on COCO and comparable results
to XMC-GAN on ArtEmis and CUB. For fair comparison to other baselines that use DAMSM
regularizer, we report the scores with our HyperCGANword

DAMSM model, which achieves higher CLIP-
R 64.14% in COCO and 16.26%. Note that every baseline except DF-GAN utilizes both sentence
and word embeddings, while our model is only conditioned on one type of text embeddings during
training and still achieves superior results compared to other baselines in terms of FID on all datasets
(except XMC-GAN, 2.5 times more model parameters than ours). As for CUB dataset, HyperCGAN
word
DAMSM with WhAtt achieves the best FID score of 11.00. Compared to XMC-GAN on Artemis and
CUB, results in terms of FID and CLIP-R are almost the same. However, our model requires much
fewer number of parameters, making it more efficient during training. Almost all the baselines’

Model COCO 2562 ArtEmis 2562 CUB 2562

FID ↓ CLIP-R ↑ FID ↓ CLIP-R ↑ FID ↓ CLIP-R ↑ NoP ↓
AttnGAN (Xu et al., 2018) 35.49 29.31% 45.64 7.11% 23.98 31.23% 230M
ControlGAN (Li et al., 2019) 34.52 24.96% 42.01 7.38% 22.85 35.71% 250M
DM-GAN (Zhu et al., 2019) 32.64 40.31% 31.4 12.92% 16.09 45.07% 46M
XMC-GAN (Zhang et al., 2021) 9.87 48.31% 15.47 36.68% 15.56 30.40% 166M
DF-GAN (Tao et al., 2022) 19.32 26.13% 25.4 9.81% 14.81 28.39% 19M

HyperCGANword
DAMSM (continuous) 18.58 64.14% 19.83 16.26% 11.00 30.51% 65M

HyperCGANword
CLIP (continuous) 27.21 63.99% 15.40 34.63% 16.48 19.02% 65M

Real Images - 89.43% - 45.12% - 26.20%

Table 5: Comparison to SOTA Discrete T2I models.

results exceed CLIP-R score
of real images, and we argue
that CLIP model might be
good at scene-level recogni-
tion rather than fine-grained
object-level recognition. We
also observe that our model
outperforms the large-scale
T2I model DALL-E (Ramesh
et al., 2021) on COCO and
CUB: 27.21 vs. 27.50 and 11.00 vs. 56.10, respectively. However, the comparison to DALL-E
might not be fair since their result is based on zero-shot T2I generation. DALL-E1 was trained on a
large amount of data, orders of magnitudes larger than the benchmarks we are using, and it may/may
not cover data similar to these benchmarks

5 CONCLUSION

In this paper, we propose HyperCGAN, a novel HyperNet-based conditional continous GAN. Hyper-
CGAN is a text-to-continuous-image generative model with a single generator that operates with a
novel language-guided tensor modulation operator for sentence-level and word-level attention mech-
anism. To our knowledge, HyperCGAN is the first approach that facilitates text-to-continuous-image
generation, and we show its ability to meaningfully extrapolate images beyond training image di-
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mension while maintaining the alignment with the input language description. We showed that
HyperCGAN achieves better performance compared to existing discrete-based text-to-image syn-
thesis baselines. In addition, we demonstrated that our hypernet-modulation methods can be applied
to discrete GANs as well. We hope that our method may encourage future work on hyper networks
on Text to Continuous Image Generation (T2CI).
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Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33:7462–7473, 2020.

Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous
images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 10753–10764, 2021a.

Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. Aligning latent and image spaces
to connect the unconnectable. arXiv preprint arXiv:2104.06954, 2021b.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.
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6 APPENDIX

Figure 5: Example of affective captions and corresponding emotion from ArtEmis dataset and gen-
erations from HyperC-SGword

.

DM-GAN DF-GAN DM-GAN DF-GANHyperC-SG HyperC-SG

Figure 6: HyperC-SG qualitative results on ArtEmis 2562 (top) and on COCO 2562 (bottom)

6.1 IMPLEMENTATION DETAILS

Our models are trained with learning rate lr = 0.0025 with multi-gpu support on 4 NVIDIA TESLA
V100 GPUs. For all experiments, we kept the batch size equal to 16 and run for 25k iterations. For
COCO datasets, we followed standard splits, but we split the ArtEmis dataset into train/val/test splits
in a ratio of 0.85, 0.10, 0.05. At inference, we used only test split to generate art images.

6.2 SENTENCE-LEVEL INFORMATION

Similar to (Xu et al., 2018; Li et al., 2019; Zhu et al., 2019; Tao et al., 2022), first we extract 256-
dimensional sentence embeddings denoted as c from LSTM-based pretrained text encoder. Then,
we concatenate extracted embeddings and noise vector z of dimension 512, and pass it through a
hypernetwork TG(z, c) of the generator.

6.3 EFFICIENT SENTENCE LEVEL MODULATION:

To efficiently produce the conditioning tensors for sentence level modulation, we used the afore-
mentioned factorization technique to predict the modulation mask M of size cout × cin × kh × kw
dimensions from only 4 vectors: M = t1 ⊗ t2 ⊗ t3 ⊗ t4, where each tr of different dimensions
cout, cin, kh, kw, respectively (see Figure 3):

6.4 WORD-LEVEL INFORMATION

In order to leverage word-level information, we extract the word embeddings from the same text
encoder mentioned above. However, word embeddings have different sequence lengths and not
suitable for batch processing. Therefore, the words embeddings are padded with 0s matching the
max word length. Then, the padded embeddings go through hypernetworks with a single conv1x1
layers to generate style vectors of dimension τ × (cin + kw + kh) (See Figure 8).

14



Under review as a conference paper at ICLR 2023

Figure 7: Numpy-like pseudocode for core tensor modulation implementation.

Dimension FID CLIP-R

cin 18.74 45.13%
cout 54.6 30.76%

cout, cin 21.11 47.86%
cin, kh, kw 20.32 49.42%
cout, kh, kw 23.49 43.95%

cout, cin, kh, kw 23.59 49.85%

Table 6: Effect of different choices of modulating tensors in HyperC-SGsent.

6.5 TEXT ENCODER

For text encoder, we adopt pretrained text encoder from AttnGAN. This text encoder is used in all
the baselines reported in the paper. Therefore, for consistency, we also used AttnGAN text encoder
which is based on a bi-directional Long Short-Term Memory (LSTM). In the bi-directional LSTM,
each word corresponds to two hidden states, one for each direction. To represent the semantic
meaning of a word, they concatenate its two hidden states. The last hidden states of the bi-directional
LSTM are concatenated to be the global sentence vector. The hidden size of both embeddings is
equal to 256.
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Figure 8: Numpy-like pseudocode for attention-based word-level tensor modulation.
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6.6 DAMSM LOSS

DAMSM loss (Xu et al., 2018) is defined on top of Inception-v3 image model (Szegedy et al.,
2016), which is used to extract image features f ∈ R768×289 (reshaped from 768×17×17). 768 is
the dimension of the local feature vector, and 289 is the number of sub-regions in the image. These
features are then converted to a common semantic space of text features by adding an FC layer
v = Wf , u = W f , where vi is the visual feature vector for the ith sub-region of the image;
and u ∈ RD is the global vector for the whole image. We then calculate the similarity matrix for all
possible pairs of words in the sentence and sub-regions in the image.

s = eT v, (7)
where s is a similarity matrix between all word-region paris, si,j is the dot-product similarity be-
tween the ith word of the sentence and the jth sub-region of the image. We find that it is beneficial
to normalize the similarity matrix as follows

si,j =
exp(si,j)∑T−1

k=0 exp(sk,j)
. (8)

Then, region-context vector ci is defined as a representation of the image’s sub-regions related to the
ith word of the sentence. It is computed as the weighted sum over all regional visual vectors, i.e.,

ci =

288∑
j=0

αjvj , where αj =
exp(γ1si,j)∑288
k=0 exp(γ1si,k)

. (9)

Then, the relevance between the ith word and the image using the cosine similarity between ci and
ei, i.e., R(ci, ei) = (cTi ei)/(||ci||||ei||). The attention-driven image-text matching score between
the entire image (q) and the whole text description (d) is defined as

R(q, d) = log
( T−1∑

i=1

exp(γ2R(ci, ei))
) 1

γ2
, (10)

we used the default parameters in (Xu et al., 2018).

The DAMSM loss is finally defined as
LDAMSM = Lw

1 + Lw
2 + Ls

1 + Ls
2. (11)

where

Lw
1 = −

M∑
i=1

logP (di|qi),Lw
2 = −

M∑
i=1

logP (qi|di), (12)

where ‘w’ stands for “word”, where P (qi|di) = exp(γ3R(qi,di))∑M
j=1 exp(γ3R(qj ,di))

is the posterior proba-

bility that sentence di is matched with its corresponding image qi. If we redefine Eq. 10 by
R(q, d) =

(
vT e

)
/
(
||v||||e||

)
and substitute it to Eq. 13 and 12, we can obtain loss functions Ls

1
and Ls

2 (where ‘s’ stands for “sentence”) using the sentence vector e and the global image vector v.
The DAMSM loss is designed to learn the attention model in a semi-supervised manner, in which the
only supervision is the matching between entire images and whole sentences (a sequence of words).
Similar to (Fang et al., 2015; Huang et al., 2013), for a batch of image-sentence pairs {(qi, di)}Mi=1,
the posterior probability of sentence di being matching with image ai is computed as

P (Di|Qi) =
exp(γ3R(Qi, Di))∑M
j=1 exp(γ3R(Qi, Dj))

, (13)

where γ3 is a smoothing factor determined by experiments. In this batch of sentences, only di
matches the image qi, and treat all other M − 1 sentences as mismatching descriptions. The loss
function is defined as as the negative log posterior probability that the images are matched with their
corresponding text descriptions (ground truth), as shown in Eq. 12.

6.7 ABLATIONS FOR RANK VALUES

We experimented with different ranks to produce modulating tensor (e.g. R = 1, 3, 5, 10), and found
that for discrete-based generator, R = 1 is enough to achieve good results. Increasing the rank value
did not contribute to the improvement of performance but rather increased parameter sizes.
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Model DAMSM-R ↑ CLIP-R ↑ FID ↓
DM-GAN 75.89% 45.07% 16.09
DF-GAN 39.05% 28.39% 14.81
HyperC-SGsent

DAMSM 28.53% 19.07% 11.72
HyperC-SGword

DAMSM 68.53% 21.45% 15.02

HyperCGANsent
DAMSM 44.15% 26.94% 38.66

HyperCGANword
DAMSM 52.28% 30.51% 11.00

Table 7: T2I Performance of HyperCGAN models on CUB (Wah et al., 2011).

Methods COCO 2562 ArtEmis 2562 CUB 2562

Nearest 30.86 26.87 17.69
Bilinear 29.84 28.06 16.84
Bicubic 28.73 26.52 16.18
HyperCGAN 27.61 23.78 15.42

Table 8: Super-resolution Synthesis comparison on FID scores. In this setting, we trained models
on downsampled 1282 images and generate 2562 resolution images without changing architecture
or finetuning.

6.8 ADDITIONAL RESULTS ON CUB DATASET

We performed additional experiments where we trained our models on CUB dataset and compared
to recent baselines (DF-GAN, DM-GAN). In Table 7, the results indicate that our models achieve
the best FID and comparable CLIP-R scores.

6.9 OUT-OF-THE-BOX SUPERRESOLUTION GENERATION

In this setting, we conduct out-of-the-box generation in a training efficiency manner naturally in-
herited from INR-based model. We first train our model on downsampled images (128 × 128) and
perform 256× 256 generation during inference either with classical interpolation methods or taking
advantage of INR-based model’s merits. This means our model can generate higher resolution im-
ages without modifying any architecture or finetuning, by just adjusting to a more denser coordinate
grid. Table 8 show that our model outperforms standard upsampling techniques on all datasets. See
Figure 9 for qualitative results.

Figure 9: Qualitative comparison between classical interpolation techniques and our model.
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6.10 GENERATING HIGH RESOLUTION IMAGES (COCO)

a house being built with lots of wood a laptop computer sits on a 
computer desk next to a mouse

a batter backs up as the ball is thrown

a man holding a fully topped 
pizza in front of the camera

soccer players are running after the 
ball together

a plane is flying high in the very cloudy sky

Figure 10: High-resolution generations (1024x1024) from our HyperC-SGs trained on COCO.
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Model COCO 2562 ArtEmis 2562 CUB 2562

AttnGAN (Xu et al., 2018) 81.52% 78.68% 67.82%
ControlGAN (Li et al., 2019) 82.43% 78.75% 69.33%
DM-GAN (Zhu et al., 2019) 88.56% 93.54% 75.89%
XMC-GAN (Zhang et al., 2021) 69.75% 34.37% 47.22%
DF-GAN (Tao et al., 2022) 55.85% 52.38% 39.05%
HyperCGANword

DAMSM 70.24% 22.04% 52.28%
HyperCGANword

CLIP 53.06% 34.48% 27.15%

Real Images 22.22% 23.87% 20.00%

Table 9: DAMSM-R Metric Limitations (comparison among T2I models). Previous works heav-
ily skew to DAMSM-R compared to real images for COCO (Zhang & Schomaker, 2020), CUB (Park
et al., 2021) and ArtEmis.
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