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ABSTRACT

Following the investigation that protein sequence determines its structure and
function, engineering protein sequences allows us to optimize the functions of
proteins for specific purposes such as enhancement of catalytic activity or binding
affinity maturation. In protein engineering, there are many cases where the amino
acids in the middle of a protein sequence are changed while maintaining the re-
maining residues to avoid unwanted functional changes from remaining residues.
However, existing research on protein sequence design via protein language mod-
els (pLMs) has focused on modifying suffix residues by prompting prefix residues
to the model or mutating the overall sequence residues. This is unsuitable for
scenarios where the residues located in the middle of the sequence are to be op-
timized. In this work, we suggest a pLM-based framework to solve the fill-in-
middle (FIM) protein engineering tasks. To evaluate the performance of pLMs
on the FIM tasks, we design a novel evaluation scheme where pLMs are tasked to
generate new sequences while maintaining the secondary structures. Also, we pro-
pose a new PROTein language model specialized for the Fill-In-Middle task, Prot-
FIM. Experiments confirm that ProtFIM performs FIM engineering efficiently,
especially for alpha-helix structures, and provides decent protein representations
of sequence-function relationships. Finally, we demonstrate an artificial protein
sequence design framework composed of ProtFIM and a high-quality structure
predictor as a novel tool to optimize protein sequences.

1 INTRODUCTION

Proteins play a crucial role in various parts of biological processes, and the ensemble of diverse
functioning proteins is the basis of life’s activities, such as immune response and metabolism. Such
essential and versatile functions of proteins are encoded in protein sequences which are the arrange-
ment of amino acid residues. The sequences determine their structures via complex biophysical
interactions between residues and these structures are directly linked to the functions of proteins.
Thus, optimizing the protein’s function by changing amino acid residues of protein of interest, called
protein engineering, has been of great interest in diverse industries such as biofuel (Wen et al., 2009),
pharmaceuticals (H Tobin et al., 2014), and agriculture (Rao, 2008).

One of the representatives of protein sequence design methods is a mutagenesis technique, which
gives evolutionarily plausible candidate protein sequence libraries with the help of genetic engineer-
ing (Arnold, 1998). However, this approach requires substantial efforts in high-throughput screen-
ing experiments. Recently, machine learning-guided protein sequence design strategies have been
proposed to achieve a more efficient sequence space search using experimentally acquired labeled
data (Yang et al., 2019a).

With both advances in high-throughput sequencing technologies and language modeling in the field
of natural language processing (NLP), protein language models (pLMs), which are trained in an
unsupervised manner using tremendous sets of unlabeled protein sequences (Consortium, 2019),
have been developed for generating de novo protein sequence (Madani et al., 2020; Hesslow et al.,
2022; Moffat et al., 2022; Ferruz et al., 2022; Nijkamp et al., 2022). Existing generative pLMs
are trained using an auto-regressive (AR) strategy (Radford et al., 2019; Brown et al., 2020), and
generate sequences conditioning on the prefix protein sequences. Unfortunately, if the target region
where we want to change amino acid residues is located at the front, existing pLMs uses only
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Figure 1: An illustrative example of FIM protein engineering. The changed sequences for the target
region are generated by generative pLMs or the like, and the structures are altered accordingly.

a few preceding amino acid residues (“prompts”) for sequence generation. The interaction sites,
positions that interact with other proteins or molecules to perform their functions and are mainly
modified to improve functionality, are evenly located on the protein sequence. To prove this, we
collect 3D protein structures from Protein Data Bank (PDB) database (Sussman et al., 1998) and
calculate the relative positions of protein-protein interaction sites on the protein sequences (see
details in Appendix A.1). As illustrated in Figure 5, interacting sites are evenly present on the protein
sequence. This result suggests that in protein engineering, modifying the amino acid sequence will
be done for the middle part of the sequence in many cases. In this case, existing pLMs may not
effectively utilize the information behind them, which can result in poor quality of generation.

In this work, we regard the middle protein engineering as a fill-in-middle (FIM) sequence gener-
ation problem as in Figure 1 and investigate the possibility of pLMs in FIM protein engineering
framework. With the emergence of highly accurate protein structure predictors (Jumper et al., 2021;
Baek et al., 2021), protein structures are predicted very quickly and accurately with a low cost. Us-
ing these advances, we propose a new evaluation scheme, Secondary structurE InFilling rEcoveRy,
SEIFER, for FIM protein sequence generation. The secondary structures are usually desirable to be
preserved (Rubio et al., 2019) since the binding pockets of other interacting proteins or molecules
are fixed to some extent. In SEIFER, models are tasked to recommend protein sequences and achieve
two conditions: the new sequences must be different from the original sequences and their secondary
structures must be fully maintained. So, SEIFER can assess both the diversity and structure of new
sequences simultaneously and we believe that SEIFER is suitable for assessing generated sequences
in the field of protein engineering which modifies the amino acid residues of original sequences to
improve functions. Also, inspired by the latest research in the field of language models (Bavarian
et al., 2022b), we propose a new Protein language model specialized for the Fill-In-Middle task,
ProtFIM. Compared to existing pLMs, our proposed ProtFIM use both front (“prefix”) and back
(“suffix”) sequence information during training and inference.

Through SEIFER evaluation, we show that ProtFIM can generate diverse sequences while main-
taining secondary structure, especially for α-helix. Furthermore, ProtFIM outperforms when engi-
neering on residues positioned in the front part of a protein sequence compared to existing pLMs,
proving that the FIM training is more suitable for FIM engineering compared to AR pLMs. Finally,
through analysis and visualization, we prove that ProtFIM has decent representations of protein se-
quences and can serve as a sequence optimization tool accompanied by AlphaFold2. In summary,
our contributions are:

• We define FIM protein engineering as protein sequence infilling tasks and provide the ap-
plicability of protein language models on the task.

• We propose a new evaluation scheme, SEIFER, that can be used to evaluate the perfor-
mance of pLMs on protein infilling sequence design tasks by considering structural con-
servation. Through this evaluation, we find that existing AR pLMs are capable of sequence
design having α-helix structure.

• We propose a new type of pLM, ProtFIM, that has both AR and FIM capability. Compre-
hensive results show that ProtFIM has efficient and comparable performances in protein
infilling and protein representations for protein engineering compared to other pLMs.
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• We show that the ProtFIM acts as a sequence optimizer, which generates novel sequences
with high pLDDT of AlphaFold2 while maintaining the structures essential for the function
of the protein.

2 RELATED WORK

Protein language models Pretraining-based language modeling such as Transformer (Vaswani
et al., 2017), BERT (Devlin et al., 2018), and GPT (Ferruz et al., 2022) have revolutionized natural
language processing and shown remarkable performance on various tasks such as language under-
standing, sentence generation, and infilling over the last few years. With a huge increase in the
amount of unlabeled protein sequences (Consortium, 2019) produced by high throughput sequenc-
ing technologies, pLMs have been introduced and resolved the challenges in protein science and en-
gineering by learning protein languages. BERT-style models primarily provide protein embeddings
to solve prediction problems, including protein structure prediction (Rao et al., 2020; Jumper et al.,
2021; Lin et al., 2022), function prediction (Brandes et al., 2022), and property prediction (Rives
et al., 2021). GPT-style architectures are utilized in resolving generation challenges such as protein
sequence design (Madani et al., 2020; Hesslow et al., 2022; Moffat et al., 2022; Ferruz et al., 2022;
Nijkamp et al., 2022).

Protein sequence design Attempts to efficiently design protein sequences can be divided into two
categories: a method for conducting a large number of high-throughput experiments with mutagen-
esis and a machine learning-based sequence generation method. Recent advances in experimental-
based methods (Fowler & Fields, 2014) allow us to assess the functional changes of mutated pro-
tein sequences at a large scale and produce a lot of labeled data. Many machine learning-based
sequence design methods generate the optimized sequences iteratively based on the feedback of la-
beled data (Yang et al., 2019a; Xu et al., 2020; Wu et al., 2021; Shin et al., 2021). Unfortunately,
both approaches require a lot of cost and effort in experiments. Recently, several works generate
protein sequences conditioned on given 3D structures using a single energy function (Alford et al.,
2017), convolutional neural networks (Zhang et al., 2020; Qi & Zhang, 2020), graph neural net-
works (Ingraham et al., 2019; Jing et al., 2020; Strokach et al., 2020; Dauparas et al., 2022), or
Transformers(Hsu et al., 2022). Since these works require 3D coordinate information to generate
sequences, generation may be limited only to areas where high-quality structures exist. Also, in
these works, CATH (Orengo et al., 1997) is used to evaluate how similar the generated sequences
are to the original sequence. This evaluation method may not be suitable for protein engineering,
which aims to change the sequence to have a better function. In parallel, generative pLMs such
as RITA (Hesslow et al., 2022), DARK (Moffat et al., 2022), ProtGPT2 (Ferruz et al., 2022), and
Progen2 (Nijkamp et al., 2022) have been developed. These generative pLMs generate protein se-
quences having well-folded and viable structures even though these methods do not employ any
structural information. However, due to the nature of the AR model itself, these methods utilize
only the preceding sequence information during sequence generation. Our proposed ProtFIM has
both AR and FIM property, resulting in efficient FIM protein engineering.

3 METHOD

Problem Setup In NLP, infilling is defined as generating complete text x given incomplete text
x̃, including one or more missing spans. Similarly, we can regard protein engineering on middle
residues as an infilling task where models are tasked to return new protein sequences s given in-
complete protein sequence s̃ containing missing residues on the target region. Additionally, in the
protein infilling task, there is a special structure conservation constraint where the secondary struc-
ture of the target site is maintained to approximate the protein engineering scenario properly. Taken
together, our goal is to develop a pLM, f(s̃;θ), which outputs complete protein sequence s based on
a distribution p(s|s̃) and sequence s must have different residues while having the same secondary
structure as that of original residues.

3.1 MODEL REQUIREMENTS

We suggest four key characteristics of pLMs suitable for protein infilling tasks as follows:
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• Dynamic property: The model can handle various lengths of protein sequences because the
lengths of the middle sites are diverse depending on various applications.

• Causal modeling: Previous studies reveal that AR pLMs have data-driven co-evolutionary
rules across natural protein sequences and generate plausible sequences that tend to be
well-folded. So, pLMs which have both AR and infilling capability would be optimal.

• Efficiency: Various strategies, such as pre-processing training data, modifying the model
architecture, and using special tokens for controlling, can be used. However, these ap-
proaches must be fulfilled as efficiently as possible because protein sequence length is
relatively long (we use the maximum length of residues as 1024 in this work).

• Diversity: Because there are many combinations giving the same secondary structures,
pLMs which generate diverse sequences different from existing sequences are preferred.

To achieve the above characteristics, we adopt the idea of FIM transformation, which is a very
recently proposed FIM causal language modeling strategy by Bavarian et al. (2022a). The following
section explains how to develop FIM pLMs and generate protein sequences using the model.

3.2 MODEL DEVELOPMENT

FIM training In FIM transformation, a span of text from the middle of a whole sentence is moved
to its end, and additional special tokens are introduced for marking where spans are from. The trans-
formation is stochastically fulfilled during causal language modeling training. Intriguingly, this sim-
ple and straightforward transformation successfully gives fill-in-the-middle (FIM) capability to the
model without modifying model architecture and sacrificing left-to-right causal generation capacity.
The transformation is easily applied to protein sequence modeling as follows. First, we tokenize
each residue R of a protein sequence S with length N to the sequence consisting of corresponding
tokens T (see eqn. 1 and 2).

S = (R1, R2, ..., RN ) (1)

St = (T1, T2, ..., TN ) (2)

Second, we conduct uniform sampling to get the start position K of the middle span of length L and
add special tokens [PRE], [MID], and [SUF] at the beginning of each prefix, middle, and suffix part,
respectively. Finally, FIM-transformed sentences are created by concatenating prefix, suffix middle
in order as eqn. 3.

S
′

t = ([PRE], R1, ..., RK−1, [SUF ], RK+L+1, ..., RN , [MID], RK , ..., RK+L) (3)

Because several residues are needed to form a secondary structure, the middle residue sampling
is conducted so that both prefix and suffix parts have at least four residues. The traditional GPT2
architecture from Hugging Face (Wolf et al., 2019) is used for training, and FIM transformation is
applied to the input with a 50% frequency. We denote pLMs trained using FIM transformation as
ProtFIM in this work. More details are written in Appendix A.4.

FIM inference for middle residue engineering For generating complete sequences in protein
infilling tasks, we consider the target region as the middle part, and the front and back regions to the
target region are prefixes and suffixes. Then, we make a prompt for FIM generation by concatenating
prefix part, suffix part, and [MID] token as eqn. 4.

P
′

t = ([PRE], R1, ..., RK−1, [SUF ], RK+L+1, ..., RN , [MID]) (4)

4 EXPERIMENTS

Section 4.1 illustrates our proposed evaluation scheme, SEIFER, specially designed for protein in-
filling tasks. Section 4.2 describes metrics and various baseline models covering representative
language modeling approaches such as causal language modeling (CLM) and permutation language
modeling (PLM). Section 4.3 includes evaluation results of SEIFER tasks. Then, section 4.4 and 4.5
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Figure 2: Illustration of our SEIFER evaluation scheme, which estimates the recovery rates of the
secondary structures of the generated structure for the original secondary structure.

provide ablation studies of the SEIFER task concerning relative position and length of target re-
gion. Additionally, other metrics for evaluating pLMs, such as perplexity and sequence recovery,
are provided in AppendixA.6.

4.1 EVALUATION

Protein secondary structure Protein secondary structures play a key role as an intermediate be-
tween the primary sequences and functional tertiary structures that determines the function of pro-
teins in a variety of biological process. Therefore, designing properly optimized combinations of
residues having the same secondary structures can lead to enhanced function of protein (Rubio et al.,
2019). Protein secondary structures are categorized into regular and irregular categories. First, the
regular structure includes α-helix (H), β-sheet (E) (Pauling et al., 1951), and the irregular structure
type is a coil (C). In this work, we adopt a 3-class secondary structure definition and those structures
are calculated via DSSP (Kabsch & Sander, 1983).

Protein secondary structure recovery via infilling In this work, we propose a new evaluation
scheme, Secondary structurE InFilling rEcoveRy, called SEIFER, evaluating the sequence genera-
tion and structure conservation simultaneously. In the task, first, models are tasked to generate var-
ious sequences to fill the provided target sites. Since secondary structures are calculated based on
three-dimensional structural information, the characterization of tertiary protein structures for each
generated sequence must be preceded. Unfortunately, conducting experimental characterization on
all the new sequences is practically impossible. Instead of this, we utilize Alphafold2 (Jumper et al.,
2021), which has shown near-experiments prediction performance, to predict tertiary structures of
all generated sequences. Then, secondary structures of each new sequence are calculated via DSSP
algorithm using DSSP module of Biopython (Cock et al., 2009). Finally, the secondary structures
of new sequences are compared to the original secondary structures. We assign a positive value,
1, on the case where all new residues have the same secondary structure as the original sequences.
And all other cases are negative, 0. We illustrate the process of SEIFER in Figure 2. We use pro-
teins presented in CASP14 to obtain candidate middle sites for SEIFER tasks. And, we argue that
our experimental setting is reliable because AlphaFold2 was stringently assessed and proved by re-
markable prediction performance on the proteins in the CASP14. Additionally, we use the middle
sites, which have minimum lengths of 10, 6, and 6 for helix, beta, and coil structures, respectively,
considering the average number of residues for the structures.

Difference of SEIFER over protein residue recovery task Sequence recovery has been widely
used to evaluate the generation performance of protein generative language models (Ingraham et al.,
2019). However, considering that the objective of sequence optimization is to design new sequences
with better target properties, recovery of original residues would not be proper. So, a metric is
needed to evaluate whether the model can generate a variety of sequences while maintaining the
function of the protein. Because the function of protein is directly linked to local structure, evalu-
ating the model ability that generates different residues with the same local structure is a promising
way. So, we argue that our proposed SEIFER tasks are appropriate for simulating sequence engineer-
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ing scenarios, because in SEIFER tasks models are tasked to recover the protein’s local structure,
especially, secondary structures, not residues.

4.2 EXPERIMENTAL SETUP

Baseline We compare our ProtFIM with other pLMs covering diverse generation strategies.

• ProGPT2-C: To prove the effect of FIM over AR in protein engineering, we train AR-based
pLMs using the same data, hyperparameters, and the number of parameters compared to
ProtFIM. It is similar to the previous AR model, ProtGPT2 (Ferruz et al., 2022), but our
model is trained in the amino acid level. Thus, we name the amino acid residue-level
(character-level) version of ProtGPT as ProtGPT2-C.

• ProGen2: ProGen2 (Nijkamp et al., 2022) is a concurrently released suite of AR pLMs
with various parameters.

• ProtXLNet: XLNet(Yang et al., 2019b) can protein sequences using prefix and suffix in-
formation. Like FIM, sequences of target sites are generated auto-regressively with con-
ditioning on bidirectional context from both the prefix and suffix. We borrow the publicly
released ProtXLNet model, a variant of XLNet for protein (Elnaggar et al., 2022).

• Random generator: This generator is used to approximate the random mutagenesis tech-
nique, error-prone PCR (McCullum et al., 2010), which is still commonly used in protein
engineering (Dror et al., 2014).

Evaluation metrics SEIFER measures how many sequences with the same secondary structure
exist among new sequences created by a generative model. It is like a retrieval or recommendation
engine for protein sequences. In the SEIFER task, all models generate K sequences for N middle
sites, and all sequences are evaluated by whether the whole secondary structures at each target site
are recovered. If the whole secondary structures are recovered, it is a true positive (TP). Then,
Precision@K is the mean of TP/K for N sites. Also, we use Retrieval@K, which assumes a posi-
tive case where any true positive sequence exists in generated K sequences, zero otherwise. Thus,
Retrieval@K is (the number of sites having TP among K)/N.

4.3 EXPERIMENTAL RESULTS ON SEIFER TASKS

As shown in Table 1 and 2, all pLMs have better performance than the random generator in he-
lix structure recovery in views of both retrieval and precision. These results describe that pLMs
are promising tools to fill in middle residues of target protein during protein engineering on he-
lix structure. In contrast, all pLMs perform similarly or worse than the random generator in the
β-sheet and coil recovery. To investigate the result, we check the distribution of secondary struc-
tures for the proteins with known structures by calculating the distribution of secondary structures
in proteins from PDB (details are described in AppendixA.2). Figure 6a and 6b illustrate 3-classes
and 4-classes secondary structure distribution, showing that the α-helix structures are dominant in
natural protein structures. This empirical result is consistent with the widely known observation in
the protein community. We conjecture that this imbalance gives unwanted α-helix bias in existing
protein sequence datasets. Additionally, the coil usually has unordered noisy structures. Taking the
above facts together, it is possible to say that the similar or worse performances of pLMs in β-sheets
and coil cases are reasonable because helix bias makes it models hard to learn the rules of generating
residues consisting of the coil and β-sheet.

Meanwhile, we compare ProtFIM over ProtGPT2-C to see the effectiveness of FIM compared to
CLM. As shown in each table’s fifth and sixth rows, ProtFIM performs better than ProtGPT2-C
in helix recovery. Because both models are trained using the same data, hyperparameters, and the
number of parameters except for the utilization of fill-in-middle transformation, these results support
that conditioning on both prefixes and suffixes during generation is essential for better sequence
design for protein engineering.

We also compare ProtFIM with other pLMs, such as ProGen2 and ProtXLNet. XLNet is another
possible model which is able to fill-in-middle protein engineering using both the prefix and suffix.
It is found that ProtXLNet shows strong performance in α-helix compared to the similar scale of
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Table 1: Model performances on SEIFER tasks in terms of retrieval.

Model #Params Objective H (α-helix) E (β-sheet) C (Coil)
R@3 R@5 R@3 R@5 R@3 R@5

Random Generator - - 0.46 0.60 0.76 0.82 0.76 0.80
ProGen2-small 151M CLM 0.59 0.71 0.67 0.64 0.69 0.80
ProGen2-medium 764M CLM 0.54 0.66 0.69 0.79 0.70 0.79
ProGen2-large 2.7B CLM 0.59 0.64 0.70 0.79 0.69 0.82
ProtXLNet 409M PLM 0.61 0.69 0.66 0.75 0.66 0.76
ProtGPT2-C 85M CLM 0.58 0.66 0.71 0.79 0.69 0.74
ProtFIM (ours) 85M FIM 0.57 0.71 0.74 0.82 0.74 0.81

Table 2: Model performances on SEIFER tasks in terms of precision.

Model #Params Objective H (α-helix) E (β-sheet) C (Coil)
P@3 P@5 P@3 P@5 P@3 P@5

Random Generator - - 0.25 0.25 0.49 0.47 0.47 0.45
ProGen2-small 151M CLM 0.32 0.32 0.45 0.43 0.47 0.48
ProGen2-medium 764M CLM 0.31 0.32 0.45 0.47 0.49 0.47
ProGen2-large 2.7B CLM 0.36 0.34 0.44 0.45 0.50 0.51
ProtXLNet 409M PLM 0.37 0.36 0.42 0.42 0.49 0.49
ProtGPT2-C 85M CLM 0.31 0.31 0.48 0.47 0.45 0.45
ProtFIM (ours) 80M FIM 0.31 0.32 0.45 0.46 0.48 0.48

models, such as ProGen2-small and ProGen2-large. These results prove that sequence design needs
to be conducted using the surrounding context of target sites. On the other hand, our proposed
ProtFIM shows comparable performance in term of retrieval and competitive performances in term
of precision compared to other larger models by 2-20 times. These results show that the FIM scheme
is parametrically efficient for protein middle engineering tasks.

4.4 PERFORMANCE WITH REGARD TO THE POSITION OF TARGET REGION

We start with an assumption that previous AR pLMs would be weak in FIM protein engineering
because the sequence generation of AR pLMs is fulfilled by conditioning on only prefixes residues.
To verify whether this phenomenon occurs, we ablate the SEIFER performance concerning the
relative position of the target middle sites. After dividing each protein sequence into four parts, the
α-helix recovery performances of each model corresponding to each part are averaged and illustrated
in Figure 3a and Figure 7a. Interestingly, in the first part (front part), only two models, ProtFIM and
ProtXLNet, which consider both prefix and suffix part outperforms the random generator, while
AR models such as ProtGPT2-C and ProGen-series do not. These results prove our assumption
empirically.

Additionally, the fact that ProtFIM outperforms ProtXLNet in the front part shows the effectiveness
of the FIM training scheme because ProtFIM has five times fewer parameters. Meanwhile, it is found
that PLMs are generally better than the random generator in other parts, supporting the effectiveness
of pLMs on protein middle engineering. In addition, it can be seen that the model’s performance
is not uniform over positions. We think that it is due to the lack of an evaluation dataset because
the number of used CASP proteins is 28. However, since the models are compared under the same
conditions, the insight obtained from the performance comparison in the experiments is reliable.

4.5 PERFORMANCE WITH REGARD TO LENGTH OF TARGET REGION

We can see that the random generator shows comparable performances to pLMs in several tests in
the above results. To investigate this phenomenon, we ablate the SEIFER performances according to
the length of the middle sites. We partition the range of lengths into four parts, and plot correspond-
ing averaged Recall@K and Precision@K as in Figure 3b and Figure 7b. Interestingly, the random
generator performs similarly to pLMs in the first quarter (short length size). However, the perfor-

7



Under review as a conference paper at ICLR 2023

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 1.0]
Relative Position Bins

0.3

0.4

0.5

0.6

0.7

0.8

R@
3

ProtFIM
ProtGPT2-C
Random

ProGen2-small
ProGen2-medium

ProGen2-large
ProtXLNet

(a)

(10, 20] (20, 30] (30, 40] (40, 50]
Length Bins

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R@
3

ProtFIM
ProtGPT2-C
Random

ProGen2-small
ProGen2-medium

ProGen2-large
ProtXLNet

(b)

Figure 3: Performance changes in the term of retrieval with regard to (a) relative positions and (b)
length of middle sites.

mance of the random generator drastically drops as the length of the target sites becomes longer, and
it fails all predictions when the middle sites are longer than 30.

Meanwhile, the performance of pLMs degrades gradually and fails at the last part, where the middle
sites are longer than 40. All the results imply that the length of the middle sites is the main factor for
model performance. We explain this using the degree of freedom on possible protein structures of
target middle sites. Since the high-dimensional interactions between amino acids make the structure
of the protein, the structure is determined to some extent by the structural context from other residues
except residues of the middle sites. In other words, the degree of freedom in the structure of the
middle sites is relatively small due to the non-target residues. Considering that any amino acid
is a building block of a α-helix, β-sheet, and coil structure, even if the amino acid is randomly
sampled, there will be a high probability of obtaining the desired original structure in FIM scenarios.
Meanwhile, the observation that pLMs still work at the longer middle sites shows that pLMs would
be a promising solution for long FIM protein sequence design, giving efficient sequence search
compared to random generator.

5 ANALYSIS AND VISUALIZATION

Table 3: Zero-shot fitness prediction on FLIP tasks. All scores are Spearman correlation.

Model #Params Objective AAV GB1 Meltome Meta Avg.

ESM-1b (mean) 750M MLM 0.36 0.34 0.71 0.47
ESM-1v (mean) 750M MLM 0.33 0.38 0.72 0.48
ProGen2-small 151M CLM 0.39 -0.21 0.56 0.25
ProGen2-medium 764M CLM 0.18 -0.11 0.59 0.22
ProGen2-large 2.7B CLM 0.41 0.24 0.68 0.44
ProtXLNet 409M PLM 0.33 0.29 0.47 0.36
ProtGPT2-C 80M CLM 0.40 0.18 0.53 0.37
ProtFIM 80M FIM 0.39 0.25 0.60 0.41

5.1 REPRESENTATION QUALITY

Collecting experimental functional properties of protein sequence gives insights into a sequence-to-
function relationship called fitness landscape. In protein engineering, the fitness landscape is used
to rank designed sequences. To this end, pLMs can provide sequence representation for fitness pre-
diction. Recently, FLIP benchmarks have been introduced to assess the quality of representations of
pLMs (Dallago et al., 2021). Using FLIP, we compare the embeddings of ProtFIM with baselines.
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Figure 4: (a) Cumulative density plot on pLDDT change and (b) an example of a case where pLDDT
increases or decreases after protein sequence design via ProtFIM.

Additionally, ESM-1b and 1v (Rao et al., 2020) are added to compare FIM with masked language
modeling (MLM). In FLIP, embeddings of sequences are directly used to predict fitness without
fine-tuning pLMs. For a fair comparison, embeddings are obtained via averaging of all residue rep-
resentations. Table 3 shows that ProtFIM has comparable zero-shot fitness prediction performance
even if the ProtFIM capacity is multiple times smaller than other models. This result implies that
the embeddings of ProtFIM are effective for both FIM protein engineering and zero-shot fitness
prediction. Detailed scores are included in Appendix A.8.

5.2 PLDDT CHANGE AND VISUALIZATION

AlphaFold2 gives a per-residue confidence metric called the predicted local distance difference test
(pLDDT) ranging from 0 to 100. Recently, several works have used the metric as a scoring criterion
to assess designed protein sequence by assuming that the higher pLDDT, the better and more plau-
sible structure (Moffat et al., 2022; Wang et al., 2022). To assess the FIM engineering performance
of models in terms of pLDDT, we visualize the difference between pLDDT of the structure of both
new sequences and the corresponding original sequence using a cumulative density plot. Figure 4a
reveals that positive cases where pLDDT increases after FIM engineering are rare for all models,
but pLMs have more chance to get sequences with higher pLDDT. We cherry-pick a protein and
visualize the original structure and modified structures through ProtFIM as shown in Figure 4b. The
new two sequences of middle sites are different from the original sequences, but all have α-helix. In-
terestingly, in-depth visualization considering the side-chain unveils the subtle difference, resulting
in well or poorly-optimized sequences. All the above results demonstrate that our model, with the
help of AlphaFold2, can serve as a sequence design framework, which optimizes the target sequence
while maintaining the structures essential for the protein’s function.

6 CONCLUSION

In this work, we show the FIM protein sequence design framework via pLMs and propose a new
protein language model, ProtFIM, which is specialized for the framework. By evaluating various
models via our proposed new evaluation scheme, SEIFER, ProtFIM performs FIM protein sequence
design efficiently compared to existing pLMs. Additional analysis and visualization also prove that
ProtFIM is a promising tool for practical protein engineering such as fitness prediction and sequence
optimization.
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A APPENDIX

A.1 INTERACTION SITES EXTRACTION
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Figure 5: Relative positions of the interacting sites on the protein sequences.

We download 3D protein structures from PDB database (Sussman et al., 1998) and extract protein
structures satisfying several conditions: having more than two protein chains; having UniProt ID
and a length of the entire sequence in mmCIF dictionaries from MMCIF2Dict module of Biopy-
thon (Cock et al., 2009). We hypothesize that the two residue pairs of two different chains would be
involved in the interaction if any atom excluding hydrogen of the residues were at a Euclidean dis-
tance of 8Å or less. Then, we identify all residues which are likely to be involved in the interactions
and find where these residues are located on the entire protein sequence.

A.2 SECONDARY STRUCTURE STATISTICS

We analyze the secondary structures of 166,512 structures that can be processed through a DSSP
module of Biopython. Biopython classifies the secondary structures as eight classes by default:
alpha helix (4-12) (code: ‘H’), isolated beta-bridge residue (code: ‘B’), strand (code: ‘E’), 3-10
helix (code: ‘G’), pi helix (code: ‘I’), turn (code: ‘T’), bend (code: ‘S’), and none (code: ‘-’). In
our study, The eight classes are mapped to the three classes as follows: ‘H’, ‘G’, and ‘I’ are mapped
to the α-helix class ‘H’; ‘B’ and ‘E’ are mapped to the β-sheet class ‘E’; ‘T’, ‘S’, ‘C’, and ‘-’ are
mapped to the coil class ‘C’. In addition, in Figure 6b, ‘-’ is displayed separately.

Figure 6a and 6b show that α-helix substructures are dominant in natural proteins, meaning im-
balance. Furthermore, coil structures have rules that are difficult to capture. Therefore, the model
trained using the existing natural protein database would be familiar with the α-helix generation.
Therefore, a preprocessing or encoding technique that can alleviate the α-helix bias can be a good
research topic in the future.
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Figure 6: Secondary structure distribution of proteins in PDB database. H, E, C, and - correspond to
α-helix, β-sheet, coil, and none-type. (a) describes 3-classes secondary structure distribution. And,
because coil can be divided into two categories, the coil and none-type structure in DSSP algorithm,
we can calculate 4-classes distribution as shown in (b).

A.3 TRAINING DATASETS

For training, protein sequences from UniRef50(Suzek et al., 2015) dated March 28, 2018 version
are used to avoid leakage of CASP13, 14 and conduct a fair comparison with other models. 5%
of protein sequences in the UniRef50 are randomly selected as a held-out validation set. The total
number of sequences in training data is 25M.

A.4 TRAINING DETAILS

ProtFIM is trained with a batch size of 128. The maximum length of each protein sequence we used
for training is 1024. For ProtFIM optimization, we use AdamW optimizer Kingma & Ba (2014);
Loshchilov & Hutter (2017) with a weight decay ratio of 1e-5. The learning rate is scheduled using
cosine-warmup strategy. The total optimization step is 500k with 1k warmup steps. We train the
model on 8 NVIDIA A100s in 4 days. FIM transformation is applied with 50% of probability.
The model consists of 12 layers with a feature dimension of 768. The architecture is based on the
released GPT2-base model by HuggingFace (Wolf et al., 2019).

A.5 GENERATION HYPER-PARAMETERS

We conduct sequence generation using HuggingFace generation API. Th topK and topP values are
set to 100 and 0.95. We set the temperature as 1.0. After sequence generation, we select top-K
sequences. If shorter sequences are generated compared to the length of middle sites, we increase
topK by 10 and conduct generation until K sentences are collected. We use the default option of
HuggingFace API for other hyper-parameters. These hyper-parameters and generation processes are
applied on ProtFIM, ProtGPT2, and ProGen2 models for a fair comparison. Also, we use ProtXLNet
to generate sequences of target sites auto-regressively with conditioning on bidirectional context
using topK sampling as other AR models.

A.6 PERPLEXITY AND SEQUENCE RECOVERY

We also add other evaluation metrics, such as perplexity and sequence recovery rates, which are
widely used for evaluating language models in inverse folding. Table 4 shows the result of perplexity
and sequence recovery rates. ProtFIM performs poorly in terms of perplexity and sequence recovery
rates. In the FIM paper (Bavarian et al., 2022b), some experiments find that perplexity alone is
insufficient for evaluating the infilling task because infilling is conducted in a somewhat different
nature compared to conventional left-to-light generation as expressed like PFIM (M | P, S) >
PAR(M | P ) where P, M, S indicate prefix, middle, and suffix part, respectively.
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Figure 7: Performance changes in the metric of Precision@3 with regard to relative positions and
length of middle sites.

Additionally, our targeted infilling task aims to design various sequences in the presence of local
structure constraints considering the surrounding context, which is quite different from restoring
residues as much as possible. So, there needs to be an appropriate evaluation scheme simulating
protein middle engineering tasks that change amino acid residues of local parts of the protein to
optimize the target protein, such as enzymes and antibodies. So, sequence residue recovery rate, a
widely used metric to evaluate models’ sequence design performance, is insufficient for the protein
infilling task. Based on the above results and descriptions, we argue that our proposed SEIFER tasks
are more appropriate for evaluating protein infilling tasks than existing metrics such as perplexity
and sequence recovery rates.

Table 4: Perplexity and sequence recovery rates

Model #Params Objective Perplexity (↓) Recovery rate (%) (↑)
ProGen2-small 151M CLM 16.88 8
ProGen2-medium 764M CLM 16.17 10
ProGen2-large 2.7B CLM 16.24 9
ProtXLNet 409M PLM 16.58 8
ProtGPT2-C 80M CLM 17.08 8
ProtFIM 80M FIM 17.04 9

A.7 PRECISION@K WITH REGARD TO POSITION AND LENGTH

Table 7a and 7b include ablation studies of SEIFER performance in term of precision according to
relative positions and length of target sites in a protein.

A.8 FLIP

Table 5, 6, and 7 contain the zero-shot fitness prediction performances of various pLMs on three
fitness landscapes.
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Table 5: Zero-shot fitness prediction on adeno-associated virus (AAV) capsid proteins (Bryant et al.,
2021). All scores are Spearman correlation.

Model #Params Objective Mut-Des Des-Mut 1-vs-rest 2-vs-rest 7-vs-rest low-vs-high Avg.

ESM-1b (mean) 750M MLM 0.63 0.59 0.04 0.26 0.46 0.18 0.36
ESM-1v (mean) 750M MLM 0.55 0.44 0.18 0.16 0.45 0.20 0.33
ProGen2-small 151M CLM 0.38 0.53 0.39 0.47 0.43 0.14 0.39
ProGen2-medium 764M CLM 0.19 0.25 0.14 0.30 0.22 0.00 0.18
ProGen2-large 2.7B CLM 0.68 0.67 0.33 0.20 0.42 0.13 0.41
ProtXLNet 409M PLM 0.55 0.58 0.21 0.02 0.42 0.20 0.33
ProtGPT2-C 80M CLM 0.59 0.66 0.24 0.34 0.41 0.16 0.40
ProtFIM 80M FIM 0.53 0.56 0.32 0.24 0.44 0.28 0.39

Table 6: Zero-shot fitness prediction on adeno-associated virus GB1 landscape (Wu et al., 2016).
All scores are Spearman correlation.

Model #Params Objective 1-vs-rest 2-vs-rest 3-vs-rest low-vs-high Avg.

ESM-1b (mean) 750M MLM 0.32 0.36 0.54 0.13 0.34
ESM-1v (mean) 750M MLM 0.32 0.32 0.77 0.10 0.38
ProGen2-small 151M CLM -0.27 -0.30 -0.26 -0.03 -0.21
ProGen2-medium 764M CLM -0.06 -0.16 -0.12 -0.10 -0.11
ProGen2-large 2.7B CLM 0.19 0.28 0.44 0.06 0.24
ProtXLNet 409M PLM 0.18 0.33 0.44 0.21 0.29
ProtGPT2-C 80M CLM 0.02 0.05 0.44 0.20 0.18
ProtFIM 80M FIM 0.01 0.18 0.63 0.18 0.25

Table 7: Zero-shot fitness prediction on landscape from the Meltome Atlas (Jarzab et al., 2020). All
scores are Spearman correlation.

Model #Params Objective Mixed Human Human-Cell Avg.

ESM-1b (mean) 750M MLM 0.68 0.70 0.75 0.71
ESM-1v (mean) 750M MLM 0.67 0.75 0.74 0.72
ProGen2-small 151M CLM 0.46 0.63 0.59 0.56
ProGen2-medium 764M CLM 0.49 0.66 0.62 0.59
ProGen2-large 2.7B CLM 0.67 0.70 0.66 0.68
ProtXLNet 409M PLM 0.44 0.52 0.47 0.47
ProtGPT2-C 80M CLM 0.49 0.55 0.54 0.53
ProtFIM 80M FIM 0.51 0.66 0.63 0.60
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