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Abstract

Random projections are a cornerstone of high-dimensional computations. However,
their analysis has proven both difficult and inadequate in capturing the empirically ob-
served accuracy. To bridge this gap, this paper studies random projections from a novel
perspective, focusing on data-dependent, that is, non-oblivious, performance.

The key contribution is the precise and data-dependent accuracy analysis of Rademacher
random projections, achieved through elegant geometric methods of independent interest,
namely, Schur-concavity. The result formally states the following property: the less spread-
out the data is, the better the accuracy. This leads to notable improvements in accuracy
guarantees for data characterized by sparsity or distributed with a small spread.

The key tool is a novel algebraic framework for proving Schur-concavity properties,
which offers an alternative to derivative-based criteria commonly used in related studies.
We demonstrate its value by providing an alternative proof for the extension of the cele-
brated Khintchine inequality.

Keywords: Johnson-Lindenstrauss Lemma; Rademacher Chaos; Random Projections;
Schur-convexity; Concentration Inequalities.

1. Introduction

1.1. Background and Motivation

The seminal result of Johnson and Lindenstrauss (1984) set a milestone in high-dimensional
data analysis, demonstrating that random linear projections are perfect embeddings: they
compress almost isometrically, mapping data into a much smaller dimension while guar-
anteeing low distortion of distances. Remarkably, this feature comes with precise proba-
bility guarantees, which enabled applications to a range of problems and areas, including
nearest-neighbour search Kleinberg (1997), clustering Dasgupta (1999); Cohen et al. (2015);
Makarychev et al. (2022), outlier detection Aouf and Park (2012), ensemble learning Can-
nings and Samworth (2017), adversarial machine learning Vinh et al. (2016), feature hashing
in machine learning Jagadeesan (2019), numerical linear algebra Sarlos (2006); Cohen et al.
(2015); Clarkson and Woodruff (2017), convex optimization Zhang et al. (2013), differential
privacy Blocki et al. (2012), neuroscience Ganguli and Sompolinsky (2012) and numerous
others; for a comprehensive literature review we refer the reader to the recent survey Freksen
(2021). The long-line of research Frankl and Maehara (1988); Indyk and Motwani (1998);
Achlioptas (2003); Ailon and Chazelle (2006); Matoušek (2008); Dasgupta et al. (2010);
Kane and Nelson (2014); Jagadeesan (2019); Skorski (2022, 2021); Skorski et al. (2022) has
established various accuracy guarantees in the form of accuracy-confidence bounds

∥Φx∥ ≈ ∥x∥ with high probability, (1)
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where an appropriately sampled random matrix Φ ∈ Rm×n represents the projection of an
n-dimensional vector x to m dimensions (m≪ n is desired), and the relative approximation
error in (1) is referred to as distortion.

All of the mentioned prior bounds were input-oblivious, that is independent of the data
structure. However, empirical study in Venkatasubramanian and Wang (2011) has shown
that existing accuracy bounds, although proven nearly optimal in worst-case scenarios, do
not fully explain the performance observed on real data. While non-oblivious bounds are
very useful, it is necessary to link the performance to actual data to bridge the aforemen-
tioned gap between theory and practice. Therefore, it is both interesting and scientifically
important to address the following problem:

Give precise and non-oblivious accuracy analysis of random projections.

As for related work, little is known about non-oblivious accuracy of random projections.
Extensive experiments Venkatasubramanian and Wang (2011); Fedoruk et al. (2018) high-
light the gap, but didn’t provide a pathway towards understanding the root cause. Some
theoretical studies have suggested that theoretical overestimation may be partly attributed
to neglecting the relative positions of data points, particularly the angles between vectors
Kaban (2015), but assumed arbitrary structure of individual points. Very recently, Skorski
(2022) found that the theoretical performance of sparse random projections improves a bit
when inputs are described in non-euclidean, Renyi-entropy related, distances; these results
are however of rather qualitative nature, as they were established asymptotically with crude
constants and for statistically suboptimal variants of random projections.

1.2. Contributions

This paper addresses the posed problem by providing a detailed analysis of the statistical
accuracy of Rademacher random projections. These projections, which utilize scaled ±1
random matrices, were established as dimension-optimal in a strict sense by Burr et al.
(2018). Notably, other popular variants of random projections have been shown to be
significantly less accurate1. The paper makes the following novel contributions:

Non-oblivious and numerically optimal bounds. The presented bounds, for the first
time, relate the accuracy to input structure, specifically to the spreadness. The more spread-
out the input data is, the heavier the distribution of distortion becomes, and the worse
the statistical guarantees are. As a particular case, we characterize the best performance
on sparse data. These bounds are discussed in Section 3.1, and formally establish that
stochastic moments of the projection distortion are Schur-concave with respect to the input.

Geometric insights via Schur-concavity framework. The novelty of the proposed
approach, in the context of prior work on random projections, lies in its utilization of
Schur-concavity—a tool for optimizing objectives by relating changes in input spreadness.
This technique is discussed in detail in Section 3.2. Furthermore, as an application of this
framework, the paper provides an elegant proof of the celebrated Khintchine inequality.

1. For instance, the known guarantees for the dimension of sparse projections are a constant factor away
from this optimal result, as demonstrated in Kane and Nelson (2014).
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Supplementary experiments. The project repository at GitHub2 hosts the empirical
results and code that reproduces the analysis.

1.3. Organization

The remainder of the paper is organized as follows: Section 2 introduces notation and
technical notions used throughout the paper; then Section 3 overviews novel results of this
paper, Section 4 presents numerical evaluation, Section 5 presents proofs, and Section 6
concludes the work. The paper is completed by the supplementary material available from
the repository. The full version of this work is also available on arXiv3.

2. Preliminaries

We start by recalling some basic concepts from probability theory, algebra, combinatorics
and optimization.

Throughout the paper we work with standard probability distributions: normal, bi-
nomial, and Rademacher; sampling from these distributions is denoted as usual by ∼
Norm(µ, σ2), ∼ Binom(n, k) and ∼ {−1, 1} respectively.

Vector norms used in this paper are the Euclidean norm denoted by ∥ · ∥ and the norm
∥ · ∥0 that counts the number of non-zero components; we also say that x is ℓ-sparse when
ℓ = ∥x∥0, for example, x =

(
1
4 ,

1
4 ,

1
4 , 0
)
is 3-sparse.

Partitions represent a positive integer q as a sum of positive integers. A non-increasing
and non-negative sequence λ is a partition of q, denoted as λ ⊢ q, when

∑
i λi = q; in

the frequency notation distinct parts are assigned frequencies, so that λ = 1f1 . . . qfq where∑
i ifi = q. For example, we have λ = 122 = (2, 1, 1) ⊢ 4.

Monomial symmetric functions for a given partition λ = (λ1, . . . , λk) ⊢ q are defined
as the sum of all distinct monomials with exponent λ, that is mλ(x) =

∑
i1,...,ik

xλ1
i1
· · ·xλk

ik

where i1, . . . , ik and monomials xλ1
i1
· · ·xλk

ik
are distinct. For example,m(2,1,1,1)(x1, x2, x3, x4) =

x21x2x3x4 + x1x
2
2x3x4 + x1x2x

2
3x4 + x1x2x3x

2
4.

Elementary symmetric polynomials are defined as ek(x) =
∑

i1<...<ik
xi1xi2 · · ·xik . Both

monomial and elementary symmetric polynomials form a basis of symmetric polynomials.
For more details, we refer to the monographs Alexandersson (2020).

The majorization order on n-dimensional vectors is defined as follows: we say that x
dominates y, denoted by y ≺ x, if for their non-increasing rearrangements (x↓i ) and (y↓i )

we have the inequality
∑k

i=1 x
↓
i ⩾

∑k
i=1 y

↓
i for k = 1, . . . , n with equality when k = n;

equivalently, y can be produced from x by a finite sequence of Robin-Hood operations which

replace xi > xj by xi ← xi − ϵ, xj ← xj + ϵ for ϵ ∈
(
0,

xi−xj

2

)
. Intuitively, x dominating y

means that x is less spread-out, or more dispersed, compared to y. For example, we have(
1
4 ,

1
4 ,

1
4 ,

1
4

)
≺
(
1
3 ,

1
3 , 0,

1
3

)
(the transformation takes 3 Robin-Hood transfers).

The Schur-convexity of a function f : Rn → R is the following property: x ≺ y implies
f(x) ⩽ f(y); we speak of Schur-concavity when the inequality is reversed. Schur-convex or
Schur-concave functions are necessarily symmetric; a symmetric function is Schur-convex if

2. https://github.com/maciejskorski/NonobliviousRademacherProjections
3. https://arxiv.org/abs/2303.11774

https://github.com/maciejskorski/NonobliviousRademacherProjections
https://arxiv.org/abs/2303.11774
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(
∂f
∂xi
− ∂f

∂xj

)
(xi − xj) ⩾ 0 (Schur-Ostrowski criterion). For example, power sums

∑
i x

q
i for

q ⩾ 1 are Schur-convex. For more on majorization and Schur-convexity we refer to Arnold
and Sarabia (2018); Shi and Technology (2019).

We define the moment domination of a random variable Y over X, denoted as X ≺m Y ,
by requiring EXq ⩽ EY q for all positive integers q. In particular, it implies that MGF of
Y dominates the MGF of X, the majorization in the Lorentz stochastic order Arnold and
Sarabia (2018).

Rademacher chaos is understood as a quadratic form in Rademacher random variables,
as usually in probability theory Boucheron et al. (2003).

For assessing statistical accuracy, variants of Johson-Lindenstrauss Lemma are de-
veloped for fixed input. Technically, this is referred to as the Distributional Johnson-
Lindenstrauss Lemma Freksen (2021); performance on many points {xi, . . . , xn) can be
reduced to study the performance on pairwise differences x = xi − xj .

3. Results

3.1. Main Result

In Theorem 1 below, we provide the promised numerically sharp, non-oblivious and geo-
metrically insightful bounds for Rademacher random projections, defined by the matrix

Φk,i =
1√
m
rk,i, rk,i ∼IID {−1,+1}. (2)

In the particularly interesting case of sparse inputs, we obtain more explicit formulas in-
volving binomial distributions.

Theorem 1 (Sharp Moment Bounds for Rademacher Random Projections) Let
Φ be sampled according to the Rademacher scheme (2), and define the distortion as

E(x) ≜
∥Φx∥2

∥x∥2
− 1. (3)

Then the following holds true:

(a) The moments of E(x) are Schur-concave symmetric polynomials in (x2i )

(b) E(x) is moment-dominated by E∗ defined as

E∗ =
1

m

m∑
i=1

(Z2
i − 1) (4)

where Zi are standardized binomial r.v.s.:

Zi ∼IID B −EB√
Var[B]

, B ∼ Binom

(
∥x∥0,

1

2

)
. (5)

Equivalently,

EE(x)q ⩽ EEq
∗ (6)

holds for q = 2, 3, . . . with equality when all components of the input x are equal.
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Remark 2 (Distortion variants) Consistently with the literature, we upper-bound E(x) =
∥Φx∥2/∥x∥2−1 which is tractable and also yields an upper bound on ∥Φx∥/∥x∥−1, because
of the inequality |e− 1| ⩽

√
e2 − 1 valid for non-negative e.

Remark 3 (Distortion concentration) Majorization by E∗, which is a sum of indepen-
dent zero-mean r.vs, implies that E(x) ≈ 0, equivalently ∥Φx∥ ≈ ∥x∥, with high probability.

The first part of Theorem 1 establishes that the more spread-out the input vector, the
higher the moments, resulting in a heavier distortion tail and consequently worse accuracy
in (3); Schur-concavity is used to precisely capture how much the input is spread-out /
dispersed. While this allows for comparing the performance between different points, the
second result captures the worst-case performance by input sparsity (the higher sparsity,
the better); bounds are stated in terms of moment majorization by explicit distributions,
and therefore can be converted into concrete probability tails with Markov’s inequality.

Author Result

Burr et al. (2018) maxxP[|E(x)| > ϵ] ⩾ 2 exp
(
−mϵ2(1+o(1))

4 )
)
when m≫ ϵ−2, n≫ 1

Achlioptas (2001) P[|E(x)| > ϵ] ⩽ 2 exp
(
−mϵ2

4

(
1− 2

3ϵ
))

this paper E(x) ≺m

∑m
i=1 Z

2
i −1

m , Zi ∼IID B−EB√
Var[B

, B ∼ Binom
(
∥x∥0, 12

)
Table 1: Bounds from Theorem 1 compared with the best prior bounds Achlioptas (2001)
and the sharp no-go results Burr et al. (2018). Our bounds imply those from prior work by
standard ”normal majorization” arguments.

The presented result is numerically optimal and captures input sparsity. It should be
compared against the bounds from Achlioptas (2001) and the no-go result from Burr et al.
(2018), as illustrated in Table 1. To see that our bounds are better than those in Achlioptas
(2001), it suffices to use the Gaussian majorization argument to obtain a weaker bound

E(x) ≺m

∑m
i=1(N

2
i −1)

m where Ni are independent standard normal random variables, and use
known sub-gamma tail bounds for chi-square distributions (for example, those developed in
the monograph on concentration inequalities by Boucheron et al. (2003)). On sparse inputs,
our bounds improve confidence by a constant factor, as shown by the empirical evaluation
discussed in Section 4.

We now briefly overview the proof of Theorem 1 (see Figure 1): it starts by a reduction
to the non-normalized distortion and the dimension m = 1, and writing the distortion as
a Rademacher chaos of order 2; we then find extreme values of its moments geometrically,
by means of Schur optimization. Finally, these extreme values can be found explicitly and
efficiently by linking them to binomial moments.

3.2. Techniques: Proving Schur Convexity

We present a useful framework for proving Schur convexity properties. It makes repeated
use of few auxiliary facts to eventually reduce the task to a 2-dimensional problem. This is
often easier than the classical approach of evaluating derivative tests.
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Distortion E(x) = ∥Φx∥2/∥x∥2 − 1

Distortion E(x) = ∥Φx∥2 − ∥x∥2

Distortion E(x) = ∥Φx∥2 − ∥x∥2 for m = 1

Rademacher chaos: E(x) =
∑

i ̸=j xixjrirj for m = 1

Flat vectors x yield heaviest moments/tail bounds

Explicit formula for Rademacher chaos on flat vectors

normalization

averaging IID

rewritting

Robin-Hood (Schur) optimization

combinatorial identities

Figure 1: The proof roadmap for Theorem 1.

Theorem 4 Non-negative Schur-convex (or concave) functions form a semi-ring.

Lemma 5 A multivariate function is Schur-convex (respectively, Schur-concave) if and
only if it is symmetric and Schur-convex (respectively, Schur-concave) with respect to each
pair of variables.

To demonstrate the usefulness of these facts, we sketch an alternative proof of a re-
fined version of celebrated Khintchine’s Inequality, due to Efron. This refinement plays an
important role in statistics, namely in proving properties of the popular Student-t tests.

Corollary 6 (Refined Khintchine Inequality Efron (1968)) The mapping

x→ E

(∑
i

xiri

)q

is a Schur-concave function of (x2i ). Consequently, for σ = ∥x∥2 we have

E

(
n∑

i=1

xiri

)q

⩽ E

(
σ√
n

n∑
i=1

ri

)q

⩽ ENorm(0, σ2)q.

Proof The symmetry with respect to (xi) is obvious. Applying the multinomial ex-
pansion to (

∑
i xiri)

q, taking the expectation and using the symmetry of Rademacher
random variables, we conclude that E(

∑
i xiri)

q is a symmetric polynomial in variables
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(x2i ) with non-negative coefficients. By Lemma 5, it suffices to prove the Schur-concavity
property for x21, x

2
2. By the binomial formula and the independence of r1, r2 from (ri)i>2,

we see that E(
∑

i xiri)
q =

∑
k

(
q
k

)
E(
∑

i>2 xiri)
q−k · E(x1r1 + x2r2)

k is a combination
of expressions E(x1r1 + x2r2)

k with coefficients ck =
(
q
k

)
E(
∑

i>2 xiri)
q−k that are inde-

pendent of x1, x2 and non-negative due to the symmetry of ri. By Theorem 4, it suf-
fices to prove that Fk ≜ E(x1r1 + x2r2)

k is a Schur-concave function of x21, x
2
2. Define

Gk ≜ E(x1r1 + x2r2)
kx1x2r1r2. By (x1r1 + x2r2)

k = (x1r1 + x2r2)
k−2(x21 + x22 +2x1x2r1r2)

we have Fk = (x21+x22)Fk−2+2Gk−2 and Gk = (x21+x22)Gk−2+2x21x
2
2Fk−2. Since x

2
1+x22 and

x21x
2
2 are both Schur-concave in x21, x

2
2, the Schur-concativity property of Fk, Gk is proven

when it is proven for k := k − 2. By mathematical induction, it suffices to realize that
F0 = 1, F1 = 0, G1 = 1, G2 = x21x

2
2 are Schur-concave in x21, x

2
2.

Let 1n be the vector of n ones. The first inequality follows then by
∑n

i=1 x
2
i

n · 1n ≺
(x21, . . . , x

2
n), and is clearly sharp. Since 1

n+11n+1 ≺ 1
n1n0, the Schur-concavity implies

that E(
∑n

i=1 ri/
√
n)q increases with n; the second inequality follows by the Central Limit

Theorem: first we see that
∑n

i=1 ri/
√
n converges to Norm(0, 1) in distribution, then we

apply the extended CLT due to Bernstein (see for instance Hall (1978)) which guarantees
also the convergence of moments, as maxiErqi < +∞.

3.3. Techniques: Rademacher Chaoses

Of independent interests are the techniques used in this work. The first result analyses the
quadratic Rademacher chaos geometrically. It is similar in the spirit of the results of Efron
(1968) and Eaton (1970), which however concern only a first-order Rademacher chaos.

Theorem 7 (Schur-concavity of Rademacher Chaoses) Let (ri) be a sequence of in-
dependent Rademacher random variables. Then the Rademacher chaos moment

Rq(x) ≜ E

∑
i ̸=j

xixjrirj

q

(7)

is a Schur-concave function of (x2i ) for every positive integer q.

The second result is a recipe for explicitly computing the extreme moment values:

Theorem 8 (Extreme moments of Rademacher Chaos) For any x and K = ∥x∥0
the following holds:

Rq(x) ⩽ Rq(x
∗), x∗ =

(
∥x∥2√
K

, . . . ,
∥x∥2√
K

)
︸ ︷︷ ︸

K times

, (8)

and furthermore the explicit value of this bound equals

Rq(x
∗) = ∥x∥2q2 ·EB̄(B̄

2 − 1)q, (9)

where B̄ = B−K/2√
K/4

standardizes the symmetric binomial distribution with K trials B.
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4. Numerical Comparison

To validate our findings, we performed experiments on synthetic and real-world data, as
detailed below. More results, along with the code, are available from the GitHub repository.

Figure 2(a) and Figure 2(b) demonstrate numerical improvements, highlighting that the
input dispersion is important: random projections are seen less distorted when input data
are less dispersed / more sparse. This is further illustrated on Hamlet quotes in Figure 3.

2 5 10 15 20

100

102

104

106

108

∥x∥0

m
ax

x
R

q
(x
)

q = 4
q = 6
q = 8
q = 10

(a) Distortion moments vs data dispersion

5 · 10−2 0.1 0.15 0.2 0.25

10−7

10−5

10−3

10−1

ϵ

b
o
u
n
d
on

P
[|E

(x
)|
>

ϵ]

new(ℓ = 10)

new(ℓ = 20)

new(ℓ = 50)

Achlioptas (2001)

(b) Distortion tail

Figure 2: (a) The more spread-out the input (controlled by sparsity ∥x∥0), the more dis-
torted the projected output (captured by Rq(x), the Rademacher chaos moment). Utilizing
the input dispersion improves probability bounds by orders of magnitude. Note: for normal-
ization, we assume ∥x∥2 = 1. (b) Capturing input-sparsity (ℓ = ∥x∥0) improves the bounds
on Rademacher random projections, as demonstrated by distortion probability tails.

0 1

10−5

10−4

10−3

10−2

10−1

100

ϵ

P
[|E

(x
)|
>

ϵ]

”To be, or not to be: that is the question:”
”Therefore, since brevity is the soul of wit,”
”O, what a rogue and peasant slave am I!”

”[Aside] Though this be madness, yet there is method”
”There are more things in heaven and earth, Horatio,’”

Figure 3: Performance of random embeddings of dimension 10, measured by distortion tails,
applied to the famous quotations from Hamlet. The corpus was preprocessed with TF-IDF.
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Figure 4: Distortion, shown as probability tails, measured on various datasets.

5. Proofs

5.1. Proof of Theorem 4

Consider two non-negative functions f, g and inputs x ≺ y. Consider the identity

f(y)g(y)− f(x)g(x) = (f(y)− f(x)) · g(y) + f(x) · (g(y)− g(x)). (10)

If f, g are Schur-convex then f(y)− f(x) ⩾ 0 and g(y)− g(x) ⩾ 0 and the whole expression
is non-negative when f, g are non-negative. This shows that f · g is also Schur-convex. The
claim for Schur-concave functions follows analogously (the expression is then non-positive).

5.2. Proof of Lemma 5

The proof follows from the fact that x is dominated by y if and only if x can be produced
from y by a sequence of Robin-Hood operations, and the fact that Robin-Hood operations
change only two fixed components of vectors.

5.3. Proof of Theorem 7

Proof Note that Rq is a polynomial in x2i with integer coefficients, and thus a well-defined
function of (x2i ). This follows by applying the multinomial expansion and noticing that
monomials with odd exponents have expectation zero due to the symmetry of Rademacher
distribution. Rq is obviously symmetric. By Lemma 5 it now suffices to validate the Schur-
concavity for x21, x

2
2 and any fixed choice of (xi)j>2. Define the following expressions

P =
∑

i ̸∈{1,2}

xiri, R =
∑

i,j ̸∈{1,2}

xixjrirj , (11)
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then our task is to prove the Schur-concavity of the function

Rq ≜ E (P (x1r1 + x2r2) + x1x2r1r2 +R)q , (12)

with respect to x21, x
2
2.

By the multinomial expansion we find that

Rq ≜
∑

q1+q2+q3=q

(
q

q1, q2, q3

)[
E [P q1Rq3 ] E [(x1r1 + x2r2)

q1(x1x2r1r2)
q2 ]

]
, (13)

where we used the independence of r1, r2 on (ri)i>2 and thus also on P,R. Observe that
P q1Rq3 is, by definition and our assumption xi ⩾ 0, a polynomial in symmetric random
variables ri with non-negative coefficients. This observation shows that

E [P q1Rq3 ] ⩾ 0, (14)

and by Theorem 4 it suffices to prove that

F ≜ E [(x1r1 + x2r2)
q1(x1x2r1r2)

q2 ] (15)

is Schur-concave as a function of x21, x
2
2 for any non-negative integers q1, q2.

To see that F is indeed a well-defined function of x21, x
2
2, note that it equals the expec-

tation of a polynomial in the symmetric random variables yi = xiri; thus only monomials
with even-degrees contribute, and the result is a polynomial in y2i = x2i . In fact, F equals
the sum of even-degree monomials in the expanded polynomial (x1 + x2)

q1(x1x2)
q2 .

We next observe that

F =

{
(x1x2)

q2E [(x1r1 + x2r2)
q1 ] q2 even

(x1x2)
q2−1E [(x1r1 + x2r2)

q1x1x2r1r2] q2 odd.
(16)

Note that x1x2 is Schur-concave in non-negative x1, x2; indeed, the identity (x1+ϵ)(x2−ϵ) =
x1x2 + ϵ(x2 − x1 − ϵ) shows that Robin-Hood transfers increase the value. By Theorem 4
we conclude that (x1x2)

k is Schur concave in x21, x
2
2 for non-negative even k. Thus, by

Equation (16) and Theorem 4 we conclude that it suffices to consider the case q2 = 1, that
is, to prove the Schur-concavity of the following two functions:

Gk ≜ E
[
(x1r1 + x2r2)

k
]

(17)

Hk ≜ E
[
(x1r1 + x2r2)

kx1x2r1r2

]
, (18)

with respect to x21, x
2
2, for any non-negative integer k.

Using the identity (x1r1+x2r2)
k = (x1r1+x2r2)

k−2(x21+x22+2x1x2r1r2), which follows
as r21 = r22 = 1, we obtain the following recurrence relations

Gk = (x21 + x22)Gk−2 + 2Hk−2 (19)

Hk = 2x21x
2
2Gk−2 + (x21 + x22)Hk−1, (20)
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valid for k ⩾ 2. Since x21 + x22 and x21x
2
2 are Schur-concave as functions of x21, x

2
2, by

Theorem 4 the concavity property proven for k − 2 implies that it is valid also for k. By
induction, it suffices to verify the case k = 0 and k = 1. But we see that

G0 = 1

G1 = 0

H0 = 1

H1 = 2x21x
2
2

(21)

are all Schur-concave as functions of x21, x
2
2. This completes the proof.

5.4. Proof of Theorem 8

Without loss of generality, we assume that ∥x∥2 = 1. From Theorem 7 and the fact that
(x2i ) majorizes (x∗i

2) we obtain

max
∥x∥0⩽K

E

∑
i<j

xixirirj

q

= E

∑
i<j

x∗ix
∗
i rirj

q

= E

 1

K

∑
1⩽i<j⩽K

rirj

q

,

(22)

Observe that ri = 1 − 2bi where (bi) is a sequence of independent Bernoulli random
variables with parameter 1

2 . Therefore,

E

(
K∑
i=1

ri

)q

=(a)
∑
k∈Z

kq ·P

{
K∑
i=1

ri = k

}

=(b)
∑
k∈Z

kq ·P

{
K∑
i=1

bi =
K − k

2

}

=(c)
K∑
i=0

(K − 2i)q ·P
{
Binom

(
K,

1

2

)
= i

}

=(d) 1

2K

K∑
i=0

(
K

i

)
(K − 2i)q

=(e) 1

2K

∑
i

(
K

i

)
(−K + 2i)q,

(23)

where in (a) we use the fact that
∑

i ri takes integer values, (b) follows by the identity

ri = 1 − 2bi, (c) follows by Binom(K, 1/2) ∼
∑K

i=1 bi, (d) uses the explicit formula on the
binomial probability mass function, and finally in (e) we substitute i := K − i and use the
symmetry of binomial coefficients

(
K
i

)
=
(

K
K−i

)
.



Skorski Temperoni

Using the above formula, we further calculate

E

 ∑
1⩽i ̸=j⩽K

rirj

q

=(a) E

( K∑
i=1

ri

)2

−
K∑
i=1

r2i

q

=(b)
∑
j

(
q

j

)
(−K)q−jE

(
K∑
i=1

ri

)2j

=(c) 1

2K

∑
i,j

(
q

j

)(
K

i

)
(−K + 2i)2j(−K)q−j

=(d) (−K)q

2K

∑
i

(
K

i

)(
1− (−K + 2i)2

K

)q

,

(24)

where (a) follows by the square sum completion, (b) follows by the binomial formula and
r2i = 1, (c) follows by Equation (23), and (d) is obtained by algebraic rearrangements.

Inserting Equation (23) into Equation (22), we arrive at

max
x:∥x∥0⩽K

E

 ∑
1⩽i ̸=j⩽K

xixjrirj

q

=
1

2K

K∑
i=0

(
K

i

)(
(−K + 2i)2

K
− 1

)q

. (25)

To simplify further, let Z ∼ Binom(K, 1
2)−

K
2√

K
4

be the standardization of the symmetric

binomial distribution. Denoting i ∼ Binom
(
K, 12

)
we have Z2 ∼ (i−K

2 )
2

K
4

= (−K+2i)2

K , and

we can rewrite Equation (25) as follows:

max
x:∥x∥0⩽K

E

 ∑
1⩽i ̸=j⩽K

xixjrirj

q

= EZ

(
Z2 − 1

)q
, (26)

which finishes the proof.

5.5. Proof of Theorem 1

We have to prove that for the distortion E(·) defined as in Equation (3) the following
inequality holds true:

E(x) ⩽ E(y), (y2i ) ≺ (x2i ). (27)

The proof goes through several reduction steps until Schur-concavity of few simple functions.
We first observe that it suffices to prove that the moments of the expression

x→ ∥Φx∥2 − ∥x∥2, (28)

are Schur-concavity with respect to (x2i ). Indeed, since (y2i ) ≺ (x2i ) implies ∥x∥2 =
∑

i x
2
i =∑

i y
2
i = ∥y∥2, we have EE(x)q ⩽ EE(y)q if and only if E(∥Φx∥2 − ∥x∥2)q ⩽ E(∥Φy∥2 −

∥y∥2)q, by the definition of E.
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We first prove that the distortion of m-dimensional projections is the average of m IID
distortions of 1-D projections. Observe that

∥Φx∥2 − ∥x∥2 =
m∑
k=1

(
(Φkx)

2 −E(Φkx)
2
)
, (29)

where Φk is the k-th row of Φ; this follows by E(Φkx)
2 =

∑
i x

2
iVar[Φk,i] =

1
m∥x∥

2. Fur-
thermore, the summands in (29) are independent and identically distributed:

(Φkx)
2 −E(Φkx)

2 ∼ 1

m

∑
i ̸=j

xixjrirj . (30)

Then we note that the Schur-concativity test can be done on the 1-D case. This follows
because, due to the multinomial expansion applied to Equation (30), the q-th moment of
m-dimensional distortion is a multivariate polynomial in 1-D distortion moments of order
k ⩽ q, with non-negative coefficients; the distortion moments are themselves non-negative,
and by Theorem 4 and Theorem 7 we obtain the first part of the theorem.

Finally, applying Theorem 8 proves the second part.

6. Conclusions

This work revisits the performance analysis of Rademacher random projections, connecting
the statistical guarantees with the input structure as quantified by spreadness and, as
a special case, sparsity. The main result of this paper proves Schur-concavity property
for distortion moments, which makes the bounds numerically sharp and data-aware (non-
obliviuos), while giving a geometric perspective to the performance of the projections. We
benchmarked our bounds both theoretically and empirically by measuring the distortion
of the projected vectors against the original input data. As a result, dense projections
are preferred, and they work incredibly well with sparse input data. We believe that our
findings are of broader interest for a variety of statistical-inference applications.

Acknowledgments

The authors thank the anonymous referees of the conference ACML’24 for detailed and con-
structive feedback. The first author acknowledges the financial support from the University
of Warsaw, under the program ”Excellence Initiative – Research University (2020-2026)”.

References

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
274–281, 2001.

Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of computer and System Sciences, 66(4):671–687, 2003.



Skorski Temperoni

Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 557–563, 2006.

Per Alexandersson. The symmetric functions catalog. 2020. URL https://www.

symmetricfunctions.com.

Mazin Aouf and Laurence AF Park. Approximate document outlier detection using random
spectral projection. In Australasian Joint Conference on Artificial Intelligence, pages
579–590. Springer, 2012.

B.C. Arnold and J.M. Sarabia. Majorization and the Lorenz Order with Applications in Ap-
plied Mathematics and Economics. Statistics for Social and Behavioral Sciences. Springer
International Publishing, 2018. ISBN 9783319937731. URL https://books.google.pl/

books?id=ibhmDwAAQBAJ.

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The Johnson-Lindenstrauss
transform itself preserves differential privacy. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 410–419. IEEE, 2012.
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