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Figure 1: OmniSync demonstrates universal lip synchronization capabilities, effectively handling
facial occlusion, while maintaining visual consistency and generating accurate lip movements.

Abstract

Lip synchronization is the task of aligning a speaker’s lip movements in video with
corresponding speech audio, and it is essential for creating realistic, expressive
video content. However, existing methods often rely on reference frames and
masked-frame inpainting, which limit their robustness to identity consistency, pose
variations, facial occlusions, and stylized content. In addition, since audio signals
provide weaker conditioning than visual cues, lip shape leakage from the original
video will affect lip sync quality. In this paper, we present OmniSync, a universal
lip synchronization framework for diverse visual scenarios. Our approach intro-
duces a mask-free training paradigm using Diffusion Transformer models for direct
frame editing without explicit masks, enabling unlimited-duration inference while
maintaining natural facial dynamics and preserving character identity. During infer-
ence, we propose a flow-matching-based progressive noise initialization to ensure
pose and identity consistency, while allowing precise mouth-region editing. To ad-
dress the weak conditioning signal of audio, we develop a Dynamic Spatiotemporal
Classifier-Free Guidance (DS-CFG) mechanism that adaptively adjusts guidance
strength over time and space. We also establish the AIGC-LipSync Benchmark,
the first evaluation suite for lip synchronization in diverse AI-generated videos.
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Extensive experiments demonstrate that OmniSync significantly outperforms prior
methods in both visual quality and lip sync accuracy, achieving superior results in
both real-world and AI-generated videos.

1 Introduction
Lip synchronization, matching mouth movements with speech audio, is essential for creating com-
pelling visual content across film dubbing [47], digital avatars [30, 29, 50], and teleconferenc-
ing [23, 26]. With the rise of AI-generated content, this technology has evolved from a specialized
technique to a fundamental aspect of the video generation landscape [44, 32, 19]. Despite significant
advances in text-to-video (T2V) models [4, 2, 45, 15, 36] creating increasingly realistic footage,
achieving precise and natural lip synchronization remains an unsolved challenge.

Traditional lip synchronization approaches rely heavily on reference frames combined with masked-
frame inpainting [31, 47, 10, 9]. This methodology extracts appearance information from reference
frames to inpaint masked regions in target frames—a process that introduces several critical limitations.
These methods struggle with head pose variations, identity preservation, and artifact elimination,
especially when target poses differ significantly from references [28, 27].

Furthermore, the dependence on explicit masks cannot fully prevent unwanted lip shape leakage,
compromising synchronization quality and restricting applicability across diverse visual representa-
tions [1]. The challenges intensify in the context of audio-driven generation. Unlike strong visual
cues, audio signals provide relatively weak conditioning, making precise lip synchronization diffi-
cult [37]. Additionally, existing methods rely on face detection and alignment [3] techniques that
break down when applied to stylized characters and non-human entities, precisely the diverse content
that modern text-to-video models excel at generating.

This technical gap is compounded by the absence of standardized evaluation frameworks for lip sync
in stylized videos. Current benchmarks [48, 39] focus almost exclusively on photorealistic human
faces in controlled settings, failing to capture the visual diversity inherent in AI-generated videos.

To address these challenges, we introduce OmniSync, a universal lip synchronization framework
designed for diverse videos. Our approach eliminates reliance on reference frames and explicit masks
through a diffusion-based direct video editing paradigm. In addition, we establish AIGC-LipSync
Benchmark, the first comprehensive evaluation framework for lip synchronization across diverse
AIGC contexts. OmniSync’s technical approach is built upon three key innovations:

First, we implement a mask-free training paradigm using Diffusion Transformers (DiT) [25] for direct
cross-frame editing. Our model learns a mapping function (Vcd, Aab) 7→ Vab, where V represents
video frames and A represents audio. The indices (a : b, c : d) represent different segments sampled
from the same video. The model modifies only speech-relevant regions according to target audio
without requiring explicit masks or references. This approach enables unlimited-duration inference
while maintaining natural facial dynamics and preserving character identity.

Second, we introduce a flow-matching-based progressive noise initialization strategy during inference.
Rather than beginning with random noise [35], we inject controlled noise into original frames using
Flow Matching [18], then execute only the final denoising steps. This approach maintains spatial
consistency between source and generated frames while allowing sufficient flexibility for precise
mouth region modifications, effectively mitigating pose inconsistency and identity drift.

Third, we develop a dynamic spatiotemporal Classifier-Free Guidance (CFG) framework [12] that
provides fine-grained control over the generation process. By adaptively adjusting guidance strength
across both temporal and spatial dimensions: temporally reducing guidance strength as denoising
progresses, and spatially applying Gaussian-weighted control centered on mouth-relevant regions.
This balanced approach ensures precise lip synchronization without disturbing unrelated areas.

Our contributions can be summarized as follows:

• A universal lip synchronization framework that eliminates reliance on reference frames and
explicit masks, enabling accurate speech synchronization across diverse visual representa-
tions.

• A flow-matching-based progressive noise initialization strategy during inference, effectively
stabilizing the early denoising process and mitigating pose inconsistency and identity drift.
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• A dynamic spatiotemporal CFG framework that provides fine-grained control over audio
influence, addressing the weak signal problem in audio-driven generation.

• A comprehensive AIGC-LipSync Benchmark for evaluating lip synchronization in AI-
generated content, including stylized characters and non-human entities.

2 Related Work
2.1 Audio-driven Lip Synchronization

GAN-based Lip Synchronization. Traditional GAN-based [8] methods [31, 38, 6, 22, 11] have es-
tablished important foundations in lip synchronization. Wav2Lip [31] pioneered the use of pretrained
SyncNet to supervise generator training, setting a benchmark for subsequent research. DINet [47]
enhanced synchronization quality by performing spatial deformation on reference image feature
maps, better preserving high-frequency details. IP-LAP [49] introduced a two-stage approach that
first infers landmarks from audio before rendering them into facial images. ReSyncer [9] incorporated
3D mesh priors for facial motion, effectively reducing artifacts.

Diffusion-based Lip Synchronization. Recent advances in diffusion models [24, 46, 16, 21] have
enabled significant progress in audio-driven lip synchronization. LatentSync [16] represents an
end-to-end framework based on audio-conditioned latent diffusion models without intermediate
motion representation. SayAnything [21] employs a denoising UNet architecture that processes
video latents with audio conditioning. MuseTalk [46] proposes a novel sampling strategy that selects
reference images with head poses closely matching the target.

However, these methods still rely on reference frames combined with masked-frame inpainting,
leading to head pose limitations, identity preservation issues, and blurry edge generation. Our
OmniSync framework addresses these limitations through a mask-free training paradigm that enables
application across diverse visual representations.

2.2 Audio-driven Portrait Animation

Audio-driven portrait animation [35, 43, 14, 5, 13] differs fundamentally from lip sync. Portrait
animation [42, 7] follows an image-to-video framework without constraints on head poses or facial
expressions, eliminating the need to integrate generated content back into original video. This
approach is unsuitable for post-generation lip synchronization in video generation pipelines. In
contrast, lip synchronization [31, 16] operates within a video-to-video framework, modifying only lip
movements while maintaining compatibility with existing footage. This represents a more constrained
task, requiring precise modification of lip regions while preserving surrounding facial features.

Recent models like OmniHuman-1 [17] and Mocha [41] use audio directly as a conditioning signal
for image-to-video or text-to-video frameworks. However, due to limitations in talking head datasets,
their generative capabilities don’t match the versatility of advanced video generation models. This
gap highlights why specialized lip synchronization for AI-generated videos remains critical.

3 Method

3.1 Overview

In this section, we present OmniSync, a universal lip synchronization framework designed for diverse
visual content (Fig. 2). Our approach comprises three key components: 1) a mask-free training
paradigm that eliminates dependency on reference frames and explicit masks, 2) a flow-matching-
based progressive noise initialization strategy for enhanced inference stability, and 3) dynamic
spatiotemporal Classifier-Free Guidance (CFG) that optimizes lip sync while preserving facial details.
The following subsections provide comprehensive explanations of each component.

3.2 Mask-Free Training Paradigm

Traditional lip synchronization methods [31, 46] rely on masked-frame inpainting, isolating the mouth
region before generating content based on audio input. Despite their prevalence, these approaches
produce boundary artifacts and struggle with identity preservation. Crucially, they require explicit
face detection and alignment—techniques that fail with stylized characters and non-human entities.
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Figure 2: Overview of OmniSync. A mask-free training paradigm employs timestep-dependent
sampling to predict the lip-synchronized targets Vab. During inference, progressive noise initialization
and dynamic spatiotemporal CFG ensure consistent head pose and precise lip synchronization.

An alternative approach is direct frame editing, which aims to transform frames according to target
audio without relying on masks or references. However, this approach requires perfectly paired
training data with identical head poses and identity—differing only in lip movements. Such paired
data is extremely rare and would severely restrict the model’s generalizability to diverse visual results.

To address these limitations, we leverage the progressive denoising characteristic of diffusion models,
introducing a novel training strategy that varies data sampling based on diffusion timesteps. This
allows for stable learning without requiring perfectly paired examples. Our goal is to learn a
conditional generation process mapping (Vcd, Aab) 7→ Vab through iterative denoising, where V
represents video frames and A represents audio.

We employ Flow Matching [18] as our training objective. Given an input video segment Vcd

from frames c to d, and a target audio segment Aab from frames a to b, our model generates the
corresponding video segment Vab via the diffusion process:

xt−1 = DiT(xt, Vcd, Aab, t), (1)

where xt represents the noised version of target video Vab at timestep t, and DiT denotes our diffusion
transformer, which predicts the denoised state at timestep t− 1.

The CFM loss used for training is defined as:

LCFM (θ) = Et,xt,Vcd,Aab,Vab

[
∥vθ(xt, Vcd, Aab, t)− ut(xt|Vab)∥22

]
, (2)

where vθ(xt, Vcd, Aab, t) is the learned velocity field predicted by DiT with conditioning on input
video Vcd and target audio Aab, ut(xt|Vab) is the conditional velocity field typically defined as
ut(xt|Vab) = (Vab − xt)/(1− t) for the linear interpolation path xt = (1− t)x0 + tVab.

Timestep-Dependent Sampling Strategy. A critical insight in our approach is recognizing that the
diffusion process can be decomposed into distinct phases, each with different learning requirements.
Specifically, early timesteps focus on generating fundamental facial structure, including pose and
identity information; middle timesteps primarily generate lip movements driven by audio; while late
timesteps refine identity details and textures. To capitalize on this natural progression, we utilize
different datasets for distinct timesteps.

For early timesteps (approximately t ≈ T ), responsible for generating overall facial structure, we
employ pseudo-paired data from controlled laboratory settings. These samples maintain nearly
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identical pose information, with variations only in lip movements, providing stable learning signals
for structural features and ensuring pose alignment between input and output.

For middle and late timesteps, we transition to more diverse data, sampling from arbitrary videos.
During middle timesteps, the model learns to generate lip shapes guided by audio input, whereas
in late timesteps (approximately t ≈ 0), it focuses on refining identity details and ensuring texture
consistency. This timestep-dependent training strategy can be formalized as:

p(Vcd, Vab|t) =
{
ppseudo-paired(Vcd, Vab) if t > tthreshold,

parbitrary(Vcd, Vab) otherwise.
(3)

Here, ppseudo-paired indicates sampling from controlled datasets with minimal pose variations, while
parbitrary signifies sampling from our diverse collection of videos. The conditional generation process
can be expressed mathematically as:

pθ(Vab|Vcd, Aab) =

∫
pθ(Vab|x0)pθ(x0|Vcd, Aab)dx0, (4)

where pθ(Vab|x0) represents the mapping from the fully denoised state to the output video, and
pθ(x0|Vcd, Aab) captures the relationship between input conditions and the denoised state. Here, x0

refers to the completely denoised latent representation (at timestep t = 0).

This progressive training approach aligns well with the natural learning progression of diffusion
models. By providing appropriate training signals at each stage, we enable stable learning even
without perfectly paired data, allowing our model to generalize effectively to diverse real-world
scenarios while maintaining identity consistency.

3.3 Progressive Noise Initialization

Standard diffusion-based generation [35] typically begins from random noise (timestep T ) and
progressively denoises toward the final output (timestep 0). However, this approach often results
in subtle but noticeable pose misalignments between generated content and original video frames,
creating undesirable boundary artifacts and compromising identity preservation.

The fundamental issue lies in error accumulation during the early stages of diffusion. Even minor
deviations in early timesteps—when basic facial structure is being formed—can lead to significant
misalignments in the final output. This problem is relevant for lip synchronization, where the goal is
to modify only speech-relevant regions while maintaining perfect spatial consistency elsewhere. To
address this challenge, we introduce a flow-matching-based progressive noise initialization strategy
that transforms the traditional diffusion process.

Flow-Matching Noise Initialization. Rather than starting the diffusion process from random noise at
timestep T , we initialize from original video frames with a controlled level of noise. This simulates
an intermediate state in the diffusion trajectory, corresponding to a normalized parameter τ . The
initialization is performed by adding this controlled noise to the original video frame:

xinit = FMadd(Vsource, τ) = (1− τ)Vsource + τϵ, (5)

where xinit is the initial noised state derived using the parameter τ , Vsource is the source video frame,
and ϵ ∼ N (0, I) is random noise. Let tstart be the discrete timestep corresponding to this initialization
point (T is the total number of diffusion steps, and τ ∈ [0, 1]).

This initialization strategy provides two significant advantages. First, it bypasses the early stages of
diffusion (from T down to tstart) where general facial structure is formed. This ensures that head pose
and global structure are directly inherited from the source frame. Second, it reduces computational
requirements by performing denoising only for the remaining steps, from tstart down to 0.

The complete progressive denoising process can be expressed as:

xt =

{
xinit if t = tstart,

DiT(xt+1, Vsource, Atarget, t+ 1) if tstart > t ≥ 0,
(6)
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where Atarget is the target audio used to guide the denoising process, and t here represents discrete
diffusion timesteps.

This approach effectively creates a two-stage process: (1) initialization using the flow-matching-
inspired noise addition (Eq. 5) to reach a state equivalent to timestep tstart, and (2) guided denoising
from tstart to 0 that focuses on modifying mouth regions according to the target audio while preserving
the overall facial structure, identity features, and head pose from the source frame. By skipping
the early noisy stages where basic structures form, we maintain spatial consistency while allowing
sufficient flexibility for precise mouth region modifications.

3.4 Dynamic Spatiotemporal Classifier-Free Guidance

Audio-driven lip synchronization faces a fundamental challenge: audio signals provide relatively
weak conditioning compared to visual cues [37]. Standard Classifier-Free Guidance (CFG) [12] can
enhance audio conditioning, but applying uniform guidance across spatial and temporal dimensions
creates an unavoidable dilemma: higher guidance scales produce more accurate lip sync but introduce
texture artifacts, while lower scales preserve visual fidelity but yield less precise lip movements.

To resolve this tension, we introduce Dynamic Spatiotemporal Classifier-Free Guidance (DS-CFG),
a novel approach that provides fine-grained control over the generation process across both spatial
and temporal dimensions. Our method applies varying guidance strengths to different regions of
the frame and different stages of the diffusion process, achieving an optimal balance between lip
synchronization accuracy and overall visual quality.

Spatially-Adaptive Guidance. The key insight for spatial adaptation is that audio information
primarily affects the mouth region, while other facial areas should remain largely unchanged. We
implement this through a Gaussian-weighted spatial guidance matrix that concentrates guidance
strength around speech-relevant regions:

Gspatial(x, y) = ωbase + (ωpeak − ωbase) · exp
(
− (x− xm)2 + (y − ym)2

2σ2

)
(7)

where (xm, ym) represents the mouth center, σ controls the spread of the Gaussian distribution, ωbase
is the baseline guidance strength applied to non-mouth regions, and ωpeak is the peak strength applied
at the mouth center. This spatial adaptation ensures that audio conditions strongly influence lip and
surrounding regions while minimally affecting other facial features.

Temporally-Adaptive Guidance. We observe that audio conditioning plays different roles at different
stages of the diffusion process. In early diffusion timesteps, strong guidance helps establish correct
lip shapes, while in later stages, excessive guidance can disrupt fine texture details. [2, 40, 33] To
address this, we implement a temporally decreasing guidance schedule:

ω(t) = ωpeak ·
(

t

T

)γ

(8)

where t is the current diffusion timestep, T is the total number of timesteps, ωpeak is the maximum
guidance scale, and γ controls the decay rate, with a value of 1.5. This temporal adaptation ensures
strong guidance during early and middle diffusion stages when coarse structures are formed, gradually
reducing influence during later stages when fine details and textures are refined.

Unified Dynamic Spatiotemporal CFG. Combining both spatial and temporal adaptations, our
DS-CFG approach modifies the standard CFG formulation to:

ϵ̂θ(xt, c, t) = ϵθ(xt, ∅, t) +Gspatial · ω(t) · (ϵθ(xt, c, t)− ϵθ(xt, ∅, t)) (9)

where ϵθ(xt, c, t) and ϵθ(xt, ∅, t) are the noise predictions with and without conditioning, respectively.

Through this DS-CFG, our method achieves precise control over the generation process, effectively
addressing the weak audio signal problem in audio-driven generation.

4 Experiments
4.1 Experimental Settings

Datasets. We trained OmniSync using the MEAD dataset [39] and a 400-hour dataset collected from
YouTube. MEAD’s controlled laboratory recordings with diverse facial expressions but minimal
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Table 1: Quantitative comparison with previous methods on HDTF Dataset.

HDTF Dataset

Method
Full Reference Metrics No Reference Metrics Lip Sync

FID ↓ FVD ↓ CSIM ↑ NIQE ↓ BRISQUE ↓ HyperIQA ↑ LMD ↓ LSE-C ↑
Wav2Lip [31] 14.912 543.340 0.852 6.495 53.372 45.822 10.007 7.630
VideoReTalking [6] 11.868 379.518 0.786 6.333 50.722 48.476 8.848 7.180
TalkLip [38] 16.680 691.518 0.843 6.377 52.109 44.393 15.954 5.880
IP-LAP [49] 9.512 325.691 0.809 6.533 54.402 50.086 7.695 7.260
Diff2Lip [24] 12.079 461.341 0.869 6.261 49.361 48.869 18.986 7.140
MuseTalk [46] 8.759 231.418 0.862 5.824 46.003 55.397 8.701 6.890
LatentSync [16] 8.518 216.899 0.859 6.270 50.861 53.208 17.344 8.050
Ours 7.855 199.627 0.875 5.481 37.917 56.356 7.097 7.309

Table 2: Quantitative comparison with previous methods on AIGC-LipSync Benchmark.

AIGC-LipSync Benchmark

Method
Full Reference Metrics No Reference Metrics Generation Success Rate

FID ↓ FVD ↓ CSIM ↑ NIQE ↓ BRISQUE ↓ HyperIQA ↑ All Videos ↑ Stylized
Characters ↑

Wav2Lip [31] 22.989 562.245 0.727 5.392 42.816 50.511 71.38% 26.67%
VideoReTalking [6] 20.439 329.460 0.669 5.947 45.047 48.645 48.78% 7.78%
TalkLip [38] 31.180 619.179 0.754 5.239 41.692 50.608 52.36% 34.44%
IP-LAP [49] 14.686 247.402 0.796 5.546 45.153 53.174 45.53% 6.67%
Diff2Lip [24] 23.542 403.149 0.692 5.440 42.442 50.335 74.63% 36.67%
MuseTalk [46] 17.668 297.621 0.667 4.935 36.017 58.334 92.20% 67.78%
LatentSync [16] 15.374 263.111 0.751 5.342 41.917 54.648 74.96% 35.56%
Ours 10.681 211.350 0.808 4.588 25.485 61.906 97.40% 87.78%

head movement provided ideal data for training early denoising stages, while the YouTube dataset
enhanced generalization across varied real-world conditions for middle and late stages.

To address the limitations of existing benchmarks that focus solely on real-world videos with
frontal views and stable lighting, we created the AIGC-LipSync Benchmark. This comprehensive
evaluation framework comprises 615 human-centric videos generated by state-of-the-art text-to-
video models such as Kling, Dreamina, Wan [36], and Hunyuan [15]. The benchmark specifically
captures challenging visual scenarios such as large facial movements, profile views, variable lighting,
occlusions, and stylized characters—conditions that traditional benchmarks fail to address. Details
about benchmark construction can be found in the supplementary materials.

Implementation Details. We implement our OmniSync model using the Diffusion Transformer ar-
chitecture. The model is trained on a combined dataset for 80,000 steps using AdamW optimizer [20]
with a learning rate of 1e-5. Training is completed in 80 hours using 64 NVIDIA A100 GPUs with a
batch size of 64. Audio features are extracted via a pre-trained Whisper encoder, and text conditioning
utilizes a T5 encoder. Training employs the timestep-dependent sampling threshold tthreshold = 850.
The experimental results indicate that excessive thresholds induce significant misalignment while in-
sufficient values will leak the original lip shape. During inference we adopt our flow-matching-based
progressive noise initialization starting at τ = 0.92, followed by 50 denoising steps.

4.2 Quantitative Evaluation

We evaluate OmniSync against state-of-the-art methods including Wav2Lip [31], VideoReTalking [6],
TalkLip [38], IP-LAP [49], Diff2Lip [24], MuseTalk [46], and LatentSync [16] using a comprehensive
suite of metrics. For visual quality assessment, we employ FID (Fréchet Inception Distance) to
measure frame-level fidelity, FVD (Fréchet Video Distance) for temporal consistency, and CSIM
(Cosine Similarity) to quantify identity preservation. Perceptual quality is assessed using no-reference
metrics including NIQE (Natural Image Quality Evaluator), BRISQUE (Blind/Referenceless Image
Spatial Quality Evaluator), and HyperIQA [34]. For audio-visual synchronization, we measure LMD
(Landmark Distance) between predicted and ground truth facial landmarks in the mouth region, and
LSE-C (Lip Sync Error - Confidence) to evaluate lip synchronization quality.
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Figure 3: Qualitative comparison with previous methods across diverse subjects and phonemes.
Our approach produces more accurate lip synchronization and better identity preservation.

Table 3: User study results comparing various audio-driven lip-sync methods.

Metric Wav2Lip Video
ReTalking TalkLip IP-LAP Diff2Lip MuseTalk Latent

Sync Ours

Lip Sync Accuracy 2.684 2.769 1.940 2.359 3.000 2.632 3.812 3.923
Identity Preservation 2.410 2.786 2.222 2.991 2.889 3.197 3.658 4.128
Timing Stability 2.556 2.376 2.162 3.034 2.812 3.145 3.581 4.043
Image Quality 2.017 2.607 1.889 3.171 2.402 3.094 3.632 4.051
Video Realism 2.120 2.419 1.838 2.316 2.479 2.761 3.453 3.872

For the AIGC-LipSync benchmark, we report the Generation Success Rate across all 615 videos and
specifically for stylized characters. This metric shows the percentage of videos that are successfully
synchronized and pass human verification. This evaluation is essential for universal lip synchro-
nization in AI-generated content, where traditional metrics may not fully capture the challenges of
stylized characters, extreme poses, and other atypical visual conditions.

The experimental results in Tab. 1 and Tab. 2 demonstrate that our approach achieves superior
performance on multiple metrics. On the HDTF dataset, our method reduced FID by 7.8% and
FVD by 8.0% compared to LatentSync, with a remarkable 23.2% improvement in BRISQUE over
Diff2Lip. For lip synchronization, we achieved the lowest LMD, outperforming IP-LAP by 7.8%,
while LatentSync maintained a slight edge in LSE-C due to its SyncNet-based loss constraint.

On the challenging AIGC-LipSync benchmark, OmniSync demonstrated exceptional capabilities
with a 30.5% FID reduction and 19.7% FVD reduction compared to LatentSync, alongside improved
identity preservation. Most significantly, our method achieved a 97.40% Generation Success Rate
across all videos—substantially higher than MuseTalk (92.20%) and other methods (below 75%).
For stylized characters, our success rate of 87.78% outperformed MuseTalk (67.78%), demonstrating
OmniSync’s capability to handle diverse visual representations including stylized characters.

4.3 Qualitative Evaluation

We present qualitative comparisons between OmniSync and existing methods in Fig. 3. Our approach
produces more natural facial expressions and superior lip synchronization. Due to lip shape leakage,
IP-LAP [49] and LatentSync [16] frequently fail at mouth shape modification, resulting in poor
lip synchronization effects. MuseTalk [46] and VideoReTalking [6] modify lip movements but
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Table 4: Ablation study for our method.

Methods FID ↓ FVD ↓ CSIM ↑ NIQE ↓ BRISQUE ↓ HyperIQA ↑ LSE-C ↑

Ours 15.710 287.168 0.814 5.321 29.588 57.288 7.06
w/o Timestep-Dependent
Sampling Strategy 21.552 549.768 0.727 5.462 30.346 56.204 7.00

w/o Progressive Noise
Initialization 16.731 361.282 0.805 5.349 29.789 56.511 7.03

w/ Low Static CFG - - - 5.359 29.724 56.568 4.16
w/ High Static CFG 22.725 348.335 0.782 5.473 29.678 56.289 7.10

Low Static CFG Our DS-CFGHigh Static CFGw/o Timestep-Dependent 
Sampling Strategy

w/ Timestep-Dependent
Sampling Strategy

Figure 4: Ablation study for timestep-dependent sampling strategy and different CFG settings.

frequently lose identity and visual quality. Diff2Lip [24] and Wav2Lip [31] commonly exhibit
lip sync errors, mouth artifacts, and identity drift, particularly in challenging or stylized cases. In
contrast, OmniSync consistently maintains identity details and generates realistic, expressive lip
movements, demonstrating robust performance. Our approach effectively balances audio and visual
cues, addressing the challenge of weak audio conditioning.

User Study. To assess perceptual quality, we conducted a user study with 39 participants evaluating
32 video sets generated by OmniSync and seven competing methods, with a standardized Cronbach’s
α coefficient of 0.98. Participants rated each video on a 5-point Likert scale across five criteria: Lip
Sync Accuracy, Character Identity preservation, Timing Stability, Image Quality, and Video Realism.
As shown in Tab. 3, OmniSync outperformed all competitors across all metrics, achieving superior
scores in Lip Sync Accuracy (3.923 vs. 3.812 for LatentSync), Character Identity (4.128 vs. 3.658),
Timing Stability (4.043 vs. 3.581), Image Quality (4.051 vs. 3.632), and Video Realism (3.872 vs.
3.453). These results confirm OmniSync’s superior ability to generate high-quality talking videos.

4.4 Ablation Study

To clarify the contributions of each core component in our framework, we conduct an ablation
study targeting three key modules: the timestep-dependent data sampling strategy, progressive noise
initialization, and the Dynamic Spatiotemporal Classifier-Free Guidance (DS-CFG) mechanism.
Quantitative results are presented in Tab. 4, and corresponding visual examples are shown in Fig. 4.

Removing the timestep-dependent sampling strategy results in a significant drop in identity preserva-
tion and pose consistency, with a 10.7% decrease in CSIM and substantial increases in FID and FVD.
As shown in Fig. 4, without this sampling strategy, the generated faces often exhibit clear mismatches
with the original image, including noticeable facial misalignment issues. This validates our design
choice of aligning pseudo-paired data with early diffusion steps, which proves critical for generating
structurally stable outputs. Similarly, removing progressive noise initialization leads to evident
temporal inconsistencies and an increase in FVD, confirming the importance of our flow-matching
initialization in preserving spatial anchoring and motion coherence.

We also compare our proposed DS-CFG with both low and high static CFG settings. As illustrated in
Fig. 4, low CFG provides insufficient audio conditioning, resulting in under-articulated lip movements
(LSE-C: 4.16), whereas high CFG improves synchronization (LSE-C: 7.10) but introduces noticeable
artifacts and distortions in facial details. In contrast, DS-CFG achieves an optimal balance by applying
strong localized guidance in early diffusion stages and gradually reducing it in later steps. These
results confirm that dynamic control across temporal and spatial dimensions is essential for producing
expressive and visually coherent lip synchronization in generative video content.
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5 Conclusion

In this paper, we introduce OmniSync, a universal lip synchronization framework for diverse content
that addresses critical limitations of traditional approaches. Our three key innovations—a mask-
free training paradigm eliminating mask dependencies, a flow-matching-based progressive noise
initialization strategy ensuring identity preservation, and dynamic spatiotemporal Classifier-Free
Guidance balancing synchronization with visual quality—collectively enable precise lip movements
across diverse visual representations. To support systematic evaluation in this field, we establish the
AIGC-LipSync Benchmark, the first comprehensive framework for assessing lip synchronization in
varied AIGC contexts. Extensive experiments demonstrate OmniSync’s superior performance across
challenging scenarios, establishing a robust foundation for integrating precise lip synchronization
into the broader AI video generation ecosystem.
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

15



(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Due to ongoing anonymization and preparation, the benchmark will be made
publicly available upon publication.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all experimental settings in the Sec. 4.1 and 4.2.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Justification: This paper reports the statistical significance of user study .
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources (GPU type and count, training time, batch size) required
for the experiments are detailed in the Sec. 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The broader impacts of our work are discussed in the paper. OmniSync enables
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creation, accessibility, and virtual communication. We acknowledge the potential risk of
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
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Answer: [NA]
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properly respected?
Answer: [Yes]
Justification: All external datasets and code used in this work are properly cited and credited,
and are used in accordance with their respective licenses.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new AIGC-LipSync Benchmark is thoroughly described in the paper.
Upon publication, documentation and access instructions will be provided to the community.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We described the details of the user study in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: No IRB review was required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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