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Abstract

Coded computing has emerged as a promising framework for tackling significant
challenges in large-scale distributed computing, including the presence of slow,
faulty, or compromised servers. In this approach, each worker node processes a
combination of the data, rather than the raw data itself. The final result then is de-
coded from the collective outputs of the worker nodes. However, there is a signifi-
cant gap between current coded computing approaches and the broader landscape
of general distributed computing, particularly when it comes to machine learning
workloads. To bridge this gap, we propose a novel foundation for coded comput-
ing, integrating the principles of learning theory, and developing a framework that
seamlessly adapts with machine learning applications. In this framework, the ob-
jective is to find the encoder and decoder functions that minimize the loss function,
defined as the mean squared error between the estimated and true values. Facili-
tating the search for the optimum decoding and functions, we show that the loss
function can be upper-bounded by the summation of two terms: the generaliza-
tion error of the decoding function and the training error of the encoding function.
Focusing on the second-order Sobolev space, we then derive the optimal encoder
and decoder. We show that in the proposed solution, the mean squared error of
the estimation decays with the rate of O(S3N−3) and O(S8/5N−3/5) in noiseless
and noisy computation settings, respectively, where N is the number of worker
nodes with at most S slow servers (stragglers). Finally, we evaluate the proposed
scheme on inference tasks for various machine learning models and demonstrate
that the proposed framework outperforms the state-of-the-art in terms of accuracy
and rate of convergence.

1 Introduction

The theory of coded computing has been developed to improve the reliability and security of large-
scale machine learning platforms, effectively tackling two major challenges: (1) the detrimental
impact of slow workers (stragglers) on overall computation efficiency, and (2) the threat of faulty
or malicious workers that can compromise data accuracy and integrity. These challenges have been
well-documented in the literature, including the seminal work [1] from Google. For instance, [2]
reported that in a sample set of 3000 matrix multiplication jobs on AWS Lambda, while the median
job time was 40 seconds, approximately 5% of worker nodes took 100 seconds to respond, and two
nodes took as long as 375 seconds. Furthermore, coded computing has also been instrumental in
addressing privacy concerns, a crucial aspect of distributed computing systems [3–12].

The concept of coded computing has been motivated by the success of coding in communication
over unreliable channels, where instead of transmitting raw data, the transmitter sends a (linear)
combination of the data, known as coded data. This redundancy in the coded data enables the
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receiver to recover the raw data even in the presence of errors or missing values. Similarly, coded
computing includes three layers [3, 11, 13] (see Figure 1(a)):

(1) The Encoding Layer in which a master node sends a (linear) combination of data, as coded
data, to each worker node.

(2) The Computing Layer, in which the worker nodes apply a predefined computation to their
assigned coded data and send the results back to the master node.

(3) The Decoding Layer, in which the master node recovers the final results from the compu-
tation results over coded data. In this layer, the decoder leverages the coded redundancy in
the computation to recover the missing results of the stragglers and detect and correct the
adversarial outputs.

The existing coded computing has largely built upon algebraic coding theory, drawing inspiration
from the renowned Reed-Solomon code construction in communication [14], with proven straggler
and Byzantine resiliency [15]. However, the coding in communication is designed for the exact
recovery of the messages, built on a foundation that is inconsistent with the computational require-
ments of machine learning. Developing a code that preserves its specific construction while com-
posing with computation is extremely challenging, leading to significant restrictions. Firstly, current
methods are mainly restricted to specific computation functions, such as polynomials and matrix
multiplication [3, 11, 13, 16, 17]. Secondly, rooted in algebraic error correction codes, existing
approaches are tailored for finite field computations, leading to numerical instability when dealing
with real-valued data [18, 19]. Furthermore, these methods are unsuitable for approximate, fixed-
point, or floating-point computing, where exact computation is neither possible nor necessary, such
as in machine learning inference or training tasks. Finally, these schemes typically have a recovery
threshold, which is the minimum number of samples required to recover results from coded outputs
of worker nodes [3, 13]. If the number of workers falls below this threshold, the recovery process
fails entirely.

Several works have attempted to mitigate the aforementioned issues and transform the coded com-
puting scheme into a more robust and adaptable one, applicable to a wide range of computation
functions. These efforts include approximating non-polynomial functions with polynomial ones
[5, 20], refining the coding mechanism to enhance stability [21–25], and leveraging approximation
computing techniques to reduce the recovery threshold and increase recovery flexibility [26–29].
However, these attempts fail to bridge the existing gap between coded computing and general dis-
tributed computing systems. The root cause of these issues lies in the fact that they are grounded
in coding theory, based on a foundation that is not compatible with the requirements of large-scale
machine learning. Therefore, this paper aims to address the following objective:

Objective: The main objective of this paper is to develop a new foundation for coded
computing, not solely based on coding theory, but also grounded in learning theory, that
seamlessly integrates with machine learning applications, offering a more natural and
effective solution for general computing.

In this paper, we establish a learning-theoretic foundation for coded computing, applicable to
general computations. We adopt an end-to-end system perspective, that integrates an end-to-end
loss function, to find the optimum encoding and decoding functions, focusing on straggler resiliency.
We show that the loss function is upper-bounded by the sum of two terms: one characterizing
the generalization error of the decoder function and the other capturing the training error of the
encoder function. Regularizing the decoder layer, we derive the optimal decoder in the Reproducing
Kernel Hilbert space (RKHS) of second-order Sobolev functions. This provides an explicit solution
for the optimum decoder function and allows us to characterize the resulting loss of the decoding
layer. The decoder loss appears as a regularizing term in optimizing the encoding function and
represents the norm in another RKHS. Thus, the optimum solution for the encoding function can
be derived, too. We address two noise-free and noisy computation settings, for which we derive
the optimal encoder and decoder and corresponding convergence rate. We prove that the proposed
framework exhibits a faster convergence rate compared to the state-of-the-art and the numerical
evaluations support the theoretical derivations (see Figure 1(b)).
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Figure 1(a): Coded Computing: Each worker node
processes a combination of data (coded data). The de-
coder recovers the final results, even in the presence of
missing outputs from some worker nodes.

Figure 1(b): The log-log plot of the expected error
versus the number of workers (N ) for the proposed
framework (LeTCC) and the state-of-the-art BACC [29].
LeTCC framework not only achieves a lower estimation
error but also has a faster convergence rate.

Contributions: The main contributions of this paper are:

• We develop a new foundation for coded computing by integrating it with learning theory,
rather than relying solely on coding theory. We define the loss function as the mean square
error of the computation estimation, averaged over all possible sets of at most S stragglers
(Section 3.1). To be able to find the best encoding and decoding functions, we bound the
loss function with the summation of two terms, one characterizing the generalization error
of the decoder function and the other capturing the training error of the encoder function
(Section 3).

• Assuming that the encoder and decoder functions reside in the Hilbert space of second-
order Sobolev functions, we use the theory of RKHSs to find the optimum encoding and
decoding functions and characterize the convergence rate for the expected loss in both
noise-free and noisy computation regimes (Section 4).

• We have extensively evaluated the proposed scheme across different data points and com-
puting functions including state-of-the-art deep neural networks and demonstrated that our
proposed framework considerably outperforms the state-of-the-art in terms of recovery ac-
curacy (Section 5).

2 Preliminaries and Problem Definition

2.1 Notations

Throughout this paper, uppercase and lowercase bold letters denote matrices and vectors, respec-
tively. Coded vectors and matrices are indicated by a ∼ sign, as in x̃, Ã. The set {1, 2, . . . , n} is
denoted as [n] and symbol |S| denotes the cardinality of the set S. Finally, we represent first, second
and k-th order derivative of function f as f ′, f ′′, and f (k), respectively.

2.2 Problem Setting

Consider a master node and a set of N workers. The master node is tasked with computing
{f(xk)}Kk=1 using a cluster of N worker nodes, given a set of K data points {xk}Kk=1,xk ∈ Rd.
Here, f : Rd → Rm represents an arbitrary function, which could be a simple one-dimensional
function or a complex deep neural network, and K, d,m are integers. A naive approach would be
to assign the computation of f(xk) to one worker node for k ∈ [K]. However, some worker nodes
may act as stragglers, failing to complete their tasks within the required deadline. To mitigate this
issue, the master node employs coding and sends N coded data points to each worker node using
an encoder function. Each coded data point is a combination of raw data points. Subsequently, each
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Figure 2: LeTCC framework.

worker applies the function f(·) to the received coded data and sends the result, coded results, back to
the master node. The master node’s goal is to approximately recover f̂(xk) ≈ f(xk) using a decoder
function, even if some worker nodes appear to be stragglers. The redundancy in the coded data and
corresponding coded results enables the master node to recover the desirable results, {f(xk)}Kk=1.

3 Proposed Framework: LeTCC

Here, we propose a novel straggler-resistant Learning-Theoretic Coded Computing (LeTCC) frame-
work for general distributed computing. As depicted in Figure 2, our framework comprises two
encoding and decoding layers, with a computing layer sandwiched between them. The framework
operates according to the following steps:

(1) Encoding Layer: The master node fits an encoder regression function uenc : R → Rd

at points {(αk,xk)}Kk=1 for fixed, distinct, and ordered values α1 < α2 < · · · < αK ∈
R. Then, it computes the encoder function uenc(·) on another set of fixed, distinct, and
ordered values {βn}Nn=1 where β1 < β2 < · · · < βN ∈ R, with k ∈ [K] and n ∈ [N ].
Subsequently, the master node sends the coded data points x̃n = uenc(βn) ∈ Rd to worker
n for n ∈ [N ]. Note that each coded data point x̃n is a combination of all initial points
{xk}Kk=1.

(2) Computing Layer: Each worker node n ∈ [N ] computes f(x̃n) = f(uenc(βn)) on its
assigned input and sends the result back to the master node.

(3) Decoding Layer: The master node receives the results f(x̃v)v∈F from the non-straggler
worker nodes in the set F . Next, it fits a decoder regression function udec : R → Rm

at points (βv, f(x̃v))v∈F = (βv, f(uenc(βv)))v∈F . Finally, using the function udec(·), the
master node computes f̂(xk) := udec(αk) as an approximation of f(xk) for k ∈ [K].
Recall that udec(αk) ≈ f(uenc(αk)) ≈ f(xk).

As mentioned above, the master node selects and fixes the regression points, {αk}Kk=1 and {βn}Nn=1,
which remain constant throughout the entire process. The encoder and decoder functions are the
only components subject to optimization.

Note that the computational efficiency of the encoding and decoding layers is crucial. This includes
the fitting process of the encoder and decoder regression functions, as well as the computation
of these regression functions at points {βv}v∈F and {αk}Kk=1. If the master node’s computation
time is not substantially decreased compared to computing {f(xk)}Kk=1 by itself, then adopting this
framework would not provide any benefits for the master node.
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3.1 Objective

We view the whole scheme as a unified predictive framework that provides an approximate es-
timation of the values {f(xk)}Kk=1. We denote the estimator function of the LeTCC scheme as
f̂α,β[uenc,udec,F ](·), where α := [α1, . . . , αK ]T , β := [β1, . . . , βN ]T , and F := {i1, . . . , i|F|}
represents the set of non-straggler worker nodes.

Let us define a random variable FS,N distributed over the set of all subsets of N workers with
maximum S stragglers, {F : F ⊆ [N ], |F| ⩾ N − S}. Also, suppose each worker node n ∈ [N ]
computes the function fn(x) = f(x) + ϵn, where ϵn, n ∈ [N ] are independent zero-mean noise
vectors with covariance σ2I.

This enables us to define the following loss function, which evaluates the framework’s performance:

R(f̂) := E
ϵ,F∼FS,N

[
1

K

K∑
k=1

∥∥∥f̂(xk)− f(xk)
∥∥∥2
2

]
= E

ϵ,F∼FS,N

[
1

K

K∑
k=1

∥udec(αk)− f(xk)∥22

]
, (1)

where f̂(x) := f̂α,β[uenc,udec,F ](x) to simplify the notation, ∥·∥2 represents the ℓ2-norm, and
ϵ = [ϵ1, . . . , ϵN ]T . Our objective is to find uenc(.) and udec(.) that minimize the objective func-
tion (1), which is very challenging, given that f̂(.) is a composition of uenc(.) and udec(.) and the
computation in the middle. Here, we take an important step to decompose these two, to gain a
deeper understanding of interactions. Adding and subtracting f(uenc(αk)) and utilizing inequality
of arithmetic and geometric means (AM-GM), one can obtain an upper bound for (1):

R(f̂) = E
ϵ,F∼FS,N

[
1

K

K∑
k=1

∥(udec(αk)− f(uenc(αk))) + (f(uenc(αk))− f(xk))∥22

]

⩽ E
ϵ,F∼FS,N

[
2

K

K∑
k=1

∥udec (αk)− f (uenc (αk))∥22

]
︸ ︷︷ ︸

Ldec(f̂)

+
2

K

K∑
k=1

∥f(uenc(αk))− f(xk)∥22︸ ︷︷ ︸
Lenc(f̂)

. (2)

The right-hand side of (2) comprises two terms, which uncover an interesting interplay between the
encoder and decoder regression functions. Let us elaborate on what each term corresponds to.

• Ldec(f̂) – The expected generalization error of the decoder regression: Recall that
the master node fits a decoder regression function, udec(·), at a set of points denoted as
{(βv, f(uenc(βv)))}v∈F . Ldec represents the ℓ2-norm of the decoder regression function’s
error on a distinct set of points {αk}Kk=1, which are different from its training data {βv}v∈F .
Consequently, this term provides an unbiased estimate of the decoder’s generalization error.
Given that the decoder regression function develops to estimate f(uenc(·)), the generaliza-
tion error of the decoder regression is inherently tied to the properties of f(uenc(·)). This,
in turn, is influenced by characteristics of both the f(·) and uenc(·) functions, making the
Ldec(f̂) a complex interplay of these two functions.

• Lenc(f̂) – A proxy to the training error of the encoder regression: Remember that the
encoder regression is fitted at points {(αk,xk)}Kk=1. Consequently, the training error is
calculated as 1

K

∑K
k=1 ∥uenc(αk)− xk∥22. Therefore, Lenc represents the encoder training

error magnified by the effect of computing function f(·). Specifically, if f(·) is q-Lipschitz,
then Lenc(f̂) can be upper bounded by:

2

K

K∑
k=1

∥f(uenc(αk))− f(xk)∥22 ⩽ 2q2

K

K∑
k=1

∥uenc(αk)− xk∥22 . (3)

4 Main Results

In this section, we examine the proposed framework from a theoretical standpoint. We provide a
comprehensive explanation of the design process for the decoder and encoder functions and subse-
quently analyze the convergence rate. For simplicity, we present the results for a one-dimensional
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function f : R → R. These results are generalizable to the case where f : R → Rm, as discussed in
Appendix F.

Suppose the regression points, {αk}Kk=1, {βn}Nn=1, are confined to the interval Ω := (−1, 1) and
uenc, udec ∈ H̃2 (Ω;R), where H̃2 (Ω;R) is the reproducing kernel Hilbert space (RKHS) of second-
order Sobolev functions on the interval Ω induced with the norm ∥f∥2H̃2(Ω;R) :=

∫
Ω
(f ′′(t))2 dt +

f(−1)2 + f ′(−1)2 which is an equivalent norm on Sobolev space introduced by [30] (see (28)
in Appendix A.1). The definition and properties of Sobolev spaces, along with their reproducing
kernels and norms, are reviewed in Appendix A.1.

Decoder Design: Since Ldec(f̂) in the decomposition (2) characterizes the generalization error of
the decoder function, we propose a regularized objective function for the decoder:

u⋆dec = argmin
u∈H̃2(Ω;R)

1

|F|
∑
v∈F

(u (βv)− f (uenc (βv)))
2
+ λd

∫
Ω

(u′′(t))
2
dt. (4)

The first term in (4) corresponds to the mean squared error, while the second term characterizes
the smoothness of the decoder function on the interval Ω. Equation (4) represents a Kernel Ridge
Regression problem (KRR). It can be shown that the solution of (4) has the following form [31, 32]:

d0 + d1t+

|F|∑
v=1

cvϕ0(t, βiv ), (5)

where d0, d1 ∈ R, ϕ0(·, ·) is the kernel function of H2
0 (Ω;R) (see Definition 2 and (44) in Ap-

pendix A.1), and c = [c1, . . . , c|F|]
T ∈ R|F|. Substituting (5) into the main objective (4), the

coefficient vectors c and d := [d0, d1]
T can be efficiently computed by optimizing a quadratic equa-

tion [33]. This solution is known as the second-order smoothing spline function. The theoretical
properties of smoothing splines are reviewed in Appendix A.2.

Let us define the following variables, which represent the maximum and minimum distances be-
tween consecutive data points in the decoder layer, {βn}Nn=1:

∆max := max
n∈{0}∪[N ]

{βn+1 − βn}, ∆min := min
n∈[N−1]

{βn+1 − βn} , (6)

with β0 := −1 and βN+1 := 1. The following theorems provide crucial insights for designing the
encoder function as well as deriving the convergence rates.

Theorem 1 (Upper bound for noiseless computation, σ0 = 0). Consider the LeTCC framework with
N worker nodes and at most S stragglers with λd ⩽ N−4. Assume {αk}Kk=1 are arbitrary and
distinct points in Ω = (−1, 1) and there is constant B such that ∆max

∆min
⩽ B. If f(·) is a q-Lipschitz

continuous function, then:

R(f̂) ⩽ C1

(
S + 1

N

)3

· ∥(f ◦ uenc)
′′∥2L2(Ω;R) +

2q2

K

K∑
k=1

(uenc(αk)− xk)
2, (7)

where C1 is a constant.

The proof of Theorem 1 and the detailed expression for C1 can be found in Appendix B.1.

Theorem 2 (Upper bound for noisy computation). Consider the LeTCC framework with N worker
nodes and at most S stragglers and 1

(N−S)4 ⩽ λd ⩽ λ0 for constant λ0 ∈ R. Assume each worker
node computes fn(x) = f(x) + ϵn with E[ϵn] = 0 and E[ϵ2n] ⩽ σ2

0 . Assume {αk}Kk=1 are arbitrary
and distinct points in Ω = (−1, 1) and suppose there is constant B such that ∆max

∆min
⩽ B. Assume

f(·) is a q-Lipschitz continuous function. Then,

R(f̂) ⩽ 4

(
σ2
0

N − S

) 3
5 (
C2 · C(λ0) · p4(S) · ∥(f ◦ uenc)

′′∥2L2(Ω;R)

) 2
5

+
2q2

K

K∑
k=1

(uenc(αk)− xk)
2,

(8)
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if

1

(N − S)
1
5λ

1
4
0

⩽

C2 · C(λ0) · p4(S) ·
∥∥(f ◦ uenc)

(2)
∥∥2
L2(Ω;R)

σ2
0


1
5

⩽ (N − S)
4
5 (9)

where C2 is a constant, C(λ0) = O(λ
1
2
0 ) is an increasing function of λ0, and p4(S) is a degree-4

polynomial in S with positive constant coefficients.

The proof and expressions for C2 and C(λ0) are provided in Appendix B.2.

Encoder Design: The upper bounds established in Theorems 1, 2 hold for all uenc ∈ H̃2 (Ω;R).
However, they do not directly lead to a design for uenc(·). To address this, we present the following
theorem which bounds the ∥f ◦ uenc∥2L2(Ω;R), enabling us to construct uenc(·) without compromising
the convergence rate.
Theorem 3. Consider a LeTCC scheme. Assume computing function f(·) is q-Lipschitz continuous
and ∥f ′′∥L∞(Ω;R) ⩽ ν. Then:

R(f̂) ⩽ 2q2

K

K∑
k=1

(uenc(αk)− xk)
2 + λe · ψ

(
∥uenc∥2H̃2(Ω;R)

)
, (10)

for some monotonically increasing function ψ : R+ → R+, where λe is depending on
(N,S, σ0, q, ν).

The proof can be found in Appendix B.3. By applying the representer theorem [34], we can de-
duce that the optimal encoder uenc(·), which minimizes the right-hand side of (10) takes the form
uenc(·) =

∑K
k=1 zkϕ(αk, ·), where z ∈ RK , and ϕ is the kernel function of H̃2 (Ω;R), as discussed

in Appendix A.2 and in (46). However, due to the non-linearity of g(·), calculating the values of the
coefficients z is challenging. Nevertheless, we demonstrate that the coefficients can be efficiently
derived under certain mild assumptions.
Proposition 1. In the noiseless case, there exists M ∈ R that depends only on {αk}Kk=1 and
{xk}Kk=1, such that:

(i) If ∥uenc∥2H̃2(Ω;R) ⩽M , then:

R(f̂) ⩽ R̃(uenc), (11)

where R̃(u) is defined as follows:

R̃(u) :=
2q2

K

K∑
k=1

(u(αk)− xk)
2 + λe · (m1 +m2M)

(
M +

∫
Ω

u′′(t)2 dt

)
, (12)

and m1,m2 are constants.

(ii) If u∗(·) is the minimizer of (12), then ∥u∗∥2H̃2(Ω;R) ⩽M .

See Appendix B.4 for the proof. Proposition 1 states that, under mild assumptions there exists a
smoothing spline that minimizes the upper bound given in (12) without changing in convergence
rate.

Convergence Rate: Using Theorems 1, 2, and 3, we can derive the convergence rate of the proposed
scheme as stated in the following theorem.
Theorem 4 (Convergence rate). For LeTCC scheme with N worker nodes and a maximum of S
stragglers, R(f̂) ⩽ O

(
S

8
5N− 3

5

)
for the noisy computation, and R(f̂) ⩽ O

(
S3N−3

)
for the

noiseless setting.

Refer to Appendix B.5 for the proof. Notably, the convergence rate yields from Theorem 4 surpasses
the state-of-the-art Berrut coded computing approach upper bound [29] (Figure 1), both with respect
to S and N (see Appendix C.1 for detailed comparison).
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Table 1: Comparison of the proposed framework (LeTCC) and the state-of-the-art (BACC) in terms of
the Root Mean Squared Error (RMSE) and the Relative Accuracy (RelAcc).

LENET5 REPVGG VIT
(N,K, |F|) (100, 20, 60) (60, 20, 20) (20, 8, 3)

Method RMSE RELACC RMSE RELACC RMSE RELACC

BACC 2.55± 0.43 0.92± 0.04 2.44± 0.38 0.83± 0.05 0.68± 0.13 0.90± 0.07
LeTCC 2.18± 0.51 0.94± 0.04 2.04± 0.42 0.87± 0.05 0.62± 0.11 0.94± 0.06

5 Experimental Results

In this section, we extensively evaluate the proposed scheme across various scenarios. Our assess-
ments involve examining multiple deep neural networks as computing functions and exploring the
impact of different numbers of stragglers on the scheme’s efficiency. The experiments are run using
PyTorch [35] in a single GPU machine. We evaluate the performance of the LeTCC scheme in three
different model architectures:

• Shallow model: We choose LeNet5 [36] architecture as a known shallow network with
approximately 6× 104 parameters, trained on the MNIST [37].

• Deep model with low-dimensional output: In this scenario, we evaluate the proposed
scheme when the function is a deep neural network trained on color images in CIFAR-10
[38] dataset. We use the recently introduced RepVGG [39] network with around 26 million
parameters which was trained on CIFAR-101.

• Deep model with high-dimensional output: Finally, we demonstrate the performance
of the LeTCC scheme in a scenario where the input and output of the computing function
are high-dimensional, and the function is a relatively large neural network. We consider
the Vision Transformer (ViT) [40] as one of the state-of-the-art base neural networks in
computer vision for our prediction model, with more than 80 million parameters (in the
base version). The network was trained and fine-tuned on the ImageNet-1K dataset [41]2.

We use the output of the last softmax layer of each model as the output.

Hyper-parameters: The entire encoding and decoding process is the same for different functions,
as we adhere to a non-parametric approach. The sole hyper-parameters involved are the two smooth-
ing parameters (λenc, λdec) which are determined using cross-validation and greed search over differ-
ent values of the smoothing parameters.

Baseline: We compare LeTCC with the Berrut approximate coded computing (BACC) introduced by
[29] as the state-of-the-art coded computing scheme for general computing. The BACC framework is
used in [29] for training neural networks and in [42] for inference. Although Berrut coded comput-
ing [29] is the only existing coded computing scheme for general functions, we include a comparison
of the proposed framework with the Lagrange coded computing scheme [3] for polynomial compu-
tation in Appendix D.

Interpolation Points: We choose Chebyshev points of the first and second kind, {αi}Kk=1 =

cos
(

(2k−1)π
2K

)
and {βn}Nn=1 = cos

(
(n−1)π
N−1

)
, for fair comparison with [29].

Evaluation Metrics: We employ two evaluation metrics to assess the performance of the pro-
posed framework: Relative Accuracy (RelAcc) and Root Mean Squared Error (RMSE). RelAcc
is defined as the ratio of the base model’s prediction accuracy to the accuracy of the estimated
model on the initial data points. RMSE, on the other hand, is our main loss defined in (1)
which measures the empirical average of the root mean square difference over multiple batches
of and non-straggler set F , providing an unbiased estimation of expected mean square error,
Ex∼X ,F

[
1
K

∑K
k=1 ∥f(xk)− f̂(xk)∥2

]
, for data distribution X .

1The pre-trained weights can be found here.
2We use the official PyTorch pre-trained ViT network from here.
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Figure 3: Performance comparison of LeTCC and BACC with a 95% confidence interval across a
diverse range of stragglers for different models in a low-redundancy regime (smaller N

K ).

Performance Evaluation: Table 1 presents both RMSE and RelAcc metrics side by side. The
results demonstrate that LeTCC outperforms BACC across various architectures and configurations,
with an average improvement of 15%, 17%, and 9% in RMSE for LeNet, RepVGG, and ViT archi-
tectures, respectively, and a 2%, 5%, and 4% enhancement in RelAcc.
In a subsequent analysis, we evaluate the performance of LeTCC in comparison to BACC across a
variety of straggler scenarios. For each number of stragglers, S, we randomly select S workers to
act as stragglers. Both schemes are then run with the same input data points and straggler config-
urations, and the process is repeated 20 times. We record the average values of the RelAcc and
RMSE metrics, along with their 95% confidence intervals. Figures 3 and 4 illustrate the perfor-
mance of both schemes across three model architectures. As shown in both figures, the proposed
scheme consistently outperforms BACC for nearly all straggler values. In Figure 3, where N

K is rela-
tively small–indicating a system design without excessive redundancy, which is more practical–the
proposed scheme demonstrates even greater improvements in both metrics.

Computational Complexity: The calculation and inference of smoothing spline coefficients can
be performed linearly in the number of regression points by leveraging B-spline basis functions
[43–45]. Consequently, the encoding and decoding processes in LeTCC, which involve evaluating
new points and calculating the fitted coefficients, have computational complexities of O(K · d) and
O((N − S) ·m), respectively, where d is the input dimension and m is the output dimension of the
computing function f(·). This complexity is comparable to that of BACC, which has complexities of
O(K) and O(N − S) for its encoding and decoding layers [29]. Table 2 in Appendix C.2 presents
a comparison of the total end-to-end processing time statistics for the LeTCC and BACC schemes.

Sensitivity Analysis: We additionally investigate the sensitivity of the proposed schemes perfor-
mance to the value of the smoothing parameter, as well as the sensitivity of the optimal smoothing
parameter to the number of stragglers (or workers). The results are presented in Appendix E. As
shown in Table 3 and Figure 6, the optimal smoothing parameters and the scheme’s performance ex-
hibit low sensitivity to the number of stragglers (or worker nodes) and to the smoothing parameters,
respectively.

Coded Points: We also compare the coded points {x̃n}Nn=1 sent to the workers in LeTCC and
BACC schemes. The results, shown in Figure 7, demonstrate that BACC coded samples exhibit high-
frequency noise which causes the scheme to approximate the original prediction worse than LeTCC.
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Figure 4: Performance comparison of LeTCC and BACC with a 95% confidence interval across a
diverse range of stragglers for different models in a high-redundancy regime (larger N

K ).

6 Related Work

Coded computing was initially introduced to tackle the challenges of distributed computation, par-
ticularly the existence of stragglers or slow workers, and also faulty or adversarial nodes. Traditional
approaches to deal with stragglers primarily rely on repetition [1, 46–50], where each task is assigned
to multiple workers either proactively or reactively. Recently, coded computing approaches have re-
duced the overhead of repetition by leveraging coding theory and embedding redundancy in the
worker’s input data [3, 13, 26, 29, 51–55]. This technique, which mainly relies on theory of coding,
has been developed for specific types of structured computations, such as polynomial computation
and matrix multiplication [3, 7, 12, 13, 17, 52, 56–58]. Recently, there have been attempts to gener-
alize coded computing for general computations [4, 5, 29, 59]. Towards extending the application
of coding computing to machine learning computation, Kosaian et al. [59] suggest training a neural
network to predict coded outputs from coded data points. However, the scheme of Kosaian et al.
[59] requires a complex training process and tolerates only one straggler. In another work, Jahani-
Nezhad and Maddah-Ali [29] proposes BACC, a model-agnostic and numerically stable framework
for general computations. They successfully employed BACC to train neural networks on a cluster of
workers, while tolerating a larger number of stragglers. Building on the BACC framework, Soleymani
et al. [42] introduced ApproxIFER scheme, as a straggler resistance and Byzantine-robust prediction
serving system. However, the scheme of BACC uses a reasonable rational interpolation (Berrut in-
terpolation [60]), off the shelf, for encoding and decoding, without considering any end-to-end cost
function to optimize. In contrast, we theoretically formalize a new foundation of coded computing
grounded in learning theory, which can be naturally used for machine learning applications.

7 Conclusions and Future Work

In this paper, we developed a new foundation for coded computing based on learning theory, con-
trasting with existing works that rely on coding theory and use metrics like minimum distance and
recovery threshold for design. This shift in foundations removes barriers to using coded computing
for machine learning applications, allows us to design optimal encoding and decoding functions,
and achieves convergence rates that outperform the state of the art. Moreover, the experimental
evaluations validate the theoretical guarantees. While this work focuses on straggler mitigation, fu-
ture work will extend our proposed scheme to achieve Byzantine robustness and privacy, offering
promising avenues for further research.
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A Preliminaries

A.1 Sobolev spaces and Sobolev norms

Let Ω be an open interval in R and M be a positive integer. We denote by Lp
(
Ω;RM

)
the class of

all measurable functions g : R → RM that satisfy:∫
Ω

|gj(t)|p dt <∞, ∀j ∈ [M ], (13)

where g(·) = [g1(·), . . . , gM (·)]T . The space Lp
(
Ω;RM

)
can be endowed with the following norm,

known as the Lp norm:

∥g∥Lp(Ω;RM ) :=

 M∑
j=1

∫
Ω

|gi(t)|p dt

 1
p

, (14)

for 1 ⩽ p <∞, and

∥g∥L∞(Ω;RM ) := max
j∈[M ]

sup
t∈Ω

|gj(t)|. (15)

for p = ∞. Additionally, a function g : Ω → RM is in Lp
loc

(
Ω;RM

)
if it lies in Lp(V ;RM ) for all

compact subsets V ⊆ Ω.
Definition 1 (Sobolev Space). The Sobolev space Wm,p

(
Ω;RM

)
is the space of all functions

g ∈ Lp
(
Ω;RM

)
such that all weak derivatives of order i, denoted by g(i), belong to Lp

(
Ω;RM

)
for i ∈ [m]. This space is endowed with the norm:

∥g∥Wm,p(Ω;RM ) :=

(
∥g∥pLp(Ω;RM ) +

m∑
i=1

∥∥∥g(i)∥∥∥p
Lp(Ω;RM )

) 1
p

, (16)

for 1 ⩽ p <∞, and

∥g∥Wm,∞(Ω;RM ) := max

{
∥g∥L∞(Ω;RM ) ,max

i∈[m]

∥∥∥g(i)∥∥∥
L∞(Ω;RM )

}
, (17)

for p = ∞.

Similarly, Wm,p
loc

(
Ω;RM

)
is defined as the space of all functions g ∈ Lp

loc

(
Ω;RM

)
with all weak

derivatives of order i belonging to Lp
loc

(
Ω;RM

)
for i ∈ [m]. ∥g∥Wm,p

loc (Ω;RM ) and ∥g∥Wm,∞
loc (Ω;RM )

are defined similar to (16) and (19) respectively, using Lp
loc (Ω;R) instead of Lp (Ω;R).

Definition 2. (Sobolev Space with compact support): Denoted by Wm,p
0

(
Ω;RM

)
collection of

functions g defined on interval Ω = (a, b) such that g(a) = 0, g′(a) = 0, . . . , g(m−1)(a) = 0 and∥∥g(m)
∥∥
L2(Ω;R) <∞. This space can be endowed with the following norm:

∥g∥Wm,p(Ω;RM ) :=
∥∥∥g(m)

∥∥∥
Lp(Ω;RM )

, (18)

for 1 ⩽ p <∞, and

∥g∥Wm,∞(Ω;RM ) :=
∥∥∥g(m)

∥∥∥
L∞(Ω;RM )

, (19)

for p = ∞.

The next theorem provides an upper bound for Lp norm of functions in the Sobolev space, which
plays a crucial role in the proof of the main theorems of the paper.

Theorem 5 (Theorem 7.34, [61]). Let Ω ⊆ R be an open interval and let g ∈ W1,1
loc

(
Ω;RM

)
.

Assume 1 ⩽ p, q, r ⩽ ∞ and r ⩾ q. Then:

∥g∥Lr(Ω;RM ) ⩽ ℓ
1
r−

1
q ∥g∥Lq(Ω;RM ) + ℓ1−

1
p+

1
r ∥g′∥Lp(Ω;RM ) , (20)

for every 0 < ℓ < L1(Ω).
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Note that L1(Ω) in Theorem 5 is the length of the interval Ω.

Corollary 1. Suppose g ∈ W1,1
loc

(
Ω;RM

)
and Ω ⊆ R be an open interval. If

∥g∥L2(Ω;RM )
∥g′∥L2(Ω;RM )

< L1(Ω),

then:

∥g∥L∞(Ω;RM ) ⩽ 2
√
∥g∥L2(Ω;RM ) · ∥g′∥L2(Ω;RM ). (21)

Proof. Substituting p, q = 2 and r = ∞ in Theorem 5 and optimizing over ℓ, one can derive the
optimum value of ℓ, denoted by ℓ∗ as

ℓ∗ =
∥g∥L2(Ω;RM )

∥g′∥L2(Ω;RM )

. (22)

Since
∥g∥L2(Ω;RM )
∥g′∥L2(Ω;RM )

< L1(Ω), the optimum value is in the valid interval mentioned in Theorem 5.

Corollary 2 (Corollary 7.36, [61]). Let Ω = (a, b), let 1 ≤ p, q, r ≤ ∞ be such that 1 + 1/r ≥
1/p and r ≥ q and let g ∈ W1,1

loc

(
Ω;RM

)
with g′ ∈ Lp

(
Ω;RM

)
. Let x0 ∈ [a, b] be such that

|g (x0)| = min[a,b] |g|. Then

∥g − g (x0)∥Lr(Ω;RM ) ≤ 8∥g∥αLq(Ω;RM ) ∥g
′∥1−α

Lp(Ω;RM ) (23)

where α := 0 if r = q and 1− 1/p+ 1/r = 0 and otherwise

α :=
1− 1/p+ 1/r

1− 1/p+ 1/q
.

Corollary 3. Theorem 5 and Corollary 2 hold true when f ∈ W2,2
(
Ω;RM

)
.

Proof. We prove the above corollary by showing that W2,2
(
Ω;RM

)
⊆ W1,1

(
Ω;RM

)
⊆

W1,1
loc

(
Ω;RM

)
. Using Cauchy-Schwartz inequality, one can show:

∥f∥L1(Ω;RM ) =

M∑
j=1

∫
Ω

|fj(t)| dt ⩽
M∑
j=1

(∫
Ω

12 dt ·
∫
Ω

|fj(t)|2 dt
) 1

2

⩽
(
L1(Ω)

) 1
2 ·

M∑
j=1

(∫
Ω

|fj(t)|2 dt
) 1

2 (a)
<∞, (24)

where (a) follows from the bounded length of Ω and f ∈ W2,2 (Ω;R). Similarly:

∥f ′∥L1(Ω;RM ) =

M∑
j=1

∫
Ω

|f ′j(t)| dt ⩽
M∑
j=1

(∫
Ω

12 dt ·
∫
Ω

|f ′j(t)|2 dt
) 1

2

⩽
(
L1(Ω)

) 1
2 ·

M∑
j=1

(∫
Ω

|f ′j(t)|2 dt
) 1

2 (a)
<∞. (25)

Equations (24) and (25) prove that W2,2
(
Ω;RM

)
⊆ W1,1

(
Ω;RM

)
. Now, suppose f ∈

W1,1
(
Ω;RM

)
. For every closed subset [c, d] ⊂ Ω we have:

M∑
j=1

(∫ d

c

|fj(t)| dt

)
(a)
⩽

M∑
j=1

(∫
Ω

|fj(t)| dt
)

(b)
⩽ ∞, (26)

M∑
j=1

(∫ d

c

|f ′j(t)| dt

)
(a)
⩽

M∑
j=1

(∫
Ω

|f ′j(t)| dt
)

(b)
⩽ ∞, (27)

where (a) is due to [c, d] ⊂ Ω and (b) is because of f ∈ W1,1
(
Ω;RM

)
. Therefore, f ∈

W1,1
loc

(
Ω;RM

)
.
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Equivalent norms. There have been various norms defined on Sobolev spaces in the literature that
are equivalent to (16) (see [62], [63, Ch. 7], and [32, Sec. 10.2]). Note that two norms ∥·∥W1

, ∥·∥W2

are equivalent if there exist positive constants η1, η2 such that η1 · ∥g∥W2
⩽ ∥g∥W1

⩽ η2 · ∥g∥W2
.

The equivalent norm in which we are interested is the one introduced in [30]. Let Ω = (a, b) ⊂ R.
We define W̃m,p

(
Ω;RM

)
as the Sobolev space endowed with the following norm:

∥g∥W̃m,p(Ω;RM ) :=

 M∑
j=1

(
gj(a)

p +

m−1∑
i=1

(
g
(i)
j (a)

)p)
+
∥∥∥g(m)

∥∥∥p
Lp(Ω;RM )

 1
p

. (28)

The following lemma derives the equivalence constants (η1, η2) for the norms ∥·∥W2,2(Ω;R) and
∥·∥W̃2,2(Ω;R).

Lemma 1. Let Ω = (a, b) be an arbitrary open interval in R. Then for every g ∈ W2,2 (Ω;R):

∥g∥2W2,2(Ω;R) ⩽
[
2(b− a)max{1, (b− a)}

(
2max{1, (b− a)}2 + 1

)
+ 1
]
· ∥g∥2W̃2,2(Ω;R) (29)

∥g∥2W̃2,2(Ω;R) ⩽
(

4

(b− a)
max{1, (b− a)}2 + 1

)
· ∥g∥2W2,2(Ω;R) . (30)

Proof. By expanding g around the point a and utilizing the integral remainder form of Taylor’s
expansion, for every x ∈ (a, b) we have:

g(x) = g(a) +

∫ x

a

g′(t) dt. (31)

Therefore:

g(x)2 = g(a)2 +

(∫ x

a

g′(t) dt

)2

+ 2g(a) ·
∫ x

a

g′(t) dt

(a)
⩽ 2g(a)2 + 2

(∫ x

a

g′(t) dt

)2

(b)
⩽ 2g(a)2 + 2(x− a)

∫ x

a

g′(t)2 dt

(c)
⩽ 2g(a)2 + 2(b− a)

∫ b

a

g′(t)2 dt, (32)

where (a) follows from the 2g(a) ·
∫ x

a
g′(t) dt ⩽ g(a)2 +

(∫ x

a
g′(t) dt

)2
, (b) is based on Cauchy-

Schwartz inequality, and (c) is due to x ⩽ b. Following the same steps as (32), we have:

g′(x)2 ⩽ 2g′(a)2 + 2(b− a)

∫ b

a

g′′(t)2 dt. (33)

Integrating both sides of (33) we have:∫ b

a

g′(y)2 dy ⩽ 2

∫ b

a

g′(a)2 dy + 2(b− a)

∫ b

a

(∫ b

a

g′′(t)2 dt

)
dy

= 2(b− a).g′(a)2 + 2(b− a)2
∫ b

a

g′′(t)2 dt

(a)
⩽ 2(b− a) ·max{1, (b− a)} ·

(
g(a)2 + g′(a)2 +

∫ b

a

g′′(t)2 dt

)
= 2(b− a) ·max{1, (b− a)} · ∥g∥2W̃2,2(Ω;R) , (34)
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where (a) is based on adding the positive term (b − a) · g(a)2 to the right-hand side. Based on the
(32) and (34) we have:∫ b

a

g(x)2 dx
(a)
⩽ 2

∫ b

a

g(a)2 dx+ 2(b− a)

∫ b

a

(∫ b

a

g′(t)2 dt

)
dx

= 2(b− a).g(a)2 + 2(b− a)2
∫ b

a

g′(t)2 dt

(b)
⩽ 2(b− a) · g(a)2 + 4(b− a)3 · g′(a)2 + 4(b− a)4

∫ b

a

g′′(t)2 dt

⩽ 4(b− a) ·max{1, (b− a)3} · ∥g∥2W̃2,2(Ω;R) , (35)

where (a) follows by integrating both sides of (32) and (b) is due to (33). Using (35) and (34) and
the fact that

∫ b

a
g′′(t)2 dt ⩽ ∥g∥2W2,2(Ω;R), we have:

∥g∥2W2,2(Ω;R) =

∫ b

a

g′′(t)2 dt+

∫ b

a

g′(t)2 dt+

∫ b

a

g(t)2 dt

⩽
[
2(b− a)max{1, (b− a)}

(
2max{1, (b− a)}2 + 1

)
+ 1
]
· ∥g∥2W̃2,2(Ω;R) . (36)

For the other side, using the same steps as in (32), we have:

g(a)2 = g(x)2 +

(∫ x

a

g′(t) dt

)2

− 2g(a).

∫ x

a

g′(t) dt

(a)
⩽ 2g(x)2 + 2

(∫ x

a

g′(t) dt

)2

(b)
⩽ 2g(x)2 + 2(x− a)

∫ x

a

g′(t)2 dt

(c)
⩽ 2g(x)2 + 2(b− a)

∫ b

a

g′(t)2 dt, (37)

where (a) is because of −2g(a) ·
∫ x

a
g′(t) dt ⩽ g(a)2 +

(∫ x

a
g′(t) dt

)2
, (b) follows from Cauchy-

Schwartz inequality, and (c) is due to x ⩽ b. Integrating both sides of (37), we have

(b− a) · g(a)2 =

∫ b

a

g(a)2 dx ⩽ 2

∫ b

a

g(x)2 dx+ 2(b− a)

∫ b

a

(∫ b

a

g′(t)2 dt

)
dx

(a)
= 2

∫ b

a

g(t)2 dt+ 2(b− a)2
∫ b

a

g′(t)2 dt

(b)
⩽ 2max{1, (b− a)}2

(∫ b

a

g(t)2 dt+

∫ b

a

g′(t)2 dt+

∫ b

a

g′′(t)2 dt

)
⩽ 2max{1, (b− a)}2 ∥g∥2W2,2(Ω;R) , (38)

where (a) follows by a change of variable from x to t and (b) follows by adding the positive term
2max{1, (b− a)}2 ·

∫ b

a
g′′(t)2 dt to the right side. Thus, (38) directly results in

g(a)2 ⩽ 2

(b− a)
max{1, (b− a)}2 ∥g∥2W2,2(Ω;R) . (39)

Following same steps as (38) and (39) results in

g′(a)2 ⩽ 2

(b− a)
max{1, (b− a)}2 ∥g∥2W2,2(Ω;R) . (40)

Considering the fact that
∫ b

a
g′′(t)2 dt ⩽ ∥g∥2W2,2(Ω;R), we can complete the proof:

∥g∥2W̃2,2(Ω;R) = g(a)2 + g′(a)2 +

∫ b

a

g′′(t)2 dt

⩽
(

4

(b− a)
max{1, (b− a)}2 + 1

)
· ∥g∥2W2,2(Ω;R) . (41)
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Corollary 4. Based on Lemma 1, for Ω = (−1, 1) we have

1

9
· ∥g∥2W̃2,2(Ω;R) ⩽ ∥g∥2W2,2(Ω;R) ⩽ 73 · ∥g∥2W̃2,2(Ω;R) . (42)

Corollary 4 directly follows from Lemma 1 by substituting (a, b) = (−1, 1).

Corollary 5. The result of Lemma 1 remains valid for multi-dimensional cases, where g : R → RM ,
for some M > 1.

Corollary 5 directly follows from applying Lemma 1 to each component of the function g(·) and
using the definition of vector-valued function norm:

∥g∥2W2,2(Ω;RM ) =

M∑
j=1

∥∥∥g(j)∥∥∥2
W2,2(Ω;R)

, ∥g∥2W̃2,2(Ω;RM ) =

M∑
j=1

∥∥∥g(j)∥∥∥2
W̃2,2(Ω;R)

.

Proposition 2. ([61, Section 7.2], [63, Theorem 121],[32]) For any open interval Ω ⊆ R and
m,M ∈ N,

Hm
(
Ω;RM

)
:= Wm,2

(
Ω;RM

)
,

H̃m
(
Ω;RM

)
:= W̃m,2

(
Ω;RM

)
,

Hm
0

(
Ω;RM

)
:= Wm,2

0

(
Ω;RM

)
, (43)

are Reproducing Kernel Hilbert Spaces (RKHSs).

The full expression of the kernel function of Hm (Ω;R) and H̃m (Ω;R) and other equivalent norms
of Sobolev spaces can be found in [63, Section 4]. For H̃m (Ω;R) the kernel function is as follows:

R(t, s) =

m−1∑
j=0

tjsj

j!2
+

∫
Ω

(t− x)m−1
+ (s− x)m−1

+

(m− 1)!2
dx, (44)

where (·)+ is positive part function.

A.2 Smoothing Splines

Consider the data model yi = f(ti) + ϵi for i = 1, . . . , n, where ti ∈ Ω = (a, b) ⊂ R, E[ϵi] = 0,
and E[ϵ2i ] ⩽ σ2

0 . Assuming f ∈ W̃m,2 (Ω;R), the solution to the following optimization problem is
referred to as the smoothing spline:

Sλ,n,m[y] := argmin
g∈W̃m,2(Ω;R)

1

n

n∑
i=1

(g (ti)− yi)
2
+ λ

∫
Ω

(
g(m)(t)

)2
dt, (45)

where y = [y1, . . . , yn]. Based on Proposition 2, H̃m (Ω;R) := W̃m,2 (Ω;R) with the norm
∥·∥W̃m,2(Ω;R) is a RKHS for some kernel function ϕ(·, ·). Therefore for any v ∈ W̃m,2 (Ω;R),
we have:

v(t) = ⟨v(·), ϕ(·, t)⟩H̃m(Ω;R). (46)

It can be shown that ϕ(t, s) = RP (t, s) + R0(t, s) where R0(t, s) is kernel function of Hm
0 (Ω;R)

and RP (t, s) is a null space of Hm
0 (Ω;R) which is the space of all polynomials with degree less

than m.

The solution of (45) has the following form [31, 32]:

u∗(·) =
m∑
i=1

diζi(·) +
n∑

j=1

cjνj(·), (47)
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where νj(·) = R0(·, tj) for j ∈ [n], and {ζi(·)}mi=1 are the basis functions of the space of polynomi-
als of degree at most m − 1. Substituting u∗ into (45) and optimizing over c = [c1, . . . , cn]

T and
d = [d1, . . . , dm]T , we obtain the following result [32]:

Sλ,n,m[y](y) = Q
(
QTQ+ λΓ

)−1
QTy, (48)

where

Qn×(n+m) = [ Tn×m Σn×n ] ,

Γ(n+m)×(n+m) =

[
0m×m 0m×n

0n×1 Σn×n

]
,

T ij = ζj(ti),

Σij = R0(ti, tj). (49)

Equation (48) states that the smoothing spline fitted on the data points y is a linear operator:

Sλ,n,m[y](z) := Aλz, (50)

for z ∈ Rn, where Aλ := Q
(
QTQ+ λΓ

)−1
QT. It can be shown that the u∗(·) is a natural spline

[32, 33]. Thus, if {bi(·)}ni=1 is a basis function for an m-th order natural spline (such as truncated
power or B-spline basis functions), we have:

u∗(t) =

n∑
i=1

ξibi(t), (51)

ξ =
(
NTN+ λΦ

)−1
NTy, (52)

where Nij = bi(tj),Φij =
∫
Ω
b′′i (t)b

′′
j (t) dt for i, j ∈ [n], and ξ := [ξ1, . . . , ξn]

T .

To characterize the estimation error of the smoothing spline, |f − Sλ,n,m(y)|, we need to define
two variables analogous to those in (6), which quantify the minimum and maximum consecutive
distance of the regression points {ti}ni=1:

∆max := max
i∈{0}∪[n]

{ti+1 − ti} , ∆min := min
i∈[n−1]

{ti+1 − ti} , (53)

where boundary points are defined as (t0, tn+1) := (a, b). The following theorem offers an upper
bound for the j-th derivative of the smoothing spline estimator error function in the absence of noise
(σ0 = 0).
Theorem 6. ([64, Theorem 4.10]) Consider data model yi = f(ti) with {ti}ni=1 belong to Ω = [a, b]
for i ∈ [n]. Let

L = p2(m−1)(
∆max

∆min
) · n∆max

b− a

λ

2
+D(m) · (∆max)

2m
, (54)

where pd(·) is a degree d polynomial with positive weights and D(m) is a function of m. Then for
each j ∈ {0, 1, . . . ,m} and any f ∈ Wm,2 (Ω;R), there exist a function H(m, j) such that:∥∥∥(f − Sλ,n,m(y))

(j)
∥∥∥2
L2(Ω;R)

⩽ H(m, j)

(
1 +

(
L

(b− a)2m

)) j
m

· L
(m−j)

m ·
∥∥∥f (m)

∥∥∥2
L2(Ω;R)

.

(55)

Note that (f − Sλ,n,m(y))
(0)

:= f − Sλ,n,m(y). In the presence of noise, where σ0 > 0, we can
exploit the linearity of the smoothing spline operator and the mutual independence of the noise terms
to conclude that:

Eϵ

[
∥(f − Sλ,n,m(y))∥2L2(Ω;R)

]
= Eϵ

[
∥(f − Sλ,n,m[y](f + ϵ))∥2L2(Ω;R)

]
= ∥(f − Sλ,n,m[y](f))∥2L2(Ω;R)

+ Eϵ

[
∥(f − Sλ,n,m[y](ϵ))∥2L2(Ω;R)

]
, (56)

where f = [f(t1), . . . , f(tn)]
T . The first term in (56) can be upper bounded using Theorem 6. The

following theorem establishes an upper bound for the second term when ∆max
∆min

is bounded:
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Theorem 7. ([65, Section 5]) Consider data model yi = f(ti)+ϵi, where E[ϵi] = 0 and E[ϵ2i ] ⩽ σ2
0

for i ∈ [n]. Assume there exist a constant B > 0 such that ∆max
∆min

⩽ B. Then for each j ∈
{0, 1, . . . ,m}, there exist a constant λ0 > 0 and function Q(m, j, λ0) such that:

Eϵ

[∥∥∥(f − Sλ,n,m[y](ϵ))
(j)
∥∥∥2
L2(Ω;R)

]
⩽ Q(m, j, λ0) · σ2

0

n
λ

−(2j+1)
2m (57)

for λ ⩽ λ0 and nλ
1

2m ⩾ 1.

Note that based on [65], Q(m, j, λ0) = w(m, j)λ
1

2m
0 + w̃(m, j).

B Proof of Theorems

Recall from (2) that R(f̂) ⩽ Lenc(f̂) + Ldec(f̂), where

Ldec(f̂) = Eϵ,F∼FS,N

[
2

K

K∑
k=1

(udec(αk)− f(uenc(αk)))
2

]
, (58)

Lenc(f̂) =
2

K

K∑
k=1

(f(uenc(αk))− f(xk))
2
. (59)

We begin by deriving a general intermediate bound for Ldec and Lenc which will be a key component
in the proofs of Theorems 2 and 1. The subsequent subsections will then provide the remaining
details to complete the proofs of both theorems.
Lemma 2. Let f : R → R be a q-Lipschitz continuous function. Then:

Lenc ⩽
2q2

K

K∑
k=1

(uenc(αk)− xk)
2. (60)

Proof. Using Lipschitz property, we have:

Lenc =
2

K

K∑
k=1

(f(uenc(αk))− f(xk))
2

=
2

K

K∑
k=1

(|f(uenc(αk))− f(xk)|)2

⩽ 2

K

K∑
k=1

(q · |uenc(αk)− xk|)2

=
2q2

K

K∑
k=1

(uenc(αk)− xk)
2. (61)

As previously mentioned, Ldec represents the expected generalization error of the decoder function.
To leverage the results from Theorems 6 and 7 we must establish that the composition of f with the
encoder uenc belongs to the Sobolev space W2,2 (Ω;R).
Lemma 3. Let f : R → R be a q-Lipschitz continuous function with ∥f ′′∥L∞(Ω;R) ⩽ ν and Ω ⊂ R
be an open interval. If uenc ∈ W2,2 (Ω;R) then f ◦ uenc ∈ W2,2 (Ω;R).

Proof. Let us define f0(t) := f(t) − f(0). Thus f0(0) = 0 and f0 is q-Lipschitz. Using Lipschitz
property

|f0(uenc(t))|2 = |f0(uenc(t))− f0(0)|2 ⩽ q2 · uenc(t)
2. (62)
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Integrating both sides of (62):∫
Ω

(f0 ◦ uenc(t))
2 dt ⩽ q2 ·

∫
Ω

uenc(t)
2 dt

(a)
<∞, (63)

where (a) follows by uenc ∈ W2,2 (Ω;R). Given that f0 is q-Lipschitz, its derivative is bounded in
the L∞ (Ω;R)-norm, i.e., ∥f ′0∥L∞(Ω;R) ⩽ q. Thus∫

Ω

((f0 ◦ uenc(t))
′
)2 dt

(a)
=

∫
Ω

(f ′0(uenc(t)))
2 · u′enc(t)

2 dt ⩽ q2 ·
∫
Ω

u′enc(t)
2 dt

(b)
< ∞, (64)

where (a) follows by chain rule and (b) follows by uenc ∈ W2,2 (Ω;R). For the second derivative we
have:∫
Ω

[f0(uenc(t))
′′]

2
dt

(a)
=

∫
Ω

[
u′′enc(t) · f ′0(uenc(t)) + u′enc(t)

2 · f ′′0 (uenc(t))
]2
dt

(b)
⩽
∫
Ω

[
u′′enc(t)

2 + u′enc(t)
4
] [
f ′0(uenc(t))

2 + f ′′0 (uenc(t))
2
]
dt

(c)
⩽ (q2 + ν2)

∫
Ω

[
u′′enc(t)

2 + u′enc(t)
4
]
dt

= (q2 + ν2)
(
∥u′′enc(t)∥

2
L2(Ω;R) + ∥u′enc(t)∥

4
L4(Ω;R)

)
(d)
⩽ (q2 + ν2)

(
∥u′′enc(t)∥

2
L2(Ω;R) +

(
∥u′enc(t)∥L2(Ω;R) + ∥u′′enc(t)∥L2(Ω;R)

)4)
(e)
<∞, (65)

where (a) follows from the chain rule, (b) is derived using the Cauchy-Schwartz inequality, (c) is due
to ∥f ′′0 ∥L∞(Ω;R) ⩽ ν, (d) follows from Theorem 5 with r = 4, p = q = 2, l = 1, and (e) is a result
of uenc ∈ W2,2 (Ω;R). Equations (63), (64), and (63) demonstrate that f0 ◦ uenc ∈ W2,2 (Ω;R).
Note that Ω is bounded, and every constant function belongs to W2,2 (Ω;R). Thus, we can conclude
that f0 ◦ uenc(t) + f(0) = f ◦ uenc(t) ∈ W2,2 (Ω;R).

Let us define the function h(t) := udec(t)− f(uenc(t)). Based on Lemma 3, and given that udec and
f ◦ uenc belong to the Sobolev space W2,2 (Ω;R), it follows that h ∈ W2,2 (Ω;R). The subsequent
lemmas establish upper bounds for ∥h∥L∞(Ω;R) and ∥h′∥L∞(Ω;R), leveraging properties of functions
in Sobolev spaces.
Lemma 4. If Ω = (−a, a), then:

∥h∥L2(Ω;R) ⩽ ∥h′∥L2(Ω;R) ·
√
x20 + a2 ⩽ ∥h′∥L2(Ω;R) ·

√
2a (66)

Proof. Assume ∃x0 ∈ Ω : h (x0) = 0. Therefore, |h(x)| =
∣∣∣∫ x

x0
h′(x) dx

∣∣∣ for x ∈ [x0, a). Thus

|h(x)| =
∣∣∣∣∫ x

x0

h′(x) dx

∣∣∣∣ (a)
⩽
∫ x

x0

|h′(x)| dx
(b)
⩽
(∫ x

x0

12 dx

) 1
2
(∫ x

x0

|h′(x)|2 dx
) 1

2

, (67)

where (a) and (b) are followed by the triangle and Cauchy-Schwartz inequalities respectively. Inte-
grating the square of both sides over the interval [x0, a) yields:∫ a

x0

|h(x)|2 dx ⩽
∫ a

x0

(z − x0) ·
(∫ a

x0

|h′(x)|2 dx
)
dz

(a)
⩽
∫ a

x0

(z − x0) dz ·
∫ a

−a

|h′(x)|2 dx,

(68)

where (a) follows by x0 < a. On the other side, we have the following for every x ∈ (−a, x0]:

|h(x)| =
∣∣∣∣∫ x0

x

h′(x) dx

∣∣∣∣ ⩽ ∫ x0

x

|h′(x)| dx ⩽
(∫ x0

x

12 dx

) 1
2

·
(∫ x0

x

|h′(x)|2 dx
) 1

2

. (69)
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Therefore, we have a similar inequality:∫ x0

−a

|h(x)|2 dx ⩽
∫ x0

−a

(x0 − x) dx ·
∫ a

−a

|h′(x)|2 dx. (70)

Using (68) and (70) completes the proof:

∥h∥2L2(Ω) =

∫ x0

−a

|h(x)|2 dx+

∫ a

x0

|h(x)|2 dx

⩽ ∥h′∥2L2(Ω;R) ·
(∫ x0

−a

(x0 − x) dx+

∫ a

x0

(x− x0) dx

)
⩽ ∥h′∥2L2(Ω;R) ·

(
x0 (x0 + a)−

(
x20 − a2

2

)
+

(
a2 − x20

2

)
− x0 (a− x0)

)
(71)

= ∥h′∥2L2(Ω;R) ·
(
x20 + a2

)
⩽ ∥h′∥2L2(Ω;R) 2a

2. (72)

Thus, if x0 exists, the proof is complete. In the next step, we prove the existence of x0 ∈ Ω such that
h (x0) = 0. Recall that h(t) = udec(t)− f(uenc(t)) and udec(·) is the solution of (4). Assume there
is no such x0. Since h ∈ W2,2 (Ω;R), then h(·) is continuous. Therefore, if there exist t1, t2 ∈ Ω
such that h(t1) < 0 and h(t2) > 0, then the intermediate value theorem states that there exists
x0 ∈ (t1, t2) such that h(x0) = 0. Thus, h(t) > 0 or h(t) < 0 for all t ∈ Ω. Without loss of
generality, assume the first case where h(t) > 0 for all t ∈ Ω. It means that udec(t) > f(uenc(t)) for
all t ∈ Ω. Let us define

β∗ := argmin
β∈F

udec(β)− f(uenc(β)).

Let ūdec(t) := udec(t)− udec(β
∗). Note that

∫
Ω
(ū′′dec(t))

2
dt =

∫
Ω
(u′′dec(t))

2
dt. Therefore,∑

v∈F
[udec (βv)− f (uenc (βv))]

2
=
∑
v∈F

[ūdec (βv) + udec(β
∗)− f (uenc (βv))]

2

=
∑
v∈F

[ūdec (βv)− f (uenc (βv))]
2
+ |F| · udec(β

∗)2

+ 2udec(β
∗)
∑
v∈F

[ūdec(βv)− f(uenc(βv))]

(a)
⩾
∑
v∈F

[ūdec (βv)− f (uenc (βv))]
2
, (73)

where (a) follows from udec(β
∗) > 0 and ūdec(βv) > f(uenc(βv)) for all v ∈ F . This leads to a

contradiction since it implies that udec is not the solution of the (4). Therefore, our initial assumption
must be wrong. Thus, there exists x0 ∈ Ω such that h(x0) = 0.

Lemma 5. Let Ω = (−1, 1). For h(t) = udec(t)− f(uenc(t)) we have:

∥h∥L∞(Ω;R) ⩽ 2 ∥h∥
1
2

L2(Ω;R) · ∥h
′∥

1
2

L2(Ω;R) <∞, (74)

and

∥h′∥L∞(Ω;R) ⩽ ∥h′∥L2(Ω;R) + ∥h′′∥L2(Ω;R) <∞. (75)

Proof. Using Lemma 4 one can conclude

∥h∥L2(Ω;R)

∥h′∥L2(Ω;R)
⩽

√
2. (76)

Since h ∈ W2,2 (Ω;R) we can apply Corollary 1 and Theorem 5 with r = ∞ and p, q = 2 to
complete the proof of (74). Furthermore, using Theorem 5 with r = ∞ and p, q = 2 and ℓ = 1
completes the proof of (75).
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Building upon Lemma 5 and starting from (58), we can derive an upper bound for Ldec:

Ldec(udec) = Eϵ,F

[
2

K

K∑
k=1

(udec(αk)− f(uenc(αk)))
2
2

]
(a)
=

2

K

K∑
k=1

Eϵ,F
[
h(αk)

2
]

(b)
⩽ 2

K

K∑
k=1

Eϵ,F

[
∥h∥2L∞(Ω;R)

]
(c)
⩽ 2Eϵ,F

[
∥h∥L2(Ω;R) · ∥h

′∥L2(Ω;R)

]
(d)
⩽ 2Eϵ,F

[
∥h∥2L2(Ω;R)

] 1
2 · Eϵ,F

[
∥h′∥2L2(Ω;R)

] 1
2

, (77)

where (a) follows from the definition of h(t), (b) is due to the fact that h(t) ⩽ ∥h∥L∞(Ω;R) for t ∈ Ω,
(c) follows by applying Lemma 5, and (d) is a result of applying the Cauchy-Schwartz inequality.

B.1 Proof of Theorem 1

Proof. As previously mentioned, udec(·) is a second-order smoothing spline fitted on the data points{
(βi1 , f(uenc(βi1)), . . . , (βi|F| , f(uenc(βi|F|)))

}
, where F :=

{
βi1 , . . . , βi|F|

}
represents the set

of non-straggler worker nodes, and f ◦ uenc :=
{
f(uenc(βi1)), . . . , f(uenc(βi|F|))

}
is the corre-

sponding set of computation results from these non-straggler workers. By the definition given in
(50), Sλd,|F|,2(·) denotes the smoothing spline operator for the decoder layer. Hence, we have the
following:

EF

[
∥h∥2L2(Ω;R)

]
= EF

[∥∥f ◦ uenc − Sλd,|F|,2[f ]
∥∥2
L2(Ω;R)

]
, (78)

where f =
{
f(uenc(βi1)), . . . , f(uenc(βi|F|))

}
. Let us define the following variables analogous to

those in (6):

∆F
max := max

f∈{0,...,|F|}

{
βif+1

− βif
}
, ∆F

min := min
f∈{1,...,|F|−1}

{
βif+1

− βif
}
. (79)

Since there are at most S stragglers among the worker nodes, we have ∆F
max ⩽ (S + 1) ·∆max and

∆F
max

∆F
min

⩽ (S+1) · ∆max
∆min

⩽ (S+1)B. Additionally, because ∆min ⩽ 2
N , there exists a constant J such

that ∆max ⩽ J
N , and consequently, ∆F

max ⩽ J(S+1)
N ⩽ J(S+1)

N−S . Otherwise, this would contradict the
condition ∆max

∆min
⩽ B.

Applying Theorem 6 with Ω = (−1, 1),m = 2, we have

EF

[
∥h∥2L2(Ω;R)

]
⩽ H0

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· EF [L] , (80)

and

EF

[
∥h′∥2L2(Ω;R)

]
⩽ H1

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· EF

[
L

1
2 (1 +

L

16
)

1
2

]
, (81)

where L = p2

(
∆F

max
∆F

min

)
· (N−S)∆F

max
4 λd +D(2) ·

(
∆F

max

)4
and H0,H1 := H(2, 0),H(2, 1) as defined

in Theorem 6. Thus, we have:

EF [L] ⩽ EF

[
p2

(
∆F

max

∆F
min

)
· (N − S)∆F

max

4
λd +D ·

(
∆F

max

)4]
(a)
⩽ EF

[
p2

(
∆F

max

∆F
min

)]
· J(S + 1)

4
λd +D · EF

[(
∆F

max

)4]
(82)

(b)
⩽ EF

[
p2

(
∆F

max

∆F
min

)]
· J(S + 1)

4
λd +DJ4 (S + 1)4

N4
, (83)
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where D := D(2) and (a) and (b) follow from ∆F
max ⩽ J(S+1)

N−S and ∆F
max ⩽ J(S+1)

N respectively.
Substituting in (91),(92), and (92), we have:

EF

[
∥h∥2L2(Ω;R)

]
⩽ H0

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

·
(
EF

[
p2

(
∆F

max

∆F
min

)]
· J(S + 1)

4
λd +DJ4 (S + 1)4

N4

)
,

(84)

EF

[
∥h′∥2L2(Ω;R)

]
⩽ H1

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

·
(
EF

[
p2

(
∆F

max

∆F
min

)]
· J(S + 1)

4
λd +DJ4 (S + 1)4

N4

) 1
2

·

1 +
EF

[
p2

(
∆F

max
∆F

min

)]
· J(S+1)

4 λd +DJ4 (S+1)4

N4

16


1
2

.

(85)

Therefore, we can derive an upper bound for (77) based on the above inequalities. This upper bound
holds for any λd. Since λd ⩽ N−4 and ∆F

max
∆F

min
⩽ (S + 1)B, we have:

EF

[
p2

(
∆F

max

∆F
min

)]
· J(S + 1)

4
λd +DJ4 (S + 1)4

N4
⩽ p̃3 (S + 1)N−4 +DJ4 (S + 1)4

N4

(a)
⩽ D̃

(S + 1)4

N4
, (86)

where p̃3 is a degree-3 polynomial in (S + 1) with positive constant coefficients, and D̃ is the sum
of the coefficients of p̃3 and DJ4. Therefore, we have:

Ldec ⩽
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

[
(H0 · r(S,N))

1
2

(
H1 · r(S,N)

1
2

(
1 +

r(S,N)

16

) 1
2

) 1
2
]

=
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

[
H

1
2
0 H

1
2
1 · r(S,N)

3
4 ·
(
1 +

r(S,N)

16

) 1
4

]
, (87)

where r(S,N) := D̃ (S+1)4

N4 . Note that, since S +1 ⩽ N then 1+ r(S,N)
16 ⩽ 2max(1, D̃). Defining

η := 2max(1, D̃), we have:

Ldec ⩽
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

[
H

1
2
0 H

1
2
1 η

1
4 · r(S,N)

3
4

]
, (88)

Defining C := H
1
2
0 H

1
2
1 η

1
4 and applying Lemma 2, completes the proof.

B.2 Proof of Theorem 2

Using the decomposition (56) we have:

Eϵ,F

[
∥h∥2L2(Ω;R)

]
= EF

[∥∥f ◦ uenc − Sλd,|F|,2[f ]
∥∥2
L2(Ω;R)

]
+ Eϵ,F

[∥∥f ◦ uenc − Sλd,|F|,2[ϵ]
∥∥2
L2(Ω;R)

]
, (89)

where f =
{
f(uenc(βi1)), . . . , f(uenc(βi|F|))

}
and ϵ =

{
ϵi1 , . . . , ϵi|F|

}
. Same as (79) we define

the following variables:

∆F
max := max

f∈{0,...,|F|}

{
βif+1

− βif
}
, ∆F

min := min
f∈{1,...,|F|−1}

{
βif+1

− βif
}
. (90)

Again we have ∆F
max ⩽ (S +1) ·∆max and ∆F

max
∆F

min
⩽ (S +1) · ∆max

∆min

(a)
⩽ (S +1)B, where (a) is because

of the bounded condition that we have. Therefore, ∆F
max

∆F
min

is bounded. Additionally, since ∆min ⩽ 2
N ,
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then ∆max
∆min

⩽ B implies that both ∆max = O( 1
N ). Thus, there exists a constant J such that ∆max ⩽ J

N .

Therefore, we have ∆F
max ⩽ ∆max · (S + 1) ⩽ J(S+1)

N ⩽ J(S+1)
N−S . Applying Theorems 6 and 7 with

Ω = (−1, 1),m = 2, we have:

Eϵ,F

[
∥h∥2L2(Ω;R)

]
⩽ H0

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· EF [L] +
Q0σ

2
0

N − S
λ
− 1

4

d , (91)

and

Eϵ,F

[
∥h′∥2L2(Ω;R)

]
⩽ H1

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· EF

[
L

1
2 (1 +

L

16
)

1
2

]
+

Q1σ
2
0

N − S
λ
− 3

4

d , (92)

where L = p2

(
∆F

max
∆F

min

)
· (N−S)∆F

max
4 λd + D(2) ·

(
∆F

max

)4
, H0,H1 := H(2, 0),H(2, 1), and

Q0(λ0), Q1(λ0) := Q(2, 0, λ0), Q(2, 1, λ0) as defined in Theorems 6 and 7. Since ∆F
max

∆F
min

⩽
(S + 1)B, we have:

EF [L] ⩽ EF

[
p̃2(S + 1) · (N − S)∆F

max

4
λd +D ·

(
∆F

max

)4]
(a)
⩽ p̃2(S + 1) · J(S + 1)

4
λd +DJ4 (S + 1)4

(N − S)4

= p3(S + 1) · λd +DJ4 (S + 1)4

(N − S)4
, (93)

where D := D(2), p̃2(S + 1) = p2 (B(S + 1)), p3(S + 1) := p̃2(S + 1) · J(S+1)
4 is a degree three

polynomial of (S + 1), and (a) follows from the ∆F
max ⩽ J(S+1)

N−S . Substituting in (91), we have:

Eϵ,F

[
∥h∥2L2(Ω;R)

]
⩽ H0

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

(
p3(S + 1) · λd +DJ4 (S + 1)4

(N − S)4

)
+
Q0(λ0)σ

2
0

N − S
λ
− 1

4

d

(a)
⩽ H0

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

λd ·
(
p3(S + 1) +DJ4(S + 1)4

)
+
Q0(λ0)σ

2
0

N − S
λ
− 1

4

d

(b)
= H0

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

λd · p4(S + 1) +
Q0(λ0)σ

2
0

N − S
λ
− 1

4

d , (94)

where (a) follows from the fact that λ−1
d (N − S)−4 ⩽ 1, as assumed in Theorem 7 and (b) is by

definition p4(S + 1) := p3(S + 1) + DJ4(S + 1)4 is a degree four polynomial of (S + 1). An
analogous upper bound can be derived for Eϵ,F

[
∥h′∥2L2(Ω;R)

]
as

Eϵ,F

[
∥h′∥2L2(Ω;R)

]
⩽ H1

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· λ
1
2

d · p4(S + 1)
1
2 ·
(
1 + λd

p4(S + 1)

16

) 1
2

+
Q1(λ0)σ

2
0

N − S
λ
− 3

4

d

(a)
≤ H1

∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· λ
1
2

d · p4(S + 1)
1
2 ·
(
1 + λ0

p4(S + 1)

16

) 1
2

+
Q1(λ0)σ

2
0

N − S
λ
− 3

4

d

(b)
=
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

η̃ · λ
1
2

d · p4(S + 1)
1
2 +

Q1(λ0)σ
2
0

N − S
λ
− 3

4

d , (95)

where (a) follows from the definition λd ⩽ λ0, (b) is derived from the definition η̃ :=

H1

(
1 + λ0

p4(S+1)
16

) 1
2

. By applying the upper bound for Ldec from (77) and incorporating the
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results from (94) and (95), we can deduce the following:

Ldec
(a)
⩽ 2

(∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· µ0(S)λd +
Q0(λ0)σ

2
0

N − S
λ
− 1

4

d

) 1
2

·
(∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

· µ1(S)λ
1
2

d +
Q1(λ0)σ

2
0

N − S
λ
− 3

4

d

) 1
2

(b)
⩽ 2λ

1
4

d

(∥∥∥(f ◦ uenc)
(2)
∥∥∥2
L2(Ω;R)

· µmax(S)λ
1
2

d +
Qmax(λ0)σ

2
0

N − S
λ
− 3

4

d

)
= 2λ

3
4

d ·
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

· µmax(S) +
Qmax(λ0)σ

2
0

N − S
λ
− 1

2

d , (96)

where (a) follows by the definitions µ0(S) := H0 · p4(S + 1) and µ1(S) := η̃ · p4(S + 1)
1
2 , and (b)

is due to Q0(λ0), Q1(λ0) ⩽ Qmax(λ0) := max{Q0(λ0), Q1(λ0)} and µ0(S), µ1(S) ⩽ µmax(S) :=
max{µ0(S), µ1(S)}. Therefore, we can conclude that:

Ldec ⩽ 2λ
3
4

d · µmax(S) ·
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

+ λ
− 1

2

d · Qmax(λ0)σ
2
0

N − S
. (97)

Based on the definition of µmax(S) we have:

µmax(S) = max

{
H0 · p4(S),H1

(
1 + λ0

p4(S)

16

) 1
2

p4(S)
1
2

}

⩽ Hmax · p4(S)
1
2 ·max

{
p4(S), 1 +

λ0p4(S)

16

} 1
2

,

⩽ Hmax · p4(S)
1
2 ·
(
1 + p4(S)

16

) 1
2

max {16, λ0}
1
2 ,

= Hmax · p̃4(S)max {4, λ0}
1
2 , (98)

whereHmax := max{H0,H1} and p̃4(S) := p4(S)
1
2 ·
(

1+p4(S)
16

) 1
2

. Based on definition ofQmax(λ0)

(mentioned in Theorem 7), we have:

Qmax(λ0) = max{w0λ
1
4
0 + w̃0, w1λ

1
4
0 + w̃1}

⩽ wmaxλ
1
4
0 + w̃max,

⩽ 2wmax max

{
λ0,

(
w̃max

wmax

)4
} 1

4

(99)

where wmax := max{w0, w1} and w̃max := max{w̃0, w̃1}. Therefore we have:

Ldec ⩽ 2λ
3
4

d ·Hmax · p̃4(S)max {4, λ0}
1
2 ·
∥∥∥(f ◦ uenc)

(2)
∥∥∥2
L2(Ω;R)

+ λ
− 1

2

d

2σ2
0wmax max

{
λ

1
4
0 ,

w̃max
wmax

}
N − S

.

(100)

Since (97) holds for all λd, by minimizing the right-hand side of (97) with respect to λd, we obtain:

λ∗d =

3Hmax · p̃4(S) · (N − S) ·
∥∥(f ◦ uenc)

(2)
∥∥2
L2(Ω;R)

4wmaxσ2
0

− 4
5
 max {4, λ0}

1
2

max
{
λ

1
4
0 ,

w̃max
wmax

}
− 4

5

(101)

By substituting the expression for λ∗d into (97), we have:

Ldec ⩽ 4

(
3Hmax

4wmax

) 2
5
(

σ0
N − S

) 3
5

· p̃4(S)
2
5 ·
∥∥∥(f ◦ uenc)

(2)
∥∥∥ 4

5

L2(Ω;R)

 max {4, λ0}
1
2

max
{
λ

1
4
0 ,

w̃max
wmax

}
 2

5

.

(102)
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Thus, definingC2 := 3Hmax
4wmax

, C(λ0) :=

 max{4,λ0}
1
2

max

{
λ

1
4
0 , w̃max

wmax

}
, and using previously driven upper bound

for Lenc in Lemma 2 completes the proof.

B.3 Proof of Theorem 3

The upper bounds presented in Theorems 1 and 2 depend on
∥∥(f ◦ uenc)

(2)
∥∥2
L2(Ω;R), with exponents

of 2
5 and 1, respectively. By applying the chain rule, we can demonstrate that:∫

Ω

[f(uenc(t))
′′]

2
dt

(a)
=

∫
Ω

[
u′′enc(t) · f ′(uenc(t)) + u′enc(t)

2 · f ′′(uenc(t))
]2
dt

(b)
⩽
∫
Ω

[
u′′enc(t)

2 + u′enc(t)
4
] [
f ′(uenc(t))

2 + f ′′(uenc(t))
2
]
dt

(c)
⩽ (q2 + ν2)

∫
Ω

[
u′′enc(t)

2 + u′enc(t)
4
]
dt

= (q2 + ν2)
(
∥u′′enc(t)∥

2
L2(Ω;R) + ∥u′enc(t)∥

4
L4(Ω;R)

)
(d)
⩽ (q2 + ν2)

(
∥u′′enc(t)∥

2
L2(Ω;R) +

(
∥u′enc(t)∥L2(Ω;R) + ∥u′′enc(t)∥L2(Ω;R)

)4)
(e)
⩽ (q2 + ν2)

(
∥u′′enc(t)∥

2
L2(Ω;R) + 4

(
∥u′enc(t)∥

2
L2(Ω;R) + ∥u′′enc(t)∥

2
L2(Ω;R)

)2)
(f)
⩽ (q2 + ν2)

(
∥uenc∥2W2,2(Ω;R) + 4 ∥uenc∥4W2,2(Ω;R)

)
(g)
⩽ (q2 + ν2)

(
73 ∥uenc∥2W̃2,2(Ω;R) + 4× 732 ∥uenc∥4W̃2,2(Ω;R)

)
(h)
= (q2 + ν2) · ψ

(
∥uenc∥2W̃2,2(Ω;R)

)
,

(i)
= (q2 + ν2) · ψ

(
∥uenc∥2H̃2(Ω;R)

)
, (103)

where (a) follows from the chain rule, (b) is derived using the Cauchy-Schwartz inequality, (c) is
due to ∥f ′′0 ∥L∞(Ω;R) ⩽ ν, (d) follows from Theorem 5 with r = 4, p = q = 2, l = 1, (e) follows

from AM-GM inequality, (f) is a result of adding positive terms ∥uenc∥2W2,2(Ω;R) and ∥u′enc∥
2
W2,2(Ω;R)

to the first term and ∥uenc∥2W2,2(Ω;R) to the second term in the parenthesis, (g) is result of applying
Corollary 4, (h) is by defining ψ(t) := 73t+ 4× 732t2, and (i) is because of Proposition 2.

Combining (103) with Theorems 1 and 2 we have

R(f̂) ⩽ 2q2

K

K∑
k=1

(uenc(αk)− xk)
2 + λe · ψ

(
∥uenc∥2H̃2(Ω;R)

)
, (104)

for the noiseless setting and

R(f̂) ⩽ 2q2

K

K∑
k=1

(uenc(αk)− xk)
2 + λ̃e · ψ

(
∥uenc∥2H̃2(Ω;R)

) 2
5

(105)

for the noisy setting, where the parameters λe and λ̃e are as follows:

λe = C1
(S + 1)3

N3
· (q2 + ν2) (106)

λ̃e = 2C(λ0)
3
4

(
σ2
0

N − S

) 3
5

· p4(S)
2
5 · (q2 + ν2)

2
5 . (107)

Note that since ψ(t) and γ(t) := t
2
5 are monotonically increasing in R+, its composition is mono-

tonically increasing as well. Moreover, λe and λ̃e share the same exponent of N as in Theorems 1
and 2, respectively. Consequently, the provided upper bound does not compromise the convergence
rate.
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B.4 Proof of Proposition 1

For part (i), we know that for t ⩽M , we have:

ψ(t) = 73t+ 4× 732t2 ⩽ t(73 + 4× 732t) ⩽ t(73 + 4× 732 ·M) = t(m1 +m2M), (108)

where m1 := 73,m2 := 4× 732. Therefore, if ∥uenc∥2H̃2(Ω;R) ⩽M , then:

ψ(∥uenc∥2H̃2(Ω;R)) ⩽ (m1 +m2M) ∥uenc∥2H̃2(Ω;R)

= (m1 +m2M)

(
uenc(−1)2 + u′enc(−1)2 +

∫
Ω

|u′′enc(t)|2 dt
)

(a)
⩽ (m1 +m2M)

(
M +

∫
Ω

|u′′enc(t)|2 dt
)
, (109)

where (a) is because of ∥uenc∥2H̃2(Ω;R) ⩽M . Thus, we have:

R(f̂) ⩽ 2q2

K

K∑
k=1

(uenc(αk)− xk)
2 + λe · ψ

(
∥uenc∥2H̃2(Ω;R)

)
⩽ 2q2

K

K∑
k=1

(uenc(αk)− xk)
2 + λe · (m1 +m2M)

(
M +

∫
Ω

|u′′enc(t)|2 dt
)

⩽ R̃(uenc). (110)

For part (ii), let ũenc(t) be a natural spline used as the encoder function fitted to the data points
{(αk, xk)}Kk=1. Then, we have:

λe(m1 +m2M)

(
M +

∫
Ω

|(u∗)′′(t)|2 dt
)

⩽ R̃(u∗)

(a)
⩽ R̃(uenc)

(b)
= λe(m1 +m2M)

(
M +

∫
Ω

|ũenc
′′
(t)|2 dt

)
,

(111)

where (a) follows from the optimality of u∗(·), and (b) follows from ũenc(αk) = xk for k ∈ [K].
Therefore,

∫
Ω
|(u∗)′′(t)|2 dt ⩽

∫
Ω
|ũenc

′′
(t)|2 dt.

Since u∗(·) is smoothing spline, it has the representation in natural spline space (as mentioned in
(51)):

u∗(t) =

K+4∑
k=1

ξkbk(t), (112)

where, {bk(·)}Kk=1 is a basis functions of second order natural splines. Therefore, using Cauchy-
Schwartz inequality, we have:

|u∗(t)|2 ⩽
(

K+4∑
k=1

ξ2

)(
K+4∑
k=1

|bk(t)|2
)
, (113)

and

|(u∗(t))′|2 ⩽
(

K+4∑
k=1

ξ2

)(
K+4∑
k=1

|b′k(t)|2
)
. (114)

Both (113) and (114) hold for all t ∈ Ω. Thus:

|(u∗)′(−1)|2 ⩽ ∥u∗∥2L∞(Ω;R) ⩽ ∥ξ∥22 ·

(
K+4∑
k=1

∥bk∥2L∞(Ω;R)

)
, (115)

|(u∗)′(−1)|2 ⩽ ∥(u∗)′∥2L∞(Ω;R) ⩽ ∥ξ∥22 ·

(
K+4∑
k=1

∥b′k∥
2
L∞(Ω;R)

)
, (116)
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where ξ := [ξ1, . . . , ξK+4]
T =

(
NTN+ λΦ

)−1
NTx with Nij = bi(αj),Φij =

∫
Ω
b′′i (t)b

′′
j (t) dt

for i, j ∈ [K + 4] as defined in (51), and x := [x1, . . . , xK ]. Noted that {∥b′k∥
2
L∞(Ω;R)}

K+4
k=1 and

{∥bk∥2L∞(Ω;R)}
K+4
k=1 depend only on {αk}Kk=1.

Lemma 6. If ξ̃ :=
(
NTN

)−1
NTx, then ∥ξ∥22 ⩽ κ(Φ) ·

∥∥∥ξ̃∥∥∥2
2
< 2

| detΦ|

(
∥Φ∥2

F

K

)K
2
∥∥∥ξ̃∥∥∥2

2
, where

κ(Φ) is condition number of Φ.

Proof. By defining Ñ := NΦ− 1
2 and rearranging the expression for ξ̃, we obtain:

ξ̃ =
(
NTN+ λΦ

)−1
NTx = Φ−1/2

([
NΦ−1/2

]T [
NΦ−1/2

]
+ λI

)−1 [
NΦ−1/2

]T
x

= Φ−1/2
(
ÑT Ñ+ λI

)−1

ÑTx. (117)

Define z :=
(
ÑT Ñ

)−1

ÑTx. Thus, ÑTx = ÑT Ñz. Thus, by applying the Cauchy-Schwartz
inequality, we have:∥∥∥∥(ÑT Ñ+ λI

)−1

ÑTx

∥∥∥∥
2

=

∥∥∥∥(ÑT Ñ+ λI
)−1

ÑT Ñz

∥∥∥∥
2

⩽
∥∥∥∥(ÑT Ñ+ λI

)−1

ÑT Ñ

∥∥∥∥
2

· ∥z∥2 .

(118)

Let Ñ = UDVT be the singular value decomposition of Ñ. Therefore, we have:∥∥∥∥(ÑT Ñ+ λI
)−1

ÑT Ñ

∥∥∥∥
2

=
∥∥∥(VD2VT + λI

)−1
VD2VT

∥∥∥
2

=
∥∥∥V−T

(
D2 + λI

)−1
V−1VD2VT

∥∥∥
2

=
∥∥∥V−T

(
D2 + λI

)−1
D2VT

∥∥∥
2

(a)
=
∥∥∥(D2 + λI

)−1
D2
∥∥∥
2

=

∥∥∥∥diag
(

λ21
λ21 + λ

, . . . ,
λ2K

λ2K + λ

)∥∥∥∥
2

⩽ 1, (119)

where (a) is because V is an unitary matrix and λ1, . . . , λK are eigenvalues of Ñ. Continuing from
(117), we obtain: ∥∥∥Φ1/2ξ̃

∥∥∥
2
=

∥∥∥∥(ÑT Ñ+ λI
)−1

ÑT Ñ

∥∥∥∥
2

⩽ ∥z∥2 . (120)

Let us define x0 :=
(
NTN

)−1
NTx. Thus, we have:

z =
(
ÑT Ñ

)−1

ÑTx

=
(
Φ−1/2NTNΦ−1/2

)−1

Φ−1/2NTx

= Φ1/2
(
NTN

)−1
NTx

= Φ1/2x0. (121)

Therefore, we can bound the ∥ξ∥Φ :=

√
ξTΦξ:

∥ξ∥Φ =
∥∥∥Φ1/2ξ

∥∥∥
2
⩽ ∥z∥2 = ∥x0∥Φ . (122)
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Since Φ is symmetric, by Rayleigh-Ritz theorem we know that:

0
(a)
< λΦmin ⩽ ξTΦξ

ξT ξ
=

∥ξ∥2Φ
∥ξ∥22

⩽ λΦmax, (123)

where λΦmin, λ
Φ
max are minimum and maximum eigenvalues of Φ, and (a) is due to the fact that since

Φ is kernel matrix of RKHS space and {bk(·)}Kk=1 are basis functions, it is positive definite. Thus,
we have:

∥ξ∥22 ⩽ 1

λΦmin
∥ξ∥2Φ ⩽ 1

λΦmin
· ∥x0∥2Φ ⩽ λΦmax

λΦmin
∥x0∥22 = κ(Φ) ∥x0∥22 . (124)

Applying the bound for condition number introduce in [66], we can complete the proof:

κ(Φ) <
2

| detΦ|

(
∥Φ∥2F
K + 4

)K+4
2

, (125)

where ∥·∥F is the Frobenius norm.

Using Lemma 6, (115), and (116) we have:

∥u∗∥H̃2(Ω;R) ⩽ ∥ξ∥22 ·

(
K+4∑
k=1

∥bk∥2L∞(Ω;R) +

K+4∑
k=1

∥b′k∥
2
L∞(Ω;R)

)
+

∫
Ω

|ũenc
′′
(t)|2 dt

(a)
⩽ 2

| detΦ|

(
∥Φ∥2F
K + 4

)K+4
2 ∥∥∥ξ̃∥∥∥2

2

(
K+4∑
k=1

∥bk∥2L∞(Ω;R) +

K+4∑
k=1

∥b′k∥
2
L∞(Ω;R)

)

+

∫
Ω

|ũenc
′′
(t)|2, (126)

where (a) follows by applying Lemma 6. Setting M equal to the right-hand side of Equation (126)
completes the proof.

B.5 Proof of Theorem 4

Consider a natural spline ũenc(t) as the encoder function fitted on the data points {(αk, xk)}Kk=1. Let
u∗enc(t) denote the optimal encoder minimizing the upper bound in (10). Then, we have:

R(f̂) ⩽ 2q2

K

K∑
k=1

(u∗enc(αk)− xk)
2 + λe · g

(
∥u∗enc∥

2
H̃2(Ω;R)

)
(a)
⩽ 2q2

K

K∑
k=1

(ũenc(αk)− xk)
2 + λe · g

(
∥ũenc∥2H̃2(Ω;R)

)
(b)
= λe · g

(
∥ũenc∥2H̃2(Ω;R)

)
, (127)

where (a) follows from the optimality of u∗enc(t), and (b) is due to the fact that ũenc(αk) = xk, since
ũenc(·) is a natural spline. Note that g

(
∥ũenc∥2H̃2(Ω;R)

)
is independent ofN and S, and depends only

on αk and xk for k ∈ [K]. Additionally, based on the Theorem 3 and (106), λe = O(S3N−3) and
λe = O(S

8
5N− 3

5 ) for the noiseless and noisy cases, respectively. Thus, the upper bound provided
in (10) converges at most at the rate of O(S3N−3) for the noiseless case and O(S

8
5N− 3

5 ) for the
noisy case.

C Comparison with Berrut Coded Computing

C.1 Convergence rate

The upper bound of the infinity norm for the estimation provided in [29] for the coded computing
scheme with N workers and maximum of S stragglers is as follows:∥∥∥f̂BACC(t)− f ◦ uenc(t)

∥∥∥
L∞(Ω;R)

⩽ 2(1 +R) sin

(
(S + 1)π

2N

)
∥f ◦ u′′enc(t)∥L∞(Ω;R) , (128)
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if N − s is odd, and∥∥∥f̂BACC(t)− f ◦ uenc(t)
∥∥∥
L∞(Ω;R)

⩽ 2(1 +R) sin

(
(S + 1)π

2N

)(
∥f ◦ u′′enc(t)∥L∞(Ω;R)

+ ∥f ◦ u′enc(t)∥L∞(Ω;R)

)
, (129)

if N − s is even, where R = (s+1)(s+3)π2

4 . Since ∥·∥L2(Ω;R) is upper bounded by ∥·∥L∞(Ω;R), we
can directly derive a convergence rate for the squared L2 (Ω;R)-norm of the error as N increases:∥∥∥f̂BACC(t)− f ◦ uenc(t)

∥∥∥2
L2(Ω;R)

⩽ L(Ω) ·
∥∥∥f̂BACC(t)− f ◦ uenc(t)

∥∥∥2
L∞(Ω;R)

⩽ O(S4N−2). (130)

Compared to our results, the upper bound for LeTCC provided in Theorem 1, O(S3N−3), is less
sensitive to the number of stragglers and converges faster with increasing N . Note that, since the
∥·∥L2(Ω;R) is upper bounded by ∥·∥L∞(Ω;R), the statement above does not guarantee faster conver-
gence of the proposed scheme compared to Berrut approach.

It should be noted that [29] does not analyze the noisy setting.

C.2 Computational complexity

From the experimental view, we compare the whole encoding and decoding time (on a single CPU
machine) for LeTCC and BACC frameworks, as shown in the following table:

Table 2: Average and std of end-to-end processing time of LeTCC and BACC for different architectures

BACC LeTCC
LENET5, (N,K) = (100, 20) 0.013s± 0.002 0.007s± 0.001

REPVGG, (N,K) = (60, 20) 1.62s± 0.18 1.59s± 0.14

VIT, (N,K) = (20, 8) 1.60s± 0.28 1.74s± 0.29

As shown in Table 2, the end-to-end processing time of the proposed framework is on par with BACC.

D Comparison with Lagrange Coded Computing

Although the only existing coded computing scheme for general functions is Berrut coded com-
puting [29], with which we have compared our proposed scheme, other schemes are designed for
specific computations, such as polynomial functions [3] and matrix multiplication [13]. To provide
further comparison, we evaluate our proposed scheme against Lagrange coded computing (LCC) [3],
which is specifically designed for polynomial computations, as follows:

D.1 Accuracy of function approximation

LCC is applicable only to polynomial computing functions [3]. Additionally, to enable recovery,
the number of servers required must be at least (K − 1) × deg(f) + S + 1 worker nodes [3, 29];
otherwise, the master node cannot recover any results. Moreover, LCC is designed for computation
over finite fields and encounters serious instability when computing over real numbers, particularly
when (K − 1)× deg(f) is around 25 or higher [18, 29].

We compare the proposed framework with LCC in Figure 5. Note that ifN < (K−1)×deg(f)+S+1,
LCC cannot operate effectively. To adapt LCC for such cases, we approximate results by fitting a
lower-degree polynomial to the available workers’ outputs. We run LeTCC and LCC on the same set
of input data and a fixed polynomial function for 20 trials, plotting the average performance and
corresponding 95% confidence intervals in Figure 5. Figures 5a and 5b illustrate the performances
of LCC and LeTCC for a low-degree polynomial and a small number of data points (deg(f) = 3
and K = 5). In contrast, Figures 5c and 5d show performance for a higher-degree polynomial
and a larger dataset (deg(f) = 15 and K = 10). As shown in Figures 5a and 5b, LCC achieves
exact results for S ≤ 7. However, at larger values of S, as well as larger polynomial degree (as in
Figures 5c and 5d), the proposed approach, without any parameter tuning, outperforms LCC in terms
of both computational stability (lower variance) and recovery accuracy.
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(a) (b)
(c) (d)

Figure 5: Average performance of LeTCC and Lagrange Coded Computing, with a 95% confidence
interval. Plots (a) and (d) show the overall performance, while the zoomed-in subplots (b) and (c)
highlight the performance for smaller range of stragglers.

D.2 Computational complexity

Encoding and decoding complexities in LCC are O(N · log2(K) · log log(K) · d) and O((N −
S) · log2((N − S)) · log log((N − S)) · m), respectively, where d and m are input and output
dimensions of the computing function f(·), respectively [3]. In contrast, as mentioned before, for
smoothing splines, the encoding and decoding process, which involves evaluation on new points and
calculating the fitted coefficients, have the computational complexity of O(K.d) and O((N−s).m).
Consequently, the computational complexity of the proposed scheme is less than LCC.

E Sensitivity Analysis

E.1 Sensitivity to number of stragglers

The smoothing parameters for each model show low sensitivity to the number of stragglers (or
worker nodes). To find the optimal smoothing parameter, we use cross-validation across different
S
N values. The following table presents the optimal smoothing parameters for selected numbers of
stragglers for LeNet5 with (N,K) = (100, 60) and RepVGG with (N,K) = (60, 20), respectively.
As shown in Table 3, the optimal values of λe and λd exhibit low sensitivity to the number of
stragglers.

Table 3: Optimal smoothing parameters for different number of stragglers for LeNet and RepVGG
architectures.

LENET5 REPVGG
(N,K) (100, 60) (60, 20)

S λ∗
e λ∗

d λ∗
e λ∗

d

0 10−13 10−6 10−6 10−4

5 10−13 10−6 10−6 10−4

10 10−13 10−6 10−5 10−4

15 10−13 10−6 10−5 10−4

20 10−13 10−6 10−5 10−4

25 10−8 10−5 10−5 10−4

30 10−8 10−4 10−5 10−3

35 10−8 10−4 10−5 10−3

E.2 Sensitivity to smoothing parameters

To assess the performance of the proposed scheme with respect to the smoothing parameters, we vary
each parameter individually around its optimal point while holding the other parameter fixed at their
optimal value. We then record the average percentage increase in RMSE relative to the RMSE at the
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optimal point. Figure 6 presents these results for LeNet with (N,K, S) = (100, 60, 20) (Figures 6a
and 6b) and for RepVGG with (N,K, S) = (60, 20, 35) (Figures 6c and 6d).

(a) (b)

(c) (d)

Figure 6: Sensitivity of LeTCC performance with respect to log10(λd) and log10(λe). The yellow
line represents the performance when the variable smoothing parameter is set to zero.

As shown in Figure 6, the presence of more stragglers increases the sensitivity of LeTCC with respect
to its smoothing parameter. However, even in a high-straggler regime, the RMSE increases by only
around 3% when the smoothing parameter deviates from its optimal value by a scale of 10.

F High-dimensional computing function

Let us consider more general cases where f = [f1, . . . , fm] is a vector-valued function, where each
component function fj : R → R is qj-Lipschitz continuous. Based on (2), we have:

R(f̂) ⩽ E
ϵ,F∼FS,N

[
2

K

K∑
k=1

∥udec(αk)− f(uenc(αk))∥22

]
+

2

K

K∑
k=1

∥f(uenc(αk))− f(xk)∥22 .

⩽ E
ϵ,F∼FS,N

 2

K

K∑
k=1

m∑
j=1

(
udecj (αk)− fj(uenc(αk))

)2
2

+
2
∑m

j=1 q
2
j

K

K∑
k=1

∥uenc(αk)− xk∥22

=

m∑
j=1

E
ϵ,F∼FS,N

[
2

K

K∑
k=1

(
udecj (αk)− fj(uenc(αk))

)2
2

]
+

2
∑m

j=1 q
2
j

K

K∑
k=1

∥uenc(αk)− xk∥22

Let us define the following objective for the decoder function:

u⋆
dec = argmin

u∈H2(Ω;RM )

1

|F|
∑
v∈F

∥u (βv)− f (uenc (βv))∥22 +
m∑
j=1

λd

∫
Ω

(
u′′j (t)

)2
dt. (131)
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The solution to (131), denoted as u⋆
dec, is a vector-valued function, where each component udecj (·)

is a smoothing spline function fitted to the data points {(βv, fj (uenc (βv)))}v∈F . As a result, By

defining q =
√∑m

j=1 q
2
j and scaling up all upper bounds for Ldec by a factor of m, all previous

results and theorems seamlessly extend to high-dimensional computing functions.

G Coded data points

Figures 7b and 7c display coded samples generated by BACC and LeTCC, respectively, derived from
the same initial data points depicted in Figure 7a. These samples are presented for the MNIST
dataset with parameters (N,K) = (70, 30). From the figures, it is apparent (Specifically in paired
ones that are shown with the same color) that while both schemes’ coded samples are a weighted
combination of multiple initial samples, BACC’s coded samples exhibit high-frequency noise. This
observation suggests that LeTCC regression functions produce more refined coded samples without
any disruptive noise.

(a) Initial inputs

(b) BACC coded samples (c) LeTCC coded samples

Figure 7: Comparison of coded samples between BACC and LeTCC frameworks. Figure 7a represents
the initial data points {xk}Kk=1 for K = 30. Figures 7b and 7c display N = 70 coded samples
{x̃n}Nn=1 from BACC and LeTCC, respectively. Samples with clear differences are highlighted with
the same color.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We detailed our contributions clearly in the abstract and the introduction
sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:We provided all the details regarding the assumptions, conditions, and lim-
itations in the framework explanations (Section 3), theorems (Section 4), as well as the
experiments section (Section 5) in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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clearly mentioned all the required assumptions, and a complete (and correct) proof of them
is available in appendices (e.g., see Appendix B). Please see Section 3 for a full definition
of the problem and introduction to the notations used in the paper.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.
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experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
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provided details regarding our empirical evaluations in Section 3 in the paper.
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• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We provided references to all the open datasets that we used in the paper.
Regarding the code, we are happy to share it later if required.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided full experimental details in the paper (see Section 5).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The details are provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided all the details regarding our experiments in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS code of ethics in our paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper is focused on developing a new framework for coded distributed
computing and should be categorized as foundational research. We believe this work has
no direct societal impact that should be explained in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is not applicable to our work and this paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

40



• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve these.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve these.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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