
Published as a conference paper at ICLR 2025

MIXTURE OF PARROTS : EXPERTS IMPROVE
MEMORIZATION MORE THAN REASONING

Samy Jelassi∗
Harvard University

Clara Mohri
Harvard University

David Brandfonbrener
Harvard University
Kempner Institute

Alex Gu
MIT

Nikhil Vyas
Harvard University

Nikhil Anand
Harvard University
Kempner Institute

David Alvarez-Melis
Harvard University
Kempner Institute

Yuanzhi Li
Microsoft Research

Sham M. Kakade
Harvard University
Kempner Institute

Eran Malach
Harvard University
Kempner Institute

ABSTRACT

The Mixture-of-Experts (MoE) architecture enables a significant increase in the
total number of model parameters with minimal computational overhead. However,
it is not clear what performance tradeoffs, if any, exist between MoEs and standard
dense transformers. In this paper, we show that as we increase the number of experts
(while fixing the number of active parameters), the memorization performance
consistently increases while the reasoning capabilities saturate. We begin by
analyzing the theoretical limitations of MoEs at reasoning. We prove that there
exist graph problems that cannot be solved by any number of experts of a certain
width; however, the same task can be easily solved by a dense model with a slightly
larger width. On the other hand, we find that on memory-intensive tasks, MoEs can
effectively leverage a small number of active parameters with a large number of
experts to memorize the data. We empirically validate these findings on synthetic
graph problems and memory-intensive closed book retrieval tasks. Lastly, we
pre-train a series of MoEs and dense transformers and evaluate them on commonly
used benchmarks in math and natural language. We find that increasing the number
of experts helps solve knowledge-intensive tasks, but fails to yield the same benefits
for reasoning tasks.

1 INTRODUCTION

The explosion in capabilities of large language models in recent years has largely been enabled by
scaling their size, as measured by the number of parameters in the model. In the standard Transformer
architecture, scaling the number of parameters entails a proportional increase in computational cost,
e.g. doubling the number of parameters requires doubling the number of floating-point operations
(FLOPs), making training and inference more computational intensive. Mixture-of-Experts (MoE)
were introduced as a solution for this problem (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2022). MoEs replace the single MLP in each Transformer block with multiple MLPs (called experts),
where each token is routed to a few experts based on a linear routing function. The number of
parameters in the MoE layer therefore increases with the total number of experts, while the compute
increases only with the number of “active” experts (i.e., the number of experts to which the token is
routed to). This offers a promising option for scaling models: increase the number of experts instead
of the model dimension or its depth. For this reason, MoEs have become very popular, and many
frontier models today are based on the MoE architecture (Achiam et al., 2023; Databricks, 2023; Anil
et al., 2023; Dai et al., 2024; Jiang et al., 2024; Yang et al., 2024).

∗Correspondence to: Samy Jelassi <sjelassi@fas.harvard.edu>

1

sjelassi@fas.harvard.edu

Published as a conference paper at ICLR 2025

16M 49M 159M 569M 2.1B

Number of total parameters

6
8

14

20

26

35

F
1

A
cc

u
ra

cy
(%

)

NLP (world knowledge)

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

(a) Evaluation: world knowledge

16M 49M 159M 569M 2.1B

Number of total parameters

39

42

46

50

53

A
cc

u
ra

cy
(%

)

NLP (commonsense)

(b) Evaluation: commonsense

16M 49M 159M 569M 2.1B

Number of total parameters

2
7

18

32

44

A
cc

u
ra

cy
(%

)

MATH

(c) Evaluation: math

Figure 1: (a) Evaluation: world knowledge. We train a series of dense transformers and MoEs
on 65B tokens from a corpus essentially made of Fineweb-edu, Cosmopedia and Wikipedia (see
Section 5 for details). We then evaluate the models on several world knowledge benchmarks (e.g.,
TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al., 2019)) and report the average
F1 accuracy. Surprisingly, at a fixed number of total parameters, MoEs with substantially fewer active
parameters approximately match the performance of dense models. This highlights the importance of
experts in tasks that require memorization. (b) Evaluation: commonsense. Here we evaluate the
aforementioned pre-trained models on natural language commonsense benchmarks (e.g., HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021)). On these reasoning tasks, we observe
that MoEs perform worse than dense models and more significant benefits are obtained by increasing
the number of active parameters. (c) Evaluation: math. Here we train a series of dense transformers
and MoEs on 65B tokens from a corpus essentially made of Proof-Pile2 (Azerbayev et al., 2023) (see
Section 5 for details). The results are consistent with the ones in (b): MoEs perform worse than dense
models at equal number of total parameters.

In this work we study whether MoE indeed offers a “free-lunch”, enabling gains in performance with
no computational cost. Interestingly, we find that the benefit from MoEs greatly depends on the task
at hand. We show that for reasoning-based tasks, such as graph problems and mathematical reasoning,
MoEs offer limited performance gains, and increasing the number of experts cannot compete with
scaling the dimension (width) of the model. On the other hand, for memory-intensive tasks, we show
that scaling the number of experts is competitive with scaling standard “dense” MLPs.

To demonstrate these claims, we begin with a theoretical analysis of MoEs and dense models. We
use communication-complexity lower bounds to show that a single-layer MoE requires a critical
dimension to solve a simple graph connectivity problem, implying that MoEs offer no benefit for
solving this problem and only consume unnecessary memory. On the other hand, we show that for a
pure memorization task, where the model only needs to “remember” an arbitrary set of examples,
scaling the number of experts is equivalent to scaling the number of parameters in dense transformers,
implying a significant computational gain when fixing the number of active parameters (Section 3).
We continue by experimentally validating these results, comparing MoEs against dense models on
synthetic training data. We train these models on finding the shortest path in random graphs, where
we show that MoE accuracy does not improve as we increase the number of experts, but that accuracy
consistently increases with width for a dense transformer (Figure 4b). Following this, we train
different models on the task of memorizing a large phone-book. We demonstrate that MoEs excel
in memorization, matching the performance of dense transformers with the same number of total
parameters but with substantially less computational cost (Figure 4a).

Finally, we train dense transformers and MoEs on real datasets of mathematical reasoning and natural
language, and perform intensive benchmarking of these models on a wide variety of downstream
tasks. For memory-intensive tasks, MoEs surprisingly have a great advantage, where increasing the
number of experts can match the performance of large dense models (Figure 1a). However, we show
that for tasks that rely on reasoning, scaling the number of experts cannot compete with increasing
the model dimension (Figures 1b-1c). Moreover, MoEs exhibit some memorization behaviors when
trained on math problems (Figure 5). Taken together, our results show that the gains from using
MoEs depend greatly on the nature of the training data and downstream task, and that while MoEs
can improve performance in certain cases, sometimes increasing the effective size (width) of the
model is unavoidable.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

Mixture of Experts. Mixture-of-Experts (MoE) date back to the work of Jacobs et al. (1991);
Jordan & Jacobs (1994). Shazeer et al. (2017); Fedus et al. (2022) were the first to scale this idea to
deep learning and obtain state-of-the-art models in machine translation. Since then, several works
have improved their routing algorithms (Lepikhin et al., 2020; Lewis et al., 2021; Roller et al., 2021;
Clark et al., 2022; Zhou et al., 2022; Antoniak et al., 2023; Zhong et al., 2024), have improved their
downstream performance after finetuning (Du et al., 2022; Zoph et al., 2022) or made their training
and inference more efficient (Rajbhandari et al., 2022; Gale et al., 2023; Pan et al., 2024; Tan et al.,
2024). However, only a few papers have studied the science of MoEs and their comparison with
dense transformers. Clark et al. (2022); Krajewski et al. (2024) establish scaling laws for MoEs.
Chen et al. (2022) design a specific classification problem where a model with multiple experts
provably outperforms one with only one expert. Shazeer et al. (2017); Lepikhin et al. (2020); Artetxe
et al. (2021); Lewis et al. (2021); Fedus et al. (2022); Du et al. (2022) show that given a fixed FLOP
budget, MoEs are always better. However, these papers claim that on a per parameter basis, MoEs
always seem comparatively worse than dense models. In this paper, we temper this claim by showing
that it depends on the nature of the task at hand: on reasoning tasks, we validate this claim but on
memory-intensive tasks, equally-sized MoEs perform as well as dense transformers.

Language models and memorization. Large language models (LLMs) store a considerable amount
of knowledge in their parameters (Petroni et al., 2019; Heinzerling & Inui, 2020). They memorize
useful knowledge such as facts and commonsense (Zhao et al., 2024). Many works studied how
memorization occurs in LLMs by developing tools to locate the knowledge in the model (Meng et al.,
2022; Allen-Zhu & Li, 2023; Liu et al., 2024) or by tracking the training dynamics (Tirumala et al.,
2022; Speicher et al., 2024). We draw inspiration from Allen-Zhu & Li (2023) and evaluate the
memorization of our models by pre-training them on a mixture of datasets that includes Wikipedia,
and at test time, evaluate them on world knowledge benchmarks, which are essentially question
answering tasks on Wikipedia facts. With respect to theoretical findings, Kim et al. (2023); Mahdavi
et al. (2023); Madden et al. (2024); Nichani et al. (2024) provide upper bounds on the number of
parameters needed for dense transformers to perform memorization tasks under various conditions.

Language models and reasoning. In recent years, transformer-based language models have
displayed remarkable effectiveness in solving a broad range of reasoning tasks. Specifically, the
reasoning capabilities of transformers have been studied in the context of arithmetic problems (Jelassi
et al., 2023; Cho et al., 2024; Hou et al., 2024; Zhou et al., 2024; McLeish et al., 2024; Lee et al., 2023),
mathematical reasoning (Zhang et al., 2022; Imani et al., 2023; Wei et al., 2022) graph problems
(Sanford et al., 2024; Fatemi et al., 2023; Jin et al., 2023; Wang et al., 2024) and code challenges
(Shi et al., 2024; Zhu et al., 2024). Recently, state-of-the-art language models were used for solving
complex math olympiad problems (DeepMind, 2024; NuminaMath, 2024; OpenAI, 2024). With
respect to theoretical findings, various works study the reasoning capabilities of transformers, relating
their expressive power to other complexity classes and formal languages (Weiss et al., 2021; Zhou
et al., 2023; Strobl et al., 2024; Chen & Zou, 2024). Other works study how chain-of-thought can
improve the reasoning capabilities of language models in terms of expressive power and learnability
(Abbe et al., 2024; Merrill & Sabharwal, 2023; Malach, 2024).

3 THEORY: REPRESENTATIONAL CAPACITY

In this section, we analyze the capability of MoE transformers compared to standard (dense) models.
We begin by studying a simple graph problem that requires scaling the hidden dimension of the
transformer, showing that MoEs with small hidden dimension cannot solve this problem, regardless
of the number of experts used. Then, we show that MoEs can effectively memorize random inputs,
requiring significantly less computational resources (active parameters) compared to dense models.

3.1 SETTING

Consider a one-layer transformer f ∈ TransformerNm,H,1 which takes as input a sequence of length
N and has logarithmic bit-precision. f embeds the input into dimension m via the function ϕ. f has

3

Published as a conference paper at ICLR 2025

H ≥ 1 attention heads, whose outputs are combined via concatenation before we apply point-wise
function ψ 1.

Define the parameters as Qh, Vh,Kh ∈ Rm×m, ϕ : X → Rm, ψ : Rm → R. The output of f is:

f(x1, . . . ,xN) = ψ
([

softmax
(
ϕ(xN)⊤QhK

⊤
h ϕ(X)

)
ϕ(X)Vh

]
h∈[H]

)
.

f is a dense transformer, if ψ is an MLP, i.e. function of the form:

ψ(x) = u⊤σ(Wx+ b), forW ∈ Rm′×m, b ∈ Rm′
,u ∈ Rm′

where σ is the ReLU activation function. f ∈ TransformerNm,H,1,K is a sparse (MoE) transformer
with K experts if ψ is a function of the form:

ψ(x) = u⊤
i σ(Wix+ bi) for i = argmax

j
r⊤j x

where W1, . . . ,Wk ∈ Rm′×m, b1, . . . , bk ∈ Rm′
, u1, . . . ,uk ∈ Rm′

are the parameters of each
expert and r1, . . . , rk define the routing function (we use top-1 routing).

3.2 MOES REQUIRE A CRITICAL HIDDEN SIZE TO SOLVE GRAPH REASONING TASKS

In this section, we analyze the graph reasoning capabilities of dense and sparse transformers. We
define the length-2 path problem on a graph, and use it as a means to understand other graph reasoning
tasks such as graph connectivity, shortest path, and cycle detection.

Definition 3.1 (Length-2 Path Problem). The input is a graph G = (V,E). The source s ∈ V and
a destination d ∈ V are fixed for all tasks as the 0 and |V | vertex. The length-2 path problem asks
whether there is a path of length 2 from s to d.

Graph connectivity, shortest path, and cycle detection are all graph reasoning tasks which reduce to
the length-2 path problem due to (Sanford et al., 2024) and Lemma D.2. We provide a lower-bound
on the width required for a sparse transformer to solve the length-2 path problem, and an upper-bound
on the width required for a dense transformer to solve the problem. Further, we show a separation
between dense and sparse transformers with the same number of parameters: for a sufficiently large
amount of experts in the sparse model, it cannot solve the same problem that a dense model can solve
with the same amount of total parameters.

Lower bound on width of depth-1 MoE for reasoning. We begin by showing a lower-bound on
the width for a depth-1 mixture of expert model for the length-2 path problem. This lower bound
implies a lower bound for search and retrieval tasks such as graph connectivity, shortest path, and
cycle detection.

Theorem 3.2 (Length-2 path lower-bound on sparse transformers). For some input sequence G =
(V,E), fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈
TransformerNm,H,1,K with O(logN)-bit precision that solves length-2 path for any input X where
XA is a function of edges with the source s, XB is a function of edges with the destination d. Then,
f has width satisfying mH = Ω(|V |/ logN).

The proof follows almost identically from the proof in (Sanford et al., 2024) for the class
TransformerNm,H,1. The original proof does not place constraints on the function ψ and is based on
a communication-complexity argument. As such we may design ψ so that it first routes and then
chooses which expert to apply. We give a complete proof in Appendix D. As such, the result of
(Sanford et al., 2024) can also be extended to the class TransformerNm,H,1,K .

Upper bound on width of depth-1 dense transformer for reasoning. In this section we give an
upper bound for the width required for a dense model to solve the length-2 path problem.

1In multi-layer Transformers, each layer outputs a vector of size m. However, since our focus in this section
will be on binary classification problems, we will let the transformer output a single scalar, and we interpret the
output of the final token as the prediction for the classification task.

4

Published as a conference paper at ICLR 2025

Theorem 3.3 (Length-2 path width upper bound for transformer). There exists a transformer of width
|V |, H = 1, and O(logN)-bit precision that solves length-2 path problem for any input.

The proof relies on an encoding of the inputs where the output values only exceed a certain threshold
when u and v, the source and destination vertices, have edges with a common vertex. We defer the
proof to Appendix D.

Parameter-matched comparison of dense and sparse depth-1 transformers. Using the lower-
bound on width required for a sparse transformer (Theorem 3.2) and the upper-bound on width
required for a dense transformer (Theorem 3.3), we compare dense and sparse transformers when
they have the same number of total parameters. We find that when the number of experts exceeds
(logN)2, the sparse model is unable to solve the same task as the dense model.

Corollary 3.4. Consider a sparse transformer (with K experts) and a dense transformer with the
same number of parameters. There exists a number of experts K so that the the sparse model is not
able to solve the reasoning task, but the dense transformer solves the task.

Proof. Suppose we have two depth-1 transformers, where one is a dense model and the other is a
mixture of experts with K experts. Let the width of the dense model be md, and the width of the
sparse model be ms. The number of parameters in the dense model is O(m2

d) and the number of
parameters in the sparse model is O(Km2

s). In order to match the number of parameters, it must be
the case that ms =

md√
K

. Suppose we let md = |V |, as this is sufficient to solve the above problems.
For any K ≥ Ω

(
(logN)2

)
, the sparse model is not sufficiently wide to solve the problem.

3.3 MOES USE THEIR EXPERTS TO SOLVE MEMORY-INTENSIVE TASKS

In this section, we provide an upper-bound on the number of parameters necessary for a sparse trans-
former to solve memorization tasks, followed by a lower-bound on the number of parameters needed
for a dense transformer to solve the same task. We use these results to compare the memorization
capabilities of dense and sparse transformers with the same number of active parameters. We find
that with enough experts, the sparse transformer is able to solve memorization tasks with less active
parameters than the dense transformer. In both bounds we assume that transformer has logarithmic
number of bits to encode each parameter.

We consider sequences {(Xi, yi)}ni=1 where Xi ∈ RN×m are input sequences of length N in
dimension m such that Xi[j] is sampled from a Gaussian distribution N (0, Im). We assume
y1, . . . , yN ∈ {±1} are arbitrary labels for the n sequences. The objective is for a transformer to
memorize these sequences, i.e. map each input Xi to a label yi. The classification is determined by
the sign of the last token output.

Upper-bound on MoE for memorization. We begin by showing that, with high probability over
the choice of the inputs, the MoE architecture can memorize (i.e., arbitrarily label the examples),
with a small number of active parameters.

Theorem 3.5. With probability at least 0.99, there exists a one-layer MoE transformer with K
experts, using Õ

(n
K

+Km
)

active parameters and Õ (n+Km) total parameters stored in Õ(1)

bits that, when applied to each sequence Xi, outputs at the last token a value whose sign matches yi,
i.e., sign(f(Xi)) = yi for all i = 1, . . . , n.2

Specifically, if we choose K =
√
n/m we get that an MoE architecture can solve the memorization

problem with Õ(
√
nm) parameters. To prove this, we show that for a particular routing function, the

number of samples routed to each expert is approximately n/K. Then, we show that an expert with
Õ(n/mK) neurons can memorize a sample of size O(n/K). We present the proof in Appendix D.2.

Lower bound on memorization with dense Transformer. Next, we give a lower-bound on the
number of parameters for a dense transformer to perform memorization.

2We use Õ and Ω̃ to hide logarithmic factors.

5

Published as a conference paper at ICLR 2025

Theorem 3.6 (Lower bound for dense model). Given the same task as above, a dense Transformer
requires Ω̃(n) parameters to solve the memorization task.

This bound follows from the fact that there are 2n possible labels for any fixed set of n inputs, and at
most 2cW functions with W parameters and c bit per parameters. The proof is in Appendix D.2.

Separation between MoEs and Dense Models. Observe that the previous results on memorization
imply a separation between MoEs and dense models in terms of the number of active parameters.
Namely, we show that an MoE with Õ(

√
nm) active parameters can memorize, while a dense model

requires Ω̃(n) parameters. So, for n ≫ m, MoEs are significantly more efficient. Comparing the
number of total parameters, MoEs require Õ(n+Km) parameters, so both MoE and dense models
have linear dependence on n in the total parameter count.

4 SYNTHETIC EXPERIMENTS

In the previous section, we proved that there exist graph connectivity problems that cannot be solved
by any number of experts of a certain width but the same task can be solved by a dense model with
a slightly larger width. Our goal in this section is to verify that our theoretical analysis bears out
experimentally when training models from scratch on synthetic data, before moving on to study
pre-trained models in Section 5. We mainly focus on two tasks: the shortest path problem (Figure 2),
which we use as a synthetic task to represent reasoning problems, and the phone-book task (Figure 3),
to measure the recall ability of our models. Our experiments in this section highlight that adding
experts yields greater performance improvements on memorization tasks than reasoning tasks.

Figure 2: Illustration of the shortest path task. We feed the model with a sequence that lists all the edges in the
input graph and ends with the query (in green) which asks the model to find a shortest path between two vertices
(from vertex 1 to vertex 4 in the figure). The model then autoregressively returns the shortest path (in purple).

4.1 EXPERIMENTAL SETUP

Architecture. We opt for the Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) architectures
as the backbones of our Transformer and MoE models, respectively. The two architectures are
identical and only differ by the addition of a gating module and multiple experts in Mixtral. For both
model types, we fix the number of layers to L = 12. For the dense transformers, we vary model size
by sweeping the width d ∈ {256, 512, 1024}. For MoEs, we sweep over widths d ∈ {256, 512} and
the number of experts E ∈ {8, 16, 32, 64}. To be consistent with our experiments in Section 5, we
set the intermediate dimension in the FFN block to be equal to d (and not 4d). We use token-choice
routing, do not apply any token dropping and each token is routed to the top-2 experts. Lastly, in both
this section and Section 5, we report for each model the number of non-embedding parameters which
we refer to as the total number of parameters.

Shortest path task. For a graph with n vertices, our token space V is of size n + 6 with tokens
encoding the vertices and some special tokens: V = {1, . . . , n, ⟨EDGE⟩ , ⟨BOS⟩ , ⟨EOS⟩ , ⟨PAD⟩ , ⟨SEP⟩ , /}
where ⟨BOS⟩ is the beginning of sentence token, ⟨EOS⟩ the end of sentence token, ⟨PAD⟩ the padding
token, ⟨EDGE⟩ is the token indicating an edge between two vertices and, ⟨SEP⟩ and “/” are separator
tokens. Each sequences describes the graph by a list of all the edges followed by two randomly
sampled vertices and the shortest path between these latter (see Figure 2). All the graphs are directed
and sampled according to the Erdös-Rényi model, with n vertices and probability p for each edge to
exist. We vary n ∈ {25, 30, 50, 40, 45, 50, 55} and set p such that the average length of the shortest
path is 3.5. Each train/test pair corresponds to one value of (n, p), we do not mix graph sizes.

6

Published as a conference paper at ICLR 2025

Figure 3: Illustration of the phone-book task for closed-book retrieval. The model is first trained to memorize a
phone-book (illustrated on the right). Then, we randomly select a name in the phone-book (in green) and ask the
model to return their phone number (in purple) without access to the phone-book.

5M 22M 88M 352M 700M

Number of total parameters

50k

100k

500k

1M

3M
5.5M

P
h

on
eb

o
ok

si
ze

PHONE-BOOK

Dense transformer MoE (10M active parameters) MoE (42M active parameters)

(a) Phone-book memorization

5M 22M 88M 352M 700M

Number of total parameters

63

68

75

80

A
cc

u
ra

cy
(%

)

SHORTEST PATH (n=50)

(b) Shortest path (50-node graphs)

Figure 4: (a) Phone-book memorization: We train a series of dense transformers and MoEs on phone-books
of varying sizes and then evaluate their memorization capacity. We report the maximal phone-book size where
the model obtains more than 90% accuracy. The maximal phone-book size correlates with the total (and not
active) number of parameters. (b) Shortest path (total parameters): We train models to find the shortest
path in 50-node graphs and report the test accuracy. Here, increasing the number of experts provides limited
improvements and the performance rather correlates with the number of active parameters.

Phone-book task. Our token space V is of size 39 and made of the alphabet letters, digits and
special tokens: V = {a, . . . , z, 0, . . . , 9, ⟨BOS⟩ , ⟨EOS⟩ , ⟨SEP⟩}. We generate phone-books where the
names consist of 5 letters and the phone numbers of 8 digits (see Figure 3). We ensure that both the
names and numbers are unique.

Datasets. For the graph experiments, the training set size is 1e6 and the test set consists of 1e3
held-out examples that are sampled from the same distribution as the training examples. For the
phone-book experiments, we vary the training set size over {1e5, 5e5, 1e6, 1.5e6, 2e6, 2.5e6, 3e6}
and the test set consists of 1e3 queries from the training set.

Optimization. We use the AdamW optimizer (Loshchilov et al., 2017) with a weight decay equal
to 0.1. We sweep the learning rate over {5e−5, 1e−4, 5e−4, 1e−3}, the number of epochs over
{2, 5, 10, 15}, and set the maximal possible batch size among {8, 16, 32}. We use a warmup during
the 20% first training steps and a linear decay scheduler. All models are trained by next-token
prediction. In the graph task, we apply a mask on the input instance so that we only penalize the
model whenever it makes a mistake on the labels (and not on the inputs and labels jointly). In the
phone-book experiment, we do not apply any masking.

Evaluation. For each task we compute the exact accuracy, i.e. we count the generation as correct
only if it fully matches the ground truth. For the phone-book task, we report the size of the maximal
phone-book where we observe at least 90% exact accuracy.

4.2 MEMORIZATION: TOTAL PARAMETERS PREDICT PERFORMANCE

We train dense transformers and MoEs on phone-books of different sizes and at test time, evaluate
whether they memorize the phone number of some names. Figure 4a reports the maximal phone-book
size where the model manages to get an accuracy greater than 90%. This gives us an estimate of the
memorization capacity of the model.

7

Published as a conference paper at ICLR 2025

The findings are clear: no matter the number of active parameters, MoEs match the performance of
dense transformers with the same number of total parameters. This suggests that MoEs are able to
effectively leverage the extra parameters in additional experts by routing tokens to the experts that
contain the necessary information from the training corpus. This scaling is remarkable in this case
since it even holds when we are only routing to 2 out of 64 experts. For instance, we find that an MoE
model with only 42M active parameters outperforms a dense model with 10x as many parameters.
This type of impressively efficient memorization capacity may be a major reason behind the success
of MoE architectures.

4.3 REASONING: TOTAL PARAMETERS DO NOT PREDICT PERFORMANCE

We train dense transformers and MoEs on the shortest path task and then query the models to find the
shortest paths in novel, held-out graphs. Figure 4b reports the performance on graphs with 50 nodes
with respect to their number of total parameters. Contrary to the phone-book experiment, increasing
the number of experts does not consistently improve the performance of MoEs. Essentially, we
find that active parameters rather than total parameters is a better predictor of performance for these
reasoning tasks.

To connect back to the theory from Section 3, note that active parameters is directly determined by the
width of the network since we always route to exactly 2 experts and fix the depth. Thus, these results
corroborate the theory by showing that width (i.e. active parameters) determines the performance on
these graph reasoning problems and that increasing the number of experts is not helpful. In Section 5,
we will further corroborate this idea through evaluation of pre-trained models on commonsense and
math reasoning benchmarks.

5 PRE-TRAINED MODELS

In this section, we pre-train dense transformers and MoEs and compare their performance on standard
math and natural language benchmarks. We break the downstream tasks into those that require
more memorization and those that require more reasoning. Here, memorization refers to recall in
that we measure the ability of the models to retrieve real-world facts, The memorization-intensive
tasks test for “world knowledge” and consist of benchmarks like TriviaQA (Joshi et al., 2017).
We break the reasoning-intensive tasks into two subcategories: one for natural language reasoning
tasks like WinoGrande (Sakaguchi et al., 2021) and another for mathematical reasoning tasks like
Hendrycks-MATH (Hendrycks et al., 2021). These tasks may be seen as real-world analogs of the
stylized phone-book and shortest path tasks studied in Section 4.

We observe that performance on world-knowledge tasks is governed by the total number of parameters
while performance on reasoning tasks depends more on the number of active parameters (Figure 1).
Additionally, we conduct an experiment that indicates memorization from MoEs may be harming
reasoning performance since there is a larger gap between train and test accuracy for MoEs than
dense models at fixed total parameters (Figure 5). Finally, we conduct an ablation where we compare
models at fixed validation perplexity rather than model size. We find that MoEs perform better on
world knowledge tasks and similarly on reasoning tasks compared to dense models (Figure 6).

5.1 SETUP

Architecture. We train dense transformers and MoEs using the OLMoE codebase (Muen-
nighoff et al., 2024). We set the number of layers L = 20 and vary the width d ∈
{256, 512, 1024, 2048, 4096} for dense transformers and d ∈ {256, 512, 1024} for MoEs. Simi-
larly to Muennighoff et al. (2024), we consistently set the intermediate dimension in the FFN/MoE
blocks to d (and not 4d). For MoEs, we vary the number of experts E ∈ {8, 16, 32, 64}. For the
specific case of width 256, we also train a MoE with 256 experts because its parameter count approx-
imately matches the one of a width-2048 dense model and thus, we can compare the downstream
performance of the two models. We use top-2 token-choice routing, without token dropping which is
implemented in the dMoE function from the Megablocks package (Gale et al., 2023). We leave the
study of MoEs trained with other routing mechanisms for future work.

8

Published as a conference paper at ICLR 2025

Training hyperparameters. We use the AdamW optimizer (Loshchilov et al., 2017) with a weight
decay equal to 0.1. We set the learning rate to 0.001, train on 63B tokens (60k steps) with batch size
512 and sequence length of 2048. We use warmup during the 20% first training steps and a linear
decay scheduler. We train our models using FSDP (Zhao et al., 2023).

Pre-training datasets. We train two collections of models, one collection on natural language and
another one on math. The natural language dataset is a mixture constituted of FineWeb-edu (Penedo
et al., 2024), Cosmopedia (Ben Allal et al., 2024), Wikipedia and the training sets of the downstream
tasks we evaluate on. The math dataset is a mixture made of Proof-Pile 2 (Azerbayev et al., 2023)
and instruction datasets such as OpenMathInstruct (Toshniwal et al., 2024) and MetaMathQA (Yu
et al., 2023). Each of the two training mixture approximately totals 65B tokens. A precise description
of the training mixtures can be found in Appendix B.

Evaluation. We measure the validation perplexity on 5,000 held-out sequences sampled from
the training distribution. And we evaluate our models on a series of natural language and math
benchmarks. Explicitly, we divide them into three categories:

– World-knowledge tasks: TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al.,
2019), HotpotQA (Yang et al., 2018), WebQuestions (Berant et al., 2013), ComplexWebQuestions
(Talmor & Berant, 2018).

– Commonsense tasks: ARC-C and ARC-E (Clark et al., 2018), CommonsenseQA (Talmor et al.,
2018), HellaSwag (Zellers et al., 2019), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), SciQ (Welbl et al., 2017), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021).

– Math: SVAMP (Patel et al., 2021), GSM8k (Cobbe et al., 2021), GSM-Hard (Gao et al., 2023),
Hendrycks-MATH (Hendrycks et al., 2021), Minerva-MATH (Lewkowycz et al., 2022).

16M 49M 159M 569M 2.1B

Number of total parameters

3

7

11
14

18

25

30

G
en

er
al

iz
at

io
n

ga
p

GSM8k

(a)

16M 49M 159M 569M 2.1B

Number of total parameters

2
8

20

31
37

45

G
en

er
al

iz
at

io
n

ga
p

HENDRYCKS-MATH

(b)
Dense transformer
MoE (18M active parameters)
MoE (58M active parameters)
MoE (200M active parameters)

Figure 5: Generalization gap when the test
set is GSM8k (a) and Hendrycks-MATH (b).

In all our experiments, we plot the average accuracy for
each of these three categories. We report the corresponding
per-task performance in Appendix C.

5.2 RESULTS

Experts improve memorization more than reasoning.
We observe that the conclusions from our theoretical results
and synthetic experiments also hold when pre-training and
evaluating language models on natural language and math.
In Figure 1a, we report the accuracy of our models with re-
spect to the number of total parameters. All the lines in the
plot approximately coincide which implies that regardless
of the number of active parameters, MoEs can effectively
use their routing to leverage all of their parameters to solve
memory-intensive tasks. On the other hand, on common-
sense and math benchmarks (Figures 1b,1c) we find that
MoEs do not reach the performance of dense models with
the same number of total parameters. This indicates that
for these reasoning tasks, increasing the dense model width
is more effective that adding experts.

On math tasks, MoEs display a higher train-test gap
than dense models, suggestive of memorization. We
provide additional evidence that memorization occurs in
pre-trained MoEs by considering the generalization gap. In
Figure 5 we select 6,319 random problems from the OpenMathInstruct dataset, which is part of the
training mixture data. More precisely, we pick 5,000 Hendrycks-MATH like examples and 1,319
GSM8k-like examples to ensure that the number of training examples matches with the corresponding
number of examples in GSM8k and Hendrycks-MATH test sets. We then report the generalization
gap, which is the gap between the accuracy on training examples and test examples. While both
dense transformers and MoEs make a single pass on the OpenMathInstruct dataset, Figure 5 shows
that at scales beyond 159M parameters, MoEs suffer from a more significant generalization gap than

9

Published as a conference paper at ICLR 2025

6.1 7.3 9.2 12.2 17.6

Validation perplexity

26

20

14

8
6

F
1

A
cc

u
ra

cy
(%

)

NLP (world knowledge)

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

(a)

6.1 7.3 9.2 12.2 17.6

Validation perplexity

53

50

46

42

39

A
cc

u
ra

cy
(%

)

NLP (commonsense)

(b)

3.2 3.5 3.9 4.5 5.5

Validation perplexity

44

32

18

7
2

A
cc

u
ra

cy
(%

)

MATH

(c)

Figure 6: (a) On world knowledge benchmarks, MoEs consistently outperform dense transformers in
downstream performance when fixing the validation perplexity. (b-c) In reasoning benchmarks, dense
transformers perform about the same as MoEs at a fixed validation perplexity. MoEs can achieve
these perplexities with less active parameters, but may require substantially more total parameters.

dense transformers. This is suggestive that MoEs are more prone to overfit to the problems they have
been pre-trained on than dense models.

MoE models excel at world knowledge tasks but match dense models in reasoning when perplex-
ity is fixed. Finally, we focus on the relationship between validation perplexity and downstream
performance in Figure 6. Rather than comparing models by their parameter count, we can compare
them based on how well they fit the training distribution as measured by validation perplexity. Even
though two models may have the same perplexity, they will have learned different functions. The
question is then if we can see any high level patterns in which types of functions a particular model
class is more likely to learn. Figure 6a shows that at a fixed perplexity, the MoE models outperform
the dense models on world knowledge tasks.

On the other hand, Figures 6b and 6c show that MoEs and dense models perform about the same on
the reasoning tasks at fixed validation perplexity. Note that both dense Transformers and MoEs are
trained with the objective of minimizing the perplexity (or loss). However, there could be multiple
strategies to achieve the same loss, e.g. by memorizing pieces of data or by improving “reasoning”
capabilities. Which strategy the model prefers is determined by the implicit bias of the architecture.
In the experiments, we see that for memorization / factual recall, MoEs achieve better accuracy for
the same pereplexity value, suggesting that they “prioritize” memorization over other capabilties.

6 DISCUSSION

In recent years, scaling up the number of parameters in Transformers has been the dominant approach
for improving performance on language modeling. A standard Transformer of dimension d and
sequence length L has number of parameters which scales with O(d2), and run-time that scales
with O(d2L2). Improving the efficiency can either attempt to reduce the dependence on L or d.
Sub-quadratic attention variants attempt to improve dependence on L (Katharopoulos et al., 2020;
Peng et al., 2023; Fu et al., 2022; Gu & Dao, 2023), while MoEs attempt to improve dependence on
d by scaling the number of parameters without scaling the dimension of the model.

This paper illuminates the costs and benefits of this reduced dependence on d. We show that for
some reasoning-intensive tasks increasing the dimension d is inevitable, and scaling the computation
with O(d2) seems unavoidable. This remains true regardless of the different design choices in the
MoE architecture and is backed up empirically. There is increasing interest in developing non-MoE
models with sub-quadratic dependence on d, using some structural assumptions on the weight layers
(Kamalakara et al., 2022; Dao et al., 2021; 2022; Fu et al., 2024), which could provide an alternative.

On the other hand, we find that MoEs are highly effective at knowledge intensive tasks. They are
able to much more efficiently memorize facts than dense models with a similar number of active
parameters, even matching the performance of dense models with the same number of total parameters.
This suggests that MoEs are valuable as memorization machines and perhaps this particular capability
can be leveraged while relying on other architectures for more reasoning-intensive tasks.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

We thank Cyril Zhang for helpful discussions and Max Shad for his support while running the
experiments. Kempner Institute computing resources enabled this work. Samy Jelassi acknowledges
funding supported by the Center of Mathematical Sciences and Applications. Alex Gu is supported
by the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. 2141064.
David Alvarez-Melis acknowledges support from the Kempner Institute, the Aramont Fellowship
Fund, and the FAS Dean’s Competitive Fund for Promising Scholarship. This work has been made
possible in part by a gift from the Chan Zuckerberg Initiative Foundation to establish the Kempner
Institute for the Study of Natural and Artificial Intelligence; support from the Office of Naval
Research under award N00014-22-1-2377, and the National Science Foundation Grant under award
#IIS 2229881.

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, Colin Sandon, and Omid Saremi. How far can
transformers reason? the locality barrier and inductive scratchpad, 2024. URL https:
//arxiv.org/abs/2406.06467.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 1, 2023.

Szymon Antoniak, Sebastian Jaszczur, Michał Krutul, Maciej Pióro, Jakub Krajewski, Jan Ludziejew-
ski, Tomasz Odrzygóźdź, and Marek Cygan. Mixture of tokens: Efficient llms through cross-
example aggregation. arXiv preprint arXiv:2310.15961, 2023.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q.
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics, 2023.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedia.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Xingwu Chen and Difan Zou. What can transformer learn with varying depth? case studies on
sequence learning tasks. arXiv preprint arXiv:2404.01601, 2024.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding mixture
of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022.

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chul-
hee Yun. Position coupling: Leveraging task structure for improved length generalization of
transformers. arXiv preprint arXiv:2405.20671, 2024.

11

https://arxiv.org/abs/2406.06467
https://arxiv.org/abs/2406.06467
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia

Published as a conference paper at ICLR 2025

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela Paganini, Jordan Hoffmann,
Bogdan Damoc, Blake Hechtman, Trevor Cai, Sebastian Borgeaud, et al. Unified scaling laws for
routed language models. In International conference on machine learning, pp. 4057–4086. PMLR,
2022.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Amit Daniely. Memorizing gaussians with no over-parameterizaion via gradient decent on neural
networks. arXiv preprint arXiv:2003.12895, 2020.

Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. arXiv preprint
arXiv:2112.00029, 2021.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–4721.
PMLR, 2022.

Databricks. Introducing dbrx: A new state-of-the-art open llm.
Databricks Blog, 2023. URL https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-llm. Accessed: 2023-10-12.

DeepMind. Ai achieves silver-medal standard solving international mathemati-
cal olympiad problems. https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/, 2024.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. arXiv preprint arXiv:2310.04560, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri Eyuboglu, Armin Thomas, Benjamin
Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-quadratic
gemm-based architecture. Advances in Neural Information Processing Systems, 36, 2024.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

12

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Published as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Benjamin Heinzerling and Kentaro Inui. Language models as knowledge bases: On entity representa-
tions, storage capacity, and paraphrased queries. arXiv preprint arXiv:2008.09036, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Kaiying Hou, David Brandfonbrener, Sham Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with turing programs. arXiv preprint arXiv:2407.03310, 2024.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Siddhartha Rao Kamalakara, Acyr Locatelli, Bharat Venkitesh, Jimmy Ba, Yarin Gal, and Aidan N
Gomez. Exploring low rank training of deep neural networks. arXiv preprint arXiv:2209.13569,
2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Junghwan Kim, Michelle Kim, and Barzan Mozafari. Provable memorization capacity of transformers.
In The Eleventh International Conference on Learning Representations, 2023.

Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, et al. Scaling
laws for fine-grained mixture of experts. arXiv preprint arXiv:2402.07871, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection.
The Annals of Statistics, 28(5):1302–1338, 2000. ISSN 00905364, 21688966. URL http:
//www.jstor.org/stable/2674095.

13

http://www.jstor.org/stable/2674095
http://www.jstor.org/stable/2674095

Published as a conference paper at ICLR 2025

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving¿ 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Yan Liu, Yu Liu, Xiaokang Chen, Pin-Yu Chen, Daoguang Zan, Min-Yen Kan, and Tsung-Yi Ho.
The devil is in the neurons: Interpreting and mitigating social biases in language models. In The
Twelfth International Conference on Learning Representations, 2024.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Liam Madden, Curtis Fox, and Christos Thrampoulidis. Upper and lower memory capacity bounds
of transformers for next-token prediction. arXiv preprint arXiv:2405.13718, 2024.

Sadegh Mahdavi, Renjie Liao, and Christos Thrampoulidis. Memorization capacity of multi-head
attention in transformers. arXiv preprint arXiv:2306.02010, 2023.

Eran Malach. Auto-regressive next-token predictors are universal learners. In Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 34417–34431. PMLR, 21–27 Jul 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers
can do arithmetic with the right embeddings, 2024. URL https://arxiv.org/abs/2405.
17399.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking the
potential of slms in grade school math, 2024.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.02060.

Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via
associative memories. arXiv preprint arXiv:2412.06538, 2024.

14

https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2405.17399
https://arxiv.org/abs/2409.02060

Published as a conference paper at ICLR 2025

NuminaMath. How numinamath won the 1st aimo progress prize. https://huggingface.co/
blog/winning-aimo-progress-prize, 2024.

OpenAI. Introducing openai o1. https://openai.com/o1/, 2024.

Bowen Pan, Yikang Shen, Haokun Liu, Mayank Mishra, Gaoyuan Zhang, Aude Oliva, Colin Raffel,
and Rameswar Panda. Dense training, sparse inference: Rethinking training of mixture-of-experts
language models. arXiv preprint arXiv:2404.05567, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. arXiv preprint arXiv:2406.17557, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer
era. arXiv preprint arXiv:2305.13048, 2023.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller,
and Sebastian Riedel. Language models as knowledge bases? arXiv preprint arXiv:1909.01066,
2019.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. Hash layers for large sparse models.
Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton Tsitsulin, Mehran Kazemi, Jonathan Halcrow,
Bryan Perozzi, and Vahab Mirrokni. Understanding transformer reasoning capabilities via graph
algorithms. arXiv preprint arXiv:2405.18512, 2024.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Quan Shi, Michael Tang, Karthik Narasimhan, and Shunyu Yao. Can language models solve olympiad
programming? arXiv preprint arXiv:2404.10952, 2024.

Till Speicher, Aflah Mohammad Khan, Qinyuan Wu, Vedant Nanda, Soumi Das, Bishwamittra
Ghosh, Krishna P Gummadi, and Evimaria Terzi. Understanding the mechanics and dynamics of
memorisation in large language models: A case study with random strings. 2024.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal languages
can transformers express? a survey. Transactions of the Association for Computational Linguistics,
12:543–561, 2024.

15

https://huggingface.co/blog/winning-aimo-progress-prize
https://huggingface.co/blog/winning-aimo-progress-prize
https://openai.com/o1/

Published as a conference paper at ICLR 2025

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
arXiv preprint arXiv:1803.06643, 2018.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Shawn Tan, Yikang Shen, Rameswar Panda, and Aaron Courville. Scattered mixture-of-experts
implementation. arXiv preprint arXiv:2403.08245, 2024.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in Neural
Information Processing Systems, 35:38274–38290, 2022.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-
man. Openmathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? Advances in Neural Information
Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-
search, pp. 11080–11090. PMLR, 2021. URL http://proceedings.mlr.press/v139/
weiss21a.html.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Yifan Zhang. Stackmathqa: A curated collection of 2 million mathematical questions and an-
swers sourced from stack exchange, 2024. URL https://huggingface.co/datasets/
math-ai/StackMathQA.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

16

http://proceedings.mlr.press/v139/weiss21a.html
http://proceedings.mlr.press/v139/weiss21a.html
https://huggingface.co/datasets/math-ai/StackMathQA
https://huggingface.co/datasets/math-ai/StackMathQA

Published as a conference paper at ICLR 2025

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Zexuan Zhong, Mengzhou Xia, Danqi Chen, and Mike Lewis. Lory: Fully differentiable mixture-
of-experts for autoregressive language model pre-training. arXiv preprint arXiv:2405.03133,
2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023. URL https://arxiv.org/abs/2310.16028.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

17

https://arxiv.org/abs/2310.16028

Published as a conference paper at ICLR 2025

A LIMITATIONS AND FUTURE WORK

While we provide substantial experiments on a wide range of tasks, many of these tasks are not pure
memorization nor pure reasoning. We study these two extreme cases to better convey our message
but it would be interesting in future work to understand the difference between dense and sparse
models on tasks that mix both memorization and recall. Our pre-trained models have up to ≤ 2.1B
parameters, but we recognize that large scale MoEs like Mixtral (Jiang et al., 2024), DeepSeek-V2
(Dai et al., 2024), and others have orders of magnitude more parameters. We hypothesize that our
results would still be meaningful at larger scales due to the strong theoretical underpinning, but it is
not guaranteed. Moreover, as suggested above, it would be an interesting direction for future work to
propose new architectures with reduced d dependence that can get the best of both worlds and solve
reasoning and memorization tasks.

B DETAILS ON THE PRE-TRAINING DATASETS

In Section 5, we pretrain two collections of models, one on “natural language” and the other on
“math”. Here, we give a precise breakdown of our training mixtures. We start with the “natural
language” training mixture that totals 64B tokens:

– 37B tokens from Fineweb-edu dedup (Penedo et al., 2024).
– 14B tokens from Cosmopedia (Ben Allal et al., 2024).
– 12B tokens from Wikipedia (we loop over Wikipedia 3 times).
– 1B tokens from the training set of the downstream tasks we test on. We create 3 copies of

each of these to increase their presence in the mixture. The presence of these datasets is
pretty important as argued in Allen-Zhu & Li (2023) so that the model is familiar with the
downstream tasks at test time.
∗ ComplexWebQuestions training set (Talmor & Berant, 2018)
∗ HotPotQA training set (Yang et al., 2018)
∗ Natural Questions training set (Kwiatkowski et al., 2019)
∗ TriviaQA training set (Joshi et al., 2017)
∗ WebQuestions training set (Berant et al., 2013)
∗ ARC-Easy and ARC-Challenge training sets (Clark et al., 2018)
∗ Hellaswag training set (Zellers et al., 2019)
∗ OpenBookQA training set (Mihaylov et al., 2018)
∗ PIQA training set (Bisk et al., 2020)
∗ SciQ training set (Welbl et al., 2017)
∗ SIQA training set (Sap et al., 2019)
∗ Winogrande training set (Sakaguchi et al., 2021)

Our “math” training mixture that totals 66B tokens gathers:

– 55B tokens from Proof-Pile 2 (Azerbayev et al., 2023) that contain AlgebraicStack (11B),
OpenWebMath (Paster et al., 2023) and ArXiv (29B).

– 2B tokens from OpenMathInstruct-1: we select the instances with a correct answer from the
training set (Toshniwal et al., 2024)

– 7B tokens from DeepMind math (Saxton et al., 2019)
– 2B tokens from the following instruction-like datasets:

∗ Math-Orca (Mitra et al., 2024)
∗ TinyGSM (Liu et al., 2023) (we only select 1 million examples from there).
∗ StackMathQA (Zhang, 2024)
∗ MAmmoTH2 (Yue et al., 2024) (we only select the mathstackexchange subset).
∗ NuminaMath-CoT (NuminaMath, 2024) (duplicated 3 times)
∗ MetaMathQA (Yu et al., 2023) (duplicated 3 times)

18

Published as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTS

In all our experiments in Section 5, we report the average accuracy performance obtained by our
pre-trained models on respectively world knowledge, commonsense and math benchmarks. Here, we
provide the results per task. In Subsection C.1, we display for each task, the downstream performance
on a per parameter basis (similar to Figure 1) and in Subsection C.2, we plot for each task, the
downstream performance on a per validation perplexity basis (similar to Figure 6).

C.1 DOWNSTREAM PERFORMANCE ON A PER PARAMETER BASIS

16M 49M 159M 569M 2.1B

Number of total parameters

7
9

14

19

27

F
1

A
cc

u
ra

cy
(%

)

COMPLEXWEBQUESTIONS

16M 49M 159M 569M 2.1B

Number of total parameters

7

11

15

18

21

F
1

A
cc

u
ra

cy
(%

)

HOTPOT-QA

16M 49M 159M 569M 2.1B

Number of total parameters

23

7

12

16

F
1

A
cc

u
ra

cy
(%

)

NQ

16M 49M 159M 569M 2.1B

Number of total parameters

911

18

27

38

F
1

A
cc

u
ra

cy
(%

)

TRIVIA-QA

16M 49M 159M 569M 2.1B

Number of total parameters

77

16

25

30

F
1

A
cc

u
ra

cy
(%

)

WEBQUESTIONS

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 7: Downstream performance on the world knowledge tasks with respect to the total number of
parameters of the models.

16M 49M 159M 569M 2.1B

Number of total parameters

22
20

25

34

37

A
cc

u
ra

cy
(%

)

ARCC

16M 49M 159M 569M 2.1B

Number of total parameters

34

40

49

57

64

A
cc

u
ra

cy
(%

)

ARCE

16M 49M 159M 569M 2.1B

Number of total parameters

26

30

37

44

48

A
cc

u
ra

cy
(%

)

COMMONSENSEQA

16M 49M 159M 569M 2.1B

Number of total parameters

34
35

43

47

51

A
cc

u
ra

cy
(%

)

HELLASWAG

16M 49M 159M 569M 2.1B

Number of total parameters

2828

30

33

38

A
cc

u
ra

cy
(%

)

OPENBOOKQA

16M 49M 159M 569M 2.1B

Number of total parameters

53

57
59

64
65

A
cc

u
ra

cy
(%

)

PIQA

16M 49M 159M 569M 2.1B

Number of total parameters

69

78

85
87
89

A
cc

u
ra

cy
(%

)

SCIQ

16M 49M 159M 569M 2.1B

Number of total parameters

37

39

42

45

48

A
cc

u
ra

cy
(%

)

SIQA

16M 49M 159M 569M 2.1B

Number of total parameters

51

52

52

54

55

A
cc

u
ra

cy
(%

)

WINOGRANDE

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 8: Downstream performance on the commonsense tasks with respect to the total number of
parameters of the models.

19

Published as a conference paper at ICLR 2025

16M 49M 159M 569M 2.1B

Number of total parameters

2
6

16

34

45

A
cc

u
ra

cy
(%

)

GSM-HARD

16M 49M 159M 569M 2.1B

Number of total parameters

1
5

19

35

49

A
cc

u
ra

cy
(%

)

GSM8K

16M 49M 159M 569M 2.1B

Number of total parameters

2
5

10

19

30

A
cc

u
ra

cy
(%

)

HENDRYCKS-MATH

16M 49M 159M 569M 2.1B

Number of total parameters

2
5

9

18

28
A

cc
u

ra
cy

(%
)

MINERVA

16M 49M 159M 569M 2.1B

Number of total parameters

4

14

34

54

67

A
cc

u
ra

cy
(%

)

SVAMP

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 9: Downstream performance on the math benchmarks with respect to the total number of
parameters of the models.

C.2 DOWNSTREAM PERFORMANCE ON A PER VAL PERPLEXITY BASIS

6.1 7.3 9.2 12.2 17.6

Validation perplexity

27

19

14

9
7

F
1

A
cc

u
ra

cy
(%

)

COMPLEXWEBQUESTIONS

6.1 7.3 9.2 12.2 17.6

Validation perplexity

21

18

15

11

7

F
1

A
cc

u
ra

cy
(%

)

HOTPOT-QA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

16

12

7

32

F
1

A
cc

u
ra

cy
(%

)

NQ

6.1 7.3 9.2 12.2 17.6

Validation perplexity

38

27

18

119

F
1

A
cc

u
ra

cy
(%

)

TRIVIA-QA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

30

25

16

77

F
1

A
cc

u
ra

cy
(%

)

WEBQUESTIONS

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 10: Downstream performance on the world knowledge tasks with respect to the validation
perplexity.

20

Published as a conference paper at ICLR 2025

6.1 7.3 9.2 12.2 17.6

Validation perplexity

37

34

25

20
22

A
cc

u
ra

cy
(%

)

ARCC

6.1 7.3 9.2 12.2 17.6

Validation perplexity

64

57

49

40

34

A
cc

u
ra

cy
(%

)

ARCE

6.1 7.3 9.2 12.2 17.6

Validation perplexity

48

44

37

30

26

A
cc

u
ra

cy
(%

)

COMMONSENSEQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

51

47

43

35
34

A
cc

u
ra

cy
(%

)

HELLASWAG

6.1 7.3 9.2 12.2 17.6

Validation perplexity

38

33

30

2828

A
cc

u
ra

cy
(%

)

OPENBOOKQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

65
64

59
57

53

A
cc

u
ra

cy
(%

)

PIQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

89
87
85

78

69

A
cc

u
ra

cy
(%

)

SCIQ

6.1 7.3 9.2 12.2 17.6

Validation perplexity

48

45

42

39

37

A
cc

u
ra

cy
(%

)

SIQA

6.1 7.3 9.2 12.2 17.6

Validation perplexity

55

54

52

52

51

A
cc

u
ra

cy
(%

)

WINOGRANDE

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 11: Performance on the commonsense tasks with respect to the validation perplexity.

3.2 3.5 3.9 4.5 5.5

Validation perplexity

45

34

16

6
2

A
cc

u
ra

cy
(%

)

GSM-HARD

3.2 3.5 3.9 4.5 5.5

Validation perplexity

49

35

19

5
1

A
cc

u
ra

cy
(%

)

GSM8K

3.2 3.5 3.9 4.5 5.5

Validation perplexity

30

19

10

5
2

A
cc

u
ra

cy
(%

)

MATH

3.2 3.5 3.9 4.5 5.5

Validation perplexity

28

18

9

5
2

A
cc

u
ra

cy
(%

)

MINERVA

3.2 3.5 3.9 4.5 5.5

Validation perplexity

67

54

34

14

4

A
cc

u
ra

cy
(%

)

SVAMP

Dense transformer MoE (18M active parameters) MoE (58M active parameters) MoE (200M active parameters)

Figure 12: Downstream performance on the math benchmarks with respect to the validation perplexity.

21

Published as a conference paper at ICLR 2025

D PROOFS

D.1 REASONING PROOFS

Definition D.1 (Set-disjointness task). Set disjointness is the following task: given two inputs
A,B ∈ {0, 1}r for some r ∈ N, compute maxiAiBi.

Set-disjointness can be thought of as follows: Alice and Bob are given sets A and B respectively.
Their objective is to determine whether they have any overlapping items in their sets.

Lemma D.2 (Equivalence of set-disjointness and length-2 path). The set-disjointness task is equiva-
lent to the length-2 path task.

Proof. (=⇒): Given an instance of set-disjointness, we can encode it into a length-2 path problem.
Denote every item i as a vertex. Denote two extra vertices as A, B, corresponding to Alice and Bob.
For every element i that Alice has, draw an edge between A and i. For every element i that Bob
has, draw an edge between B to i. If and only if there are any overlapping elements, then there is
a length-2 path from A to B. The number of elements because the number of vertices that do not
belong to Alice or Bob.

(⇐=): Consider an instance G = (V,E), s, d of length-2 path, where s is the source vertex and d is
the sink vertex. For all vertices with an edge with s, put this element into Alice’s set of elements. For
all vertices with an edge with d, put this element into Bobs’s set of elements. If and only if there is a
length-2 path, then Alice and Bob’s sets are overlapping. Then, r is the number of vertices.

Lemma D.3 (Communication complexity lower-bound on concatenated outputs). For some sequence
length, fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈
TransformerNm,H,1 with O(logN)-bit precision that solves set disjointness for any input X where
XA is a function of Alice’s input a ∈ {0, 1}r, XB is a function of Bob’s input b ∈ {0, 1}r, and
X[N]\(A∪B) is fixed regardless of a, b. Then, f has width satisfying mH = Ω(r/ logN).

Proof. By re-writing the following, the remainder of the proof from Sanford et al. (2024) still holds.

DISJ(a, b) = ψ
([

softmax
(
ϕ(xN)⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

)
.

This is because we may still use the same definition for Zh,S , Lh,S as in the proof. Hence, this
concludes the proof.

D.1.1 PROOF OF THEOREM 3.2

We restate the corollary.

Theorem D.4 (Theorem 3.2). For some input sequence G = (V,E), fix two disjoint subsets A,B ⊂
[N − 1], and consider a single-layer transformer f ∈ TransformerNm,H,1,K with O(logN)-bit
precision that solves length-2 path for any input X where XA is a function of edges with the source s,
XB is a function of edges with the destination d. Then, f has width satisfying mH = Ω(|V |/ logN).

Proof. The proof outline is as follows:

1. Adapt Lemma 39 (Sanford et al., 2024) to support concatenation instead of addition from
different attention heads.

2. The lower bound with concatenation holds for length-2 path because set-disjointness and
length-2 path are equivalent.

3. Extend the result to sparse transformers.

22

Published as a conference paper at ICLR 2025

We complete the first step with Lemma D.3. We complete the second set due to Lemma D.2. It
remains to show that a router function also yields the same lower bound. We show that Lemma
39 of Sanford et al. (2024) can be generalized to the case in which ψ is applied according to a
routing function. Specifically, consider a top-1 routing function r : Rm → [K], and K element-wise
functions ψ1, . . . , ψK : Rm → R. For shorthand, define:

Y (XN) =
[
softmax

(
ϕ(xN)⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

,

which is the output of the attention head prior to applying the element-wise transformation. Next, we
define f(XN) as the output when the router function r is used to select ψi.

f(XN) =
∑
i∈K

I{r(Y (XN)) = i}ψi(Y (XN)).

Because the lower bound does not place any restrictions on the function ψ and rather argues a
communication-complexity lower bound due to information from Y (XN), the lower bound also
holds for a routing function.

D.1.2 PROOF OF THEOREM 3.3

We re-state Theorem 3.3 and give its proof.

Theorem D.5 (Theorem 3.3). For sequence length N , there exists f ∈ TransformerNm,1,1 with
O(logN)-bit precision and width |V | that solves length-2 path for any input X .

Proof. Tokens are elements in V = V ∪ {0} × V ∪ {0}. The input is as follows: for vertex i, if the
source shares an edge with that vertex, then the i’th input value is (s, i). Otherwise, it is (s, 0). The
first |V | tokens we see correspond to edges possibly shared with the source vertex. Then, the last
|V | input tokens correspond to edges possibly shared with the destination vertex and share the same
format as the first r tokens. In between, we can have arbitrary edges (u, v). We define an embedding
function where ei is the i’th standard basis vector in dimension r.

ϕ : V → R|V |

(u, v) 7→
{
ei if i > 0 and u = s or u = v

0 if i = 0.

Next, we define Vh ∈ R|V |×|V | to be the identity matrix, and Qh, Vh ∈ R|V |×|V | both to have 0
everywhere. Consequently, the attention matrix is given by:

1/|V | . . . 1/|V |
...

. . .
1/|V | 1/|V |

ϕ(X)

j,i

=

2/|V | if there is a path through i
1/|V | if one target vertex shares an edge with i
0 otherwise.

For any entry that exceeds 1
|V | , the correct answer is there is a length-2 path. Hence, any thresholding

function which achieves this separation suffices. Provided that any rounding 1
|V | to c̃ so that it

is represented with O(logN) is sufficient to separate between c̃ and 2c̃, then O(logN) bits are
sufficient.

D.2 MEMORIZATION PROOFS

Assume that K is a power of 2, and let m = m0 + log(K). We associate each expert i with a vector
vi ∈ {±1}log(K) and choose ri = (v1, . . . , vlog(K), 0, . . . , 0) ∈ Rm.
Lemma D.6. For some c > 0, and some input x ∼ N (0, cIm), the probability of routing to expert i
is 1/K for all i.

Proof. By construction, we choose the expert as follows:

i = argmax
j∈[K]

v⊤j x.

The solution above must be the one whose signs match those of x. Because the entries of x are
0-mean, this implies that the probability of routing to any particular expert is 1/K.

23

Published as a conference paper at ICLR 2025

Lemma D.7. Fix δ ∈ (0, 1) and some expert j. With probability at least 1 − δ, the number of
examples routed to j is at most 2N/K, given N ≥ K2 ln(1/δ)

2 examples from N (0, cIm).

Proof. The proof relies on a Hoeffding bound: for bounded independent random variables
X1, . . . , XN such that a ≤ Xi ≤ b ∀i, and SN =

∑N
i=1Xi, we have:

P[SN − E[SN] ≥ E[SN]] ≤ exp

{
− 2E[SN]2

N(b− a)2

}
.

In our case, let Xi = 1{sample i is routed to expert j}, for some fixed j ∈ [K]. Note that P[Xi =
1] = 1/K due to Lemma D.6 and as such E[SN] = N/K. Further, Xi ∈ [0, 1]. Hence we obtain:

P
[
SN ≥ 2N

K

]
≤ exp

{
−2(N/K)2

N

}
≤ exp

{
−2N

K2

}
.

In order to upper-bound this probability with δ, we obtain:

δ ≥ exp

{
−2N

K2

}
=⇒ ln

(
1

δ

)
≤ 2N

K2

=⇒ K2 ln(1/δ)

2
≤ N.

Lemma D.8. Fix δ ∈ (0, 1), K ∈ N and the routing function as described in Lemma D.6. Given
n ≥ K2 ln(1/δ)

2 samples with embedding dimension m. For every expert i, with probability at least
1− δ, there exists an MLP of width Õ(n/mK) that correctly classifies the examples routed to this
expert.

Proof. We begin with a result from Daniely (2020). Consider h, a depth-2 network with q neurons,
an activation function ϕ : R → R, which is O(1)-Lipschitz, piecewise twice-differentiable, and
satisfies EX∼N (0,1)[ϕ

′(X)] = 0, weights ai ∈ {±1} such that
∑q

i=1 ai = O(
√
q). Such a network,

defined by W and a, computes the function:

hW,a(x) =
1
√
q

q∑
i=1

aiϕ(⟨wi, x⟩).

For our proof we consider ϕ to be the absolute value function, and later show how to obtain an MLP
with ReLU activations.

Consider the set of samples ((x1, y1), . . . , (xN , yN)), where xi ∼ N (0, IM) and yi ∈ {±1} is a
Rademacher random variable. The objective is to find a W ∗, a∗ such that yihW∗,a∗(xi) > 0 ∀i.
Daniely (2020) gives the following result: for N ≤ Mq

log4(M)
and q ≥ log4(M), with probability

1− o(1) there exists h such that, for every i ∈ [N], yih(x) = Ω(ln(M)).

We build on this result as follows: first, we assume that the attention matrix performs averaging of
the input sequence, such that xi = 1

N

∑N
j=1(X

i)j where where Xi is the i-th input sequence to
memorize. Assuming the inputs are also Gaussian, then so is the average. Hence, xi ∈ Rm and
xi ∼ N (0, cIm) for c = 1

L .

Next, we fix the number of experts to be K. We fix a router function r : RlogK → [K] such that, on
average, each expert must memorize n/K sequences, and with high probability, each expert must
memorize at most 2n/K sequences. We use the construction from Lemma D.6 where the router only
acts on the first logK entries of each vector. Hence, we have K MLPs, each tasked with memorizing

24

Published as a conference paper at ICLR 2025

at most 2n
K input-output values. We use the network construction from Daniely (2020) to only the

last m − logK ≥ m/2 coordinates, which are not used by the router, so that their distribution is
independent and Gaussian.

Hence, with n ≤ K
2

(m−logK)q
log4(m−logK))

≤ K
4

mq
log4(m−logK))

and q ≥ log4(m − logK), with high
probability, yihj(xi) = Ω(ln(m)), where hj is the expert to which xi is routed. It follows that width

q ≥ 4n log4(m− logK)

mK

is sufficient for each individual expert, and we assume that 4n
mK ≥ 1.

In order to obtain a MLP with a ReLU activation defined as σ(x) = max{0, x}, we use the fact that
|x| = σ(x) + σ(−x). This is because absolute value is a valid activation function in Daniely (2020),
but ReLU is not. However, doubling the width of each MLP is sufficient to obtain MLPs with ReLU
activations instead, i.e.:

q ≥ 8n log4(m− logK)

mK
.

This is done by taking a solution which is of form:

hW,a(x) =
1
√
q

q∑
i=1

ai|⟨wi, x⟩|,

and converting it to the form:

h
′

W,a(x) =
1
√
q

q∑
i=1

ai((σ⟨wi, x⟩) + (σ⟨−wi, x⟩)).

The router has K vectors each of dimension m. Consequently, we need O(Km) parameters to store
the router. Each expert has width 8n log4(m−logK)

mK = Õ
(

n
mK

)
and Õ

(
n
K

)
parameters.

Corollary D.9. Let δ ∈ (0, 1), and fix K > 1. For n ≥ K2 ln(K/δ)
2 , with probability at least 1− δ,

there exists a sparse transformer s with K experts such that yis(xi) = Ω(lnm). It has Õ(n+Km)

parameters and Õ(n/K +Km) active parameters.

Proof. For each expert, we apply the result from Lemma C.8 with δ′ = δ/K. Hence, for every expert,
with probability at most δ/K, there does not exist an MLP of width Õ(n/mK) which memorizes its
samples. By a union bound, this implies that with probability at most δ, at least one of the experts is
not able to memorize its samples. Hence, with probability at least 1− δ, all of the experts are able to
perform memorization on their given samples. In total, this implies we will use Õ(n+K) parameters
to store the entire mixture of expert network. The number of active parameters is Õ(n/K +K).

Lemma D.10 (Bound on ℓ2-norm of vector from N (0, cIm)). Let x ∼ N (0, cIm) for some c > 0,
and let δ ∈ (0, 1). Then, with probability at least 1− δ, there exists a constant cδ,m > 0, such that

∥x∥2 ≤ cδ,m =

√√√√c

(
m+ 2

√
m ln

(
1

δ

)
+ 2 ln

(
1

δ

))
.

Proof. Each component xi of x is distributed as xi ∼ N (0, c). We can express xi as xi =
√
c zi,

where zi ∼ N (0, 1). Then,

∥x∥22 =

m∑
i=1

x2i = c

m∑
i=1

z2i .

The sum
∑m

i=1 z
2
i follows a chi-squared distribution with m degrees of freedom. By the Laurent-

Massart theorem Laurent & Massart (2000), for all t > 0, we have

P

(
m∑
i=1

z2i ≥ m+ 2
√
mt+ 2t

)
≤ e−t.

25

Published as a conference paper at ICLR 2025

Multiplying both sides inside the probability by c, we obtain

P
(
∥x∥22 ≥ c

(
m+ 2

√
mt+ 2t

))
≤ e−t.

Setting t = ln

(
1

δ

)
, it follows that

P

(
∥x∥22 ≥ c

(
m+ 2

√
m ln

(
1

δ

)
+ 2 ln

(
1

δ

)))
≤ δ.

Therefore, with probability at least 1− δ, we have

∥x∥2 ≤

√√√√c

(
m+ 2

√
m ln

(
1

δ

)
+ 2 ln

(
1

δ

))
.

Lemma D.11 (Bounded bit complexity required). With high probability, Õ(1) bits are required
to store each weight in the network, and Õ(n + K) bits are required to store the entire network.
Õ
(
n
K +K

)
active bits are required.

Proof. We show that the learning result from Daniely (2020) gives a network with bounded bit
complexity. Hence, it suffices to bound the bit complexity of the initial weights and the bit complexity
of the gradient update. First, we begin with h(x) =

√
1
q

∑q
i=1 aiσ(⟨wi, x⟩). The objective is to show

there exists h̃(x) with bounded bit complexity which satisfies yih̃(xi) > 0 ∀i. Suppose we begin by
creating bins for the weights, and replace each wi with w̃i where ∥wi − w̃i∥∞ ≤ ε. Further, assume
that ∥wi∥∞ ≤M for some M > 0. We then obtain that ∥wi − w̃i∥2 ≤

√
mε. In addition, we state

that with probability at least 1− δ, ∥x∥2 ≤ cδ,m due to Lemma D.10. Using this, we have that:

|σ(⟨wi, x⟩)− σ(⟨w̃i, x⟩)| ≤ |⟨wi − w̃i, x⟩| (σ is 1-Lipschitz)
≤ ∥wi − w̃i∥2∥x∥2 (Cauchy-Schwarz)

≤
√
mεcδ,m w.p. ≥ 1− δ (Lemma D.10).

We apply this result to obtain that with probability at least 1− δ,

|h(x)− h̃(x)| ≤ 1
√
q

q∑
i=1

|ai||σ(⟨wi, x⟩)− σ(⟨w̃i, x⟩)|

≤ √
q
√
mεcδ,m.

Given that h(x) ≥ O(1), then for some arbitrarily small constant (we use 1
4) we require: 1

4 ≤√
q
√
mεcδ,m, or equivalently, ε ≤ 1

4cδ,m
√
qm . Because h(x) ≥ O(1), we use this separation of 1

4

to show that h̃(x) remains the same sign as h(x) (however this constant can be replaced with an
arbitrarily small constant so as to satisfy the requirement).

Consider w(0)
i to be the initialization of wi prior to the gradient step. Then, because, M = ∥wi∥∞,

we have that M = maxi

{
w

(0)
i − η ∂h(x)

∂wi

}
= maxi

{
w

(0)
i − n logm

m
∂h(x)
∂wi

}
. Assuming that w(0)

i is

initialized with bounded ℓ∞ norm of 1, then we obtain that M ≤ 1 + n logm
m

√
q cδ,m. This is due to

Lemma D.10 and that

∂h(x)

∂wi
=

1
√
q
aiσ

′(⟨wi, xi⟩)xi

=

{
0 if ⟨wi, xi⟩ ≤ 0
1√
qaixi otherwise.

26

Published as a conference paper at ICLR 2025

Using this, with high probability, we require log
(
2M
ε

)
= log

(
8Mcδ

√
qm
)

bits (by replacing ε).
Hence, with high probability, we require the number of bits to be at most:

O

(
log

(
n logm√

m
c2δ,m

))
= Õ(1).

We restate Theorem 3.6.
Theorem D.12 (Lower bound for dense model). Given the same task as above, a dense Transformer
requires Ω̃(n) parameters to solve the memorization task.

Proof of Theorem 3.6. Let c be the number of bits used for encoding each parameters (and we assume
that c is logarithmic in the problem parameters). Denote by H the class of all transformers with W
parameters and c bits per parameters. Since H is a finite class, where each function in the class can
be encoded with cW bits, we have |H| ≤ 2cW . Let X1, . . . , XN ∈ Rn×d be the N input points.
Assume a H can solve the memorization task. Then, for every choice of y1, . . . , yN ∈ {±1}, there
exists a transformer f ∈ H s.t. f(Xi) = yi for all i ∈ [N]. There are 2N possible assignments for
y1, . . . yN and therefore there are at least 2N different functions in H. So, we get 2N ≤ |H| ≤ 2cW

and therefore W ≥ N/c.

Lemma D.13 (Active parameter comparison between dense and sparse transformers). There exist
cases in which the amount of active parameters required to perform memorization is less for a sparse
transformer than a dense transformer.

Proof. As shown, a dense transformer requires Ω̃(n) parameters (and active parameters) to perform
memorization of N sequences. In contrast, for n sufficiently large and fixed K > 1, it holds
that n

K +K < n, which shows that the number of active parameters required is less for a sparse
transformer.

27

	Introduction
	Related work
	Theory: representational capacity
	Setting
	MoEs require a critical hidden size to solve graph reasoning tasks
	MoEs use their experts to solve memory-intensive tasks

	Synthetic experiments
	Experimental setup
	Memorization: total parameters predict performance
	Reasoning: total parameters do not predict performance

	Pre-trained Models
	Setup
	Results

	Discussion
	Limitations and future work
	Details on the pre-training datasets
	Additional experiments
	Downstream performance on a per parameter basis
	Downstream performance on a per val perplexity basis

	Proofs
	Reasoning proofs
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Memorization Proofs

