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ABSTRACT

The Mixture-of-Experts (MoE) architecture enables a significant increase in the
total number of model parameters with minimal computational overhead. However,
it is not clear what performance tradeoffs, if any, exist between MoEs and standard
dense transformers. In this paper, we show that as we increase the number of experts
(while fixing the number of active parameters), the memorization performance
consistently increases while the reasoning capabilities saturate. We begin by
analyzing the theoretical limitations of MoEs at reasoning. We prove that there
exist graph problems that cannot be solved by any number of experts of a certain
width; however, the same task can be easily solved by a dense model with a slightly
larger width. On the other hand, we find that on memory-intensive tasks, MoEs can
effectively leverage a small number of active parameters with a large number of
experts to memorize the data. We empirically validate these findings on synthetic
graph problems and memory-intensive closed book retrieval tasks. Lastly, we
pre-train a series of MoEs and dense transformers and evaluate them on commonly
used benchmarks in math and natural language. We find that increasing the number
of experts helps solve knowledge-intensive tasks, but fails to yield the same benefits
for reasoning tasks.

1 INTRODUCTION

The explosion in capabilities of large language models in recent years has largely been enabled by
scaling their size, as measured by the number of parameters in the model. In the standard Transformer
architecture, scaling the number of parameters entails a proportional increase in computational cost,
e.g. doubling the number of parameters requires doubling the number of floating-point operations
(FLOPs), making training and inference more computational intensive. Mixture-of-Experts (MoE)
were introduced as a solution for this problem (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al.,
2022). MoEs replace the single MLP in each Transformer block with multiple MLPs (called experts),
where each token is routed to a few experts based on a linear routing function. The number of
parameters in the MoE layer therefore increases with the total number of experts, while the compute
increases only with the number of “active” experts (i.e., the number of experts to which the token is
routed to). This offers a promising option for scaling models: increase the number of experts instead
of the model dimension or its depth. For this reason, MoEs have become very popular, and many
frontier models today are based on the MoE architecture (Achiam et al., 2023; Databricks, 2023; Anil
et al., 2023; Dai et al., 2024; Jiang et al., 2024; Yang et al., 2024).
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Figure 1: (a) Evaluation: world knowledge. We train a series of dense transformers and MoEs
on 65B tokens from a corpus essentially made of Fineweb-edu, Cosmopedia and Wikipedia (see
Section 5 for details). We then evaluate the models on several world knowledge benchmarks (e.g.,
TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al., 2019)) and report the average
F1 accuracy. Surprisingly, at a fixed number of total parameters, MoEs with substantially fewer active
parameters approximately match the performance of dense models. This highlights the importance of
experts in tasks that require memorization. (b) Evaluation: commonsense. Here we evaluate the
aforementioned pre-trained models on natural language commonsense benchmarks (e.g., HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021)). On these reasoning tasks, we observe
that MoEs perform worse than dense models and more significant benefits are obtained by increasing
the number of active parameters. (c) Evaluation: math. Here we train a series of dense transformers
and MoEs on 65B tokens from a corpus essentially made of Proof-Pile2 (Azerbayev et al., 2023) (see
Section 5 for details). The results are consistent with the ones in (b): MoEs perform worse than dense
models at equal number of total parameters.

In this work we study whether MoE indeed offers a “free-lunch”, enabling gains in performance with
no computational cost. Interestingly, we find that the benefit from MoEs greatly depends on the task
at hand. We show that for reasoning-based tasks, such as graph problems and mathematical reasoning,
MoEs offer limited performance gains, and increasing the number of experts cannot compete with
scaling the dimension (width) of the model. On the other hand, for memory-intensive tasks, we show
that scaling the number of experts is competitive with scaling standard “dense” MLPs.

To demonstrate these claims, we begin with a theoretical analysis of MoEs and dense models. We
use communication-complexity lower bounds to show that a single-layer MoE requires a critical
dimension to solve a simple graph connectivity problem, implying that MoEs offer no benefit for
solving this problem and only consume unnecessary memory. On the other hand, we show that for a
pure memorization task, where the model only needs to “remember” an arbitrary set of examples,
scaling the number of experts is equivalent to scaling the number of parameters in dense transformers,
implying a significant computational gain when fixing the number of active parameters (Section 3).
We continue by experimentally validating these results, comparing MoEs against dense models on
synthetic training data. We train these models on finding the shortest path in random graphs, where
we show that MoE accuracy does not improve as we increase the number of experts, but that accuracy
consistently increases with width for a dense transformer (Figure 4b). Following this, we train
different models on the task of memorizing a large phone-book. We demonstrate that MoEs excel
in memorization, matching the performance of dense transformers with the same number of total
parameters but with substantially less computational cost (Figure 4a).

Finally, we train dense transformers and MoEs on real datasets of mathematical reasoning and natural
language, and perform intensive benchmarking of these models on a wide variety of downstream
tasks. For memory-intensive tasks, MoEs surprisingly have a great advantage, where increasing the
number of experts can match the performance of large dense models (Figure 1a). However, we show
that for tasks that rely on reasoning, scaling the number of experts cannot compete with increasing
the model dimension (Figures 1b-1c). Moreover, MoEs exhibit some memorization behaviors when
trained on math problems (Figure 5). Taken together, our results show that the gains from using
MoEs depend greatly on the nature of the training data and downstream task, and that while MoEs
can improve performance in certain cases, sometimes increasing the effective size (width) of the
model is unavoidable.
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2 RELATED WORK

Mixture of Experts. Mixture-of-Experts (MoE) date back to the work of Jacobs et al. (1991);
Jordan & Jacobs (1994). Shazeer et al. (2017); Fedus et al. (2022) were the first to scale this idea to
deep learning and obtain state-of-the-art models in machine translation. Since then, several works
have improved their routing algorithms (Lepikhin et al., 2020; Lewis et al., 2021; Roller et al., 2021;
Clark et al., 2022; Zhou et al., 2022; Antoniak et al., 2023; Zhong et al., 2024), have improved their
downstream performance after finetuning (Du et al., 2022; Zoph et al., 2022) or made their training
and inference more efficient (Rajbhandari et al., 2022; Gale et al., 2023; Pan et al., 2024; Tan et al.,
2024). However, only a few papers have studied the science of MoEs and their comparison with
dense transformers. Clark et al. (2022); Krajewski et al. (2024) establish scaling laws for MoEs.
Chen et al. (2022) design a specific classification problem where a model with multiple experts
provably outperforms one with only one expert. Shazeer et al. (2017); Lepikhin et al. (2020); Artetxe
et al. (2021); Lewis et al. (2021); Fedus et al. (2022); Du et al. (2022) show that given a fixed FLOP
budget, MoEs are always better. However, these papers claim that on a per parameter basis, MoEs
always seem comparatively worse than dense models. In this paper, we temper this claim by showing
that it depends on the nature of the task at hand: on reasoning tasks, we validate this claim but on
memory-intensive tasks, equally-sized MoEs perform as well as dense transformers.

Language models and memorization. Large language models (LLMs) store a considerable amount
of knowledge in their parameters (Petroni et al., 2019; Heinzerling & Inui, 2020). They memorize
useful knowledge such as facts and commonsense (Zhao et al., 2024). Many works studied how
memorization occurs in LLMs by developing tools to locate the knowledge in the model (Meng et al.,
2022; Allen-Zhu & Li, 2023; Liu et al., 2024) or by tracking the training dynamics (Tirumala et al.,
2022; Speicher et al., 2024). We draw inspiration from Allen-Zhu & Li (2023) and evaluate the
memorization of our models by pre-training them on a mixture of datasets that includes Wikipedia,
and at test time, evaluate them on world knowledge benchmarks, which are essentially question
answering tasks on Wikipedia facts. With respect to theoretical findings, Kim et al. (2023); Mahdavi
et al. (2023); Madden et al. (2024); Nichani et al. (2024) provide upper bounds on the number of
parameters needed for dense transformers to perform memorization tasks under various conditions.

Language models and reasoning. In recent years, transformer-based language models have
displayed remarkable effectiveness in solving a broad range of reasoning tasks. Specifically, the
reasoning capabilities of transformers have been studied in the context of arithmetic problems (Jelassi
et al., 2023; Cho et al., 2024; Hou et al., 2024; Zhou et al., 2024; McLeish et al., 2024; Lee et al., 2023),
mathematical reasoning (Zhang et al., 2022; Imani et al., 2023; Wei et al., 2022) graph problems
(Sanford et al., 2024; Fatemi et al., 2023; Jin et al., 2023; Wang et al., 2024) and code challenges
(Shi et al., 2024; Zhu et al., 2024). Recently, state-of-the-art language models were used for solving
complex math olympiad problems (DeepMind, 2024; NuminaMath, 2024; OpenAI, 2024). With
respect to theoretical findings, various works study the reasoning capabilities of transformers, relating
their expressive power to other complexity classes and formal languages (Weiss et al., 2021; Zhou
et al., 2023; Strobl et al., 2024; Chen & Zou, 2024). Other works study how chain-of-thought can
improve the reasoning capabilities of language models in terms of expressive power and learnability
(Abbe et al., 2024; Merrill & Sabharwal, 2023; Malach, 2024).

3 THEORY: REPRESENTATIONAL CAPACITY

In this section, we analyze the capability of MoE transformers compared to standard (dense) models.
We begin by studying a simple graph problem that requires scaling the hidden dimension of the
transformer, showing that MoEs with small hidden dimension cannot solve this problem, regardless
of the number of experts used. Then, we show that MoEs can effectively memorize random inputs,
requiring significantly less computational resources (active parameters) compared to dense models.

3.1 SETTING

Consider a one-layer transformer f ∈ TransformerNm,H,1 which takes as input a sequence of length
N and has logarithmic bit-precision. f embeds the input into dimension m via the function ϕ. f has
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H ≥ 1 attention heads, whose outputs are combined via concatenation before we apply point-wise
function ψ 1.

Define the parameters as Qh, Vh,Kh ∈ Rm×m, ϕ : X → Rm, ψ : Rm → R. The output of f is:

f(x1, . . . ,xN ) = ψ
([

softmax
(
ϕ(xN )⊤QhK

⊤
h ϕ(X)

)
ϕ(X)Vh

]
h∈[H]

)
.

f is a dense transformer, if ψ is an MLP, i.e. function of the form:

ψ(x) = u⊤σ(Wx+ b), forW ∈ Rm′×m, b ∈ Rm′
,u ∈ Rm′

where σ is the ReLU activation function. f ∈ TransformerNm,H,1,K is a sparse (MoE) transformer
with K experts if ψ is a function of the form:

ψ(x) = u⊤
i σ(Wix+ bi) for i = argmax

j
r⊤j x

where W1, . . . ,Wk ∈ Rm′×m, b1, . . . , bk ∈ Rm′
, u1, . . . ,uk ∈ Rm′

are the parameters of each
expert and r1, . . . , rk define the routing function (we use top-1 routing).

3.2 MOES REQUIRE A CRITICAL HIDDEN SIZE TO SOLVE GRAPH REASONING TASKS

In this section, we analyze the graph reasoning capabilities of dense and sparse transformers. We
define the length-2 path problem on a graph, and use it as a means to understand other graph reasoning
tasks such as graph connectivity, shortest path, and cycle detection.

Definition 3.1 (Length-2 Path Problem). The input is a graph G = (V,E). The source s ∈ V and
a destination d ∈ V are fixed for all tasks as the 0 and |V | vertex. The length-2 path problem asks
whether there is a path of length 2 from s to d.

Graph connectivity, shortest path, and cycle detection are all graph reasoning tasks which reduce to
the length-2 path problem due to (Sanford et al., 2024) and Lemma D.2. We provide a lower-bound
on the width required for a sparse transformer to solve the length-2 path problem, and an upper-bound
on the width required for a dense transformer to solve the problem. Further, we show a separation
between dense and sparse transformers with the same number of parameters: for a sufficiently large
amount of experts in the sparse model, it cannot solve the same problem that a dense model can solve
with the same amount of total parameters.

Lower bound on width of depth-1 MoE for reasoning. We begin by showing a lower-bound on
the width for a depth-1 mixture of expert model for the length-2 path problem. This lower bound
implies a lower bound for search and retrieval tasks such as graph connectivity, shortest path, and
cycle detection.

Theorem 3.2 (Length-2 path lower-bound on sparse transformers). For some input sequence G =
(V,E), fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈
TransformerNm,H,1,K with O(logN)-bit precision that solves length-2 path for any input X where
XA is a function of edges with the source s, XB is a function of edges with the destination d. Then,
f has width satisfying mH = Ω(|V |/ logN).

The proof follows almost identically from the proof in (Sanford et al., 2024) for the class
TransformerNm,H,1. The original proof does not place constraints on the function ψ and is based on
a communication-complexity argument. As such we may design ψ so that it first routes and then
chooses which expert to apply. We give a complete proof in Appendix D. As such, the result of
(Sanford et al., 2024) can also be extended to the class TransformerNm,H,1,K .

Upper bound on width of depth-1 dense transformer for reasoning. In this section we give an
upper bound for the width required for a dense model to solve the length-2 path problem.

1In multi-layer Transformers, each layer outputs a vector of size m. However, since our focus in this section
will be on binary classification problems, we will let the transformer output a single scalar, and we interpret the
output of the final token as the prediction for the classification task.
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Theorem 3.3 (Length-2 path width upper bound for transformer). There exists a transformer of width
|V |, H = 1, and O(logN)-bit precision that solves length-2 path problem for any input.

The proof relies on an encoding of the inputs where the output values only exceed a certain threshold
when u and v, the source and destination vertices, have edges with a common vertex. We defer the
proof to Appendix D.

Parameter-matched comparison of dense and sparse depth-1 transformers. Using the lower-
bound on width required for a sparse transformer (Theorem 3.2) and the upper-bound on width
required for a dense transformer (Theorem 3.3), we compare dense and sparse transformers when
they have the same number of total parameters. We find that when the number of experts exceeds
(logN)2, the sparse model is unable to solve the same task as the dense model.

Corollary 3.4. Consider a sparse transformer (with K experts) and a dense transformer with the
same number of parameters. There exists a number of experts K so that the the sparse model is not
able to solve the reasoning task, but the dense transformer solves the task.

Proof. Suppose we have two depth-1 transformers, where one is a dense model and the other is a
mixture of experts with K experts. Let the width of the dense model be md, and the width of the
sparse model be ms. The number of parameters in the dense model is O(m2

d) and the number of
parameters in the sparse model is O(Km2

s). In order to match the number of parameters, it must be
the case that ms =

md√
K

. Suppose we let md = |V |, as this is sufficient to solve the above problems.
For any K ≥ Ω

(
(logN)2

)
, the sparse model is not sufficiently wide to solve the problem.

3.3 MOES USE THEIR EXPERTS TO SOLVE MEMORY-INTENSIVE TASKS

In this section, we provide an upper-bound on the number of parameters necessary for a sparse trans-
former to solve memorization tasks, followed by a lower-bound on the number of parameters needed
for a dense transformer to solve the same task. We use these results to compare the memorization
capabilities of dense and sparse transformers with the same number of active parameters. We find
that with enough experts, the sparse transformer is able to solve memorization tasks with less active
parameters than the dense transformer. In both bounds we assume that transformer has logarithmic
number of bits to encode each parameter.

We consider sequences {(Xi, yi)}ni=1 where Xi ∈ RN×m are input sequences of length N in
dimension m such that Xi[j] is sampled from a Gaussian distribution N (0, Im). We assume
y1, . . . , yN ∈ {±1} are arbitrary labels for the n sequences. The objective is for a transformer to
memorize these sequences, i.e. map each input Xi to a label yi. The classification is determined by
the sign of the last token output.

Upper-bound on MoE for memorization. We begin by showing that, with high probability over
the choice of the inputs, the MoE architecture can memorize (i.e., arbitrarily label the examples),
with a small number of active parameters.

Theorem 3.5. With probability at least 0.99, there exists a one-layer MoE transformer with K
experts, using Õ

( n
K

+Km
)

active parameters and Õ (n+Km) total parameters stored in Õ(1)

bits that, when applied to each sequence Xi, outputs at the last token a value whose sign matches yi,
i.e., sign(f(Xi)) = yi for all i = 1, . . . , n.2

Specifically, if we choose K =
√
n/m we get that an MoE architecture can solve the memorization

problem with Õ(
√
nm) parameters. To prove this, we show that for a particular routing function, the

number of samples routed to each expert is approximately n/K. Then, we show that an expert with
Õ(n/mK) neurons can memorize a sample of size O(n/K). We present the proof in Appendix D.2.

Lower bound on memorization with dense Transformer. Next, we give a lower-bound on the
number of parameters for a dense transformer to perform memorization.

2We use Õ and Ω̃ to hide logarithmic factors.
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Theorem 3.6 (Lower bound for dense model). Given the same task as above, a dense Transformer
requires Ω̃(n) parameters to solve the memorization task.

This bound follows from the fact that there are 2n possible labels for any fixed set of n inputs, and at
most 2cW functions with W parameters and c bit per parameters. The proof is in Appendix D.2.

Separation between MoEs and Dense Models. Observe that the previous results on memorization
imply a separation between MoEs and dense models in terms of the number of active parameters.
Namely, we show that an MoE with Õ(

√
nm) active parameters can memorize, while a dense model

requires Ω̃(n) parameters. So, for n ≫ m, MoEs are significantly more efficient. Comparing the
number of total parameters, MoEs require Õ(n+Km) parameters, so both MoE and dense models
have linear dependence on n in the total parameter count.

4 SYNTHETIC EXPERIMENTS

In the previous section, we proved that there exist graph connectivity problems that cannot be solved
by any number of experts of a certain width but the same task can be solved by a dense model with
a slightly larger width. Our goal in this section is to verify that our theoretical analysis bears out
experimentally when training models from scratch on synthetic data, before moving on to study
pre-trained models in Section 5. We mainly focus on two tasks: the shortest path problem (Figure 2),
which we use as a synthetic task to represent reasoning problems, and the phone-book task (Figure 3),
to measure the recall ability of our models. Our experiments in this section highlight that adding
experts yields greater performance improvements on memorization tasks than reasoning tasks.

Figure 2: Illustration of the shortest path task. We feed the model with a sequence that lists all the edges in the
input graph and ends with the query (in green) which asks the model to find a shortest path between two vertices
(from vertex 1 to vertex 4 in the figure). The model then autoregressively returns the shortest path (in purple).

4.1 EXPERIMENTAL SETUP

Architecture. We opt for the Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) architectures
as the backbones of our Transformer and MoE models, respectively. The two architectures are
identical and only differ by the addition of a gating module and multiple experts in Mixtral. For both
model types, we fix the number of layers to L = 12. For the dense transformers, we vary model size
by sweeping the width d ∈ {256, 512, 1024}. For MoEs, we sweep over widths d ∈ {256, 512} and
the number of experts E ∈ {8, 16, 32, 64}. To be consistent with our experiments in Section 5, we
set the intermediate dimension in the FFN block to be equal to d (and not 4d). We use token-choice
routing, do not apply any token dropping and each token is routed to the top-2 experts. Lastly, in both
this section and Section 5, we report for each model the number of non-embedding parameters which
we refer to as the total number of parameters.

Shortest path task. For a graph with n vertices, our token space V is of size n + 6 with tokens
encoding the vertices and some special tokens: V = {1, . . . , n, ⟨EDGE⟩ , ⟨BOS⟩ , ⟨EOS⟩ , ⟨PAD⟩ , ⟨SEP⟩ , /}
where ⟨BOS⟩ is the beginning of sentence token, ⟨EOS⟩ the end of sentence token, ⟨PAD⟩ the padding
token, ⟨EDGE⟩ is the token indicating an edge between two vertices and, ⟨SEP⟩ and “/” are separator
tokens. Each sequences describes the graph by a list of all the edges followed by two randomly
sampled vertices and the shortest path between these latter (see Figure 2). All the graphs are directed
and sampled according to the Erdös-Rényi model, with n vertices and probability p for each edge to
exist. We vary n ∈ {25, 30, 50, 40, 45, 50, 55} and set p such that the average length of the shortest
path is 3.5. Each train/test pair corresponds to one value of (n, p), we do not mix graph sizes.
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Figure 3: Illustration of the phone-book task for closed-book retrieval. The model is first trained to memorize a
phone-book (illustrated on the right). Then, we randomly select a name in the phone-book (in green) and ask the
model to return their phone number (in purple) without access to the phone-book.
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Figure 4: (a) Phone-book memorization: We train a series of dense transformers and MoEs on phone-books
of varying sizes and then evaluate their memorization capacity. We report the maximal phone-book size where
the model obtains more than 90% accuracy. The maximal phone-book size correlates with the total (and not
active) number of parameters. (b) Shortest path (total parameters): We train models to find the shortest
path in 50-node graphs and report the test accuracy. Here, increasing the number of experts provides limited
improvements and the performance rather correlates with the number of active parameters.

Phone-book task. Our token space V is of size 39 and made of the alphabet letters, digits and
special tokens: V = {a, . . . , z, 0, . . . , 9, ⟨BOS⟩ , ⟨EOS⟩ , ⟨SEP⟩}. We generate phone-books where the
names consist of 5 letters and the phone numbers of 8 digits (see Figure 3). We ensure that both the
names and numbers are unique.

Datasets. For the graph experiments, the training set size is 1e6 and the test set consists of 1e3
held-out examples that are sampled from the same distribution as the training examples. For the
phone-book experiments, we vary the training set size over {1e5, 5e5, 1e6, 1.5e6, 2e6, 2.5e6, 3e6}
and the test set consists of 1e3 queries from the training set.

Optimization. We use the AdamW optimizer (Loshchilov et al., 2017) with a weight decay equal
to 0.1. We sweep the learning rate over {5e−5, 1e−4, 5e−4, 1e−3}, the number of epochs over
{2, 5, 10, 15}, and set the maximal possible batch size among {8, 16, 32}. We use a warmup during
the 20% first training steps and a linear decay scheduler. All models are trained by next-token
prediction. In the graph task, we apply a mask on the input instance so that we only penalize the
model whenever it makes a mistake on the labels (and not on the inputs and labels jointly). In the
phone-book experiment, we do not apply any masking.

Evaluation. For each task we compute the exact accuracy, i.e. we count the generation as correct
only if it fully matches the ground truth. For the phone-book task, we report the size of the maximal
phone-book where we observe at least 90% exact accuracy.

4.2 MEMORIZATION: TOTAL PARAMETERS PREDICT PERFORMANCE

We train dense transformers and MoEs on phone-books of different sizes and at test time, evaluate
whether they memorize the phone number of some names. Figure 4a reports the maximal phone-book
size where the model manages to get an accuracy greater than 90%. This gives us an estimate of the
memorization capacity of the model.
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The findings are clear: no matter the number of active parameters, MoEs match the performance of
dense transformers with the same number of total parameters. This suggests that MoEs are able to
effectively leverage the extra parameters in additional experts by routing tokens to the experts that
contain the necessary information from the training corpus. This scaling is remarkable in this case
since it even holds when we are only routing to 2 out of 64 experts. For instance, we find that an MoE
model with only 42M active parameters outperforms a dense model with 10x as many parameters.
This type of impressively efficient memorization capacity may be a major reason behind the success
of MoE architectures.

4.3 REASONING: TOTAL PARAMETERS DO NOT PREDICT PERFORMANCE

We train dense transformers and MoEs on the shortest path task and then query the models to find the
shortest paths in novel, held-out graphs. Figure 4b reports the performance on graphs with 50 nodes
with respect to their number of total parameters. Contrary to the phone-book experiment, increasing
the number of experts does not consistently improve the performance of MoEs. Essentially, we
find that active parameters rather than total parameters is a better predictor of performance for these
reasoning tasks.

To connect back to the theory from Section 3, note that active parameters is directly determined by the
width of the network since we always route to exactly 2 experts and fix the depth. Thus, these results
corroborate the theory by showing that width (i.e. active parameters) determines the performance on
these graph reasoning problems and that increasing the number of experts is not helpful. In Section 5,
we will further corroborate this idea through evaluation of pre-trained models on commonsense and
math reasoning benchmarks.

5 PRE-TRAINED MODELS

In this section, we pre-train dense transformers and MoEs and compare their performance on standard
math and natural language benchmarks. We break the downstream tasks into those that require
more memorization and those that require more reasoning. Here, memorization refers to recall in
that we measure the ability of the models to retrieve real-world facts, The memorization-intensive
tasks test for “world knowledge” and consist of benchmarks like TriviaQA (Joshi et al., 2017).
We break the reasoning-intensive tasks into two subcategories: one for natural language reasoning
tasks like WinoGrande (Sakaguchi et al., 2021) and another for mathematical reasoning tasks like
Hendrycks-MATH (Hendrycks et al., 2021). These tasks may be seen as real-world analogs of the
stylized phone-book and shortest path tasks studied in Section 4.

We observe that performance on world-knowledge tasks is governed by the total number of parameters
while performance on reasoning tasks depends more on the number of active parameters (Figure 1).
Additionally, we conduct an experiment that indicates memorization from MoEs may be harming
reasoning performance since there is a larger gap between train and test accuracy for MoEs than
dense models at fixed total parameters (Figure 5). Finally, we conduct an ablation where we compare
models at fixed validation perplexity rather than model size. We find that MoEs perform better on
world knowledge tasks and similarly on reasoning tasks compared to dense models (Figure 6).

5.1 SETUP

Architecture. We train dense transformers and MoEs using the OLMoE codebase (Muen-
nighoff et al., 2024). We set the number of layers L = 20 and vary the width d ∈
{256, 512, 1024, 2048, 4096} for dense transformers and d ∈ {256, 512, 1024} for MoEs. Simi-
larly to Muennighoff et al. (2024), we consistently set the intermediate dimension in the FFN/MoE
blocks to d (and not 4d). For MoEs, we vary the number of experts E ∈ {8, 16, 32, 64}. For the
specific case of width 256, we also train a MoE with 256 experts because its parameter count approx-
imately matches the one of a width-2048 dense model and thus, we can compare the downstream
performance of the two models. We use top-2 token-choice routing, without token dropping which is
implemented in the dMoE function from the Megablocks package (Gale et al., 2023). We leave the
study of MoEs trained with other routing mechanisms for future work.
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Training hyperparameters. We use the AdamW optimizer (Loshchilov et al., 2017) with a weight
decay equal to 0.1. We set the learning rate to 0.001, train on 63B tokens (60k steps) with batch size
512 and sequence length of 2048. We use warmup during the 20% first training steps and a linear
decay scheduler. We train our models using FSDP (Zhao et al., 2023).

Pre-training datasets. We train two collections of models, one collection on natural language and
another one on math. The natural language dataset is a mixture constituted of FineWeb-edu (Penedo
et al., 2024), Cosmopedia (Ben Allal et al., 2024), Wikipedia and the training sets of the downstream
tasks we evaluate on. The math dataset is a mixture made of Proof-Pile 2 (Azerbayev et al., 2023)
and instruction datasets such as OpenMathInstruct (Toshniwal et al., 2024) and MetaMathQA (Yu
et al., 2023). Each of the two training mixture approximately totals 65B tokens. A precise description
of the training mixtures can be found in Appendix B.

Evaluation. We measure the validation perplexity on 5,000 held-out sequences sampled from
the training distribution. And we evaluate our models on a series of natural language and math
benchmarks. Explicitly, we divide them into three categories:

– World-knowledge tasks: TriviaQA (Joshi et al., 2017), Natural Questions (Kwiatkowski et al.,
2019), HotpotQA (Yang et al., 2018), WebQuestions (Berant et al., 2013), ComplexWebQuestions
(Talmor & Berant, 2018).

– Commonsense tasks: ARC-C and ARC-E (Clark et al., 2018), CommonsenseQA (Talmor et al.,
2018), HellaSwag (Zellers et al., 2019), OpenbookQA (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), SciQ (Welbl et al., 2017), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021).

– Math: SVAMP (Patel et al., 2021), GSM8k (Cobbe et al., 2021), GSM-Hard (Gao et al., 2023),
Hendrycks-MATH (Hendrycks et al., 2021), Minerva-MATH (Lewkowycz et al., 2022).
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Figure 5: Generalization gap when the test
set is GSM8k (a) and Hendrycks-MATH (b).

In all our experiments, we plot the average accuracy for
each of these three categories. We report the corresponding
per-task performance in Appendix C.

5.2 RESULTS

Experts improve memorization more than reasoning.
We observe that the conclusions from our theoretical results
and synthetic experiments also hold when pre-training and
evaluating language models on natural language and math.
In Figure 1a, we report the accuracy of our models with re-
spect to the number of total parameters. All the lines in the
plot approximately coincide which implies that regardless
of the number of active parameters, MoEs can effectively
use their routing to leverage all of their parameters to solve
memory-intensive tasks. On the other hand, on common-
sense and math benchmarks (Figures 1b,1c) we find that
MoEs do not reach the performance of dense models with
the same number of total parameters. This indicates that
for these reasoning tasks, increasing the dense model width
is more effective that adding experts.

On math tasks, MoEs display a higher train-test gap
than dense models, suggestive of memorization. We
provide additional evidence that memorization occurs in
pre-trained MoEs by considering the generalization gap. In
Figure 5 we select 6,319 random problems from the OpenMathInstruct dataset, which is part of the
training mixture data. More precisely, we pick 5,000 Hendrycks-MATH like examples and 1,319
GSM8k-like examples to ensure that the number of training examples matches with the corresponding
number of examples in GSM8k and Hendrycks-MATH test sets. We then report the generalization
gap, which is the gap between the accuracy on training examples and test examples. While both
dense transformers and MoEs make a single pass on the OpenMathInstruct dataset, Figure 5 shows
that at scales beyond 159M parameters, MoEs suffer from a more significant generalization gap than
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Figure 6: (a) On world knowledge benchmarks, MoEs consistently outperform dense transformers in
downstream performance when fixing the validation perplexity. (b-c) In reasoning benchmarks, dense
transformers perform about the same as MoEs at a fixed validation perplexity. MoEs can achieve
these perplexities with less active parameters, but may require substantially more total parameters.

dense transformers. This is suggestive that MoEs are more prone to overfit to the problems they have
been pre-trained on than dense models.

MoE models excel at world knowledge tasks but match dense models in reasoning when perplex-
ity is fixed. Finally, we focus on the relationship between validation perplexity and downstream
performance in Figure 6. Rather than comparing models by their parameter count, we can compare
them based on how well they fit the training distribution as measured by validation perplexity. Even
though two models may have the same perplexity, they will have learned different functions. The
question is then if we can see any high level patterns in which types of functions a particular model
class is more likely to learn. Figure 6a shows that at a fixed perplexity, the MoE models outperform
the dense models on world knowledge tasks.

On the other hand, Figures 6b and 6c show that MoEs and dense models perform about the same on
the reasoning tasks at fixed validation perplexity. Note that both dense Transformers and MoEs are
trained with the objective of minimizing the perplexity (or loss). However, there could be multiple
strategies to achieve the same loss, e.g. by memorizing pieces of data or by improving “reasoning”
capabilities. Which strategy the model prefers is determined by the implicit bias of the architecture.
In the experiments, we see that for memorization / factual recall, MoEs achieve better accuracy for
the same pereplexity value, suggesting that they “prioritize” memorization over other capabilties.

6 DISCUSSION

In recent years, scaling up the number of parameters in Transformers has been the dominant approach
for improving performance on language modeling. A standard Transformer of dimension d and
sequence length L has number of parameters which scales with O(d2), and run-time that scales
with O(d2L2). Improving the efficiency can either attempt to reduce the dependence on L or d.
Sub-quadratic attention variants attempt to improve dependence on L (Katharopoulos et al., 2020;
Peng et al., 2023; Fu et al., 2022; Gu & Dao, 2023), while MoEs attempt to improve dependence on
d by scaling the number of parameters without scaling the dimension of the model.

This paper illuminates the costs and benefits of this reduced dependence on d. We show that for
some reasoning-intensive tasks increasing the dimension d is inevitable, and scaling the computation
with O(d2) seems unavoidable. This remains true regardless of the different design choices in the
MoE architecture and is backed up empirically. There is increasing interest in developing non-MoE
models with sub-quadratic dependence on d, using some structural assumptions on the weight layers
(Kamalakara et al., 2022; Dao et al., 2021; 2022; Fu et al., 2024), which could provide an alternative.

On the other hand, we find that MoEs are highly effective at knowledge intensive tasks. They are
able to much more efficiently memorize facts than dense models with a similar number of active
parameters, even matching the performance of dense models with the same number of total parameters.
This suggests that MoEs are valuable as memorization machines and perhaps this particular capability
can be leveraged while relying on other architectures for more reasoning-intensive tasks.
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A LIMITATIONS AND FUTURE WORK

While we provide substantial experiments on a wide range of tasks, many of these tasks are not pure
memorization nor pure reasoning. We study these two extreme cases to better convey our message
but it would be interesting in future work to understand the difference between dense and sparse
models on tasks that mix both memorization and recall. Our pre-trained models have up to ≤ 2.1B
parameters, but we recognize that large scale MoEs like Mixtral (Jiang et al., 2024), DeepSeek-V2
(Dai et al., 2024), and others have orders of magnitude more parameters. We hypothesize that our
results would still be meaningful at larger scales due to the strong theoretical underpinning, but it is
not guaranteed. Moreover, as suggested above, it would be an interesting direction for future work to
propose new architectures with reduced d dependence that can get the best of both worlds and solve
reasoning and memorization tasks.

B DETAILS ON THE PRE-TRAINING DATASETS

In Section 5, we pretrain two collections of models, one on “natural language” and the other on
“math”. Here, we give a precise breakdown of our training mixtures. We start with the “natural
language” training mixture that totals 64B tokens:

– 37B tokens from Fineweb-edu dedup (Penedo et al., 2024).
– 14B tokens from Cosmopedia (Ben Allal et al., 2024).
– 12B tokens from Wikipedia (we loop over Wikipedia 3 times).
– 1B tokens from the training set of the downstream tasks we test on. We create 3 copies of

each of these to increase their presence in the mixture. The presence of these datasets is
pretty important as argued in Allen-Zhu & Li (2023) so that the model is familiar with the
downstream tasks at test time.
∗ ComplexWebQuestions training set (Talmor & Berant, 2018)
∗ HotPotQA training set (Yang et al., 2018)
∗ Natural Questions training set (Kwiatkowski et al., 2019)
∗ TriviaQA training set (Joshi et al., 2017)
∗ WebQuestions training set (Berant et al., 2013)
∗ ARC-Easy and ARC-Challenge training sets (Clark et al., 2018)
∗ Hellaswag training set (Zellers et al., 2019)
∗ OpenBookQA training set (Mihaylov et al., 2018)
∗ PIQA training set (Bisk et al., 2020)
∗ SciQ training set (Welbl et al., 2017)
∗ SIQA training set (Sap et al., 2019)
∗ Winogrande training set (Sakaguchi et al., 2021)

Our “math” training mixture that totals 66B tokens gathers:

– 55B tokens from Proof-Pile 2 (Azerbayev et al., 2023) that contain AlgebraicStack (11B),
OpenWebMath (Paster et al., 2023) and ArXiv (29B).

– 2B tokens from OpenMathInstruct-1: we select the instances with a correct answer from the
training set (Toshniwal et al., 2024)

– 7B tokens from DeepMind math (Saxton et al., 2019)
– 2B tokens from the following instruction-like datasets:

∗ Math-Orca (Mitra et al., 2024)
∗ TinyGSM (Liu et al., 2023) (we only select 1 million examples from there).
∗ StackMathQA (Zhang, 2024)
∗ MAmmoTH2 (Yue et al., 2024) (we only select the mathstackexchange subset).
∗ NuminaMath-CoT (NuminaMath, 2024) (duplicated 3 times)
∗ MetaMathQA (Yu et al., 2023) (duplicated 3 times)
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C ADDITIONAL EXPERIMENTS

In all our experiments in Section 5, we report the average accuracy performance obtained by our
pre-trained models on respectively world knowledge, commonsense and math benchmarks. Here, we
provide the results per task. In Subsection C.1, we display for each task, the downstream performance
on a per parameter basis (similar to Figure 1) and in Subsection C.2, we plot for each task, the
downstream performance on a per validation perplexity basis (similar to Figure 6).

C.1 DOWNSTREAM PERFORMANCE ON A PER PARAMETER BASIS
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Figure 7: Downstream performance on the world knowledge tasks with respect to the total number of
parameters of the models.
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Figure 8: Downstream performance on the commonsense tasks with respect to the total number of
parameters of the models.
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Figure 9: Downstream performance on the math benchmarks with respect to the total number of
parameters of the models.

C.2 DOWNSTREAM PERFORMANCE ON A PER VAL PERPLEXITY BASIS
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Figure 10: Downstream performance on the world knowledge tasks with respect to the validation
perplexity.
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Figure 11: Performance on the commonsense tasks with respect to the validation perplexity.
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Figure 12: Downstream performance on the math benchmarks with respect to the validation perplexity.
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D PROOFS

D.1 REASONING PROOFS

Definition D.1 (Set-disjointness task). Set disjointness is the following task: given two inputs
A,B ∈ {0, 1}r for some r ∈ N, compute maxiAiBi.

Set-disjointness can be thought of as follows: Alice and Bob are given sets A and B respectively.
Their objective is to determine whether they have any overlapping items in their sets.

Lemma D.2 (Equivalence of set-disjointness and length-2 path). The set-disjointness task is equiva-
lent to the length-2 path task.

Proof. ( =⇒ ): Given an instance of set-disjointness, we can encode it into a length-2 path problem.
Denote every item i as a vertex. Denote two extra vertices as A, B, corresponding to Alice and Bob.
For every element i that Alice has, draw an edge between A and i. For every element i that Bob
has, draw an edge between B to i. If and only if there are any overlapping elements, then there is
a length-2 path from A to B. The number of elements because the number of vertices that do not
belong to Alice or Bob.

( ⇐= ): Consider an instance G = (V,E), s, d of length-2 path, where s is the source vertex and d is
the sink vertex. For all vertices with an edge with s, put this element into Alice’s set of elements. For
all vertices with an edge with d, put this element into Bobs’s set of elements. If and only if there is a
length-2 path, then Alice and Bob’s sets are overlapping. Then, r is the number of vertices.

Lemma D.3 (Communication complexity lower-bound on concatenated outputs). For some sequence
length, fix two disjoint subsets A,B ⊂ [N − 1], and consider a single-layer transformer f ∈
TransformerNm,H,1 with O(logN)-bit precision that solves set disjointness for any input X where
XA is a function of Alice’s input a ∈ {0, 1}r, XB is a function of Bob’s input b ∈ {0, 1}r, and
X[N ]\(A∪B) is fixed regardless of a, b. Then, f has width satisfying mH = Ω(r/ logN).

Proof. By re-writing the following, the remainder of the proof from Sanford et al. (2024) still holds.

DISJ(a, b) = ψ
([

softmax
(
ϕ(xN )⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

)
.

This is because we may still use the same definition for Zh,S , Lh,S as in the proof. Hence, this
concludes the proof.

D.1.1 PROOF OF THEOREM 3.2

We restate the corollary.

Theorem D.4 (Theorem 3.2). For some input sequence G = (V,E), fix two disjoint subsets A,B ⊂
[N − 1], and consider a single-layer transformer f ∈ TransformerNm,H,1,K with O(logN)-bit
precision that solves length-2 path for any input X where XA is a function of edges with the source s,
XB is a function of edges with the destination d. Then, f has width satisfying mH = Ω(|V |/ logN).

Proof. The proof outline is as follows:

1. Adapt Lemma 39 (Sanford et al., 2024) to support concatenation instead of addition from
different attention heads.

2. The lower bound with concatenation holds for length-2 path because set-disjointness and
length-2 path are equivalent.

3. Extend the result to sparse transformers.
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We complete the first step with Lemma D.3. We complete the second set due to Lemma D.2. It
remains to show that a router function also yields the same lower bound. We show that Lemma
39 of Sanford et al. (2024) can be generalized to the case in which ψ is applied according to a
routing function. Specifically, consider a top-1 routing function r : Rm → [K], and K element-wise
functions ψ1, . . . , ψK : Rm → R. For shorthand, define:

Y (XN ) =
[
softmax

(
ϕ(xN )⊤QhK

⊤
h ϕ(X)

)
ϕ(X)vh

]
h∈[H]

,

which is the output of the attention head prior to applying the element-wise transformation. Next, we
define f(XN ) as the output when the router function r is used to select ψi.

f(XN ) =
∑
i∈K

I{r(Y (XN )) = i}ψi(Y (XN )).

Because the lower bound does not place any restrictions on the function ψ and rather argues a
communication-complexity lower bound due to information from Y (XN ), the lower bound also
holds for a routing function.

D.1.2 PROOF OF THEOREM 3.3

We re-state Theorem 3.3 and give its proof.

Theorem D.5 (Theorem 3.3). For sequence length N , there exists f ∈ TransformerNm,1,1 with
O(logN)-bit precision and width |V | that solves length-2 path for any input X .

Proof. Tokens are elements in V = V ∪ {0} × V ∪ {0}. The input is as follows: for vertex i, if the
source shares an edge with that vertex, then the i’th input value is (s, i). Otherwise, it is (s, 0). The
first |V | tokens we see correspond to edges possibly shared with the source vertex. Then, the last
|V | input tokens correspond to edges possibly shared with the destination vertex and share the same
format as the first r tokens. In between, we can have arbitrary edges (u, v). We define an embedding
function where ei is the i’th standard basis vector in dimension r.

ϕ : V → R|V |

(u, v) 7→
{
ei if i > 0 and u = s or u = v

0 if i = 0.

Next, we define Vh ∈ R|V |×|V | to be the identity matrix, and Qh, Vh ∈ R|V |×|V | both to have 0
everywhere. Consequently, the attention matrix is given by:

1/|V | . . . 1/|V |
...

. . .
1/|V | 1/|V |

ϕ(X)


j,i

=


2/|V | if there is a path through i
1/|V | if one target vertex shares an edge with i
0 otherwise.

For any entry that exceeds 1
|V | , the correct answer is there is a length-2 path. Hence, any thresholding

function which achieves this separation suffices. Provided that any rounding 1
|V | to c̃ so that it

is represented with O(logN) is sufficient to separate between c̃ and 2c̃, then O(logN) bits are
sufficient.

D.2 MEMORIZATION PROOFS

Assume that K is a power of 2, and let m = m0 + log(K). We associate each expert i with a vector
vi ∈ {±1}log(K) and choose ri = (v1, . . . , vlog(K), 0, . . . , 0) ∈ Rm.
Lemma D.6. For some c > 0, and some input x ∼ N (0, cIm), the probability of routing to expert i
is 1/K for all i.

Proof. By construction, we choose the expert as follows:

i = argmax
j∈[K]

v⊤j x.

The solution above must be the one whose signs match those of x. Because the entries of x are
0-mean, this implies that the probability of routing to any particular expert is 1/K.
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Lemma D.7. Fix δ ∈ (0, 1) and some expert j. With probability at least 1 − δ, the number of
examples routed to j is at most 2N/K, given N ≥ K2 ln(1/δ)

2 examples from N (0, cIm).

Proof. The proof relies on a Hoeffding bound: for bounded independent random variables
X1, . . . , XN such that a ≤ Xi ≤ b ∀i, and SN =

∑N
i=1Xi, we have:

P[SN − E[SN ] ≥ E[SN ]] ≤ exp

{
− 2E[SN ]2

N(b− a)2

}
.

In our case, let Xi = 1{sample i is routed to expert j}, for some fixed j ∈ [K]. Note that P[Xi =
1] = 1/K due to Lemma D.6 and as such E[SN ] = N/K. Further, Xi ∈ [0, 1]. Hence we obtain:

P
[
SN ≥ 2N

K

]
≤ exp

{
−2(N/K)2

N

}
≤ exp

{
−2N

K2

}
.

In order to upper-bound this probability with δ, we obtain:

δ ≥ exp

{
−2N

K2

}
=⇒ ln

(
1

δ

)
≤ 2N

K2

=⇒ K2 ln(1/δ)

2
≤ N.

Lemma D.8. Fix δ ∈ (0, 1), K ∈ N and the routing function as described in Lemma D.6. Given
n ≥ K2 ln(1/δ)

2 samples with embedding dimension m. For every expert i, with probability at least
1− δ, there exists an MLP of width Õ(n/mK) that correctly classifies the examples routed to this
expert.

Proof. We begin with a result from Daniely (2020). Consider h, a depth-2 network with q neurons,
an activation function ϕ : R → R, which is O(1)-Lipschitz, piecewise twice-differentiable, and
satisfies EX∼N (0,1)[ϕ

′(X)] = 0, weights ai ∈ {±1} such that
∑q

i=1 ai = O(
√
q). Such a network,

defined by W and a, computes the function:

hW,a(x) =
1
√
q

q∑
i=1

aiϕ(⟨wi, x⟩).

For our proof we consider ϕ to be the absolute value function, and later show how to obtain an MLP
with ReLU activations.

Consider the set of samples ((x1, y1), . . . , (xN , yN )), where xi ∼ N (0, IM ) and yi ∈ {±1} is a
Rademacher random variable. The objective is to find a W ∗, a∗ such that yihW∗,a∗(xi) > 0 ∀i.
Daniely (2020) gives the following result: for N ≤ Mq

log4(M)
and q ≥ log4(M), with probability

1− o(1) there exists h such that, for every i ∈ [N ], yih(x) = Ω(ln(M)).

We build on this result as follows: first, we assume that the attention matrix performs averaging of
the input sequence, such that xi = 1

N

∑N
j=1(X

i)j where where Xi is the i-th input sequence to
memorize. Assuming the inputs are also Gaussian, then so is the average. Hence, xi ∈ Rm and
xi ∼ N (0, cIm) for c = 1

L .

Next, we fix the number of experts to be K. We fix a router function r : RlogK → [K] such that, on
average, each expert must memorize n/K sequences, and with high probability, each expert must
memorize at most 2n/K sequences. We use the construction from Lemma D.6 where the router only
acts on the first logK entries of each vector. Hence, we have K MLPs, each tasked with memorizing
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at most 2n
K input-output values. We use the network construction from Daniely (2020) to only the

last m − logK ≥ m/2 coordinates, which are not used by the router, so that their distribution is
independent and Gaussian.

Hence, with n ≤ K
2

(m−logK)q
log4(m−logK))

≤ K
4

mq
log4(m−logK))

and q ≥ log4(m − logK), with high
probability, yihj(xi) = Ω(ln(m)), where hj is the expert to which xi is routed. It follows that width

q ≥ 4n log4(m− logK)

mK

is sufficient for each individual expert, and we assume that 4n
mK ≥ 1.

In order to obtain a MLP with a ReLU activation defined as σ(x) = max{0, x}, we use the fact that
|x| = σ(x) + σ(−x). This is because absolute value is a valid activation function in Daniely (2020),
but ReLU is not. However, doubling the width of each MLP is sufficient to obtain MLPs with ReLU
activations instead, i.e.:

q ≥ 8n log4(m− logK)

mK
.

This is done by taking a solution which is of form:

hW,a(x) =
1
√
q

q∑
i=1

ai|⟨wi, x⟩|,

and converting it to the form:

h
′

W,a(x) =
1
√
q

q∑
i=1

ai((σ⟨wi, x⟩) + (σ⟨−wi, x⟩)).

The router has K vectors each of dimension m. Consequently, we need O(Km) parameters to store
the router. Each expert has width 8n log4(m−logK)

mK = Õ
(

n
mK

)
and Õ

(
n
K

)
parameters.

Corollary D.9. Let δ ∈ (0, 1), and fix K > 1. For n ≥ K2 ln(K/δ)
2 , with probability at least 1− δ,

there exists a sparse transformer s with K experts such that yis(xi) = Ω(lnm). It has Õ(n+Km)

parameters and Õ(n/K +Km) active parameters.

Proof. For each expert, we apply the result from Lemma C.8 with δ′ = δ/K. Hence, for every expert,
with probability at most δ/K, there does not exist an MLP of width Õ(n/mK) which memorizes its
samples. By a union bound, this implies that with probability at most δ, at least one of the experts is
not able to memorize its samples. Hence, with probability at least 1− δ, all of the experts are able to
perform memorization on their given samples. In total, this implies we will use Õ(n+K) parameters
to store the entire mixture of expert network. The number of active parameters is Õ(n/K +K).

Lemma D.10 (Bound on ℓ2-norm of vector from N (0, cIm) ). Let x ∼ N (0, cIm) for some c > 0,
and let δ ∈ (0, 1). Then, with probability at least 1− δ, there exists a constant cδ,m > 0, such that

∥x∥2 ≤ cδ,m =

√√√√c

(
m+ 2

√
m ln

(
1

δ

)
+ 2 ln

(
1

δ

))
.

Proof. Each component xi of x is distributed as xi ∼ N (0, c). We can express xi as xi =
√
c zi,

where zi ∼ N (0, 1). Then,

∥x∥22 =

m∑
i=1

x2i = c

m∑
i=1

z2i .

The sum
∑m

i=1 z
2
i follows a chi-squared distribution with m degrees of freedom. By the Laurent-

Massart theorem Laurent & Massart (2000), for all t > 0, we have

P

(
m∑
i=1

z2i ≥ m+ 2
√
mt+ 2t

)
≤ e−t.
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Multiplying both sides inside the probability by c, we obtain

P
(
∥x∥22 ≥ c

(
m+ 2

√
mt+ 2t

))
≤ e−t.

Setting t = ln

(
1

δ

)
, it follows that

P

(
∥x∥22 ≥ c

(
m+ 2

√
m ln

(
1

δ

)
+ 2 ln

(
1

δ

)))
≤ δ.

Therefore, with probability at least 1− δ, we have

∥x∥2 ≤

√√√√c

(
m+ 2

√
m ln

(
1

δ

)
+ 2 ln

(
1

δ

))
.

Lemma D.11 (Bounded bit complexity required). With high probability, Õ(1) bits are required
to store each weight in the network, and Õ(n + K) bits are required to store the entire network.
Õ
(
n
K +K

)
active bits are required.

Proof. We show that the learning result from Daniely (2020) gives a network with bounded bit
complexity. Hence, it suffices to bound the bit complexity of the initial weights and the bit complexity
of the gradient update. First, we begin with h(x) =

√
1
q

∑q
i=1 aiσ(⟨wi, x⟩). The objective is to show

there exists h̃(x) with bounded bit complexity which satisfies yih̃(xi) > 0 ∀i. Suppose we begin by
creating bins for the weights, and replace each wi with w̃i where ∥wi − w̃i∥∞ ≤ ε. Further, assume
that ∥wi∥∞ ≤M for some M > 0. We then obtain that ∥wi − w̃i∥2 ≤

√
mε. In addition, we state

that with probability at least 1− δ, ∥x∥2 ≤ cδ,m due to Lemma D.10. Using this, we have that:

|σ(⟨wi, x⟩)− σ(⟨w̃i, x⟩)| ≤ |⟨wi − w̃i, x⟩| (σ is 1-Lipschitz)
≤ ∥wi − w̃i∥2∥x∥2 (Cauchy-Schwarz)

≤
√
mεcδ,m w.p. ≥ 1− δ (Lemma D.10).

We apply this result to obtain that with probability at least 1− δ,

|h(x)− h̃(x)| ≤ 1
√
q

q∑
i=1

|ai||σ(⟨wi, x⟩)− σ(⟨w̃i, x⟩)|

≤ √
q
√
mεcδ,m.

Given that h(x) ≥ O(1), then for some arbitrarily small constant (we use 1
4 ) we require: 1

4 ≤√
q
√
mεcδ,m, or equivalently, ε ≤ 1

4cδ,m
√
qm . Because h(x) ≥ O(1), we use this separation of 1

4

to show that h̃(x) remains the same sign as h(x) (however this constant can be replaced with an
arbitrarily small constant so as to satisfy the requirement).

Consider w(0)
i to be the initialization of wi prior to the gradient step. Then, because, M = ∥wi∥∞,

we have that M = maxi

{
w

(0)
i − η ∂h(x)

∂wi

}
= maxi

{
w

(0)
i − n logm

m
∂h(x)
∂wi

}
. Assuming that w(0)

i is

initialized with bounded ℓ∞ norm of 1, then we obtain that M ≤ 1 + n logm
m

√
q cδ,m. This is due to

Lemma D.10 and that

∂h(x)

∂wi
=

1
√
q
aiσ

′(⟨wi, xi⟩)xi

=

{
0 if ⟨wi, xi⟩ ≤ 0
1√
qaixi otherwise.

26



Published as a conference paper at ICLR 2025

Using this, with high probability, we require log
(
2M
ε

)
= log

(
8Mcδ

√
qm
)

bits (by replacing ε).
Hence, with high probability, we require the number of bits to be at most:

O

(
log

(
n logm√

m
c2δ,m

))
= Õ(1).

We restate Theorem 3.6.
Theorem D.12 (Lower bound for dense model). Given the same task as above, a dense Transformer
requires Ω̃(n) parameters to solve the memorization task.

Proof of Theorem 3.6. Let c be the number of bits used for encoding each parameters (and we assume
that c is logarithmic in the problem parameters). Denote by H the class of all transformers with W
parameters and c bits per parameters. Since H is a finite class, where each function in the class can
be encoded with cW bits, we have |H| ≤ 2cW . Let X1, . . . , XN ∈ Rn×d be the N input points.
Assume a H can solve the memorization task. Then, for every choice of y1, . . . , yN ∈ {±1}, there
exists a transformer f ∈ H s.t. f(Xi) = yi for all i ∈ [N ]. There are 2N possible assignments for
y1, . . . yN and therefore there are at least 2N different functions in H. So, we get 2N ≤ |H| ≤ 2cW

and therefore W ≥ N/c.

Lemma D.13 (Active parameter comparison between dense and sparse transformers). There exist
cases in which the amount of active parameters required to perform memorization is less for a sparse
transformer than a dense transformer.

Proof. As shown, a dense transformer requires Ω̃(n) parameters (and active parameters) to perform
memorization of N sequences. In contrast, for n sufficiently large and fixed K > 1, it holds
that n

K +K < n, which shows that the number of active parameters required is less for a sparse
transformer.
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