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ABSTRACT

Score-based generative models (SGMs) are a recently proposed paradigm for deep
generative tasks and now show the state-of-the-art sampling performance. The
original SGM design is known to solve two of the three problems of the gener-
ative trilemma except sampling complexity: sampling quality and sampling di-
versity. That said, their training/sampling complexity is notoriously high. To
this end, combining SGMs with simpler models, e.g., generative adversarial net-
works (GANs), is gathering much attention currently. We present an enhanced de-
noising method using GANs, called straight-path interpolation GAN (SPI-GAN),
which drastically reduces the sampling time while achieving as high sampling
quality and diversity as SGMs. Our SPI-GAN can be compared to the state-of-
the-art shortcut-based denoising method using GANs, called denoising diffusion
GAN (DD-GAN). However, our method corresponds to an extreme method that
does not use any intermediate shortcut information of the reverse SDE path, in
which case DD-GAN fails to obtain good results (cf. Sec. 4.4). Nevertheless, our
straight-path interpolation method greatly stabilizes the overall training process.
As a result, SPI-GAN is one of the best-balanced models in terms of the sampling
quality/diversity/time for CIFAR-10, CelebA-HQ-256, and LSUN-Church-256.

1 INTRODUCTION

Generative models are one of the most popular research topics for deep learning. Many different
models have been proposed, ranging from variational autoencoders (Kingma & Welling, 2013) and
generative adversarial networks (Goodfellow et al., 2014) to recent denoising diffusion models (Ho
et al., 2020; Song & Ermon, 2019; Song et al., 2021c). The representative denoising diffusion
models score matching with Langevin dynamics (Song & Ermon, 2019) and denoising diffusion
probabilistic modeling (Ho et al., 2020) progressively corrupt original data and revert the corruption
process to build a generative model. Recently, Song et al. (2021c) proposed a stochastic differential
equation (SDE)-based mechanism that embraces all those models and coined the term, score-based
generative models (SGMs).

Each generative model has different characteristics in terms of the generative task trilemma: i)
sampling quality, ii) sampling diversity, and iii) sampling time. Generative adversarial networks
(GANs) generate samples with high quality, but lack sampling diversity. Conversely, variational
autoencoders (VAEs) generate a variety of samples, but its sampling quality is lacking. SGMs
outperform GANs and VAEs in terms of sampling quality/diversity. However, it takes a lot more
time for sampling. In this paper, we are interested in achieving high sampling quality, diversity, and
time simultaneously.

Figure 1 (a) shows the conceptual workflow of SGMs. The corruption process can be described
by the forward SDE process with the Wiener process and the reverse SDE with a score function
can be recognized as a generative model. It currently shows state-of-the-art quality in synthesizing
fake samples for various image datasets. However, one downside of this approach is long sampling
time. To this end, some other variations to reduce the computational overheads have been recently
proposed (Song & Ermon, 2020; San-Roman et al., 2021; Kong & Ping, 2021; Jolicoeur-Martineau
et al., 2021a; Luhman & Luhman, 2021; Xiao et al., 2021b). Figure 1 (b) shows the key idea of
one recent method that is the most similar to our research. Denoising diffusion GAN (Xiao et al.,
2021b) proposed to approximate the reverse SDE process with K shortcuts. They internally utilize a
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Forward SDE (Brownian Motion)

Reverse SDE

(a) The SDE-based workflow of
SGMs. The reverse SDE is a gen-
eration process.

(b) Approximating the reverse
SDE (T steps in total) with K
shortcuts by DD-GAN, e.g.,
K = 3 in this example.

(c) Our proposed denoising
method, SPI-GAN, with K
straight-path interpolations, e.g.,
K = 3 in this example.

Figure 1: The comparison among three methods: i) the original formulation of SGMs in (a), ii)
DD-GAN’s learning the shortcuts of the reverse SDE (based on the conditional generator x iT

K
=

G(x (i+1)T
K

, (i+1)T
K ) in (b), and iii) SPI-GAN’s learning the straight path in (c). Note that we do

not strictly follow the reverse SDE path but the straightly interpolated path. In the perspective of
generative task, the final goal is generate x0 regardless of the intermediate path. Therefore, one
can consider that SPI-GAN denoises xT to x0 following the straight path. One more advantage is
that the straight path is much easier to be learned than the highly non-linear reverse SDE path (see
Section 4.5 for more detailed discussion).

GAN-based framework conditioned on time (step) t to learn the shortcuts. In contrast to Denoising
diffusion GAN (DD-GAN), we propose a denoising method to approximate the straight-path inter-
polation (guided by intermediate samples by tx0 + (1 − t)xT , where 0 ≤ t ≤ 1). Our method is
called straight-path interpolation GAN (SPI-GAN).

One may consider that SPI-GAN is similar to DD-GAN where K = 1 which directly denoises xT to
x0 (cf. Figure 1 (b) vs. (c)). However, our SPI-GAN is technically different and more sophisticated
in the following points:

1. Whereas DD-GAN uses the shortcuts following the SDE path for denoising diffusion, SPI-
GAN uses the straight path between xT and x0.

2. In order to learn from the interpolated samples, we propose i) a special neural network
architecture, characterized by a mapping network, and ii) its own training mechanism. DD-
GAN does not have a structure equivalent to our mapping network.

3. SPI-GAN is trained to iteratively denoise xT to x0 following the straight path. For sam-
pling, however, SPI-GAN is able to generate fake images directly without any recursion,
which is possible since our mapping network is designed for this purpose (see Sections 3.6
and 4.5).

4. After all these efforts, SPI-GAN produces better and faster outputs in comparison with not
only existing denoising models, such as DD-GAN, but also some other generative models.

Both DD-GAN and SPI-GAN can be understood as denoising diffusion model using GANs. Our
proposed SPI-GAN shows the best balance in the overall sampling quality, diversity, and time in
three benchmark datasets: CIFAR-10, CelebA-HQ-256, and LSUN-Church-256.

2 RELATED WORK AND PRELIMINARIES

Neural ordinary differential equations (NODEs). Neural ordinary differential equations (Chen
et al., 2018) use the following equation to define the continuous evolving process of the hidden
vector h(t):

h(T ) = h(0) +

∫ T

0

f(h(t), t;θf )dt, (1)

where the neural network f(h(t), t;θf ) learns dh(t)dt . To solve the integral problem, we typically rely
on various ODE solvers. The explicit Euler method is one of the simplest ODE solvers. The 4th order
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Runge–Kutta (RK4) method is a more sophisticated ODE solver and the Dormand–Prince (Dormand
& Prince, 1980) method is an advanced adaptive step-size solver. The NODE-based continuous-
time models (Chen et al., 2018; Kidger et al., 2020; Brouwer et al., 2019) show good performance
in processing sequential data.

Score-based generative models. In diffusion models, the diffusion process is adding noise to real
image data x0 ∼ q(x0) in T steps as follows:

q(x1:T |x0) =
∏
t≥1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

where βt is a pre-defined variance schedule and q(x0) is a data-generating distribution. The denois-
ing (reverse) process of diffusion models is as follow:

pθ(x0:T ) = p(xT )
∏
t≥1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I), (3)

which θ is denoising model’s parameter, and µθ(xt, t) and σ2
t are the mean and variance for the de-

noising model. Afterwards, score-based generative models (SGMs) generalize the diffusion process
to continuous using SDE. SGMs use the following Itô SDE to define diffusive processes:

dx = f(x, t)dt+ g(t)dw, (4)
where w is the standard Wiener process (a.k.a, Brownian motion), f(x, t) and g(t) are defined in
Appendix A. Following the Equation 4, we can derive an xt at time t ∈ [0, T ]. As the value of t
increases, xt approaches to N (0, σ2I). The denoising process (reverse SDE) of SGMs is as follows:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw, (5)
where ∇x log pt(x) is the gradient of the log probability density function. In denoisng process
(reverse SDE), a noisy sample at t = T maps to a data sample at t = 0.

Compared to other generative models, SGMs generate a variety of images with good quality. How-
ever, it takes a lot of time to generate the images. The reason is that a large T (e.g., CIFAR-10:
T = 1000) is required to approximate xT with a Gaussian distribution, and the image is generated
through a large number of iterative time steps. To overcome the slow sampling speed with large
T , several methods have been proposed including learning an adaptive noise schedule (San-Roman
et al., 2021), introducing non-Markovian diffusion processes (Song & Ermon, 2020; Kong & Ping,
2021), using faster SDE solvers for continuous-time models (Jolicoeur-Martineau et al., 2021a),
knowledge distillation (Luhman & Luhman, 2021; Salimans & Ho, 2022), and denoising images
with GANs (Xiao et al., 2021b; Zheng et al., 2022; Wang et al., 2022).

Among those methods, denoising samples with GANs, e.g., DD-GAN, shows a fast sampling time
with minimum quality loss. It effectively reduces the denoising process steps using a GAN. To this
end, DD-GAN uses a conditional generator, and xt is used as a condition to generate xt−1. It repeats
this K times to finally create x0. For its adversarial learning, the conditional GAN generator can
match pθ(xt−1|xt) and q(xt−1|xt).

3 PROPOSED METHOD

Our proposed method, SPI-GAN, learns, during its training phase, how to denoise xT to x0 follow-
ing the straight path and after being trained, a latent vector z is denoised to a fake image directly
without any recursion (see Sections 3.6 and 4.5).

3.1 OVERALL WORKFLOW

We first describe the overall workflow of our proposed method. Before describing it, the notations in
this paper are defined as follows: i) i(t) ∈ RC×H×W is an image with a channel C, a height H , and
a width W at interpolation point t. ii) î(t) ∈ RC×H×W is a generated fake image at interpolation
point t. iii) h(t) ∈ Rdim(h) is a latent vector at interpolation point t. iv) r(h(t), t;θr) ∈ Rdim(h) is
a neural network approximating the time derivative of h(t), denoted dh(t)

dt .

Our proposed SPI-GAN consists of four parts, each of which has a different color in Figure 2, as
follows:
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(Mapping network based on NODEs)

Adversarial 

Training





Forward
SDE

(Initial embedding)

Figure 2: The architecture of our proposed SPI-GAN. We perform this adversarial training for j ∈
(0,K]. i(t) is the interpolated image at t, and therefore, i(1) is original image and i(0) is noisy
image. We note that i(0) theoretically follows a certain Gaussian distribution N (0, σ2I), where σ2

depends on the type of SDE, and therefore, for generating fake images we do not need i(0) from
real images but z ∼ N (0, σ2I). Each color represents a computation step (cf. Section 3.1).

1. 1st part (blue): The first part, highlighted in blue in Figure 2, means that we calculate a
noisy image i(0) = xT from i(1) = x0 with the forward pass of the SGM. We note that
this can be done in O(1).

2. 2nd part (green): The second part maps a noisy vector i(0) into another latent vector h(t)
after solving the integral problem. We note that t can be in (0, 1] to linearly interpolate i(0)
and i(1). The final integral time of the NODE layer, denoted j

K , determines which latent
vector it will generate.

3. 3rd part (red): The third part is a generative step to generate a fake image î(t) from h(t).
Our generator does not require t as input, which means that h(t) internally has the temporal
information. In other words, the latent space, where we sample h(t), is a common space
across t ∈ (0, 1].

4. 4th part (yellow): The fourth part is a discriminative step to distinguish between real and
fake images. Our discriminator discriminates not only clean images, but also interpolated
images for every t. In other words, we maintain only one discriminator regardless of t.

5. After trained for various t ∈ (0, 1], our generator is able to generate fake images directly
without any recursion aided by the mapping network.

3.2 DIFFUSION THROUGH THE FORWARD SDE

Depending on the type of SDE, σ2 can be different for i(0) ∼ N (0, σ2I). The type of SDE is in
Appendix A. Unlike the reverse SDE, which requires step-by-step computation, the forward SDE
can be calculated with one-time computation for a target time t (Song et al., 2021c).

3.3 MAPPING NETWORK

The mapping network, which generates a latent vector h(t), is the most important component in our
model. The mapping network consists of an initial embedding network, denoted o, that generates
the initial hidden representation h(0) from i(0) and a NODE-based mapping network. The role of
network o is to reduce the size of the input to the mapping network for decreasing sampling time.
In addtion, the NODE-based mapping network to generate the latent vector for a target interpolation
point t, whose initial value problem (IVP) is defined as follows:

h
( j

K

)
= h(0) +

∫ j
K

0

r(h(t), t;θr)dt, (6)

where dh(t)
dt = r(h(t), t;θr), and r has multiple fully-connected layers in our implementation. In

general, h(0) is a lower-dimensional representation of the input.

One more important point is that we maintain a single latent space for all t and therefore, h(t) has
the information of the image to generate at a target interpolation time t. For instance, Figure 3 shows
that a noisy image is generated from h(0) but a clean image from h(1). In Figure 4, we also compare
the reverse SDE path and the straight interpolation path. In general, the straight interpolation path
more quickly converts a noisy image to its corresponding clear image than the reverse SDE path.
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Figure 3: Process of generating sample from
continuous latent vector.

Figure 4: Difference between reverse SDE
and interpolation.

3.4 GENERATIVE ADVERSARIAL NETWORK

SPI-GAN has advantages over traditional GANs. Since traditional GANs only generate clean fake
images from noisy vectors, the overfitting issue occurs in the discriminator, which frequently results
in mode-collapse at the end of the training process. However, our model is insensitive to the overfit-
ting issue by generating a set of images following the straight interpolation path. The straight-path
interpolation (SPI) method is defined as follows:

i(t) = tx0 + (1− t)xT , (7)

where t = j
K and j ∈ (0,K], and therefore, i(1) = x0 and i(0) = xT . If we use K = 3, there are

3 interpolated images {i(tk)}3k=1, where tk ∈ (0, 1], tk−1 < tk, and t3 = 1, including the original
image i(1). During our training process, we randomly sample tk rather than using a fixed interval
of 1

K between tk−1 and tk, which increases the diversity of interpolated images (cf. Table 8). Our
objective function to train our proposed model is in Appendix B.5

3.4.1 GENERATOR

Our generator is similar to that of StyleGAN2 (Karras et al., 2020b). Therefore, we borrow the
network structure of StyleGAN2. However, the biggest difference from StyleGAN2 is that our
mapping network is a continuous-time model and generates a latent vector at various interpolation
points while maintaining one latent space across them. This is the key point in our model design
to generate the interpolated image î(t) with various t settings. We refer to Appendix B.4 for the
detailed network structure.

3.4.2 DISCRIMINATOR

The discriminator of SPI-GAN is time-dependent, unlike the discriminator of traditional GANs.
Therefore, we denote the discriminator as a mapping function Discriminator: RC×H×W × RP −→
[0, 1], where P is the dimension size of the time embedding. The discriminator receives î(t) and the
embedding of t as input and learns to classify images from various interpolation points. As a result, it
solves the overfitting problem that traditional GANs have since our discriminator sees various clean
and noisy images. DD-GAN also uses this strategy to overcome the overfitting problem. As shown
in Figure 4, in addition, the straight-path interpolation method maintains a better balance between
noisy and clean images than the case where we sample following the reverse SDE path. Therefore,
our discriminator learns a more balanced set of noisy and clean images than that of DD-GAN. We
refer to Appendix B.4 for the detailed network structure.

3.5 TRAINING ALGORITHM

Our training algorithm is in Algorithm 1. In each iteration, we first create a mini-batch of N real
images, denoted {xl0}Nl=1. Using the forward SDE, we derive a mini-batch of N noisy images,
denoted {xlT }Nl=1. We then sample a set of values for j ∈ {j1, j2, · · · , jK}, where jk ∼ U(0,K),
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Algorithm 1: How to train SPI-GAN
Input: Training data Dtrain, Maximum iteration numbers max iter, Parameter of discriminator ϕ,

Parameter of mapping network ψ, Parameter of generator θ
1 Initialize ϕ, ψ, θ;
2 iter← 0;
3 while iter < max iter do
4 Create a mini-batch of real images {xl

0}Nl=1, where xl
0 means l-th real image;

5 Calculate a mini-batch of noisy images {xl
T }Nl=1 with the forward SDE, where xl

T ∼ N (0, σ2I);
6 for j ∈ {j1, j2, · · · , jK}, where jk ∼ U(0,K), jk−1 < jk, and jK = K do
7 Calculate {hl(t)}Nl=1, where t = j

K
, with the mapping network which processes {xl

T }Nl=1;
8 Generate a fake image {̂il(t)}Nl=1 with the generator;
9 if iter mod 2 ≡ 0 then

10 Calculate {il(t)}Nl=1 with eq:interpolation ;
11 Update ϕ via adversarial training;
12 else
13 Update ψ and θ via adversarial training;
14 iter← iter + 1;
15 return ϕ, ψ, θ;

jk−1 < jk, and jK = K. After that, our mapping network generates a set of latent vectors, denoted
{hl(t)}Nl=1. Our generator then produces a set of fake images from the generated latent vectors.
After that, we follow the standard adversarial training sequence (cf. Appendix B.5).

Implementation trick. We need to calculate hl(t) for all t = j
K , where j ∈ (0,K]. However, we

do not repeat the computation in the Equation 6 for each j, but incrementally solve the initial value
problem from j − 1 to j. In this way, we can minimize efficiently the overall computation.

3.6 HOW TO GENERATE

Table 1: Differences in image generation.

DD-GAN SPI-GAN
Train x( jK ) of the reverse SDE, ∀j i( jK ) of the straight path, ∀j

Generate Recursively generate x̂( jK ), ∀j Directly generate î(1)

In order to generate samples with
SPI-GAN, we need only h(1) from
the mapping network. Unlike
other auto-regressive denoising mod-
els that require K steps when gen-
erating samples as in Figure 1 (b),
SPI-GAN learns the denoising path using a NODE-based mapping network. After sampling
z ∼ N (0, σ2I), we feed them into the mapping network to derive h(1) — we solve the initial
value problem in the Equation 6 from 0 to 1 — and our generator generates a fake image î(1). In
other words, it is possible to generate latent vector h(1) directly in our case, which is later used to
generate a fake sample î(1). (see Appendix B.7 for sampling algorithm)

4 EXPERIMENTS

We describe our experimental environments and results. In Appendix B, more detailed experimental
settings including software/hardware and hyperparameters, for reproducibility. We also release our
model with trained checkpoints.

4.1 EXPERIMENTAL ENVIRONMENTS

Diffusion types. Among various types, we conduct experiments based on the variance preserving
SDE (VP-SDE) for their high sampling quality and reliability, which makes σ2 = 1. That is, i(1)
and z follow a unit Gaussian distribution (see Appendix B.2 for more descriptions).

Datasets. We use CIFAR-10 (Krizhevsky et al., 2014), CelebA-HQ-256 (Karras et al., 2018), and
LSUN-Church-256 (Yu et al., 2015). CIFAR-10 has a resolution of 32x32 and is one of the most
widely used datasets. CelebA-HQ-256 and LSUN-Church-256 contain high-resolution images of
256x256. Each of them has many real-world images.
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Table 2: Results of the unconditional generation on CIFAR-10.

Model IS ↑ FID ↓ Recall↑ NFE↓ Time↓
SPI-GAN (ours), K = 2 10.3 3.09 0.66 1 0.05
Denoising Diffusion GAN (DD-GAN), K = 4 (Xiao et al., 2021b) 9.63 3.75 0.57 4 0.21
DDPM (Ho et al., 2020) 9.46 3.21 0.57 1000 80.5
NCSN (Song & Ermon, 2019) 8.87 25.3 - 1000 107.9
Adversarial DSM (Jolicoeur-Martineau et al., 2021b) - 6.10 - 1000 -
Likelihood SDE (Song et al., 2021b) - 2.87 - - -
Score SDE (VE) (Song et al., 2021c) 9.89 2.20 0.59 2000 423.2
Score SDE (VP) (Song et al., 2021c) 9.68 2.41 0.59 2000 421.5
Probability Flow (VP) (Song et al., 2021c) 9.83 3.08 0.57 140 50.9
LSGM (Vahdat et al., 2021) 9.87 2.10 0.61 147 44.5
DDIM, T=50 (Song et al., 2021a) 8.78 4.67 0.53 50 4.01
FastDDPM, T=50 (Kong & Ping, 2021) 8.98 3.41 0.56 50 4.01
Recovery EBM (Gao et al., 2021) 8.30 9.58 - 180 -
Improved DDPM (Nichol & Dhariwal, 2021) - 2.90 - 4000 -
VDM (Kingma et al., 2021) - 4.00 - 1000 -
UDM (Kim et al., 2021) 10.1 2.33 - 2000 -
D3PMs (Austin et al., 2021) 8.56 7.34 - 1000 -
Gotta Go Fast (Jolicoeur-Martineau et al., 2021a) - 2.44 - 180 -
DDPM Distillation (Luhman & Luhman, 2021) 8.36 9.36 0.51 1 -
SNGAN (Miyato et al., 2018) 8.22 21.7 0.44 1 -
SNGAN+DGflow (Ansari et al., 2021) 9.35 9.62 0.48 25 1.98
AutoGAN (Gong et al., 2019) 8.60 12.4 0.46 1 -
TransGAN (Jiang et al., 2021) 9.02 9.26 0.48 25 -
StyleGAN2 w/o ADA (Karras et al., 2020b) 9.18 8.32 0.41 1 0.04
StyleGAN2 w/ ADA (Karras et al., 2020a) 9.83 2.92 0.49 1 0.04
StyleGAN2 w/ Diffaug (Zhao et al., 2020) 9.40 5.79 0.42 1 0.04
Glow (Kingma & Dhariwal, 2018) 3.92 48.9 - 1 -
PicxelCNN (Van Oord et al., 2016) 4.60 65.9 - 1024 -
NVAE (Vahdat & Kautz, 2020) 7.18 23.5 0.51 1 0.36
IGEBM (Du & Mordatch, 2019) 6.02 40.6 - 60 -
VAEBM (Xiao et al., 2021a) 8.43 12.2 0.53 16 8.79

Evaluation metrics. We use 5 evaluation metrics to quantitatively evaluate fake images. The in-
ception score (Salimans et al., 2016) and the Fréchet inception distance (Heusel et al., 2017) are
traditional methods to evaluate the fidelity of fake samples. The improved recall (Kynkäänniemi
et al., 2019) reflects whether the variation of generated data matches the variation of training data.
Finally, the number of function evaluations (NFE) and wall-clock time (Time) are used to evaluate
the generation time for a batch size of 100 images.

4.2 MAIN RESULTS

In this subsection, we evaluate our proposed model quantitatively and qualitatively. For CIFAR-10,
we perform the unconditional image generation task for fair comparisons with existing models. The
quantitative evaluation results are shown in Table 2. Although our Fréchet inception distance (FID)
is 0.68 worse than that of the Score SDE (VP), it shows better scores in all other metrics. However,
our method has a better FID score than that of DD-GAN, one of the most related methods. DD-
GAN is inferior to our method for all those three quality metrics. LGSM also shows high quality
for FID. However, its inception score (IS) and improved recall (Recall) scores are worse than ours.
Our method’s sample generation time (Time) is almost the same as that of StyleGAN2, which is one
of the fastest methods. In summary, SPI-GAN not only increases the quality of samples but also
decreases the sampling time.

In addition, our model shows outstanding performance in all evaluation metrics compared to DD-
GAN. In particular, SPI-GAN, unlike DD-GAN, does not increase the sample generation time even
when K is large — in fact, K only affects the training time of our method since for the generation,
we always use j = K regardless of how large/small K is (cf. Section 3.6). Therefore, there is no
trade-off between K and the generation time, which is one good characteristic of our method.

Even for high-resolution images, our model shows good performance. In particular, our method
shows the best FID score for CelebA-HQ-256 in Table 3, which shows the efficacy of our proposed
method. However, our method does not produce significant improvements for LSUN-Church-256 in
Table 4 — our method outperforms DD-GAN with other metrics in Table 6. The qualitative results
are in Figures. 5, 6, and 7. As shown, our method is able to generate visually high-quality images.
More detailed images are in Appendix C
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Table 3: Results on CelebA-HQ-256.

Model FID↓
SPI-GAN (ours) 6.62
DD-GAN 7.64
Score SDE 7.23
LSGM 7.22
UDM 7.16
NVAE 29.7
VAEBM 20.4
NCP-VAE (Aneja et al., 2021) 24.8
PGGAN (Karras et al., 2018) 8.03
Adv. LA (Pidhorskyi et al., 2020) 19.2
VQ-GAN (Esser et al., 2021b) 10.2
DC-AE (Parmar et al., 2021) 15.8

Table 4: Results on LSUN-Church-256.
Model FID↓
SPI-GAN (ours) 6.03
DD-GAN 5.25
DDPM 7.89
ImageBART (Esser et al., 2021a) 7.32
Gotta Go Fast 25.6
PGGAN 6.42
StyleGAN (Karras et al., 2019) 4.21
StyleGAN2 3.86
CIPs (Anokhin et al., 2021) 2.92

Figure 5: Qualitative results
on CIFAR-10.

Figure 6: Qualitative results
on CelebA-HQ-256.

Figure 7: Qualitative results
on LSUN-Church-256.

4.3 TRAINING TIME ANALYSES

As clarified earlier, our method does not require training the reverse path of SGMs but its theoretical
forward path equation is enough (for running the blue step in Figure 2). Therefore, our overall
training consists of training our model only, which takes 6 days with 2 A6000 GPUs for CelebA-
HQ-256. For training DD-GAN, it takes 6.5 days with 8 A100 GPUs. Training the original SGM
model takes 10 days with 8 A100 GPUs. In comparison with them, our method is faster.

4.4 ABLATION STUDIES

In this subsection, we conduct experiments by changing i) the number of interpolations, K, and ii)
fixing the intermediate points, j = {1, 2, · · · ,K}, which are the two most important hyperparame-
ters.

The number of interpolations. According to Table 5, the sampling fidelity, i.e., IS and FID, is the
best when K = 2, and Recall indicating the sampling diversity is the best when K = 3. In general,
the higher the value of K is, the higher the sampling diversity is and the lower the sampling fidelity
is. When K = 1, the discriminator uses only clean images (i(1)) for learning. Comparison with
DD-GAN (K = 1) shows that our proposed model is more sophisticated than DD-GAN.

Fixed intermediate points. In our model, j ∼ U(0,K) is stochastic between 0 and K. However,
we can fix j ∈ {0, 1, . . . ,K}. That is, it does not learn about various j, but only train with a specific
section (e.g., when K = 2, j ∈ {0, 1, 2}). It can be seen that in Table 5 and Figure 8, however,
our original stochastic setting not only shows better sampling quality than the fixed setting but also
converges more rapidly.

Table 5: Ablation studies on CIFAR-10.

Model IS ↑ FID↓ Recall↑
K = 1 (DD-GAN) 8.93 14.6 0.19
K = 1 (SPI-GAN) 9.42 10.5 0.60
K = 2 10.3 3.09 0.66
K = 3 9.65 8.45 0.68
K = 4 9.68 5.49 0.67
K = 5 9.61 6.25 0.65
Fixed j 8.58 20.8 0.63

0 100000 200000 300000 400000
Step

10
20
30
40
50
60
70

FI
D

Figure 8: FID curves of the stochastic with K =
2 (blue) vs. the fixed j (orange).

4.5 ADDITIONAL STUDIES

We introduce additional studies for advantage of denoising method with straight-path interpolation
and results for evaluating sampling quality and interpolations.
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Effectiveness of the straight-path interpolation. Between xT and x0, our straight-path interpo-
lation provides a much simpler path than that of DD-GAN because it follows the linear equation
in Equation 7. Also, because of the nature of the linear interpolation, its training is robust, even
when i(t + ∆t) is missing, if i(t) and i(t + 2∆t) are considered. This is not guaranteed if a path
from xT to x0 is non-linear. As a result, SPI-GAN using the straight-path interpolation shows better
performance and robustness with fewer intermediate interpolation points, e.g., our best setting is
K = 2 vs. DD-GAN uses K = 4.

Table 6: Improved quality metrics on LSUN-
Church-256.

Model Recall↑ Coverage↑
SPI-GAN 0.28 0.65
DD-GAN 0.16 0.58
CIPs 0.43 0.57

Improved metrics. FID is one of the most pop-
ular evaluation metrics to measure the similarity
between real and generated images. Generated
images are sometimes evaluated for the fidelity
and diversity using the improved precision and re-
call (Kynkäänniemi et al., 2019). However, the re-
call is not accurately detecting similarities between
two distributions and is not robust against outliers.

Therefore, we evaluate the generated images with the coverage (Naeem et al., 2020) which over-
come the limitations of the recall. We compare our method with CIPs, which marks the best FID
score in LSUN-Church-256, and the results are in Table 6. Our SPI-GAN outperforms CIPs in terms
of the coverage.

Figure 9: Generation by varying the latent vec-
tor from h(0) to h(1) given fixed z.

Generation by manipulating z and h. There
are three manipulations parts in our model. The
first one is generating by changing the latent
vector from h(0) to h(1) in Figure 9, the sec-
ond one is the interpolation between two noisy
vectors z′ and z′′ in Figure 10, and the last one
is the interpolation between two latent vector
h(1)′ to h(1)′′ in Figure 11. In Figure 9, the
ideal generation is that noises are gradually re-
moved for an image, but similar images, not the
same, are produced. However, the denoising
patterns can be observed well. Figure 10 and Figure 11 show the interpolation of the noise vector
(z) and the latent vector (h(1)). One can observe that generated images are gradually changed from
a mode to another.

Figure 10: Generation by interpolating z =
(1− a)z′ + az′′, where 0 ≤ a ≤ 1.

Figure 11: Generation by interpolating h(1) =
(1− a)h(1)′ + ah(1)′′, where 0 ≤ a ≤ 1.

5 CONCLUSIONS

Score-based generative models (SGMs) now show the state-of-the-art performance in image genera-
tion. However, the sampling time of SGMs is significantly longer than other generative models, such
as GANs, VAEs, and so on. Therefore, we presented the most balanced model by reducing the sam-
pling time, called SPI-GAN. Our proposed denoising method uses the straight-path interpolation.
Also, it can directly generate fake samples without any recursive computation on time (or step). Our
method shows the best sampling quality in various metrics and faster sampling time than other score-
based methods. Our ablation and additional studies show the effectiveness of our proposed model.
One limitation is that our method fails to achieve the best results for FID in LSUN-Church-256.

9
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6 ETHICS STATEMENT

Generative models are growing rapidly. In particular, score based generative models generate more
realistic images. In this situation, our proposed model can generate high-quality images quickly
by reducing inference time significantly compared to previous models. Although there are positive
aspects to this research direction, there may be negative aspects such as malicious video generation
and image synthesis.

7 REPRODUCIBILITY STATEMENT

For reproducibility, we attached the sources codes and trained checkpoints in our supplementary
materials. There are detailed descriptions for experimental environment settings, datasets, training
processes, evaluation and visualization processes in README.md. In Appendix, we also list all the
detailed neural network architectures and their hyperparameters.
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