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Abstract

Human pose estimation is a significant research direction in the field of computer vision,
with critical applications in human motion reconstruction and analysis. Currently proposed
human pose estimation methods primarily focus on single-modality sensor information, such
as RGB images and LiDAR point clouds. While these methods have achieved promising
results within their respective domains, they remain limited by the inherent deficiencies of
each modality, hindering their applicability across diverse real-world scenarios. With the
recent introduction of numerous multi-modality human pose datasets, multi-modality ap-
proaches have begun to develop. However, existing multi-modality fusion methods mainly
consider the global feature relationships between different modalities, without modeling
finer-grained features or the dynamic temporal relationships between modalities. To ad-
dress this issue, we propose a novel pipeline that integrates point cloud and image features,
explicitly encoding fine-grained features and dynamic temporal relationships between the
two modalities. Additionally, we employ a discriminator structure for semi-supervised
training. Extensive experiments demonstrate that our method achieves state-of-the-art

(SOTA) performance compared to previous methods.
Keywords: Human Pose Estimation and Multi-modality.

1. Introduction

Human pose estimation (HPE) has become a highly popular research field, with numerous
downstream applications in augmented /virtual reality (AR/VR), robotic simulation, and
human motion analysis. As research progresses, more attention is being focused on 3D
Human Pose Estimation in real-world scenarios, which requires precise depth estimation

and keypoint detection.

Previous HPE methods primarily used RGB images captured by monocular cameras
as input. Image data provides rich texture and color information, which aids in capturing

surface details of the human body. However, their sensitivity to brightness and
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depth information limits the effectiveness in recovering human poses in a global 3D space.
Recently proposed LiDAR point cloud-based human pose estimation methods Li et al. (2022)
can recover human poses at long distances and under low light conditions. Point cloud
data offers precise 3D spatial information, helping network to better understand the spatial
relationships of human structures and movements, especially excelling in depth estimation
and volumetric perception. Nevertheless, point cloud information is highly abstract and
lacks sufficient surface details, resulting in poor performance in capturing fine details of
human poses. Therefore, it is essential to propose a novel method that can leverage the
advantages of different modalities simultaneously.

To address the shortcomings of single-modality human pose estimation methods, re-
searchers have proposed several multi-modality approaches. These methods utilize both
the 3D spatial information from point clouds and the appearance information from images
to reconstruct more accurate and reasonable human poses. ImmFusionChen et al. (2023)
and FusionPoseCong et al. (2023) have developed several techniques for implementing multi-
modality fusion, but they only consider temporal fusion within each modality independently,
neglecting the dynamic relationships between the two modalities in both the temporal and
feature dimensions. LEIRYan et al. (2024) is a pipeline capable of fusing and inferring point
cloud, image, and event features simultaneously, but it also encodes the temporal informa-
tion of each modality independently and does not model the deep relationships between their
fine-grained features. Therefore, existing multi-modality human pose estimation algorithms
still have certain shortcomings.

To overcome the limitations of previous methods, we propose a novel multi-modality hu-
man pose estimation pipeline named FTP. This method integrates dynamic features in both
the temporal and fine-grained feature dimensions, effectively utilizing the visual information
from images and the 3D spatial information from point clouds to make accurate predictions
of human poses. By encoding features in both temporal and fine-grained dimensions, the
model can better understand the relationships between different modalities, leveraging their
respective strengths for precise human pose estimation. Additionally, we introduce a dis-
criminator architecture that guides our human pose estimation network to learn priors of real
human poses. We train the discriminator using existing large-scale human datasets Mah-
mood et al. (2019), employing generative adversarial concepts to improve the prediction
quality and training effectiveness of the network. Extensive experiments demonstrate that
our algorithm achieves state-of-the-art (SOTA) performance in the field of multi-modality
human pose estimation using point clouds and images. We also conducted ablation studies
to verify the effectiveness of each module.

In summary, our contributions are as follows:

e We designed a feature fusion block named parallel TFCA which is capable of encoding
both temporal and fine-grained feature information in parallel.

e We introduce a discriminator architecture that leverages generative adversarial con-
cepts to enhance the overall performance of the network.

e We propose FineTemporalPose (FTP), a multimodal pipeline based on Fine-grained
and Temporal feature fusion for human Pose estimation. We conduct extensive exper-
iments to demonstrate the superiority of our network and the necessity of its individual
modules.
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2. Related Work

2.1. Camera-based 3D Human Pose Estimation

Monocular camera-based human pose estimation has become a highly popular research direc-
tion. Early studies primarily focused on detecting and locating human keypoints Martinez
et al. (2017); Tome et al. (2017); Cao et al. (2017); Pavlakos et al. (2017), both in 2D and 3D
spaces. Subsequently, SMPL Loper et al. (2015) and SMPL-X Pavlakos et al. (2019) provided
differentiable parameterized body models for the field. These models have spurred increased
adoption of parameterized approaches Kanazawa et al. (2018); Kocabas et al. (2020); Bogo
et al. (2016); Kolotouros et al. (2019a,b), for recovering and representing human poses. The
advent of parameterized models also made it possible to create unified representations of
large-scale human pose datasets. AMASS Mahmood et al. (2019), for example, is a result
of integrating numerous past human datasets into a single unified format.Building on this
foundation, methods like HMR Kanazawa et al. (2018) and VIBE Kocabas et al. (2020) have
proposed using existing large-scale human datasets to learn human priors. These methods
primarily rely on a discriminator structure, which can partially address the lack of depth
information in images.

As research progresses, the focus has gradually shifted from analyzing individual frames Mehta
et al. (2017); Giiler et al. (2018); Sun et al. (2018); Xiao et al. (2018) to recovering human
poses across entire video sequences Li et al. (2021, 2023); Kocabas et al. (2021); Wan et al.
(2021); Hassan et al. (2019). This transition has brought greater attention to the tempo-
ral relationships between frames. However, performance of most methods in outdoor or
large scenarios remains unstable. This instability is primarily due to the ambiguous depth
estimation inherent in image data.

2.2. LiDAR-based 3D Human Pose Estimation

In recent years, LiDAR-based perception methods have experienced significant advance-
ments. Due to LIDAR’s accurate depth measurement in large-scale scenes, its application in
autonomous driving and 3D perception Zhu et al. (2020); Yin et al. (2021); Han et al. (2022)
has become increasingly widespread. Consequently, many researchers have begun applying
LiDAR point cloud information to human pose estimation field. For instance, P4T Fan et al.
(2021) and STCrowd Cong et al. (2022) use point clouds for human semantic segmentation,
while LIDARCap Li et al. (2022) has proposed a point cloud-based human pose estimation
pipeline capable of accurately estimating human poses in long-range scenarios.

However, LIDAR point clouds are sparse and unordered, and are susceptible to noise
disturbances. Additionally, they lack the rich texture details that images provide. This is
why multiple modalities are necessary for more accurately predicting human poses.

2.3. Multi-modality Fusion Approaches

With the advancement in point cloud processing, more multi-modality human pose datasets
incorporating point clouds have been introduced. Datasets such as LIDARHuman26M Li
et al. (2022), HSC4D Dai et al. (2022), SLOPER4D Dai et al. (2023), CIMI4D Yan et al.
(2023), and RELI11D Yan et al. (2024) provide accurate human labels and include both point
cloud and RGB image, each with distinct application scenarios. Based on these datasets,
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Figure 1: Overview of FTP Pipeline. FTP consists of four modules: the feature extractor,
the parallel TFCA fusion block, the SMPL-based inverse motion solver and the discrimina-
tor.

research on multi-modality human pose estimation methods has also made notable progress.
Immfusion Chen et al. (2023) is a method that uses mmwave radar point clouds and camera
images to recover human poses in various environments. Although mmwave radar point
clouds differs from LiDAR point clouds, it remains a valuable reference. FusionPose Cong
et al. (2023) proposes a method for reconstructing human poses in multi-person scenarios
using point clouds and images, but it only predicts joint positions without using a parametric
model, leading to reduced performance in more detailed single-person scenarios. LEIR Yan
et al. (2024) simultaneously fuses RGB, point cloud, and event for human pose estimation,
achieving good results. However, it does not focus on the fine-grained feature relationships
between modalities, indicating potential for improvement in some scenarios.

3. Method

3.1. overview

Previous multi-modality fusion methods often perform fusion solely at the feature level or
just encode the temporal information of each modality independently. These approaches do
not fully exploit the advantages of multi-modality data. Our goal is to integrate both the
dynamic temporal information and fine-grained features of different modalities during the
fusion process, thereby better combining the unique strengths of images and point clouds.

We propose FTP, a novel multi-modality baseline for human pose estimation. It’s an
end-to-end, weakly supervised, multi-modality fusion method. The whole pipeline is shown
in the Figure 1. It employs feature extractors to process time-synchronized point clouds
and images. The extracted features are then input into our designed parallel TFCA fusion
block to obtain fused features. Finally, an inverse kinematics solver is used to derive the
final human pose. Additionally, we employ a specially designed discriminator for generative
adversarial training to accelerate the training process.
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Figure 3: Feature Fusion Strategies

3.2. Feature Extraction
3.2.1. RGB FEATURE EXTRACTION

For RGB frames, we specifically utilize a pre-trained DINOv2 network for feature extraction.
The extracted image features are denoted as F.g,.

3.2.2. LIDAR FEATURE EXTRACTION

For point cloud frames, we first input them into a PointNet++ network to extract spatial
features. These features are then processed through a GRU network to obtain spatiotemporal
encoded point cloud features Fj,..

3.3. Fusion Process

We draw inspiration from MAED Wan et al. (2021) and propose two cross-attention mechanism-
based blocks : Temporal Cross-Attention (TCA) and Feature Cross-Attention (FCA). Fig-
ure 2 shows architecture of blocks. The TCA block focuses primarily on encoding temporal
relationships across different modalities, while the FCA block focuses on extracting deep
relationships across the feature dimensions of different modalities.

3.3.1. TEMPORAL CROSS-ATTENTION (TCA)

We use the point cloud features Fj,. extracted by the feature extractor to compute the query
Qpe, while the image features F, g, are used to compute the key K,y and value V,g. The
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new features are then obtained using the following attention formula:

. QpeK7y,
Fica = Attention(Qpe, Krgp, Vrgs) = softmax W Vigh (1)

Fi., integrates both the spatial information of the point cloud and the appearance informa-
tion of the image. Through this way we explicitly model the feature relationships between
the point cloud and the image, enabling the model to establish dynamic correspondences be-
tween point cloud and image features in the temporal dimension. With Applying attention
mechanism in the temporal dimension, the model can understand how different modality
features change over time, which is particularly important for processing sequential data
such as videos and dynamic point cloud data.

3.3.2. FEATURE CROSS-ATTENTION (FCA)

FCA applies the cross-attention mechanism to each feature dimension of multi-modality
data, helping the model capture hidden interaction and deep dependency between different
modalities. Similar to TCA, it extract Qpc, Ky g5 and V,.g, from the computed features. FCA
then performs a matrix transpose operation on the extracted high-dimensional features,
swapping the time and feature dimensions. The cross-attention mechanism is then applied
to each feature dimension of the multi-modality data, helping the model capture fine-grained
feature relations between point clouds and images.The attention calculation is performed
using the same method as described in Equation (1). FCA allows the model to concentrate
on features with significant cross-modal correlations. For instance, a feature dimension in
point cloud data might have a strong association with a corresponding dimension in image
data. The attention architecture enable the model to identify and attend to these critical
dimensional relationships.

3.3.3. FEATURE FUSION STRATEGIES

We designed three different strategies to utilize the attention structures: 1) Temporal-first,
2) Fine-grained feature-first, and 3) Parallel strategy, we name it Parallel TFCA. The specific
architectures are shown in the figure 3.

The temporal-first strategy focuses on the time dimension, attempting to capture the
dynamic changes in data over time, which is crucial for understanding temporal progression.
However, it may somewhat overlook the complex relationships in the fine-grained feature
dimension. The fine-grained feature-first strategy prioritizes processing the high-dimensional
features within each modality, emphasizing the complex interactions between features at
specific time points. This effectively reveals detailed information at particular moments
but may sacrifice an overall understanding of temporal dynamics. The parallel strategy
simultaneously considers the fusion of both the time dimension and the fine-grained feature
dimension, aiming to balance the integration of information from both aspects.In Section
4.4, we demonstrate through experiments that the parallel strategy achieves the best results
for feature fusion.
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3.4. SMPL-Based Inverse Motion Solver

After the feature fusing,the fused features Fyq0n are subsequently processed by a designed
SMPL-based inverse motion solver. Initially, we input fused features Fy,gion into a joint
solver composed of GRU and MLP to obtain the initial 3D joints J3d;uiriai- Next, the
initial 3D joints J3d;niia and the fused features Flpsi0, are concatenated and processed
through an ST-GCN network to obtain more accurate 3D joint positions J3dgspy. After
that, an SMPL optimizer is used to derive the final pose pose finq;, expressed in axis-angle
format. using the parameterized model SMPL Loper et al. (2015). For each obtained value,
we calculate the L2 norm loss with respect to the ground truth, denoted as Lf}"g,féial, Lj’;g’ l,
Lpose-Additionally,we introduce a projection lossL joq. We project J3dgmy, onto the image
plane to obtain J2d, and then compute the L2 norm loss between J2d and the ground

truth.The final loss is as follows:
Lfinal = Lf]’rgﬁéial + Lnglgl + Lpose + LJQd (2)

3.5. Discriminator

Inspired by VIBE Kocabas et al. (2020) and HMR Kanazawa et al. (2018), we introduce a
pose parameter discriminator into our model to enhance overall performance. Discriminators
are typically used in generative adversarial networks to determine whether generated targets
closely match real labels. Through the supervision of the discriminator, the model learns
human pose priors, encouraging the generated pose parameters to better align with the real
data distribution. This ensures that the predicted pose more accurately reflect actual human
poses.

We use the large-scale human pose dataset AMASS Mahmood et al. (2019) as the real
input for the pose parameter discriminator. After the feature fusion step, we add an MLP
regressor to predict an initial human pose,,;,, which serves as the first pseudo-input to
the discriminator. Simultaneously, the human pose pose finq predicted by the SMPL-based
inverse motion solver architecture is used as the second pseudo-input to the discriminator. We
combine the distributions of both, denoted as posege,, then the constraint loss for the
discriminator can be expressed as follows:

Lpis = Epose~a [(Dis(pose) — 1)2} + Eposegen~G [Dis(posegen)Q] (3)

Where A represents the pose distribution from the AMASS dataset, and G represents the
pose distribution computed by our network, including. The loss used by the discriminator
to supervise the overall network architecture is defined as follows:

Loy = EposegenNG’ [(Di3<p03€gen> - 1)2] (4)

4. Experiment

We first introduce the datasets used in the experiments and the baselines for comparison.
Subsequently, we present the quantitative results between our method and other state-of-
the-art (SOTA) methods, along with visualized qualitative results. Finally, we analyze the
effectiveness of each module in our method through ablation study.
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Table 1: Evaluation Results on Different Datasets

‘ LiDARHuman26M RELI11D
Input Method ‘ ACCEL| PAMPJPE| MPJPE| PVE| ‘ ACCEL|{ PAMPJPE| MPJPE| PVE|
PC LiDARCap Li et al. (2022) 45.20 66.72 79.31 101.64 36.85 52.19 64.43 75.92
P4Transformer Fan et al. (2021) 45.40 66.25 79.52 101.77 44.15 72.88 84.91 90.37
RGB VIBE Kocabas et al. (2020) 120.49 108.19 154.61 191.55 58.33 159.38 276.54 240.39
MAED Wan et al. 2021 46.71 59.99 76.36 100.05 51.67 132.67 171.11 189.91
ImmFusion Chen et al. (2023) 47.61 64.38 77.91 101.39 48.74 103.16 123.08 154.81
PC+RGB  FusionPose Cong et al. (2023 44.52 66.70 78.17 99.36 42.29 74.51 97.58 106.31
LEIR Yan et al. (2024) 44.51 62.94 75.09 95.96 27.07 45.72 55.36 75.92
FTP | 37.34 59.92 72.58  92.91 | 18.41 39.86 48.13  54.96

Table 2: Runtime analysis between different methods(unit: s).

Method  Inference time(1 epoch) Training time(300 epoch)

VIBE 3.05 43116.32
MAED 3.51 46964.78
LiDARCap 2.37 35368.59
FTP (ours) 2.88 37727.16

4.1. Experiment Settings
4.1.1. BASELINES

We compared our method with various state-of-the-art (SOTA) methods, including camera-
based, point cloud-based, and multi-modality methods. For camera-based methods, we se-
lected VIBE Kocabas et al. (2020) and MAED Wan et al. (2021), while for point cloud-based
human pose estimation, we used LidarCap Li et al. (2022) and P4Transformer Fan et al.
(2021). Additionally, to demonstrate the superiority of FTP over previous multi-modality
methods, we retrained and compared several recent multi-modality HPE approachs, includ-
ing FusionPose Cong et al. (2023), ImmFusion Chen et al. (2023), and LEIR Yan et al.
(2024). We conducted comparisons across different datasets to evaluate the performance of
these methods.

4.1.2. DATASETS

LidarHuman26M Li et al. (2022) contains 180k frames of point cloud and corresponding
image data, including many instances of human motion at long distances (up to 28 meters).
This dataset allows for the evaluation of model performance on low-resolution images and
point cloud data, covering over 20 categories of daily activities. The data modalities include
point clouds, video, and ground truth labels provided by IMU.

RELI11D Yan et al. (2024) is a multi-modality, high-quality human motion dataset
comprising 239k frames of point clouds along with corresponding image data. It primarily
focuses on rapid and complex movements that require precise positioning, covering five
different activity categories: table tennis, taekwondo, boxing, fencing, and badminton. The
dataset consists of four different modalities: RGB videos, Events, IMU data, and point
clouds.
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Figure 4: Qualitative Results on LIDARHuman26M.(a), (b), and (c) represent the original
RGB image, the point cloud, and the ground truth, respectively. (e) to (j) illustrate the
results of different baselines. The redness of the human mesh indicates the magnitude of
the error at that position compared to the ground truth, with redder colors indicating larger
errors.

4.2. Quantitative Evaluation

The left side of Table 1 shows the quantitative metrics on the LIDARHuman26M dataset,
demonstrating that our method achieved the best results on LIDARHuman26M dataset.
The image-based pose estimation model MAED Wan et al. (2021) obtained better results
than other single-modality methods, significantly outperforming VIBE Kocabas et al. (2020)
with the same inputs. This performance difference can be partly attributed to MAED Wan
et al. (2021)’s ViT-based network architecture, which highlights ViT’s powerful modeling
capabilities for image data. LEIR Yan et al. (2024) also achieves good results on this task,
primarily due to its use of multi-layer temporal encoders and self-attention mechanisms.
These techniques allow it to combine the advantages of different modalities to a certain
extent, enabling the recovery of more accurate human poses.
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The quantitative evaluation results of all methods on the RELI11D dataset are shown
in the right side of Table 1.The table clearly indicates that point cloud-based human pose
estimation methods outperform image-based methods. This is primarily because, on the
RELI11D dataset, which require precise positioning for fast and complex movements, the
3D spatial information provided by point clouds significantly enhances prediction accuracy.
In contrast, images suffer from ambiguous results due to the lack of depth information, lim-
iting their performance. Notably, point cloud-based methods even surpass some multimodal
methods, validating our hypothesis that previous multimodal approaches failed to effectively
combine the advantages of both modalities. Instead, these approaches may have been lim-
ited by the weaknesses of one modality. Our experiments demonstrate that the proposed
FTP method addresses these issues and achieves best results.

To analyze the runtime complexity of the methods, we conducted an experimental evalu-
ation of the runtime for various algorithms. The results are presented in Table 2. The results
indicate that during the inference process, the cost of time between methods for one epoch
is indeed in the second range, which we consider negligible. During training phase, while
our discriminator architecture does introduce some additional computational overhead, it
remains significantly faster than traditional image-based human pose estimation methods.
This is primarily due to the complexity and computational demands of the network architec-
tures and loss functions in those earlier methods. Although our approach involves multiple
modules, the overall computational complexity is well-managed. Furthermore, while the
training time of our method is marginally longer than that of point cloud-based techniques,
we argue that the substantial performance improvements achieved by our method outweigh
the slight increase in computational cost.

4.3. Qualitative Evaluation

The qualitative results of FTP and other pipelines on the LIDARHuman26M dataset are
shown in Figure 4. The LIDARHuman26M dataset focuses on long-range human motion cap-
ture, where the resolution of both image and point cloud data is relatively low. Under these
conditions, MAED Wan et al. (2021) achieved better test results compared to LIDARCap Li
et al. (2022), indicating that image data can still provide richer semantic information than
point cloud data, even at low resolution and from a certain distance. As shown in Figure 4,
human poses in images remain recognizable despite the low resolution; in contrast, point
cloud data captured at long distances often loses details of the hands and feet. Figure 4 also
shows that point clouds become extremely sparse under long-range conditions, resulting in
significant missing data for the arms, which leads to severe estimation errors in the arm
positions by the point cloud-based methods LiDARCap and P4Transformer. In contrast,
our multi-modality pose estimation method FTP effectively integrates the complementary
information from both point clouds and images, achieving the best results.

Figure 5 shows the qualitative results of various methods on the RELI11D dataset. It
is evident from the figure that FTP perform best qualitatively for the more challenging
motions in the RELI11D dataset. This is due to FTP’s dynamic fusion of key features from
both point clouds and images, leveraging complementary features to achieve more accurate
predictions. The results of single-modality methods reveal that rapid leg kicks and fast
punches pose significant challenges for these methods. This is especially evident in point
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Figure 5: Qualitative Results on RELI11D. Each subfigure follows the same representation
as in Figure 4.

cloud data, where the sparse points around the feet create difficulties for point cloud-based
methods. Additionally, the lack of depth information in images causes image-based methods
like VIBE Kocabas et al. (2020) to struggle with correctly estimating which leg is kicking
upwards.

4.4. Ablation Study
4.4.1. ABLATION STUDY ON FUSION STRATEGIES

We designed three different feature fusion strategies: temporal-first, fine-grained feature-
first, and parallel strategy. These strategies were evaluated through ablation experiments,
with the results shown in Table 3. Each strategy aims to capture and integrate key infor-
mation from different dimensions to enhance the network’s ability to understand dynamic
changes in complex scenes.
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Table 3: Fusion Strategies Ablation Study on LIDARHuman26M. T-first and F-first repre-
sent the Temporal-first and Fine-grained feature-first trategies respectively

| LiDARHuman26M RELI11D
Fusion Strategies | ACCEL, PAMPJPE|, MPJPE/| | ACCEL, PAMPJPE, MPJPE/|

T-first 41.79 63.58 75.63 18.77 40.61 49.12
F-first 46.08 62.70 74.54 18.97 40.26 49.55
parallel TFCA 37.34 59.92 72.58 18.41 39.86 48.13

Table 4: Discriminator Ablation Study on RELI11D.

ACCEL| PAMPJPE|, MPJPE| PVE] PCKO0.5¢
without Dis  37.81 50.97 65.07  78.43 0.97
with Dis 18.41 39.86 48.13  54.96  0.98

Experimental results show that the parallel strategy performs the best.We believe this
is because it simultaneously attends to both temporal and feature details, reducing infor-
mation loss during fusion and providing richer contextual information. Unlike sequential
strategies, it does not prioritize one dimension over another, thus avoiding information loss.
Additionally, the parallel strategy improves the model’s fault tolerance to feature selection
errors, as it does not need to pre-determine which dimension is more important but treats
them equally and processes them concurrently. Although parallel processing may increase
computational complexity, the performance gains from better information integration can
offset the additional computational costs.

4.4.2. ABLATION STUDY ON DISCRIMINATOR

We also conducted ablation experiments related to the discriminator on the RELI11D
dataset. Table 4 presents the results. The results indicate that the discriminator archi-
tecture significantly enhances the prediction performance of our overall network. We believe
this improvement is due to the discriminator learning a vast amount of human pose priors,
thereby constraining the generated human poses to be closer to real human poses. Ad-
ditionally, the GRU temporal encoding block within the discriminator helps constrain the
human poses over time, preventing large abrupt changes between adjacent frames and thus
smoothing the prediction results.

5. Conclusion

We propose FineTemporalPose (FTP), which employs an attention mechanism to model
fine-grained feature relationships and dynamic temporal connections between point clouds
and images, enabling neural networks to utilize diverse information more efficiently. How-
ever, our approach does not take into account the interaction between human subjects and
the surrounding environment, which is a limitation to be addressed in future work. This
represents a meaningful direction for further research and improvement.
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