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Abstract

We study the problem of planning under model uncertainty in an online meta-reinforcement
learning (RL) setting where an agent is presented with a sequence of related tasks with
limited interactions per task. The agent can use its experience in each task and across
tasks to estimate both the transition model and the distribution over tasks. We propose an
algorithm to meta-learn the underlying relatedness across tasks, utilize it to plan in each
task, and upper-bound the regret of the planning loss. Our bound suggests that the average
regret over tasks decreases as the number of tasks increases and as the tasks are more similar.
In the classical single-task setting, it is known that the planning horizon should depend on
the estimated model’s accuracy, that is, on the number of samples within task. We generalize
this finding to meta-RL and study this dependence of planning horizons on the number of
tasks. Based on our theoretical findings, we derive heuristics for selecting slowly increasing
discount factors, and we validate its significance empirically.

1 Introduction

Meta-learning (Caruana, 1997; Baxter, 2000; Thrun & Pratt, 1998; Finn et al., 2017; Denevi et al., 2018)
offers a powerful paradigm to leverage past experience to reduce the sample complexity of learning future
related tasks. Online meta-learning considers a sequential setting, where the agent progressively accumulates
knowledge and uses past experience to learn good priors and to quickly adapt within each task Finn et al.
(2019); Denevi et al. (2019). Robots acting in real world for instance need to be responsive to and robust
against perturbation inherent in the environment dynamics and their decision making. When the tasks share
a structure i.e. have similar transition dynamics and are related, such approaches enable progressively faster
convergence, or equivalently better model accuracy with better sample complexity (Schmidhuber & Huber,
1991; Thrun & Pratt, 1998; Baxter, 2000; Finn et al., 2017; Balcan et al., 2019).

In model-based reinforcement learning (RL), the agent uses an estimated model of the environment to plan
actions ahead towards the goal of maximizing rewards. A key component in the agent’s decision making is
the horizon used during planning. In general, an evaluation horizon is imposed by the task itself, but the
learner may want to use a different and potentially shorter guidance horizon. In the discounted setting, the
size of the evaluation horizon is of order (1− γeval)−1, for some discount factor γeval ∈ (0, 1), and the agent
may use γ 6= γeval for planning. For instance, a classic result known as Blackwell Optimality (Blackwell,
1962) states there exists a discount factor γ? and a corresponding optimal policy such that the policy is also
optimal for any greater discount factor γ ≥ γ?. Thus, an agent that plans with γ = γ? will be optimal for
any γeval > γ?. In the Arcade Learning Environment (Bellemare et al., 2013) a discount factor of γeval = 1 is
used for evaluation, but typically a smaller γ is used for training (Mnih et al., 2015). Using a smaller discount
factor acts as a regularizer (Amit et al., 2020; Petrik & Scherrer, 2008; Van Seijen et al., 2009; François-Lavet
et al., 2019; Arumugam et al., 2018) and reduces planner over-fitting in random MDPs (Arumugam et al.,
2018). Indeed, the choice of planning horizon plays a significant role in computation (Kearns et al., 2002),
optimality (Kocsis & Szepesvári, 2006), and on the complexity of the policy class (Jiang et al., 2015). In
addition, meta-learning discount factors has led to significant improvements in performance (Xu et al., 2018;
Zahavy et al., 2020; Flennerhag et al., 2021; 2022; Luketina et al., 2022).
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Figure 1: Effective Planning Horizons in Meta-Reinforcement Learning. The agent faces a sequence
of tasks with transition vector (P t)t∈[T ] (probability vectors represented by blue dots) all close to each other
(σ < Σ = 1). The agent builds a transition model for each task and plans with these inaccurate models. By
using data from previous tasks, the agent meta-learns an initialization of the model (P̂ o,t), which leads to
better planning in new related but unseen tasks. We show an improved average regret upper bound that
scales with task-similarity parameter σ and inversely with the number of tasks T : as knowledge accumulates,
uncertainty diminishes, and the agent can plan with longer horizons. All tasks P t ∼ P are centered at some
fixed but unknown P o, depicted here by the shaded red dot and pointed by the arrow.

When doing model-based RL with a learned model, the optimal guidance planning horizon, called effective
horizon by Jiang et al. (2015), depends on the accuracy of the model, and so on the amount of data used to
estimate it. Jiang et al. (2015) show that when data is scarce, a guidance discount factor γ < γeval should be
preferred for planning. The reason for this is straightforward; if the model used for planning is inaccurate,
then errors will tend to accumulate along the planned trajectory. A shorter effective planning horizon will
accumulate less error and may lead to better performance, even when judged using the true γeval. While
that work treated only the batch, single-task setting, the question of effective planning horizon remains open
in the online meta-learning setting where the agent accumulates knowledge from many tasks, with limited
interactions within each task.

In this work, we consider a meta-reinforcement-learning problem made of a sequence of related tasks. We
leverage this structural task similarity to obtain model estimators with faster convergence as more tasks are
seen. The central question of our work is:

Can we meta-learn the model across tasks and adapt the effective planning horizon accordingly?

We take inspiration from the Average Regret-Upper-Bound Analysis [ARUBA] framework (Khodak et al., 2019)
to generalize planning loss bounds to the meta-RL setting. A high-level, intuitive outline of our approach is
presented in Fig. 1. Our main contributions are as follows:

• We formalize planning in a model-based meta-RL setting as an average planning loss minimization
problem, and we propose an algorithm to solve it.

• Under a structural task-similarity assumption, we prove a novel high-probability task-averaged regret
upper-bound on the planning loss of our algorithm, inspired by ARUBA. We also demonstrate a
way to learn the task-similarity parameter σ on-the-fly. To the best of our knowledge, this is a first
formal (ARUBA-style) analysis to show that meta-RL can be more efficient than RL.

• Our theoretical result highlights a new dependence of the planning horizon on the size of the within-
task data m and on the number of tasks T . This observation allows us to propose two heuristics to
adapt the planning horizon given the overall sample-size.

2 Preliminaries

Reinforcement Learning. We consider tabular Markov Decision Processes (MDPs)M = 〈S,A, R, P, γeval〉,
where S is a finite set of states, A is a finite set of actions and we denote the set cardinalities as S = |S| and
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A = |A|. For each state s ∈ S, and for each available action a ∈ A, the probability vector P (· | s, a) defines a
transition model over the state space and is a probability distribution in a set of feasible models DP ⊂ ∆S ,
where ∆S the probability simplex of dimension S − 1. We denote Σ ≤ 1 the diameter of DP . A policy is a
function π : S → A and it characterizes the agent’s behavior.

We consider the bounded reward setting, i.e., R ∈ [0, Rmax] and without loss of generality we set Rmax = 1
(unless stated otherwise). Given an MDP, or task, M , for any policy π, let V πM,γ ∈ RS be the value
function when evaluated in MDP M with discount factor γ ∈ (0, 1) (potentially different from γeval);
defined as V πM,γ(s) = E

∑∞
t=0 (γtRst | s0 = s). The goal of the agent is to find an optimal policy, π?M,γ =

arg maxπ Es∼ρV
π
M,γ(s) where ρ > 0 is any positive measure, denoted π? when there is no ambiguity. For given

state and action spaces and reward function (S,A, R), we denote Πγ the set of potentially optimal policies for
discount factor γ: Πγ = {π | ∃P s.t. π = π?M,γ where M = 〈S,A, R, P, γ〉}. We use Big-O notation, O(·) and
Õ(·), to hide respectively universal constants and poly-logarithmic terms in T, S,A and δ > 0 (the confidence
level).

Model-based Reinforcement Learning. In practice, the true model of the world is unknown and must
be estimated from data. One approach to approximately solve the optimization problem above is to construct
a model, 〈R̂, P̂ 〉 from data, then find π?

M̂,γ
for the corresponding MDP M̂ = 〈S,A, R̂, P̂ , γ〉. This approach is

called model-based RL or certainty-equivalence (CE) control.

Planning with inaccurate models. In this setting, Jiang et al. (2015) define the planning loss as the gap
in expected return in MDP M when using γ ≤ γeval and the optimal policy for an approximate model M̂ :

L(M̂, γ |M,γeval) = ‖V π
?
M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval
‖∞.

Thus, the optimal effective planning horizon (1−γ?)−1 is defined using the discount factor that minimizes
the planning loss, i.e., γ? := min0≤γ≤γeval L(M̂, γ |M,γeval).
Theorem 1. (Jiang et al. (2015)) Let M be an MDP with non-negative bounded rewards and evaluation
discount factor γeval. Let M̂ be the approximate MDP comprising the true reward function of M and the
approximate transition model P̂ , estimated from m > 0 samples for each state-action pair. Then, with
probability at least 1− δ,∣∣∣∣∣∣V π?M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval

∣∣∣∣∣∣
∞
≤ γeval − γ

(1− γeval)(1− γ) + 2γRmax

(1− γ)2

(√
Σ

2m log 2SA|Πγ |
δ

)
(1)

where Σ is upper-bounded by 1 as P, P̂ ∈ ∆S.

 m = 5  m = 10  m = 20  m = 50

Figure 2: On the role of incorporating a ground truth prior of transition model on planning
horizon. The planning loss is a function of the discount factor γ and is impacted by incorporating prior
knowledge. The learner has m = 5, 10, 20, 50 samples per task to estimate the model, corresponding to the
curves in each sub figure. Inspecting any of the sub figures, we observe that larger values of m lead to lower
planning loss and a larger effective discount factor. Besides, inspecting one value of m across tasks (e.g.,
m = 5 ), we see that the same effect (lower planning loss and larger effective discount) occurs when the
learner puts more weight on the ground truth prior through α.
This result holds for a count-based model estimator (i.e, empirical average of observed transitions) given
by a generator model for each pair (s, a). It gives an upper-bound on the planning loss as a function of the
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guidance discount factor γ < 1. The result decomposes the loss into two terms: the constant bias which
decreases as γ tends to γeval, and the variance (or uncertainty) term which increases with γ but decreases as
1/
√
m. As m→∞ that second factor vanishes, but in the low-sample regime the optimal effective planning

horizon should trade-off both terms.

Illustration. These effects are illustrated in Fig. 2 on a simple 10-state, 2-action random MDP. The leftmost
plot uses the simple count-based model estimator and reproduces the results from Jiang et al. (2015). We
then incorporate the true prior (mean model P o as in Fig 1 and defined above Eq. 3 in Assumption 1) in the
estimator with a growing mixing factor α ∈ (0, 1): P̂ (m) = αP o + (1− α)

∑i
Xi

m . We observe that increasing
the weight α ∈ (0, 1) on good prior knowledge enables longer planning horizons and lower planning loss.

Online Meta-Learning and Regret. We consider an online meta-RL problem where an agent is presented
with a sequence of tasks M1,M2, ...,MT , where for each t ∈ [T ],Mt = 〈S,A, P t, R, γeval〉, that is, the MDPs
only differ from each other by the transition matrix (dynamics model) P t. The learner must sequentially
estimate the model P̂ t for each task t from a batch of m transitions simulated for each state-action pair1.

Its goal is to minimize the average planning loss also expressed in the form of task averaged regret suffered in
planning and defined as

L̄(M̂1:T , γ|M1:T , γeval) = 1
T

T∑
t=1
L(M̂t, γ|Mt, γeval) = 1

T

T∑
t=1
‖V π

?
Mt,γeval

Mt,γeval
− V

π?
M̂t,γ

Mt,γeval
‖∞ (2)

Note that the reference MDP for each term is the true Mt, and the discount factor γ is the same in all tasks.
One can see this objective as a stochastic dynamic regret: at each task t ∈ [T ], the learner competes against
the optimal policy for the current true model, as opposed to competing against the best fixed policy in
hindsight used in classical definitions of regret.

Note that our dynamic regret is different from the one considered in ARUBA (Khodak et al.,
2019). They consider the fully online setting where the data is observed as an arbitrary stream within each
task, and each comparator is simply the minimum of the within-task loss in hindsight. In our model, however,
given access to a simulator (See Sec. 2) allows us to get i.i.d transition samples as a batch at the beginning of
each task, and consequently we define our regret with respect to the true generating parameter. One key
consequence of this difference is that their regret bounds cannot be directly applied to our setting, and we
prove new results further below.

3 Planning with Online Meta-Reinforcement Learning

We here formalize planning in a model-based meta-RL setting. We start by specifying all our assumptions in
Sec 3.1 including our main assumption about task relatedness in Sec. 1, present our approach and explain the
proposed algorithms POMRL and ada-POMRL in Sec. 3.2. Our main result is a high-probability upper bound on
the average planning loss under the assumed task relatedness, presented as Theorem 2.

3.1 Assumptions

In many real world scenarios such as robotics, it is required to be responsive to changes in the environment
and, at the same time, to be robust against perturbation inherent in the environment and their decision
making. In such practical scenarios, the key reason to employ meta-learning is for the learner to leverage
task-similarity (or task variance) across tasks. Bounded task similarity is becoming a core assumption in
the analysis of recent meta learning (Khodak et al., 2019) and multi-task (Cesa-Bianchi et al., 2021) online
learning algorithms.
Assumption 1 (Structural Assumption Across Tasks: Task Relatedness). In this work, we exploit the
structural assumption that for all t ∈ [T ], P t ∼ P centered at some fixed but unknown P o ∈ ∆S×A

S and such
that for any (s, a),

‖P ts,a − P os,a‖∞ ≤ σ = max
(s,a)

σ(s, a) a.s. (3)
1So a total of mSA samples.
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This also implies that maxt,t′ ‖P ts,a − P t
′

s,a‖∞ ≤ 2σ, and that the meta-distribution P is bounded within a
small subset of the simplex. It is immediate to extend our results under a high-probability assumption instead
of the almost sure statement above. In our experiments, we will use Gaussian or Dirichlet priors over the
simplex, whose moments are bounded with high-probability, not almost surely. Importantly, we will say that
a multi-task environment is strongly structured when σ < Σ, i.e. when the effective diameter of the models is
smaller than that of the entire feasible space.
Assumption 2 (Access to a Simulator). We assume that for each task t ∈ [T ] we have access to a simulator
of transitions (Kearns et al., 2002) providing m i.i.d. samples (Xt,i

s,a)i=1..m ∈ Sm ∼ P t(·|s, a) (categorical
distribution).

Next, for simplicity we assume throughout that the rewards are known and focus on learning and planning
with an approximate dynamics model. Additionally estimating the reward is a straightforward extension of
our analysis and would not change the implications of our main result.
Assumption 3 (Known Rewards). Given a distribution of tasks, we assume that the rewards are known.

3.2 Our Approach

With access to a simulator (Assumption 2); for each (s, a), we can compute an empirical estimator for
each s′ ∈ [S]: P̄ ts,a(s′) =

∑m
i=1 1{Xt,i

s,a = s′}/m, with naturally
∑
s′ P̄

t
s,a(s′) = 1. We perform meta-RL via

alternating minimizing a batch within-task regularized least-squares loss, and an outer-loop step where we
optimize the regularization to optimally balance bias and variance of the next estimator.

Estimating dynamics model via regularized least squares. We adapt the standard technique of
meta-learned regularizer (see e.g. Baxter (2000); Cella et al. (2020) for supervised learning and bandit
respectively) to this model estimation problem. At each round t, the current model P̂ t(s,a) is estimated
by minimizing a regularized least square loss: for a given regularizer ht (to be specified below)2 and
parameter λt > 0 for each (s, a) ∈ S ×A we solve

P̂ t(s,a) = arg min
P(s,a)∈∆S

∥∥∥ 1
m

m∑
i=1

1{Xt,i
s,a}︸ ︷︷ ︸

empirical transition prob.

−P(s,a)

∥∥∥2

2
+ λt‖P(s,a) − ht‖22, (4)

where we use 1{Xt,i
s,a} to denote the one-hot encoding of the state into a vector in RS . Importantly, ht and

λt are meta-learned in the outer-loop (see below) and affect the bias and variance of the resulting estimator.
The solution of equation 4 can be computed in closed form as a convex combination of the empirical average
(count-based) and the prior: P̂ t = αtht + (1− αt)P̄ t where αt = λt

1+λt is the current mixing parameter.

Outer-loop: Meta-learning the regularization. At the beginning of task 1 < t ≤ T , the learner has
already observed t− 1 related but different tasks. We define ht as an average of Means (AoM):

ht(s,a) ← P̂ o,t(s,a) = 1
t− 1

t−1∑
j=1

∑m
i=1 1{X

j,i
(s,a)}

m
:= 1

t− 1

t−1∑
j=1

P̄ j(s,a). (5)

Deriving the mixing rate. To set αt, we compute the Mean Squared Error (MSE) of P̂ t(s,a), and minimize
an upper bound (see details in Appendix B): MSE(P̂ t(s,a)) ≤ α2

tσ
2(1 + 1

t ) + (1 − αt)2 1
m , which leads to

αt = 1
σ2(1+1/t)m+1 .

Algorithm 1 depicts the complete pseudo code. We note here that POMRL (σ) assumes, for now, that the
underlying task-similarity parameter σ is known, and we discuss a fully empirical extension further below
(See Sec. 4). The learner does not know the number of tasks a priori and tasks are faced sequentially online.

2In principle, this loss is well defined for any regularizer ht but we specify a meta-learned one and prove that it induces good
performance.
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The learner performs meta-RL alternating between within-task estimation of the dynamics model P̂ t via a
batch of m samples for that task, and an outer loop step to meta-update the regularizer P̂ o,t+1 alongside the
mixing rate αt+1. For each task, we use a γ-Selection-Procedure to choose planning horizon γ∗ ≤ γeval.
We defer the details of this step to Sec. 6 as it is non-trivial and only a partial consequence of our theoretical
analysis. Next, the learner performs planning with an imperfect model P̂ t. For planning, we use dynamic
programming, in particular policy iteration (a combination of policy evaluation, and improvement), and value
iteration to obtain the optimal policy π?

P̂ t,γ∗
for the corresponding MDP M̂t.

Algorithm 1: POMRL (σ) – Planning with Online Meta-Reinforcement Learning
Input: Given task-similarity (σ(s, a)) a matrix of size S ×A. Initialize P̂ o,1 to uniform, α1 = 0.
for task t ∈ [T ] do

for tth batch of m samples do
P̂ t(m) = (1− αt) 1

m

∑m
i=1Xi + αtP̂

o,t // regularized least squares minimizer.
γ? ←− γ-Selection-Procedure(m,αt, σ, T, S,A)
π?
P̂ t,γ∗

← Planning(P̂ t(m)) //
Output: π?

P̂ t,γ∗

Update P̂ o,t+1, αt+1 = 1
σ2(1+1/t)m+1 // meta-update AoM (Eq. 5) and mixing rate

3.3 Average Regret Bound for Planning with Online-meta-learning

Our main theoretical result below controls the average regret of POMRL (σ), a version of Alg. 1 with additional
knowledge of the underlying task relatedness, i.e., the true σ > 0.
Theorem 2. Using the notation of Theorem 1, we bound the average planning loss equation 2 for POMRL (σ):

L̄ ≤ γeval − γ
(1− γeval)(1− γ) + 2γS

(1− γ)2 Õ

σ +
√

1
T

(
σ +

√
σ2 + Σ

m

)
σ2m+ 1 +

σ2m
√

Σ
m

σ2m+ 1

 (6)

with probability at least 1− δ, where σ2 < 1 is the measure of the task-similarity and σ = max(s,a) σ(s, a).

The proof of this result is provided in Appendix D and relies on a new concentration bound for the meta-
learned model estimator. The last term on the r.h.s. corresponds to the uncertainty on the dynamics.
First we verify that if T = 1 and m grows large, the second term dominates and is equivalent to Õ(

√
Σ
m )

(as σ2/(σ2m + 1) → 0), which is similar to that of Jiang et al. (2015) as there is no meta-learning, with
an additional O( 1

m ) but second order term due to the introduced bias. Then, if m is fixed and small, for
small enough values of σ2 (typically σ < 1/

√
m), the first term dominates and the r.h.s. boils down to

Õ
(

(σ + 1√
m

)/
√
T
)
. This highlights the interplay of our structural assumption parameter σ and the amount

of data m available at each round. The regimes of the bound for various similarity levels are explored
empirically in Sec. 5 (Q3). We also show the dependence of the regret upper bound on m and T for a fixed σ,
in Appendix Fig. F3.

Implications for degree of task-similarity i.e., σ values. Our bound suggests that the degree of
improvement you can get from meta learning scales with the task similarity σ instead of the set size Σ. Thus,
for σ ≤ Σ, performing meta learning with Algorithm 1 guarantees better learning measured via our improved
regret bound when there is underlying structure in the problem space which we formalize through Eq. 3.
Should σ be large, the techniques will still hold and our bounds will simply scale accordingly.

When σ = 0, all tasks are exactly the same. Indeed, the mixing rate αt ≈ 1 for all t, so our algorithm
boils down to returning the average of means P̂ o,t for each task, which simply corresponds to solving the
tasks as a continuous, uninterrupted stream of batches from the nearly same model that P̂ o,t aggregates.
Unsurprisingly, our bound recovers that of (Jiang et al., 2015, Theorem 1): the bound below reflects that we
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have to estimate only one model in a space of “size” Σ with mT samples.

L̄ ≤ γeval − γ
(1− γeval)(1− γ) + 2γS

(1− γ)2 Õ

(√
Σ
mT

)
(7)

When σ = 1, then σ = Σ = 1, then the meta-learning assumption is not relevant but our bound
remains valid and gracefully degrades to reflect it. We need to estimate T models each with m
samples. Then the second term 1√

m
reflects the usual estimation error for each task while the first term is an

added bias (second order in 1
m ) due to our regularization to our mean prior P o that is not relevant here.

L̄ ≤ γeval − γ
(1− γeval)(1− γ) + 2γS

(1− γ)2 Õ
( 1
m

(
1 + 1√

T
(1 +

√
1 + 1

m
)
)

+ 1√
m

)
(8)

Connections to ARUBA. As explained earlier, our metric is not directly comparable to that of
ARUBA (Khodak et al., 2019) but it is interesting to make a parallel with the high-probability aver-
age regret bounds proved in their Theorem 5.1. They also obtain an upper bound in Õ(1/

√
m+ 1/

√
mT ) if

one upper bounds their average within-task regret Ū ≤ B
√
m.

Remark 1 (Role of the task similarity σ in Eq. 2). When σ > 0, POMRL naturally integrates each new data
batch into the model estimation. The knowledge of σ is necessary to obtain this exact and intuitive update
rule, and our theory only covers POMRL equipped with this prior knowledge, but we discuss how to learn and
plug-in σ̂t in practice. Note that it would be possible to extend our result to allow for using the empirical
variance estimator with tools like the Bernstein inequality, but we believe this it out of the scope of this work
as it would essentially give a similar bound as obtained in Theorem 2 with an additional lower order term in
O(1/T ), and it would not provide much further intuition on the meta-planning problem we study.

4 Practical Considerations: Adaption On-The-Fly
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Figure 3: ada-POMRL enables
meta-learning the task-similarity
on-the-fly with a performance gap
for the initial set of tasks as com-
pared to the oracle POMRL , but
improves with more tasks

In this section we propose a variant of POMRL that meta learns the task
similarity parameter, which we call ada-POMRL . We compare the two
algorithms empirically in a 10 state, 2 action MDP with closely related
tasks with a total of T = 15 tasks (details of the experiment setup are
deferred to Sec. 5).

Performance of POMRL . Recall that POMRL is primarily learning the
regularizer and assumes the knowledge of the underlying task similarity
(i.e. σ). We observe in Fig. 3 that with each round t ∈ T POMRL is able to
plan better as it learns and adapts the regularizer to the incoming tasks.
The convergence rate and final performance corroborates with our theory.

Can we also meta-learn the task-similarity parameter? In practice,
the parameter σ may not be known and must be estimated online and
plugged in (see Appendix C for details). Alg. 2 ada-POMRL uses Welford’s
algorithm to compute an online estimate of the variance after every task using the model estimators, and
simply plugs-in this estimate wherever POMRL was using the true value. From the perspective of ada-POMRL ,
POMRL is an "oracle", i.e. the underlying task-similarity is known. However, in most practical scenarios, the
learner does not have this information a priori. We compare empirically POMRL and ada-POMRL on a strongly
structured problem (σ ≈ 0.01) in Fig. 3 and observe that meta-learning the underlying task relatedness allows
ada-POMRL to adapt to the incoming tasks accordingly. Adaptation on-the-fly with ada-POMRL comes at a
cost i.e., the performance gap in comparison to POMRL but eventually converges albeit with a slower rate.
This is intuitive and a similar theoretical guarantee applies (See Remark 1).

This online estimation of σ means that ada-POMRL now requires an initial value for σ̂1, which is a choice left
to the practitioner, but will only affect the results of a finite number of tasks at the beginning. Using σ̂1 too
small will give a slightly increased weight to the prior in initial tasks, which is not desirable as the latter is
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not yet learned and will result in an increased bias. On the other hand, setting σ̂1 too large (i.e close to 1/2)
will decrease the weight of the prior and increase the variance of the returned solution; in particular, in cases
where the true σ is small, a large initialization will slow down convergence and we observe empirical larger
gaps between POMRL and ada-POMRL . In the extreme case where σ ≈ 0, a large initialization will drastically
slow down ada-POMRL as it will take many tasks before it discovers that the optimal behavior is essentially to
aggregate the batches.

Algorithm 2: ada-POMRL – Planning with Online Meta-Reinforcement Learning
Input: Initialize P̂ o,1 to uniform, (σ̂)1 as a matrix of size S ×A,α1 = 0.
for task t ∈ [T ] do

for tth batch of m samples do
P̂ t(m) = (1− αt) 1

m

∑m
i=1Xi + αtP̂

o,t // regularized least squares minimizer.
γ? ←− γ-Selection-Procedure(m,αt, σt, T, S,A)
π?
P̂ t,γ?

← Planning(P̂ t(m))
Output: π?

P̂ t,γ?

Update P̂ o,t+1, σ̂t+1 ←− Welford’s online algorithm
(

(σ̂o)t, P̂ o,t+1, P̂ o,t
)

// meta-update AoM
(Eq. 5) and task-similarity parameter.
Update αt+1 = 1

σ̂t+12(1+1/t)m+1 // meta-update mixing rate, plug max(σS×A)

Tasks vary only in certain states and actions. Thus far, we considered a uniform notion of task
similarity as Eq. 3 holds for any (s, a). However, in many practical settings the transition distribution might
remains the same for most part of the state space but only vary on some states across different tasks. These
scenarios are hard to analyse in general because local changes in the model parameters do not always imply
changes in the optimal value function nor necessarily modify the optimal policy. Our Theorem 2 still remains
valid, but it may not be tight when the meta-distribution has non-uniform noise levels. More precisely
Theorem 1 in Appendix D remains locally valid for each (s, a) pair and one could easily replace the uniform
σ with local σ(s,a), but this cannot directly imply a stronger bound on the average planning loss. Indeed, in
our experiments, in both POMRL and ada-POMRL , the parameter σ and σ̂ respectively, are S ×A matrices of
state-action dependent variances resulting in state-action dependent mixing rate αt.

5 Experiments

We now study the empirical behavior of planning with online meta-learning in order to answer the following
questions: Q1.Does meta-learning a good initialization of the dynamics model facilitate improved planning
accuracy for the choice of γ = γeval? (Sec. 5.1) Q2.Does meta-learning a good initialization of the dynamics
model enables longer planning horizons? (Sec. 5.2) Q3.How does performance depend on the amount of
shared structure across tasks i.e., σ? (Sec. 5.3) Source code is provided in the supplementary material.

Setting: For each experiment, we fix a mean model P o ∈ ∆S×A
S (see below how), and for each new task

t ∈ [T ], we sample P t from a Dirichlet distribution3 centered at P o. As prescribed by theory (see Sec.3.2),
we set4 σ ≈ 0.01 . 1/S

√
m unless otherwise specified (see Q3). Note that σ and σ̂ respectively, are S ×A

matrices of state-action dependent variances that capture the directional variance as we used Dirichlet
distributions as priors and these have non-uniform variance levels in the simplex, depending on how close
to the simplex boundary the mean is located. Aligned with our theory, we use the max of the σ matrices
resulting in the aforementioned single scalar value. As in Jiang et al. (2015), P o (and each P t) characterizes
a random chain MDP with S = 10 states5 and A = 2 actions, which is drawn such that, for each state–action
pair, the transition function P (s, a, s′) is constructed by choosing randomly k = 5 states whose probability is

3The variance of this distribution is controlled by its coefficient parameters α1:S : the larger they are, the smaller is the variance.
More details on our choices are given in Appendix F.1. Dirichlet distributions with small variance satisfy the high-probability
version of our structural assumption 3 for σ = maxi σi

4Our priors are multivariate Dirichlet distribution in dimension S so we divide the theoretical rate by S to ensure the max
bounded by 1/

√
m. See App. F for implementation details.

5We provide additional experiments with varying size of the state space in Appendix Fig. F5.
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set to 0. Then we draw the value of the S − k remaining states uniformly in [0, 1] and normalize the resulting
vector.

5.1 Meta-reinforcement learning leads to improved planning accuracy for [γeval]. [Q1.]

We consider the aforementioned problem setting with a total of T = 15 closely related tasks and focus on the
planning loss gains due to improved model accuracy. We fix γ = γeval, a rather naive γ-Selection-Procedure
and show the planning loss of POMRL (Alg. 1) with the following baselines: 1) Oracle Prior Knowledge
knows a priori the underlying task structure (P o, σ) and uses an estimator (Eq. 4) with exact regularizer
P o and optimal mixing rate αt = 1

σ2(1+1/t)m+1 , 2) Without Meta-Learning simply uses P̂ t = P̄ t, the
count-based estimated model using the m samples seen in each task, 3) POMRL (Alg. 1) meta-learns the
regularizer but knows apriori the underlying task structure, and 4) ada-POMRL (Alg. 2) meta-learns not only
the regularizer, but also the underlying task-similarity online. The oracle is a strong baseline that provides
a minimally inaccurate model and should play the role of an "empirical lower bound". For all baselines,
the number of samples per task m = 5. Results are averaged over 100 independent runs. Besides, we also
propose and empirically validate competitive heuristics for γ-Selection-Procedure in Sec. 6. Besides, we
also run another baseline called Aggregating(α = 1), that simply ignores the meta-RL structure and just
plans assuming there is a single task (See Appendix F.2).

Inspecting Fig. 4(a), we can see that our approach ada-POMRL (green) results in decreasing per-task
planning loss as more tasks are seen, and decreasing variance as the estimated model gets more stable and
approaches the optimal value returned by the oracle prior knowledge baseline (blue). On the contrary, without
meta-learning (red), the agent struggles to cope as it faces new tasks every round, and its performance does not
improve. ada-POMRL gradually improves as more tasks are seen whilst adaptation to learned task-similarity
on-the-fly which is the primary cause of the performance gap in ada-POMRL and POMRL . Importantly, no
prior knowledge about the underlying task relatedness enables a more practical algorithm with the same
theoretical guarantees (See Sec. 4). Recall that oracle prior knowledge is a strong baseline as it corresponds
to both known task relatedness and regularizer.
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Figure 4: Planning with Online Meta-Learning. (a) Per-task planning loss of our algorithms
POMRL and ada-POMRL compared to an Oracle, and Without Meta-learning baselines. All methods use a fixed
γ = γeval = 0.99. (b) ada-POMRL ’s planning loss decreases as more tasks are seen. Markers denote the
γ that minimizes the planning loss in respective tasks. Error bars show standard error. (c) ada-POMRL ’s
empirically optimal guidance discount factor (right y axis) depicts the effective planning horizon, i.e.,
one that minimizes the planning loss. Optimal γ aka the effective planning horizon is larger with online
meta-learning. Planning loss (left y axis) shows the minimum planning loss achieved by the agent in that
round T . Results are averaged over 100 independent runs and error bars represent 1-standard deviation.

5.2 Meta-learning the underlying task relatedness enables longer planning horizons. [Q2.]

We run ada-POMRL for T = 15 (with σ ≈ 0.01) as above and report planning losses for a range of values of
guidance γ factors. Results are averaged over 100 independent runs and displayed on Fig. 4(b). We observe
in Fig. 4(b) when the agent has seen fewer tasks T , an intermediate value of the discount is optimal, i.e., one
that minimizes the task-averaged planning loss (γ? < 0.5). In the presence of strong underlying structure
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across tasks, as the agent sees more tasks, the effective planning horizon (γ? > 0.7) shifts to a
larger value - one that is closer to the gamma used for evaluation (γeval = 0.99).

As we incorporate the knowledge of the underlying task distribution, i.e., meta-learned initialization of
the dynamics model, we note that the adaptive mixing rate αt puts increasing amounts of weight on the
shared task-knowledge. Note that this conforms to the effect of increasing weight on the model initialization
that we observed in Fig. 2. As predicted by theory, the per-task planning loss decreases as T grows and
is minimized for progressively larger values of γ, meaning for longer planning horizons (See Fig. 4(c)). In
addition, Appendix Fig. F4 depicts the effective planning horizon individually for ada-POMRL , Oracle and
without meta learning baselines.
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Figure 5: POMRL and ada-POMRL are robust to varying task-similarity σ for a small fixed amount of
data m = 5 available at each round t ∈ T . A small value of σ reflects the fact that tasks are closely related to
each other and share a good amount of structure whereas a much larger value indicates loosely related tasks
(simplex plots illustrate the meta-distribution in dimension 2). In the former case, meta-learning the shared
structure alongside a good model initialization leads to most gains. In the latter, the learner struggles to cope
with new unseen tasks which differ significantly. Error bars represent 1-standard deviation of uncertainty
across 100 independent runs.

5.3 POMRL and ada-POMRL perform consistently well for varying task-similarity. [Q3.]

We have thus far studied scenarios where the learner can exploit strong task relatedness, i.e., σ ≈ 0.01 <
1/(S

√
m) (for low data per task i.e., m = 5) is small and we now illustrate the other regimes discussed in

Section 3.2. We show that our algorithms remain consistently good for all amounts of task-similarity.

We let σ vary to cover the three regimes: σ ≈ 0.01 corresponding to fast convergence, σ = 0.025 is in the
intermediate regime (needs longer T ), and σ = 0.047 is the loosely structured case where we don’t expect
much meta-learning to help improve model accuracy. The small inset figures in Fig. 5 represent the task
distribution in the simplex. In all cases, ada-POMRL estimates σ online and we report the planning losses for
a range of γ’s. Inspecting Fig. 5, we observe that while in the presence of closely related tasks (Fig. 5(a))
all methods perform well (except without meta-learning). As the underlying task relatedness decreases (for
intermediate regime in Fig. 5(b)), both POMRL and ada-POMRL remain consistent in their performance as
compared to the Oracle Prior Knowledge baseline. When the underlying tasks are loosely related (as in
Fig. 5(c)), ada-POMRL and POMRL can still perform well in comparison to other baselines.

Next, we report and discuss the planning loss plot for ada-POMRL for the three cases are shown in Figures 5(d),
5(e), and 5(f) respectively. An intermediate value of task-similarity (Fig. 5(e)) still leads to gains, albeit at a
lower speed of convergence. In contrast, a large value of σ = 0.047 indicates little relatedness across tasks
resulting in minimal gains from meta-learning here as seen in Fig. 5(f). The learner struggles to learn a good

10



Under review as submission to TMLR

initialization of the model dynamics as there is no natural one. All planning loss curves remain U-shaped and
overall higher with an intermediate optimal guidance γ value ( 0.5). However, ada-POMRL does not do worse
overall than the initial run T = 1, meaning that while there is not a significant improvement, our method
does not hurt performance in loosely related tasks6. Recall that ada-POMRL has no apriori knowledge of the
number of tasks (T ), or the underlying task relatedness (σ) i.e., adaptation is on-the-fly.

6 Adaptation of Planning Horizon γ

We now propose and empirically validate two heuristics to design an adaptive schedule for γ based on existing
work (Sec. 6.1) and on our average regret upper bound (Sec. 6.2).

6.1 Schedule adapted from Dong et al. (2021) [γ = f(m,αt, σt, T )]

Dong et al. (2021) study a continuous, never-ending RL setting. They divide the time into growing phases
(Tt)t≥0, and tune a discount factor γt = 1− 1/T 1/5

t . We adapt their schedule to our problem, where the time
is already naturally divided into tasks: for each t ≥ 0, we define the phase size Tt and the corresponding γt as

T0 = m, Tt = SA

L

(
(1− αt)m+ αtm(t− 1)︸ ︷︷ ︸

efficient sample size

)
, γt = 1− 1

T
1/5
t

,

where L is the maximum trajectory length. The size of each Tt, t ≥ 1, is controlled by an "efficient sample
size" which includes a combination of the current task’s samples and of the samples observed so far, as used
to construct our estimator in POMRL .

6.2 Using the upper bound to guide the schedule [γ = min{1, γ0 + γ̃}]

Having a second look at Theorem 2, we see that the r.h.s. is a function of γ of the form

U : γ 7→ 1
1− γeval

+ 1
γ − 1 + Cm,T,S,A,σ,δ

γ

(1− γ)2 ,

where the first term is positive and monotonically decreasing on (0, γeval) and the second term is positive and
monotonically increasing on (0, 1). We simplify and scale this constant, keeping only problem-related terms:
Ct = ( 1√

t
(σ + 1√

m
)/(σ2m + 1) + σ2m 1√

m
/(σ2m + 1), which is of the order of the constant in equation 6.

Optimizing γ by using the function U with constant C does not lead to a principled analytical value strictly
speaking because U is derived from an upper bound that may be loose and may not reflect the true shape
of the loss w.r.t. γ, but we may use the resulting growth schedule to guide our choices online. In general,
the existence of a strict minimum for U in (0, 1) is not always guaranteed: depending on the values of
C ≈ Cm,T,S,A,σ, the function may be monotonic and the minimum may be on the edges. We give explicit
ranges in the proposition below, proved in Appendix E.
Proposition 1. The existence of a strict minimum in (0, 1) is determined by C = Cm,T,S,A,σ,δ (which can
be computed) as follows:

γ̃ =


0 if C ≥ 1
1 if C < 1/2
1−C
1+C otherwise, i.e if 1/2 < C < 1

We use these values as a guide. Typically, when T = 1 and m is small, the multiplicative term C is large and
the bound is not really informative (concentration has not happened yet), and γ should be small, potentially
close to but not equal to zero. As a heuristic, we propose to simply offset γ̃ by an additional γ0 such that the
guidance discount factor is γ = min{1, γ0 + γ̃}, where γ0 should be reasonably chosen by the practitioner to
allow for some short-horizon planning at the beginning of the interaction. Empirically, γ0 =∈ (0.25, 0.50)
seems reasonable for our random MDP setting as it corresponds to the empirical minima on Fig 4(b).

6The theoretical bound may lead to think that the average planning loss is higher due to the introduced bias, but in practice
we do not observe that, which means our bound is pessimistic on the second order terms.
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Figure 6: Adapting the planning horizon during online meta-learning reduces planning loss. (a)
Planning with online-meta learning shows that all baselines outperform using a constant discount factor.
(b) Zoomed in plot of average planning loss over the progression of tasks T shows competitive performance
with the proposed schedule of γ = f(m,αt, σt, T ) beating best-fixed as more tasks are seen. The γ schedule
γ = min{1, γ0 + γ̃} using the upper bound as a guidance beats the best-fixed and is very competitive to the
dynamic-best baseline. (c) Using the upper bound to guide the schedule significantly outperforms γeval and
is shown for γ0 ∈ (0.25, 0.50). Error bars depict 1-standard error for 600 independent runs.

6.3 Empirical Validation

Next, we empirically test the proposed schedules for adaptation of discount factors. We consider the setup
described in Sec. 5 with 15 tasks in a 10-state, 2-action random MDP distribution of tasks with σ ≈ 0.01.
In Fig. 6, we plot the planning loss obtained by POMRL with our schedules, a fixed γeval and two strong
baselines: best fixed which considers the best fixed value of discount over all tasks estimated in hindsight and
dynamic best which considers the best choice if we had used the optimal γ? in each round as in Fig. 4(c). It
is important to note that dynamic best is a lower bound that we cannot outperform.

We observe in Fig. 6(a) that γeval results in a very high loss, potentially corresponding to trying to plan too far
ahead despite model uncertainty. Upon inspecting Fig. 6(b), we observe that the proposed γ = f(m,αt, σt, T )
obtains similar performance to best fixed and is within the significance range of the lower bound. Our second
heuristic, γ = min{1, γ0 + γ̃} obtains similarly good performance, as seen in Fig. 6(b). Fig. 6(c) shows the
effect of different values of γ0 in the prescribed range. These results provide evidence that it is possible to
adapt the planning horizon as a function of the problem’s structure (meta-learned task-similarity) and sample
sizes. Adapting the planning horizon online is an open problem and beyond the scope of our work.

7 Discussion and Future Work

We presented connections between planning with inaccurate models and online meta-learning via a high-
probability task-averaged regret upper-bound on the planning loss that primarily depends on task-similarity
σ as opposed to the entire search space Σ. Algorithmically, we demonstrate that the agent can use its
experience in each task and across tasks to estimate both the transition model and the distribution over
tasks. Meta-learning the underlying task similarity and a good initialization of transition model across tasks
enables longer planning horizons.

Beyond the tabular case: Function approximation is at the heart of practical RL so a natural question
is how to extend our work to parametrized models. For linear MDPs, Müller & Pacchiano (2022) recently
derived regret bounds in the fixed-horizon setting for an algorithm using meta-regularizers similar to ours.
One question is whether this idea could be extended to infinite horizons and further to non-linear, richer
representations. Another, and perhaps deeper question, is around designing and evaluating better planning
strategies. Should we revisit such line of work under the light of the planning loss rather than the regret? On-
or Off- Policy Meta-Learning without a simulator: Realistic problem settings in RL involve using
sequentially learnt policies to collect data instead of the simulator. One direction could be to extend our
approach to model-based RL algorithms via meta-gradient updates as in ARUBA or MAML, and seek regret
guarantees induced by our concentration results. Non-stationary meta-distribution: Many real-world
scenarios have (slow or sudden) drifts in the underlying distribution itself, e.g. weather. A promising future
direction is to consider non-stationary environments where the optimal initialization varies over time.
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