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Abstract—This paper focused on developing an effective
Multi-Agent Reinforcement Learning (MARL) approach that
quickly explores optimal control policies of multiple agents
through interactions with unknown environments. Multi-Agent
Continuous Dynamic Policy Gradient (MACDPP) was proposed
to tackle the issues of limited capability and sample efficiency
in the current MARL approaches. It alleviates the inconsistency
of multiple agents’ policy updates by introducing the relative
entropy regularization to the Centralized Training with Decen-
tralized Execution (CTDE) framework with the Actor-Critic (AC)
structure. Evaluated by multi-agent cooperation and competition
tasks and traditional control tasks including OpenAI benchmarks
and robot arm manipulation, MACDPP demonstrates its sig-
nificant superiority in learning capability and sample efficiency
compared with both related multi-agent and widely implemented
signal-agent baselines. It converges to 62% higher average return
and uses 38% fewer samples compared with the suboptimal
baseline over all tasks, indicating the potential of MARL in
challenging control scenarios, especially when the number of
interactions is limited. The open source code of MACDPP is
available at https://github.com/AdrienLin1l/MACDPP.

Note to Practitioners—Learning proper cooperation strategy
over multiple agents in complicated systems has been a chal-
lenge in the domain of Reinforcement Learning. Our work
extends the traditional MARL approach FKDPP that has been
successfully implemented in the real-world chemical plant by
Yokogawa to the CTDE framework and AC structure that
supports continuous actions. This extension significantly expands
its range of applications from cooperative/competitive tasks to
the joint control of one complex system while maintaining its
effectiveness.

Index Terms— Reinforcement learning, Multi-Agent Reinforce-
ment Learning (MARL), robot learning.
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I. INTRODUCTION

UIDED by task-related reward functions, Reinforce-

ment Learning (RL) provides an effective solution
to autonomously explore and gradually learn optimal or
near-optimal control strategies by iteratively interacting with
the environment in the absence of task-specific prior knowl-
edge [1], [2]. Utilizing the power of deep neural networks [3]
to adapt abstract features from high-dimensional input states,
RL has demonstrated superior performances than humans in
various complex scenarios including board games [4], video
games [5], and robot control [6]. Based on the successful
implementations of single-agent RL approaches, people natu-
rally attempt to develop Multi-Agent Reinforcement Learning
(MARL) to effectively explore optimal control policies of
large-scale systems. MARL has achieved promising results in
a wide range of tasks [7], [8], [9], [10], [11]. These results
reveal the potential of MARL in multiple unmanned systems
cooperative navigation and multi-target tracking tasks [12],
[13], [14], [15]. On the other hand, transferring RL from
single-agent environments to multi-agent environments raises
a new challenge: the environments affected by the joint actions
from multiple agents become non-stationary, and each agent
faces a moving-target problem while its optimal strategy
strongly depends on the frequently changing policies of other
agents. This characteristic not only breaks the Markov property
of the environment but also greatly compromises the learning
capability and convergence speed of traditional RL approaches
designed for single agent [16].

Compared with the approaches like Independent
Q-Learning (IQL) [17] that directly implemented single-agent
RL approaches in multi-agent scenarios to separately explore
independent polices [18], [19], MARL methods based on the
Centralized Training with Decentralized Execution (CTDE)
framework provides an appealing prospect for addressing the
issue of non-stationary [20]. It enables the multiple agents
to learn decentralized policies in a centralized end-to-end
fashion: all agents are accessible to the global information
during the training stage while the decision-making of
each agent is independent during the interaction with the
environment. From the perspective of the value function,
Value-Decomposition Networks (VDN) [21] decomposed
the value function for multiple agents under a CTDE
framework and achieved better cooperation behaviors in a
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simulation maze environment. QMIX [22] further proposed
a network-based mixture strategy for multiple agents’
value function based on VDN and enjoyed astonishing
results performances in StarCraft Multi-Agent Challenge
(SMAC) [23]. Based on the policy-based RL approaches,
Multi-Agent Proximal Policy Optimization (MAPPO) [24]
demonstrated better performances than traditional MARL
methods in both Multi-Agent Particle Environment (MPE)
and SMAC. Employing an Actor-Critic (AC) structure, Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [25]
combines the strengths of both value function-based and
policy-based approaches and has achieved good learning
performances in both cooperative and competitive tasks. Based
on this approach, Multi-Agent TD3 (MATD3) [26] tackled
the issue of overestimated value function with additional critic
networks. The minimax algorithm was further introduced by
MiniMax Multi-Agent Deep Deterministic Policy Gradient
(M3DDPG) [27] for enhanced learning capability in mixed
cooperative and competitive scenarios. Although CTDE-based
MARL approaches have improved the learning capability of
agents in terms of structure, the issue of inherent inconsistency
in policy updates among multiple agents and its negative
impact on learning performance has not been adequately
addressed from an algorithmic standpoint.

The relative entropy in RL was explored by [28] from
the perspective of policy while the early version of Proximal
Policy Optimization (PPO) [29] employed it as a constraint of
smooth policy update. By incorporating the relative entropy
between the current and previous policies as a regularization
term into the value function, Dynamic Policy Programming
(DPP) [30] effectively constrains excessive policy updates
in single-agent environments. Theoretically, DPP significantly
reduces the estimated error of the value function with supe-
rior error bounds [31], [32]. In engineering applications of
single-agent scenarios, DPP enjoyed a thorough exploration
in the local state-action space thanks to the policy update
constrained by the relative entropy, contributing to superior
sample efficiency and robustness in several robot control
tasks [33], [34]. As one of the pioneering works applying
relative entropy regularized RL to multi-agent scenarios, Fac-
torial Kernel Dynamic Policy Programming (FKDPP) [35] was
proposed to control large-scale chemical plants with multiple
agents. By constraining multiple agents’ policy updates by the
relative entropy, the behavior of each agent in FKDPP will not
drastically change in a short period, preserving the Markov
property. FKDPP outperformed the control strategy designed
by human experts in production rate, profit, and safety on
a simulated Vinyl Acetate Monomer (VAM) plant [36] and
has been successfully implemented in a real-world chemical
plant for 35 days.! Although this work fully indicates the
great potential of relative entropy regularized MARL in real-
world systems, FKDPP was developed based on neither deep
neural networks nor CTDE framework and was limited in
discrete action space without supporting the AC structure.

"This implementation of FKDPP was conducted by Yokogawa
Electric Corporation and JSR Corporation. For more details, please
see: https://www.yokogawa.com/news/press-releases/2022/2022-03-22/.
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TABLE I
COMPARISON OF MACDPP AND THE RELATED MARL BASELINES

Approach Relative Entropy | AC | CTDE | Cooperative & Competitive
IQL [17] X X X O
QMIX [22] X X X X
MAPPO [24] X X O X
MADDPG [25] X O O O
M3DDPG [27] x [@) @) @)
MATD?3 [26] X O O O
FKDPP [35], [36] O X X X
MACDPP (ours) O O O O

These characteristics restrict its application scope in more
challenging and flexible control scenarios.

This paper focuses on integrating the relative entropy regu-
larization to the modern MARL under the CTDE framework
in order to alleviate the inconsistency of multiple agents’
policy updates in various control scenarios. According to the
characteristics compared with MARL baselines in Table I,
our proposed approach, Multi-Agent Continuous Dynamic
Policy Gradient (MACDPP) can be seen as the first exten-
sion of DPP to both AC structure and CTDE framework.
It naturally extends the power of FKDPP from kernel-based
value function approximation and discrete action space to the
neural networks-based AC structure and CTDE framework
with not only the support of continuous action space but also
superior learning capability and sample efficiency. MACDPP
reduces the intractable computational burden of FKDPP in
the actor network with continuous actions by Monte Carlo
sampling and naturally obtains a superior exploration strat-
egy based on the Mellowmax softmax operator. Evaluated
by cooperative/competitive tasks in MPE environment and
traditional control tasks where multiple agents collaborate to
control one high-dimensional system, the proposed method
successfully demonstrated superiority in both learning capabil-
ity and sample-efficiency compared with various multi-agent
and signal-agent RL baselines, indicating the potential of
MACDPP not only in competing or cooperating in multi-agent
unmanned systems but also in jointly controlling large-scale
systems including chemical and power process control. The
contributions of this paper can be summarized as:

1) Our work first attempts to integrate relative entropy
regularization into the CTDE framework-based MARL
to address the inherent inconsistency of multiple agents’
policy updates from an algorithmic perspective. We pro-
pose a novel MARL approach that is compatible with
both cooperative and competitive tasks in a multi-agent
scenario, as well as large-scale systems collaboratively
controlled by multiple agents.

2) As one natural extension of previous work FKDPP [35],
[36] to the deep neural networks and the AC structure
with continuous action space, the proposed MACDPP
can be seen as a comprehensive upgrade of FKDPP with
enhanced learning capability and control flexibility in
jointly controlling large-scale systems.

3) The proposed method was evaluated by several bench-
marks from MPE to traditional control tasks in terms of
the learning capability and sample efficiency compared
to both related CTDE framework-based MARL and
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widely-applied single-agent RL approaches. We further
analyzed the impact of relative entropy regularization in
the CTDE framework-based MARL on convergence and
control behaviors.

The remainder of this paper is organized as follows.
Section II introduces the preliminaries of Markov games,
MARL, and CTDE framework. Section III details the proposed
approach MACDPP. The experimental results are presented in
Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES
A. Markov Games

Markov games are widely utilized to model a multi-agent
environment satisfying partially observable Markov pro-
cesses (POMDP). It is generally defined by a sextuple
(N,S,A,P,R,y). N represents the number of agents in
the target environment, S defines the general state space.
The locally observed state of the i-th agent is denoted as s;
which is a subset of the global observed state s € S. The
joint action is made up of the local actions from all agents
a=a; x---xay € A The subspace of each agent’s action
is presented as .4;. The state transition probability over all
agents is presented as P. R is a set of reward functions for
specific tasks, and each agent has its own reward function
Ri(s}|s;,a;) € R based on its local state, action and the
next step state. The discount factor y € (0, 1] is utilized
to gradually ignore the accumulative rewards in a long-term
horizon.

Based on the Markov games, MARL introduces the value
function V;, and the state-action value function Q;, to
measure the long-term accumulative rewards obtained by the
i-th agent under its policy:

Vix, (si)zESr+l’”'P|:Z Y Ri(Sii+118i0. @iy) | Sio = Si:|, (D

a;,~m,
ML =0

(o]
Qi (si,ai) =Es1+|~73|:z Y Ri(Sirslsic, @iy) | fz%zzsa] 2
i~ —0
where the global state in the next time step §,4 is determined
by the current global state s, and action a, under P. Define
P&, as the probability of translating from state s to state s’
under action a in a global perspective, the goal of each agent
in MARL is to learn an optimal control policy to maximize
its optimal value function following a Bellman equation:

*(si) = (ai]s) P (Ri(s)]si, a;
Vit(si) = max > miailsi) Py (Ri(silsi, ai) + v Vi (s))

3)

s'es

B. Multi-Agent Reinforcement Learning in CTDE Framework

In the CTDE-framework based MARL like MADDPG [25],
the AC structure is implemented to separately estimate the
state-action value function and model control policy by critic
network Qi(~, 0;) and actor network 7;(-, ¢;) for each agent
where 6; and ¢; are the corresponding parameters. In the
centralized training process, All critic networks are globally
updated with the shared observation information. Define one

global training sample from sample set D as (s,a,r,s’)
where r = [Ri(s||s1,a1), ..., Rn(Sy|sn,an)] is the vector
of reward signal for all agents, the i-th agent’s critic networks
receive the states and actions from all agents Qi(s, a, ;) and
measure its own long-term reward of R;(s’|s;, a;). Determin-
ing the global action of the next step by all agents according
to their local actions a; = 7;(s;, ¢;),Vi = 1,..., N, the
corresponding Temporal-Difference (TD) errors that guide the
update of critic networks in gradient descent optimization is
calculated following:

A A o 2
LO;)=(0i(s,a,0;)— Ri(s]|s;,a;) —yQi(s'.a’,0,))".
“)
The actor networks are updated to maximize the returns of
the current critic networks based on the local observation of
each agent. The corresponding gradient of error is defined as:

Vo, < Varsiis g Qi(s.a*, 00V 7i(si ¢ (5)

where a* is selected by all agents with shared information.
In the decentralized execution process, on the other hand, the
control actions of each agent are determined by the actor only
without the consideration of other agents.

III. APPROACH

In this section, the proposed method MACDPP was detailed.
It naturally extended the relative entropy regularization term
from DPP [30] and FKDPP [35] to the modern MARL
under the CTDE framework and AC structure. The multi-
agent critic networks regularized by relative entropy were
introduced in Section III-A, and the corresponding actor that
supports continuous actions was introduced in Section III-B.
The factorization strategy of MACDPP for cooperative and
competitive tasks was discussed in Section III-C with a sum-
mary of MACDPP’s learning procedure.

A. Relative Entropy Regularized Critics

Following the existing relative entropy regularized RL
approaches [30], [31], the difference between the current
policy mr; and previous policy 7; of the i-th agent on state s;
was defined as:

Dy (s7) = a;m (ails) 1og(%) ©)

This term was then incorporated into the value function as a
regularization term controlled by a parameter n:

> 1
Vi(si) = E|:Z Vt(Ri(Szsz i, @) — ;DKL(Si,z))j|- N

t=0
Combining Egs.(3) and (7), the resulted optimal value func-
tion was still a Bellman equation with an additional term
—%]D)KL(S,-,,) in Eq. (3). Assume the action of each agent
a; € A; is discrete, an iterative update form of both value
function and policy can be found based on DPP [30]:

1
Vi (si) = —log Z exp(n - Wis(si, @), (8
a;e.A;
exp(n - Wi, (si, a;))
> aen, xp(n - Yis(si. ai))

€))

Tir1(ails;) =
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where ¢ is the iteration of update, W;,(-) is the action pref-
erences function [1] which can be treat as a regularized Q
function:

Wii(si @) =D Ph(Ri(s}lsi. ar) + vV, (s))
s'eS

+%10gﬁi,t(ai|si)- (10)

With a discrete action space, once the critic network accu-
rately estimates the action preferences function W;(-), both
the value function and policy can be directly calculated.
In practice, the transition probability matrix P is usually too
large and inaccessible. DPP proposed an update rule of W;(-)
based on sampling by inserting Eqgs (8) and (9) into Eq. (10).
Given a sample (s, @, r, §'), the action preferences function of
the i-th agent was updated following:

Wi r1(8i, a;) = Wi (85, a;) — By, (s7)
+ Ri(s;ls;, a;i) + By, . (s7),
ex (s, a))Y (s, a;
B (si) = Z P(77 (8 1)) 4 , i)
S Daea exp(n - Wig(sio aj))

B,(-) is a Boltzmann softmax operator.

It is straightforward to estimate the action preferences
function instead of the Q function by the critic neural networks
under the CTDE framework when the action is discrete. Let the
critic networks receive the global information of all agents, the
loss function of the critic networks \fl,-(s, a, ;) is calculated
by integrating Eq. (11) into Eq. (4):

(1)

(12)

L6 = (Vi(s,a,0,) — y(s,a,5},07))°,  (13)
y(s.a,s',07) = Ri(sils;, a;) + ¥i(s,a,0;)
—B,Wi(s,07) +yB,Wi(s',6;)  (14)

where 0, is the parameters of the corresponding target net-
works. The Boltzmann softmax operator is conducted over the
global action of all agents:

exp(n - Wi(s,a,0,))¥i(s,a,0;)
>weacxp(n-Wi(s,a’,0;))
However, the application of the relative entropy regulariza-

tion in the AC structure remains limited due to the intractable

calculation over the whole continuous action space in B,(-).
We detailed our solution in the next subsection.

B,Wi(s.0,)=>_

acA

. (15)

B. Actors With Boltzmann Softmax Sampling

To effectively calculate Eq. (15) in continuous action space,
we estimated it within a local range of the input action in
MACDPP. The global action a was extended to a vector with
M + 1 Monte Carlo samples:

AMC:[a1a+e1,a+e2,...,a+8M] (16)

where e/ ~ N(0, ¢MC) for j =1,..., M is the Monte Carlo
sampling noise controlled by ¢MC. The locally estimation of
Eq. (12) therefore was calculated as:

exp(n - Wi(s,a,0,))¥i(s,a,0;)
S eeancexp(n-Wi(s,a, 6;))

ByWi(s,0,)~ > (17

ae AMC

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 1 Estimation by Monte Carlo Sampling

Function MC_Estimate (s, a,;):
# Build Monte Carlo sample set
for m =11t M do

[ e ~ N0, V)
AMC = (g a+e',a+ €2, ..., a+eM]
# Locally estimate Mellowmax operation
M. 00) ~

g (R eat 100
Return ./\/l,,\ilmrget(s, )

Algorithm 2 Exploration Using Boltzmann Softmax

Function BS_Sampling (s, 0;):
for j =1t N do
| @ =7;(s,9)
a* =laj, ..., ay]
for m =11to M do
L e:ﬂ ~ N(O, ;Samplmg)’ e}jn;éi =0
_ m m
e" =[e], ..., eyl
Aexplore — [a*’ a* _{_el’ a* + e2’ . a* + eM]
Select a®*Plore e APt following:
exp(n'\y‘_(s,aexp]ore,olf))
pla 5 e (10 (5.0.07)
return a

explore) —

explore
i

According to [37], one critical issue of the Boltzmann soft-
max operator in RL is its multiple fixed points without
non-expansion property which guarantees the convergence of ”
Q-learning-like” algorithms to a unique fixed point in theory.
One effective solution is to replace it with the Mellowmax
operator with a unique fix point and non-expansion property:

> acave exp(y - Wits.a,07))
M+1 '

N 1
MWi(s,0;) ~ — log(
n
(18)

Algorithm 1 summarized the calculation of M,,‘ifi(s,é’i_).
In practice, numerical issues usually arise in Eq. (18) with
a large n. We alternatively calculated it following:

M, Wi(s, 0))
1 " . (s,a,07)—C
z—log(Z“GAcexp(n a9 ))+c (19)

n M+1

where C =n - maxareAmc[\fJi(s, a,0)].
Employing the Monte Carlo sampling to estimate /\/l,,liJi ),
any policy network maps the local states to the local actions
can be used as an actor. In the decentralized execution process,
the trained agent made decisions based on its own actor with
local observation af = 7;(s;, ¢;) The actor was updated in
the centralized training following the gradient below:
V¢. «~V *_ﬁl(smﬁi)‘lli(s, a*, 0,-)V4,I,7At,»(s,», ¢l)

i af=

(20)

where the a* was jointly calculated by all agents’ policies.
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Unlike MADDPG which explores by directly adding noises
to its actions, MACDPP proposed an effective exploitation that
naturally related to the relative entropy regularized value func-
tion based on the shared information in the centralized training
process. Define the global action as a* = [a], ..., a}] where
af = w;(s;,¢;),i = 1,...N. An exploration set for the i-th
agent with M + 1 candidates was built following Algorithm 2:
Aexolore — rgx g* el g*4e? .. a*+eM] where exploration
noises e” added Gaussian noises only to the local actions
related to the i-th agent. Please note that the variance of
sampling ¢£5¥Pling which affected the decision-making of the
agent was independent of £MC in Algorithm. 1 which locally
estimated the Mellowmax operation. An effective exploration
action was randomly selected following the probability below:

exp(n - Wi(s, aP°",07))
za/eAexplore exp(’? : l,\I’Ii (s’ a/’ 0:)) .
explore

The i-th agent utilized the corresponding local action a;

in @®P'°" to interact with the environment. Although Eq. (21)
required the global actions of all agents for an effective
exploration, the execution of all agents can be decentralized in
evaluation since the deterministic local action a} = 7;(s;, ¢,)
was related to only the local observation s;.

explore) —

pla @21)

C. Factorization of Multi-Agents in Different Tasks

In this subsection, we detailed the training procedure of
MACDPP in both multi-agent cooperative/competitive envi-
ronments and single systems that are collaboratively controlled
by multiple agents. The learning process of the proposed
method in a multi-agent cooperative/competitive scenario was
summarized in Algorithm 3. Given the length of episode E and
the length of one rollout 7', at the beginning, the parameters
of both critic and actor networks were randomly initialized as
0:.¢,,i =1,..., N. Those weights were copied to the target
networks as 6, ¢; . At each step, the global state s was first
observed. The control action of each agent a; was determined
by BS_Sampling(-) following Algorithm 2. Conducted global
action a = [ay,...,ay] by all agents, the global state in
the next step and the vector of N reward functions r =
[Ri(s}Is1,a1), ..., Rn(sly|sn,an)] were then observed and
stored to the separate replay buffer. During the centralized
training buffer, the update of each agent was separately con-
ducted with its own J mini-batch samples while the samples
from other agents’ buffers were used to restore the global
information. The TD error was calculated following Eq. (13)
and Algorithm 1 to updated actor and critic networks. The
target networks were then smoothly updated with a smooth
parameter T according to 6;,¢;,i =1,..., N.

When implementing the proposed MACDPP to jointly con-
trol one complex system by multiple agents following our
previous work [35], [36], only one global replay buffer D
was built. At each step, the global observed state s was
sent in parallel to all agents. The control actions of all
actors were then integrated as a and conducted to the target
system. The resulting next step state s’ and the corresponding
reward were received and stored in D. Please note that all
agents shared one reward function r = [R(s'|s, @)] designed

Algorithm 3 Learning Process of MACDPP

fori =11t N do
Initialize buffer D;, networks weights 60;, ¢,.
| Copy the target networks with parameters 0;", ¢; .

fore=11t E do

fortr =11t T do
# Interaction phase

Observe state s
fori =11t N do
| a; = BS_Sampling(s, 6;)
Execute a = [a;, ..., ay]
Observe next state s’ and reward r
Separately store sample to D;,i =1,..., N
# Centralized training phase
fori =11t N do
Sample mini-batch of J samples from D;
for j =11t J do
# Restore information from Dy, k # i

sj=1[51j,....8n,]
aj :[a].j,...,aN,j]
/o / /

sj_[slj,...,ij]

# Calculate the next action of all agents
for k=11 N do
| ap; = 7k(si. ép)
a,=lda\ ;. ....ay,l
# Monte Carlo Estimation
./\/ln@’i(sj) = MC_Estimate(sj, a;, 0;)
Mn\IJ,-(s/j) = MC_Estimate(s/j, a;, 0)
# Calculate TD error followingA Eq. (14)
yj = Ri(s; ;1sij, aij) +y MyVi(s)) +
\I»’i(Sj, a;, 01_) - /\/l,,\lll-(sj)
# Update critic U, (-, ;) and actor 7; (-, ;)
0, — argomin % Z]!:l(yj - ‘i’(sj, ai ;. 0,))?*

# Update actor 7;(-, ¢;)

I Na (s, 0V fi(si ). 8)
V¢[ = 7
# Update target networks

0, <10, +(1—-1)0;
¢ <19+ (1 —-1)¢;

return ¥;, 7;,,i=1,..., N

for the whole system. Unlike the case in charge of multi-
agent cooperative/competitive environments, MACDPP did not
separately conduct J mini-batch sampling for each agent when
jointly controlling one system but rather shared J samples
during the update. In addition, the actor network of the i-
th agent 7;(s, ¢;) directly received the global observed state
in the decision-making process. The difference between the
learning process of MACDPP in cooperative/competitive and
joint control scenarios was illustrated in Fig. 1.

IV. EXPERIMENTAL RESULTS
A. Experimental Settings

In this section, we evaluated MACDPP in multi-agent and
traditional control tasks in terms of learning capability and
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Fig. 1.  The differences between the learning process of MACDPP in
cooperative/competitive (top) and joint control (bottom) scenarios.
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Fig. 2. Eight Benchmark tasks for evaluation: (a) Physical Deception
from MPE (mixed cooperative competitive); (b) Covert Communication from
MPE (mixed cooperative competitive); (c) Keep Away from MPE (mixed
cooperative competitive); (d) Cooperative Communication from MPE (pure
cooperative); (e) HalfCheetah from Mujoco (joint control by two agents);
(f) HalfCheetah from Mujoco (joint control by six agents); (g) Hopper from
Mujoco (joint control by three agents); (h) URS End Effector Positioning from
robo-gym (joint control by five agents).

sample efficiency. For the multi-agent scenario, we selected
the physical deception, Covert Communication, keep away
and cooperative communication tasks from the MPE [25].2
The first three are mixed cooperative-competitive tasks and
the last one is a pure cooperative task. Following the top
of Fig. 2, the Physical Deception task trains two agents
(green) to cooperate. One agent aims to reach the actual target
while another one attempts to mislead the adversary (red) into
reaching an incorrect target. In the Covert Communication
task, the two agents are trained to communicate through a
private key generated randomly at the beginning of each
episode, a negative reward is obtained when the adversary
reconstructs the message. In the Keep Away task, two agents
are trained to push the adversary as far as possible from the

Zhttps://github.com/openai/multiagent-particle-envs
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target. The Cooperative Communication task trains the listener
to reach the target following the speaker’s instructions. MAD-
DPG [25], MATD?3 [26] and M3DDPG [27] were selected as
the compared MARL baselines.

We further test the proposed method by the HalfCheetah,
the Hopper tasks from Mujoco simulation [38] and the URS
robot arm simulation task ur_ee_position developed in robo-
gym [39] to evaluate its performances in more traditional
control scenarios. For the compared MARL approaches includ-
ing MACDPP and MADDPG, the HalfCheetah was divided
into two scenarios: two agents separately controlled the front
and back body, and six agents controlled six joints. The
Hopper and URS5 were jointly controlled by three and five
agents for each controllable joint. All benchmark control tasks
were illustrated at the bottom of Fig. 2. This experiment
verifies the potential of MACDPP in the application of real-
world robots. The results of the HalfCheetah and Hopper tasks
reflect the MACDPP’s effectiveness on quadruped robots while
the simulation results on robo-gym simulation can be quickly
applied to the real-world URS5 robot with less engineering
cost.

We not only compared the proposed method with MARL
approaches MADPPG [25] but also the widely implemented
single-agent RL approaches including Deep Deterministic Pol-
icy Gradient (DDPG) [40], Twin Delayed Deep Deterministic
Policy Gradient (TD3) [41] and Soft Actor-Critic (SAC) [42].
The hyperparameters of all compared methods for each task
were summarized in Table II. All actors and critics shared the
same network structures. The tunable hyperparameters of the
proposed MACDPP including 7, the Monte Carlo sampling
numbers in Algorithms 1 and 2 M, M, and the sampling
noise ¢MC, gSampling were listed in Table III. The proposed
MACDPP was developed by PaddlePaddle [43] under its
RL toolkit PARL.?> All experiments were conducted on a
workstation with Intel Xeon W2265 CPU, NVIDIA GeForce
RTX 3080 GPU, 64GB memory and Ubuntu 20.04 OS.
The experimental results were summarized over five inde-
pendent trials with different random seeds for statistical
evidence. The open source code of MACDPP is available at
https://github.com/AdrienLin I/MACDPP.

B. Cooperation and Competition in MPE Benchmarks

1) Evaluation of the Learning Capability: We first com-
pared the proposed methods with the related MARL
approaches in four benchmark tasks from the MPE environ-
ment. The learning curves of all compared approaches were
shown in Fig. 3 while the maximum average returns of each
method in the evaluation phase during the learning were listed
in Table IV (the number in red indicates the best result in
the corresponding term). The trials of all four tasks were
conducted by 25k episodes, each episode had 25 steps.

In the Physical Deception task, MADDPG, MATD3 and
M3DDPG converged to close performances near 0 average
return after 25k episodes. As a comparison, our method
quickly suppressed other baselines in the first 2000 episodes
and converged to 40 average return after 25k episodes.

3https://github.com/PaddlePaddle/PARL
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Fig. 3. Learning curves of MACDPP and other MARL baselines in MPE benchmark tasks. The shaded region represents the corresponding standard deviation

over five trials.

TABLE I

COMMON HYPERPARAMETER SETTINGS OF COMPARED APPROACHES

Physical Deception | Covert Communication | Keep Away | Cooperative Communication | HalfCheetah Hopper URS
Critic Learning Rate 0.01 0.01 0.1 0.1 1073 5x 1074 | 5x107%
Actor Learning Rate 0.01 0.01 0.01 0.01 1073 5x 1075 | 5x107°
Actor and Critic Structure (64,64) (64, 64) (64,64) (64,64) (400, 300) (400, 300) | (400,300)
Target Update Rate (1) 1x 1073 1x 104 1x10~4 1x10~4 5x 1073 5x 1073 | 5x1073
Batch Size (J) 1024 1024 1024 1024 100 100 100
Discount Factor () 0.95 0.95 0.95 0.95 0.99 0.99 0.99
Memory Size 10° 10° 10° 10° 108 108 108
Warmup Steps 0 0 0 0 10* 10* 10*
Steps per Update 100 50 25 25 1 1 1

TABLE III

SPECIFIC HYPERPARAMETERS OF MACDPP

In the evaluation task, MACDPP outperformed MATD3 and
M3DDPG with over 7000% and 1200% maximum average
return while MADDPG achieved a negative average return.
In the Covert Communication task, M3DDPG outperformed
MADDPG and MATD3 in both average return and conver-
gence speed thanks to its Minimax operator. On the other
hand, MACDPP converged to over 100% more average return
during learning and achieved 135% maximum average in

evaluation compared with the suboptimal method M3DDPG.
In the Keep Away task, MADDPG converged to a relatively

n My | Mo | ¢MC [ ¢Sampling low average return. MATD3 converged to near —10 aver-

Physical Deception 20 30 | 50 | 0.1 0.2 age return within 10k episodes but could not maintain its
Covert Communication 20 30 50 | 0.1 0.2 performance. Although M3DDPG converged quickly in the
Keep Away 0.1 30 50 | 0.1 0.1 first 10k episodes, MACDPP outperformed it with 5% more
Cooperative Communication | 0.1 30 | 50 | 0.1 0.1 maximum average return and the lowest standard deviation in
HalfCheetah 20 | 30 | 50 | 0.1 0.1 the learning curve which indicated a more stable training pro-
Hopper 5 30 | 50 | 0.1 0.1 cedure. In the Cooperative Communication task which requires

URS 0.05 | 30 | 50 | 0.1 0.1 pure cooperation over all agents, it is observed that M3DDPG

which is good at competition failed to learn good cooperation
policies. Although MACDPP, MADDPG and MATD3 all
learned to a close performance, the proposed method enjoyed
the fastest convergence speed. Overall, the proposed method
demonstrated significantly superior learning capability than
related MARL baselines in various MPE benchmark tasks.
2) Evaluation of the Sample Efficiency: The sample effi-

ciency which is important to the implementation of RL in
real-world systems was evaluated in Fig. 4. We define the
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TABLE IV
MAXIMUM AVERAGE RETURNS OVER FOUR MPE BENCHMARK TASKS
MACDPP MADDPG MATD3 M3DDPG
Physical Deception 47.02 + 14.28 —0.36 = 2.20 0.67 + 2.63 3.77+£0.23
Covert Communication 31.68 4= 19.07 0.72 £2.71 1.76 £ 8.78 13.48 +10.52
Keep Away —5.27 +1.27 —6.27 +1.01 —5.55+1.33 —8.53+0.10
Cooperative Communication —13.10 £6.79 —15.88 £10.78 | —11.90 +6.95 | —40.07 +11.90
TABLE V
AVERAGE CALCULATION TIME OF 1000 EPISODES OVER FOUR MPE BENCHMARK TASKS
MACDPP MADDPG MATD3 M3DDPG
Physical Deception 124.77+1.77s | 32.84+0.20s | 33.31£0.20s | 105.86 £2.41 s
Covert Communication 161.734+1.40s | 41.23+0.35s | 41.27+0.45s | 125.83 £2.38 s
Keep Away 14958 +£1.33s | 39.30+0.32s | 4294+0.39s | 11528 £1.86 s
Cooperative Communication | 144.11 £0.55s | 37.104+0.23s | 39.19+0.41s | 108.56 +£2.44 s

Covert Communication
Keep Away

Cooperative Communication
B Physical Deception

MACDPP I .I
e
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-
0.0 0.5 1.0 1.5 2.0

K g 2.5
Million Steps

Fig. 4. Number of interactions utilized by all compared approaches in MPE
benchmark tasks to reach the lower boundary of maximum average return.

measure of sample efficiency in this subsection as the number
of interactions used by each approach to reach the lower
boundary of the maximum average returns in Table IV over
the four benchmark tasks from the MPE environment. It
is clearly observed that the proposed method achieved the
overall superior sample efficiency among all compared MARL
approaches, it reduced 70%, 54.6% and 48.3% usage of
samples than M3DDPG, MADDPG and MATD3 to reach
a certain level of control performances. At the same time,
we found that MACDPP has overall effectiveness in improving
sample efficiency, whether in cooperative or competitive tasks.
This result demonstrated the great potential of the proposed
method in quickly learning proper multi-agent control policies
in complex scenarios with few sampling costs.

3) Evaluation of the Computational Efficiency: In this
subsection, we investigated the impact of additional Monte
Carlo sampling and Boltzmann softmax operator in MACDPP
on computational efficiency. We measured the average cal-
culation time of 1000 episodes including training and
decision-making over all compared MARL baselines in
Table V. It is observed that MACDPP brought additional

Different operator of MACDPP

Average Return
o
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MADDPG
===+ with Boltzmann softmax operator
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Fig. 5. Learning curves of MACDPP with different operators in the Keep
Away task. The shaded region represents the standard deviation of the average
evaluation over five trials.

computational burdens in all four tasks. It required 285.54%,
270.19% and 27.36% more calculation time compared with
MADDPG, MATD3 and M3DDPG. On the other hand, con-
sidering the obvious advantages of our approach in learning
ability, convergence speed, and sample efficiency, we believed
that these increased computational complexities in training and
decision-making were acceptable.

4) Impact of the Relative Entropy Regularization: In this
subsection, we explored the impact of relative entropy regu-
larization. We first evaluated the impact of different operators
regularized by the relative entropy including Boltzmann soft-
max and Mellowmax on MADDPG in the Keep Away task
in Fig. 5. It is clearly observable that employing Mellowmax
instead of Boltzmann softmax could improve the MACDPP’s
performances in both convergence speed and the maximum
average return. As a comparison, MACDPP using the Boltz-
mann softmax operator finally reached a higher average return,
its learning process significantly fell behind MADDPG at the
first 10k episodes due to its low efficiency in converging
to a unique fixed point. This result was consistent with the
advantages of Mellowmax described in [37].

We evaluated the special parameter 1 that controls the
strength of the relative entropy term in MACDPP. The learning
curves MACDPP in the Keep Away task with different values
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TABLE VI
MAXIMUM AVERAGE RETURNS OVER FOUR BENCHMARK CONTROL TASKS

MACDPFPP MADDPG

DDPG TD3 SAC

HalfCheetah (2 agents) | 10590.80 + 443.92

9404.49 £+ 1252.08

9991.71 4+ 1533.64 | 9754.40 £ 955.57 | 10426.10 £ 1577.89

HalfCheetah (6 agents) 9767.99 4+ 419.40

6482.54 £ 1296.47

9821.45 +1393.96 | 9730.61 +962.49 | 9828.28 - 803.50

Hopper (3 agents) 3452.87 + 60.85 2741.40 4 935.69

2212.34 £1139.88 | 3384.24 + 230.43 3325.33 £ 270.24

1.86 + 0.03 1.66 £0.73

URS (5 agents)

0.60 £ 1.04 1.60 £ 0.30 —1.13£0.19
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Fig. 6. Learning curves of MACDPP with different values of parameter n
in the Keep Away task. The shaded region represents the standard deviation
of the average evaluation over five trials.

of n are compared in Fig. 6. With a wide range of 1 from
0.001 to 0.5, MACDPP consistently outperformed the baseline
method MADDPG in both the mean and standard deviation
of the average returns. It is also observed that a proper
selection of n could significantly improve MACDPP’s learning
performance. The most superior learning curve was obtained
when n = 0.1. An over-small parameter n = 0.001 resulted
in extremely slow convergence and a very large standard
deviation of return at the beginning. As a comparison, the
large one has less effect on smooth policy updates and may
fail in learning more optimal control policies within a limited
number of interactions.

C. Cooperation in Traditional Control Task

1) Evaluation of the Learning Capability: In this section,
we moved to the traditional control scenarios where the
MARL approaches were employed to jointly control one
system. In this section, we compared two MARL approaches
MACDPP and MADDPG which were treated as the proposed
method without using relative entropy regularization. Three
widely implemented single-agent RL approaches DDPG, TD3
and SAC were also compared. The learning curves of all
compared approaches in 2-agent HalfCheetah (the system
was jointly controlled by MARL with two agents), 6-agent
HalfCheetah, 3-agent Hopper and 5-agent URS robot arm
were illustrated in Fig. 7. The average maximum returns in
the evaluation phase are listed in Table. VI. Please note that
the results of single-agent methods in two HalfCheetah were
slightly different since we used difficult random seeds for each
task.

In the 2-agent HalfCheetah task, MADPPG learned the
worst policy with the lowest average return. In this case,

the joint control strategy failed to suppress the single-agent
approach while introducing an additional computational bur-
den. As a comparison, our method converged to the best
average return overall compared approaches with a significant
advantage in convergence speed. Regarding the maximum
average return in evaluation, MACDPP outperformed 12.61%,
8.57% and 6.0% compared with MADDPG, TD3 and DDPG
while achieving slightly better results than SAC with signifi-
cantly superior convergence speed. In the 6-agent HalfCheetah
task, the learning capability of MADPPG hugely deteriorated
so that the six joints could not effectively cooperate. As a
comparison, the proposed method successfully learned the task
as well as other single-agent baselines with not only a superior
convergence speed but also less standard deviation in the
average returns. It enjoyed over 50% more maximum average
returns than MADDPG which did not employ the relative
entropy regularization. In the 3-agent Hopper task, MADDPG
outperformed DDPG in average return and convergence speed
while the proposed MACDPP achieved overall superior per-
formances than all compared baselines. It quickly converged
to the best maximum average return which was 56.07%,
25.95%, 3.84% and 2.03% than DDPG, MADDPG, SAC and
TD3, respectively. In the more practical URS control scenarios
where five independent joints were jointly controlled by five
agents in MARL methods, both MACDPP and MADDPG
outperformed single-agent RL approaches. Within 200k steps,
SAC and DDPG could not learn the task (SAC could not
converge at all, and DDPG learned extremely slowly at the first
70k steps) while only TD3 achieved a close average return to
MADDPG. As a comparison, MACDPP consistently demon-
strated superiority in both learning capability and convergence
speed, it quickly reached an average return over 0 within 70k
steps and finally obtained 210%, 12.05%, 264.6% and 16.3%
higher maximum average return than other baselines.

2) Evaluation of the Sample Efficiency: The sample effi-
ciency of MACDPP was evaluated in Fig. 8. Compared with
MADDPG which converged slower to a certain level of control
performances than the signal-agent baselines, the proposed
method demonstrated great advantage in sample efficiency
with the regularization of relative entropy. It only spent 36.6%
samples to reach the same performance. This result indicated
the importance of properly restricting large policy updates
in MARL for superior effectiveness. MCDPP successfully
reduced 44.91%, 37.94% and 27.98% usage of interactions
than DDPG, SAC and TD3.

3) Evaluation of the Computational Efficiency: The com-
putational burden was evaluated in Table VII by summarizing
the average calculation time including agent training and
simulation operating of the first 1000 steps in four control
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Fig. 7. Learning curves of MACDPP and all baselines in Mujoco and robo-gym benchmark tasks. The shaded region represents the corresponding standard

deviation over five trials.

TABLE VII
AVERAGE CALCULATION TIME OF 1000 STEPS OVER FOUR BENCHMARK CONTROL TASKS
MACDPP MADDPG DDPG TD3 SAC
HalfCheetah (2 agents) 13.84 +0.29 s 9.444+0.30 s 4.514+0.20 s 4.18 +£0.07 s 8.36 = 0.10 s
HalfCheetah (6 agents) 54.84 £0.15 s 38.35+0.29 s 4.66 +0.24 s 4.34+0.29 s 8.63+0.41s
Hopper (3 agents) 22.61 +£0.89 s 15.83 £0.72 s 4.86 £0.36 s 4.69+£0.32s 8.84 £0.64 s
URS (5 agents) 284.58 £28.80s | 219.324+29.31s | 162.03+16.44s | 177.65+22.73s | 144.68 £0.64 s
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Fig. 8. Number of interactions utilized by all compared approaches in Mujoco
and robo-gym benchmark tasks to reach the lower boundary of maximum
average return.

scenarios. Although the proposed method required 132.85%,
213.5%, 196.92% and 220.43% more computational times
compared with MADDPG, DDPG, TD3 and SAC, it did not

have as much disadvantage in terms of computational burden
as the results of MPE benchmark tasks in Table V compared
with MADDPG since the most time was spent on operating
the simulator. With the increasing system operation and com-
munication times (i.e., from Mujoco to robo-gym based on
ROS toolkit), the phenomenon above became more and more
noticeable. It demonstrated the potential and effectiveness of
MACDPP in jointly controlling large-scale systems.

4) Impact of the Relative Entropy Regularization: In this
subsection, we explored the impact of relative entropy reg-
ularization in the traditional control tasks. The impact of
different operators regularized by the relative entropy includ-
ing Boltzmann softmax and Mellowmax on MACDPP in the
HalfCheetah task was demonstrated in Fig. 9. The Mellow-
max operator contributed to higher average returns and faster
convergence. Despite a slightly faster convergence, MACDPP
using the Boltzmann softmax operator did not suppress MAD-
DPG in terms of the average return after 1000k steps of
learning.

The impact of different values of n in MACDPP with
Mellowmax was further evaluated by the HalfCheetah task,
as shown in Fig. 10. We observed that the policy update of
MACDPP was overly constrained when 1 = 0.1, resulting in a
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Fig. 9. Learning curves of MACDPP with different operators in the
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average evaluation over five trials.
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Fig. 10. Learning curves of MACDPP with different values of parameter n
in the HalfCheetah task. The shaded region represents the standard deviation
of the average evaluation over five trials.

close performance to MADDPG. Increased n to 1, the average
return of MACDPP reached about 9000. With a proper setting
n = 20, the proposed method converged to an average return
of over 10000 and demonstrated a significant advantage in
terms of convergence speed. However, recklessly increasing n
will not lead to further improvement in MACDPP’s learning
capability. When n was increased to 40, there was a rapid
decline in both average return and convergence speed, which
aligns with the experimental results of KDPP [33].

The effect of MACDPP’s relative entropy regularization on
the robot’s behavior was evaluated using the URS control task.
We tested the agents of MACDPP, MADDPG and TD3 saved
at the 50k, 100k, 150k and 200k steps by five episodes with
total 5 x 100 steps and compared their average number of
collisions in Fig. 11. Compared to MADDPG and TD3 which
could not quickly reduce the robot’s collision during learning,
the proposed method with the Mellowmax operator (n = 0.05)
significantly reduced the number of collisions at the early
stage of the learning process. Figure 12 further demonstrated
the impact of 1 on the average number of collisions during
the early stage (20k to 100k steps) of the URS control task.
The effect of 1 in suppressing high-risk actions can be clearly
observed. As n decreased, the relative entropy constraint on
MACDPP’s policy update became increasingly strong, leading

100
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Fig. 11. Average number of collisions of MACDPP in the URS control task

during the first 200k steps compared with MADDPG and TD3.
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Fig. 12.  Average number of collisions of MACDPP with different values of
parameter 1 in the URS control task during the first 100k steps.

to a significant reduction in the number of collisions. The
results above show the advantage of the proposed method in
engineering applications. The policy update constrained by the
relative entropy could drastically reduce high-risk and harmful
exploration actions while enhancing learning capability.

All the experimental results above indicated the good gen-
eralization capability of MACDPP in various tasks including
MPE and traditional control tasks. However, it is also observed
that the selection of n affected the performances of MACDPP
and became the core of its successful implementation in
different control scenarios. Compared to the relatively simple
Hopper task, the HalfCheetah task requires a larger n to
achieve an efficient exploration. For more practical imple-
mentation on the URS robot, a smaller 1 contributed to more
stable and safe exploration actions that prevent frequent robot
resetting due to collisions, thereby significantly improving the
learning performance. In the implementation of MACDPP,
we suggested initializing the value of n within the range from
0.01 to 20, e.g., trying 0.01, 0.1, ; 1.0, 10.0, and 20.0. After
evaluating the learning performances of these preliminary
selections, we selected the best one and further fine-tuned it
according to the requirements of the specific task. Lowering
n contributed to smooth exploration and policy updates while
increasing n sped up the learning process in the early stages
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Fig. 13.  Trajectories of control actions using MADDPG and MACDPP in one test rollout of 6-agent HalfCheetah task. The actions of MADDPG and

MACDPP were drawn in purple and blue respectively.

of training at the expense of stability. Please also note that
an overly large n could cause numerical issues in the action
preferences function due to the use of exponential functions,
resulting in divergence of learning.

5) Case Study: In this subsection, we investigated the
superior control behaviors of MACDPP through the rollouts
of learned policies in both 6-agent HalfCheetah and 5-agent
URS control scenarios. In the first case study, we explored
the learned policies of MADDPG and MACDPP under the
same setting of parameter and random seed. The test rollouts
with 20 steps and the corresponding trajectories of each joint
were analyzed in Fig. 13. It is observed that the learned
control behavior of MACDPP is more effective than the
one of MADDPG. Effectively coordinating six joints by
six agents, the proposed method learned a superior control
strategy. Each joint timely conducted proper torque according
to the current system states, resulting in a faster movement.
In comparison, MADDPG had significant disadvantages in
terms of coordinating six joints by separate agents. Although

the agent in charge of dimension 2 successfully learned a
similar policy to the one of MACDPP, the whole multi-agent
system struggled to generate proper torques from other agents:
the agent of dimension 5 only produced effective torque near
the 15-th step while the agent of dimension 1 was fixed with
—1 torque during the how rollout. Due to the lack of relative
entropy regularization from the algorithmic perspective, the
multiple agents in MADDPG were unable to learn effective
and cooperative control strategies.

In the next case study, we studied the test rollouts using
MADDPG and MACDPP in the ur_ee_position task which
aims to control the end-effector of the URS robot arm to reach
the randomly generated targets. It is observed that MACDPP
quickly drove the robot to finish the task within 60 steps. The
action trajectories showed proper cooperation between each
joint. The base and elbow joints continuously output —180°
and 60° throughout the task. At step 25, the shoulder joint
and wrist 1 joint were coordinated to guide the end-effector
to move forward to the target position. Around step 60, the
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Fig. 14.  Trajectories of control actions using MADDPG and MACDPP in one test rollout of 5-agent URS control task ur_ee_position. The actions of

MADDPG and MACDPP were drawn in purple and blue respectively. The last dimension Wrist3 joint was not included in the controllable action as it was

fixed to 0 in the ur_ee_position task.

shoulder and wrist 2 joints worked together to quickly reach
the target. The action Trajectories of all dimensions were
effective with minimal jitter. Compared with our method,
MADDPG could not sufficiently learn the cooperative strategy
over five joints. The base joint could not continuously output a
certain degree, it had strong trembling between steps 40 to 80.
The shoulder and wrist 1 joints failed to cooperate effectively
at the beginning, resulting in redundant movements of the end-
effector. After step 40, the shoulder and wrist 2 joints could
not achieve seamless coordination. Both of them experienced
sustained tremors which ultimately resulted in highly degraded
control performance.

The experimental results above revealed the advantages of
MACDPP in the joint control of robot systems. The multiple
agents reduced the exploration complexity in one system and
resulted in faster policy convergence compared to single-agent
approaches with the same amount of interactions. At the same
time, the relative entropy regularization significantly avoided
the mismatch between the update of multi-agent policies
during the learning, promoting the effectiveness in the learning
of cooperative control strategies.

V. CONCLUSION AND DISCUSSIONS

This article proposed a novel MARL approach MACDPP
to improve the learning capability and sample effectively
in a wide range of control scenarios including multiple
agents cooperative/competitive tasks and joint control of a
single complicated system. It naturally alleviated the inher-
ent inconsistency over multiple agents policy updates by
integrating the relative entropy regularization to the AC struc-
ture and CTDE framework. MACDPP successfully extended
FKDPP which has been successfully implemented in the
real-world chemical plant by Yokogawa [35], [36] towards
a modern approach that supports deep neural networks,
AC structure and CTDE framework to fit a wider range of
control scenarios. Through evaluation of different benchmark
tasks, ranging from multi-agent cooperation/competition to
Mujoco simulator and robot arm manipulation, our proposed
method consistently demonstrated significant superiority in
both learning capability and sample efficiency compared with
related multi-agent and single-agent RL baselines. All these
results indicated the potential of relative entropy regularized
MARL in effectively learning complex systems divided into
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multiple agents with lower sampling costs and better control
performance.

For future work, the proposed method can be improved in
the cooperative tasks by independently and dynamically setting

the

parameters of relative entropy regularization for each

agent according to its current performances [44]. Reducing
the computational burden of MACDPP by efficiently sharing
knowledge over multiple agents could contribute to better
feasibility for complex and large-scale control scenarios. The
combination of MACDPP with state-of-the-art single-agent RL
methods like TD7 [45] for more effective learning capability
also remains unexplored.
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