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Abstract

It is crucial for agents, both biological and artificial,
to acquire world models that veridically represent
the external world and how it is modified by the
agent’s own actions. We consider the case where
such modifications can be modelled as transfor-
mations from a group of symmetries structuring
the world state space. We use tools from repre-
sentation learning and group theory to learn latent
representations that account for both sensory in-
formation and the actions that alters it during in-
teractions. We introduce the Homomorphism Au-
toEncoder (HAE), an autoencoder equipped with
a learned group representation linearly acting on
its latent space trained on 2-step transitions to im-
plicitly enforce the group homomorphism property
on the action representation. Compared to existing
work, our approach makes fewer assumptions on
the group representation and on which transforma-
tions the agent can sample from. We motivate our
method theoretically, and demonstrate empirically
that it can learn the correct representation of the
groups and the topology of the environment. We
also compare its performance in trajectory predic-
tion with previous methods.

1 INTRODUCTION

An impressive feat of mammalian intelligence is the abil-
ity to learn effective internal models of the external world,
allowing to infer key properties of the environment and to
predict how it transforms under interventions. Sensorimotor
interactions are likely crucial to learn such internal represen-
tations, enforcing them to evolve consistently with the exter-
nal world. In the brain, information about performed actions
taking the form of efference copies—copies of the motor sig-
nals sent to sensory regions of the brain—are exploited for

processing sensory information and predicting future stim-
uli [Keller et al., 2012]. It is however unclear how sensory
representations are intertwined with such representations
of interventions performed by the agent, or even how the
two are learned. Developmental psychologist Piaget [1964]
postulates that representations of the world are learned from
interaction starting from the first stage of development: the
sensorimotor phase, and that these representations of the
world are an understanding of how the world transforms
under performed and imagined interventions.

The concept of group, as a mathematical structure, is per-
vasive in the description of the states and properties of the
world. In physics, Noether’s theorem shows the continuous
symmetries of a system correspond to conserved quantities
[Thompson and Cook, 1995]. Conversely, conserved quan-
tities are associated with symmetries that only act on them
while keeping everything else constant. Position in space is
acted upon by the group of 3D translations, orientation by
the group of 3D rotations and numerosity by the discrete
group of linear translations. With the aim of representation
learning being to recover these quantities from observed
stimuli [Bengio et al., 2012], it is appropriate for the repre-
sentation to transport the existing symmetries of the world
states into the model. Such a symmetry-based representation
satisfies an equivariance property between the true gener-
ating factors and the learned representations. To observe
these symmetries, an agent can perform motor interactions
to intervene on the world’s state. These interactions also
organize in a group which can be used to parametrize the
symmetries of the real world.

While one can mathematically create infinitely many such
representations, an agent with bounded computational abil-
ities needs to choose one allowing efficient manipulation,
interpretation and prediction of changes in its environment.
A representational property compatible with this desidera-
tum is disentanglement [Bengio et al., 2012, Kulkarni et al.,
2015] which states the latent representation decomposes
into parts reflecting the different interpretable properties of
the environment that the agent can modify independently.
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Figure 1: Commutative diagram for a symmetry-based rep-
resentation.

While a group theoretic account of disentangled represen-
tations has been proposed by Higgins et al. [2018] without
proposing a learning algorithm, few attempts have followed
[Caselles-Dupré et al., 2019, Quessard et al., 2020], all as-
suming that the agent is able to separately intervene on
independent factors of variation.

In this work, we propose the Homomorphism Autoencoder
(HAE) framework to jointly learn a group representation
of transitions between world states, as well as a symmetry-
based disentangled representation of observations with min-
imal assumptions on the group or the actions the agent can
sample from. We show theoretically and experimentally that
the HAE learns the group structure of the set of transitions.
In addition, the HAE learns to separate the pose of an object
from the identity of acted-on objects, which can be identified
as orbits of the non-transitive group action.

2 BACKGROUND

2.1 SYMMETRY-BASED DISENTANGLED
REPRESENTATION LEARNING - SBDRL

Following the group theoretic formalism introduced by Hig-
gins et al. [2018] (we refer to Appendix A for background
on groups), we assume the set of observations O ∈ Rnx×ny

is obtained from a set of world states W through an un-
seen generative process b : W → O. An inference process
h : O → Z maps observations to their vector representa-
tions.

A group of symmetries G structures the world states set
by its action ·W : G ×W → W . G is decomposed into a
direct product of subgroups G = G1 × ...×Gn. Here, each
subgroup only transforms a specific latent property while
keeping all others constant.

A representation is a symmetry-based representation if it
verifies the commutative diagram in Figure 1. It then satis-
fies:

1. There is a (non-trivial) action of G on Z:

·Z : G× Z → Z.

2. The composition f = h ◦ b : W → Z is equivariant,

meaning that transformations of W are reflected on Z.
Formally, f and the group action commute:

∀g ∈ G,w ∈ W, f(g ·W w) = g ·Z f(w).

The symmetry-based representation is disentangled with
regard to the group decomposition G = G1 × ...×Gn if it
satisfies this additional condition:

3. Z can be written as a product of spaces Z = Z1× ...×
Zn or as a direct sum of subspaces Z = Z1 ⊕ ...⊕Zn

such that each subgroup Gi acts non trivially on Zi

and acts trivially on Zj for j ̸= i.

If we require the group action ·Z on Z to be linear, then
the existence of a group action on Z is equivalent to the
existence of a homomorphism ρ : G → GL(Z), called a
group representation. The disentanglement condition is then
expressed as follows:

3. (Linear) There exists a decomposition

Z = Z1 ⊕ ...⊕ Zn

and a decomposition of the group representation

ρ = ρ1 ⊕ ...⊕ ρn

where each ρi : Gi → GL(Zi) is a subrepresentation.

The action on Z can then be written

g ·Z z = ρ(g1, ..., gn)(z1 ⊕ ...⊕ zn) (1)
= ρ1(g1)z1 ⊕ ...⊕ ρn(gn)zn

for g = (g1, ..., gn) ∈ G and z = z1⊕ ...⊕zn ∈ Z. Clearly
each subgroup Gi acts trivially on Zj , j ̸= i.

2.2 OBSERVING SYMMETRIES

Caselles-Dupré et al. [2019] proved that learning such
symmetry-based disentangled representations requires ob-
serving the group elements that transition one state of
the world into another (consequently one observation to
the next). Similarly to past works [Quessard et al., 2020,
Caselles-Dupré et al., 2019], we suggest using the interven-
tions of an agent on its environment as a means to probe
the symmetries of the environment. However, we do not
assume that these interventions only act on one latent at a
time. Instead, the agent intervenes through motor signals
which are parametrized by the joints positions and it is not
known a priori when an intervention only modifies one true
latent while keeping others constant. The parametrization of
the observed group elements is also expressed in the joints
space instead of along the true latents. For a given group
element, we will denote g̃, its parametrization in the latents
space, and g its parametrization in the joints space. And



we assume there exists a deterministic mapping between
parametrizations φ : g̃ 7→ g. For instance, when a person
moves a chalk along a blackboard, the chalk describes a 2D
movement overparametrized by the rotation angles of the
joints of the arm.

We propose to learn the inference process h and a disentan-
gled group representation ρ using the HAE, described in
section 3.2.

2.3 LIE GROUPS AND THE EXPONENTIAL MAP

We assume the group G is a connected compact Lie group,
the observed interventions are a discrete subset sampled
from G. When a group G is also a differentiable manifold,
it is called a Lie Group. The tangent space to the group G at
the identity forms a Lie Algebra g: A vector space equipped
with a bilinear product, the Lie bracket. We will leverage a
convenient property of Lie Groups and their Lie Algebras
that is the group can be studied through its tangent space.
Indeed, the matrix exponential, called the exponential map
in this setting, transports elements from the Lie Algebra
to the Lie Group. Under certain assumptions, for instance
if G is connected compact, which we assume, the expo-
nential map is surjective and therefore the whole group G
can be described from the tangent space at its identity. The
exponential of an arbitrary matrix A is given by the series
eA =

∑∞
k=0

1
kA

k.

We construct the learnable group representation ρ as the
composition of the exponential map with an arbitrary map-
ping to the Lie Algebra.

ρ : G
ϕ−→ g

exp−−→ GL(Z)

We show how access to the group algebra can be leveraged
in appendix C.2.3.

3 HAE ARCHITECTURE AND
DERIVATION

3.1 TRANSITION DATASET

To illustrate our approach, we consider the dSprites dataset
[Matthey et al., 2017], a labelled image dataset of 2D shapes
(square, heart and ellipse) varied in scale, orientation and
x and y positions, all of these factors of variations can
be seen as the vector of latents w. We modify the dataset
to observe transitions (o1, g̃1, o2, g̃2, ..., g̃N−1, on), where
g̃i’s correspond to differences of the latent vectors wi+1

and wi, they also parametrize the Lie Group of translations
on the latents’ manifold. As described in section 2.2, the
agent is not provided the transitions g̃ but instead observes
the performed actions g = φ(g̃). The agent is also not
assumed to independently intervene on the different true
latents [Caselles-Dupré et al., 2019, Quessard et al., 2020,

Painter et al.], instead interventions g̃ are sampled uniformly
from a hypercube centered in identity. For most experiments,
we limit ourselves to the cyclic translations group G =
Cx × Cy of the x and y positions, cyclic in the sense that
the vertical boundaries of the image are glued together and
the horizontal boudaries are glued together, as such making
the set of (x, y) positions a torus. The agent observes g =
φπ/4(g̃) which rotates g̃ by 45 deg.

3.2 THE HOMOMORPHISM AUTOENCODER
(HAE)

To jointly learn the latent representation h of the observa-
tions and the group representation ρ, we introduce the 2-step
HAE, described in Figure 2. An autoencoder equipped with
a learnable mapping ρ : G → GL(Z) which maps an
observed transition g to an invertible matrix ρ(g). The ob-
tained matrix transforms encoding vectors of observations
zi = h(oi) to predict the encoding of future images. The la-
tent prediction is evaluated on both the latent space through
the latent prediction loss and on the image space through
the reconstruction loss. γ is a scalar hyperparameter.

L = Lrec + γ ∗ Lpred

We theoretically show in 3.3 how the proposed architecture
leads to learning a symmetry-based representation (ρ, h).

O1 O2 O3

Z1 Z2 Z3

g1 g2

ρ(g1) ρ(g2)

(g1) (g2)

exp exp

Latent prediction loss

Reconstruction
loss

Figure 2: The Homomorphism Autoencoder consisting of
h, d and ρ = exp ◦ϕ, relies on 2-step latent prediction to
jointly learn the group representation ρ and the observation
representation h.

3.3 THE HAE LEARNS SYMMETRY-BASED
REPRESENTATIONS

Previous attempts to design symmetry-based disentangled
linear representations have put a lot of emphasis on the
disentanglement property. However, it remains unclear how
to learn a symmetry-based linear representation (ρ, h) that
verifies properties 1 and 2 in section 2.1, without enforcing
strong assumptions on ρ [Caselles-Dupré et al., 2019] or
on the actions the agent can perform [Caselles-Dupré et al.,
2019, Quessard et al., 2020].



In this section, we provide theoretical insights on learning
symmetry-based representations and how the two-step HAE
architecture achieves that with minimal assumptions.

We define the losses used throughout.

The latent prediction loss uses the group representation
action to predict the evolution of stimuli encodings.

LN
pred(ρ, h) =

∑
t

N∑
j=1

||h(ot+j)−
j−1∏
i=0

ρ(gt+i)h(ot)||22

The reconstruction loss estimates the evolution of the
observations from the predicted evolution of encodings. The
reconstruction loss also evaluates the reconstruction of the
initial observation like a standard autoencoder.

LN
rec(ρ, h) =

∑
t

N∑
j=0

||ot+j − d
( j−1∏
i=0

ρ(gt+i)h(ot)
)
||22

The one step latent prediction loss is simply enforcing the
commutative diagram in Figure 1. With the assumption that
the group G is a compact Lie Group, it admits a faithful
group representation ρ∗ that we can assume is the one acting
on the world states W . If we assume ρ∗ is given on Z, then
minimizing L1

pred(ρ
∗, h) is enough to learn a symmetry-

based representation.

Proposition 1. Assume we observed the action of the group
G on each point of the observation space. Assume h mini-
mizes L1

pred(ρ
∗, h) then h is a symmetry-based representa-

tion, meaning h ◦ b is equivariant.

However, when ρ∗ is not known and a group representation ρ
of G needs to be learned over a space of arbitrary mappings,
minimizing L1

pred(ρ, h) can lead to the trivial representation.

Proposition 2. The trivial group representation ρ = I
(that always maps to the identity matrix) combined with a
constant h is a zero of the prediction loss L1

pred(ρ, h).

The reconstruction loss of the initial observation helps avoid
the representation collapse into a trivial solution by ensuring
h is not constant for a given fixed group representation
ρ0. Although we found using L2

rec(ρ, h) works better than
L0
rec(ρ, h) when jointly learning (ρ, h).

Proposition 3. Assume the data samples at least once all
points of the observation space. If h minimizes LN

rec(ρ
0, h)

then h is injective.

We now present the main theoretical result of the paper: The
HAE through enforcing the 2-step latent prediction loss and
the observations reconstruction (enforcing h is injective)
learns a symmetry-based representation.

Proposition 4. Assume (ρ, h) minimizes L2
pred(ρ, h) and h

is injective, then ρ is a non-trivial group representation and
(ρ, h) is a symmetry-based representation.

3.4 DISENTANGLEMENT

As expressed in section 2.1 the disentanglement condition
for a linear action on Z defined through its group represen-
tation ρ, is a decomposition of both the representation space
Z =

⊕n
1 Zi and the group representation ρ =

⊕n
i=1 ρi.

Where the subgroup representations ρi are representations
of the subgroups Gi on the subspaces Zi.

Following that the group G is decomposed in the true la-
tent’s parametrization, the observed group representation
is disentangled with regard to the group decomposition if
in matrix form, the group representation of any group ele-
ment g = φ(g̃) is a block-diagonal matrix of the subgroups
representations:

ρ
(
g = φ(g̃1, ..., g̃n)

)
=


ρ1(g̃

1) 0 . . . 0

0 ρ2(g̃
2)

. . .
...

...
. . . . . . 0

0 . . . 0 ρn(g̃
n)


(2)

We can therefore constrain our trainable group representa-
tion in the space of matrices of the block diagonal form
given in equation 2. This requires prior knowledge of:

• The number of groups in the decomposition.

• The dimension of each subgroup representation
dim(Zi).

We start by assuming knowledge of this information, how-
ever we hope that in future works, one would be able to
search for the best decomposition. However, we do not as-
sume prior knowledge of the decomposition. Meaning that
given an observed transition g, we do not have access to the
decomposition φ−1(g) = g̃ = (g̃1, ..., g̃n) along the group
decomposition G = G1 × ... × Gn. Which means we are
learning representations of the form given in equation 3.

ρ(g) =


ρ1(g) 0 . . . 0

0 ρ2(g)
. . .

...
...

. . . . . . 0
0 . . . 0 ρn(g)

 (3)

While we do not prove that this block diagonal constraint
leads to disentanglement, we show through experiments that
HAE learns a symmetry-based representation (ρ, h) that is
disentangled with regard to the true factors and takes the
form in equation 2.



4 EXPERIMENTS

4.1 LEARNING A 2-TORUS REPRESENTATION
MANIFOLD

We consider a subset of the dsprites dataset [Matthey
et al., 2017] where a fixed scale and orientation ellipse
is acted on by the group of 2D cyclic translations G =
Cx × Cy . The corresponding transition dataset contains tu-
ples (o1, g1, o2, ..., gn−1, on), where the observations oi are
64×64 pixels and the transitions are given by gi = φπ/4(g̃i)
where g̃i = (g̃xi , g̃

y
i ) parametrizes the displacement along x

and y, and φπ/4 is the rotation of the 2D plane by 45 deg.
We train the 2-step HAE described in section 3.2 with a
4D latent space and with the group morphism ρ = exp ◦ϕ
where ϕ maps to a 2-blocks diagonal matrix each of dimen-
sion 2× 2. Architecture and hyperparameters for training
are specified in the appendix.

Learned data representation We visualize the learned
4-dimensional encodings of the whole dataset through 2-
dimensional random matrix projections, and selected few
matrices showing the most discernable projections (Figure
3). The learned manifold corresponds to the expected latent
space topology S1 × S1.

Learned Group Representation ρ We then evaluate the
learned matrices for the identity id = (0, 0), the generat-
ing elements of each subgroup 1̃x = (1, 0), 1̃y = (0, 1)
and their inverses g̃−1

x = (−1, 0), g̃−1
y = (0,−1), Fig-

ure 4. Note that the corresponding observed actions g pre-
sented to the group representation ρ are in the same order:
(0, 0),

√
2
2 (1, 1),

√
2
2 (−1, 1),

√
2
2 (−1,−1),

√
2
2 (1,−1).
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Figure 3: Random 2D projection of the 4D HAE latent
encodings of the translated ellipse dataset. Color indicates y
position of the ellipse, while markers indicate x position.

Figure 4: Evaluation of the learned and disentangled group
representation ρ for the identity element (upper right) and
generative transitions (middle and left) yields block rotation
matrices.

The matrices obtained, for example, actions in Figure 4,
show that ρ(0) = I4 and that representations for elements
belonging to subgroups of the decomposition G = Cx×Cy

follow the disentangled group representation predicted in
subsection 3.4 where actions on the same subgroup have
representations that act on the same subspace while fixing
the other subspace. In addition, the blocks correspond to 2D
rotation matrices which are of the form:

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
The angle of rotation of an elementary step corresponds
to the number of equally spaced true latent values for
each subgroup: 2π/32, with cos(2π/32) ≈ 0.981 and
sin(2π/32) ≈ 0.195. Additional information on this setup
is available in the Appendix C.2.

4.2 ROLLOUT PREDICTION

One important application of learning structured representa-
tion is to predict how the observations would change given
sequences of actions. We compare HAE to two other ap-
proaches of modeling the dynamics in the latent space: (1)
Unstructured: zt+1 = h(zt, gt), where h is a learnable func-
tion. Similar approaches have been widely adapted in recent
model-based deep RL methods [Ha and Schmidhuber, 2018,
Schrittwieser et al., 2020]. (2) Rotations: zt+1 = Rgzt,
where Rg =

∏
i,j G(i, j, θij,g) and G(i, j, θij,g) are the

Givens rotation matrices. This approach was proposed by
Quessard et al. [2020] and was shown to be capable of learn-
ing symmetry-based representations when the actions are
sampled along the true latents.

We evaluate the methods in an offline setting, where we train
each method on a given set of 2-step trajectories and test
their generalization ability on a hold-out set of 128-step tra-
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Figure 5: Step-wise reconstruction loss on the test dataset.
Lines and shadings represent median and interquartile range
over 50 random seeds.

jectories. See Appendix C.3 for details on the setup. Figure 5
shows the reconstruction loss for each method on the test tra-
jectories. Our result suggests that when the actions sampled
are not disentangled (i.e., each action may involve changes
in multiple generating factors), the Rotations method may
perform worse than the Unstructured method while HAE
can outperform them significantly.

4.3 UNSUPERVISED IDENTITY SEPARATION
FROM INTERVENTION
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Figure 6: 5D representation space of a trained homomor-
phism autoencoder with two 2D group subrepresentations
and a 1D representation space acted on trivially. The repre-
sentation vectors for the whole dataset are projected to 2D
via Random Projection. Colors indicate y position, markers
indicate x position and each torus corresponds to a separate
shape.

We consider the subset of the dSprites dataset consisting
of three shapes (heart, square and ellipse) acted on by the
previous group of 2D cyclic translations G = Cx × Cy.

The action of the group is not transitive, as it describes a
separate orbit for each shape (see appendix A). Indeed, no
intervention changes the shape. In this experiment, we aug-
ment the representation space by one dimension to account
for the shape property, and the group representation is fixed
to act trivially on it.

We learn 5-dimensional encodings of the observations 2×
2D subspaces acted on by the subrepresentations of the
group G and 1 representation unit trivially acted on.

Our results in Figure 6 show that the model not only learns
the representation of the cyclic translation group action
shared among shapes, but also learns to separate the repre-
sentation of observations by shape along the last G-invariant
representation unit, giving rise to three identical manifolds.
This is reminiscent of the two-streams hypothesis of visual
processing [Goodale and Milner, 1992], the "What" path-
way processes information related to object identity, while
the "Where" pathway processes information related to the
object pose, or the required motor action for manipulation.

A more thorough analysis of the experiment can be found
in Appendix C.4.

5 DISCUSSION
We provide theoretical and experimental justification that
the HAE allows an agent to extract geometric structure of
its external world while learning a similarly structured, low
dimensional internal manifold. In contrast to earlier works,
our only prior assumption is the number of subgroups in
the group decomposition, as well as the dimensionsional-
ity to represent each. When using a set of cyclic actions,
we find that the HAE maps the geometric action structure
into the agent’s latent space, in the sense that disentangled
geometric latent variables representing the motion factors
as well as non-geometric variables representing different
objects or shapes emerge. In particular, the emergence of
invariant object representations provides a new angle for
those seeking to learn rich and behavior-relevant represen-
tations of objects without the need for labels. Finally, it is
interesting to note that similar cyclic embeddings have been
reported in neuroscience, for example, in the hippocampus
of mice where toroid-like embeddings encode the animals’
head-direction [Chaudhuri et al., 2019]. In fact, our cyclic
shape translation task restricted to a single dimension could
be viewed as an agent horizontally rotating its head while
observing its environment. One limitation of our theoret-
ical analysis is the deterministic nature of our model, the
intrinsically non-linear nature of the problem would make
the theoretical analysis more challenging in the stochastic
setting. On the experimental side, we solely assessed the
extraction and internal representation of geometric action
structure, we leave it to future work to test if the same prin-
cipled HAE approach generalizes to learn other, non-cyclic,
facets of the structure of the external world.
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A BACKGROUND ON GROUP THEORY

In this section, we provide an overview of group theory
concepts exploited in this work.

Definition A.1 (Group). A set G is a group if it is equipped
with a binary operation · : G × G → G and if the group
axioms are satisfied

1. Associativity: ∀a, b, c ∈ G, (a · b) · c = a · (b · c)

2. Identity: There exists e ∈ G such that ∀a ∈ G, a · e =
e · a = a.

3. Inverse: ∀a ∈ G, there exists b ∈ G such that a · b =
b · a = e. This inverse is denoted a−1.

We are often interested in sets of transformations, which
respect a group structure, but are applied to objects that
are not necessarily group elements. This can be studied
through group actions, which describe how groups act on
other mathematical entities.



Definition A.2 (Group Action). Given a group G and a set
X , a group action is a function ·X : G×X → X such that
the following conditions are satisfied.

1. Identity: If e ∈ G is the identity element, then e ·X x =
x, ∀x ∈ X .

2. Compatibility: ∀g, h ∈ G and ∀x ∈ X , g ·X (h·X x) =
((g · h) ·X x)

We restrict ourselves to learning representations that are
structured linearly by the group, where the action of each
group element on our representation space is described by
an invertible matrix, that we identify with the set of linear
invertible transformations GL(V ) of a finite-dimensional
vector space V . This mapping is called a group representa-
tion. Actions of this type have been studied extensively in
representation theory.

Definition A.3 (Group Representation). Let G be a group
and V a vector space. A representation is a function ρ :
G → GL(V ) such that ∀g, h ∈ G, one has ρ(g)ρ(h) =
ρ(g · h).

Note that such definition is not restricted to finite dimen-
sional vector spaces, however we will limit our study to this
case, such that representations are appropriately described
by mappings from G to a space of square matrices.

Definition A.4 (Lie Group). A Lie Group G is a nonempty
set satisfying the following conditions:

• G is a group.

• G is a smooth manifold.

• The group operation · : G×G → G and the inverse
map .−1 : G → G are smooth.

We limit ourselves to the study of linear Lie Groups, Lie
groups that are matrix groups. The tangent space to a Lie
Group at the identity forms a Lie Algebra. A Lie Algebra g is
a vector space equipped with a bilinear map [., .] : g×g → g
called the Lie Bracket. We will not introduce the Lie Bracket
as we do not make use of it. The Lie Algebra somehow
describes most of everything happening in its Lie Group.
This connection is established through the exponential map.

Definition A.5 (Exponential Map). The exponential map
exp : g → G is defined for matrix Lie Groups by the series:

eA =

∞∑
k=0

1

k
Ak. ∀A ∈ g

The exponential map is not always surjective. However if we
only consider groups that are connected and compact, the

exponential is surjective, which justifies our parametrization
of the group representation through:

ρ : G
ϕ−→ g = Mn(R)

exp−−→ GLn(R)

Where ϕ is a trainable arbitrary mapping.

Group action types The effect of a group action on a base
space X varies according to the properties of the homomor-
phism defined by the group action

τ :G → Sym(X)

g 7→ g ·X □

We introduce two types of actions:

Definition A.6 (Transitive Group Action). The action of G
on X is transitive if X forms a single orbit.

in other words, ∀x, y ∈ X,∃g ∈ G; g · x = y.

Definition A.7 (Faithful Group Action). The action of G
on X is faithful if the homomorphism G → Sym(X) cor-
responding to the action is bijective (an isomorphism).

In that case, ∀g1 ̸= g2 ∈ G,∃x ∈ X; g1 · x ̸= g2 · x .

We also define the orbits by a group action:

Definition A.8 (Orbit by a Group Action). The orbit of an
element x ∈ X by the action ·X of a group G is the set

G ·X x = {g ·X x : g ∈ G}

When the action of G is transitive on X , then X is the single
orbit by the action of G:

∀x ∈ X,G ·X x = X

Such is the case for our experiments using a single shape.
We also explore the case where the action is not transitive
in the multi shape experiment visualized in Figure 6.

B THEORETICAL RESULTS

We first prove the main theoretical result of the paper, then
proceed to prove other propositions.

Proposition 4. Assume (ρ, h) minimizes L2
pred(ρ, h) and h

is injective, then ρ is a non-trivial group representation and
(ρ, h) is a symmetry-based representation.

Proof. Given that the group G is supposed compact, it ad-
mits a group representation by the Peter-Weyl theorem. We
can therefore assume that the true state space W is acted
on linearly by G through its representation ρ∗. As such
the inverse of the generating process b−1 and ρ∗ verify
L2
pred(ρ

∗, b−1) = 0.



Assume h is injective, guaranteed by a minimization of the
0-step reconstruction loss.

Assume (ρ, h) minimizes L2
pred(ρ, h) therefore

L2
pred(ρ, h) = 0.

Then for all observed 2-step transitions
(ot, gt, ot+1, gt+1, ot+2) — note that observed transi-
tions (ot, gt, ot+1) correspond to an action on the true
world states wt+1 = gt ·W wt — (ρ, h) verifies:

ρ(gt)h(ot) = h(ot+1)

and
ρ(gt+1)ρ(gt)h(ot) = h(ot+2)

Let us prove ρ is a group representation, meaning it verifies
ρ(g2g1) = ρ(g2)ρ(g1),∀g1, g2 ∈ G.

Let g1, g2, g3 ∈ G such that g3 = g2g1.

Let w1, w2, w3 which verify w2 = g1 ·W w1, w3 = g2 ·W
w2, w3 = g3 ·W w1. Therefore, the associated transitions
(o1, g1, o2), (o2, g2, o3) and (o1, g3, o3) can be observed.

Assume, we observe the 2-step transitions
(ot, gt, ot+1, gt+1, ot+2) and (ot′ , gt′ , ot′+1, gt′+1, ot′+2)
such that:


ot = ot′ = o1

ot+1 = o2

ot+2 = ot′+1 = o3

and 
gt = g1

gt+1 = g2

gt′+1 = g3 = g2g1

L2
pred = 0 gives for the transition at t: ρ(gt+1)ρ(gt)h(ot) =

h(ot+2) therefore ρ(g2)ρ(g1)h(o1) = h(o3).

And for the transition at t′: ρ(gt′)h(ot′) = h(ot′+1) there-
fore ρ(g3)h(o1) = h(o3)

Therefore we have ρ(g2)ρ(g1)h(o1) = ρ(g3)h(o1) or
ρ(g2)ρ(g1)h(o1) = ρ(g2g1)h(o1)

With this equality verified over the set Otr of first obser-
vations o1 in the training set — meaning we observe two
successions of the action of group elements (g1, g2) and
g3 for different values of the starting observation o1— by
assuming h(O) ⊆ span(h(Otr)),

we get that ρ(g2)ρ(g1) = ρ(g2g1) over h(O) (equality of
linear mappings over vectors that span a vector subspace).

Therefore the subrepresentation of ρ over span(h(O)) is a
group representation of G.

The injectivity assumption ensure h(O) does not collapse
to a single element.

Let us show h is a symmetry based representation.

We have for every observed transition (ot, gt, ot+1):

h(ot+1) = ρ(gt)h(ot)

by the generative model assumptions

ot+1 = b(wt+1) = b(gt ·W wt)

Also ot = b(wt), finally

h ◦ b(gt ·W wt) = ρ(gt)h ◦ b(wt)

Proposition 1. Assume we observed the action of the group
G on each point of the observation space. Assume h mini-
mizes L1

pred(ρ
∗, h) then h is a symmetry-based representa-

tion, meaning h ◦ b is equivariant.

Proof. Given that the group G is supposed compact, it ad-
mits a group representation by the Peter-Weyl theorem. We
can therefore assume that the true state space W is acted
on linearly by G through its representation ρ∗. As such
the inverse of the generating process b−1 and ρ∗ verify
L2
pred(ρ

∗, b−1) = 0.

As a consequence, h also achieves zero loss such that

∑
t

N∑
j=1

||h(ot+j)−
j−1∏
i=0

ρ∗(gt+i)h(ot)||22

such that for all (j, t)

h(ot+j) =

j−1∏
i=0

ρ∗(gt+i)h(ot)

In particular for j = 1

h(ot+1) = ρ∗(gt)h(ot)

by the generative model assumptions

ot+1 = b(wt+1) = b(ρ∗(gt)wt)

Also ot = b(wt) such that

h ◦ b(ρ∗(gt)wt) = ρ∗(gt)h ◦ b(wt)



Proposition 3. Assume the data samples at least once all
points of the observation space. If h minimizes LN

rec(ρ
0, h)

then h is injective.

Proof. Assume the encoder h and the decoder d minimize
the 0-step reconstruction.

∀o, o′ ∈ O, such that o ̸= o′.

d(h(o)) = o and d(h(o′)) = o′

Therefore
d(h(o)) ̸= d(h(o′)).

Finally
h(o) ̸= h(o′)

Therefore h is injective.

Proposition 5. Assume h = h∗ disentangled, equivariantly
maps observations in O to Z such that there exists a non-
trivial disentangled linear action ρ∗ of G on Z ρ∗ according
to the group decomposition G = G1 × ...×Gn.

Assume ρ of the form in equation 3 minimizes L2
pred(ρ, h

∗)
then ρ is a group representation and ρ defines the same
action as ρ∗ over the subspace spanned by h∗(O).

Proof. We assume the existence of (h∗, ρ∗) such that ρ∗

is a disentangled representation of G with regard to the
decomposition G = G1 × ...×Gn and h∗ is an equivariant
representation with regard to ρ∗.

As such, ρ∗ verifies:

ρ∗ = ρ∗1 ⊕ ...⊕ ρ∗n

such that

∀i,∀g = (g1, ..., gn) ∈ G1 × ...×Gn; ρ
∗
i (g) = ρ∗i (gi)

h∗ verifies

h∗ ◦ b(g ·W wt) = ρ(g)h∗ ◦ b(wt)

equivalently, in terms of an observed transition (ot, g, ot+1):

h∗(ot+1) = ρ∗(g)h∗(ot)

We assume h∗ is given but not ρ∗. If ρ = ρ1 ⊕ ... ⊕ ρn
satisfies L2

pred(ρ, h
∗) = 0, then for a given g ∈ G:

h∗(ot+1) = ρ(g)h∗(ot)

Then:
ρ∗(g)h∗(ot) = ρ(g)h∗(ot)

is verified for all observations ot ∈ O. Which leads to the
equality of the matrices over the subspace spanned by h(O).

Note that for each g, it is enough to observe the transitions
(ot, g, ot+1) such that ot ∈ OS such that h(O) is in the span
of h(OS).

Proposition 6. Assume ρ = ρ∗ a non-trivial disentangled
group representation of G on Z.

Assume h minimizes L2
pred(ρ

∗, h) then h is a symmetry
based disentangled representation with regard to the disen-
tangled group representation ρ∗.

Proof. Given that the group G is supposed compact, it ad-
mits a group representation by the Peter-Weyl theorem. We
can therefore assume that the true state space W is acted
on linearly by G through its representation ρ∗. As such
the inverse of the generating process b−1 and ρ∗ verify
L2
pred(ρ

∗, b−1) = 0.

Assume h minimizes L2
pred then it achieves zero loss such

that ∑
t

N∑
j=1

||h(ot+j)−
j−1∏
i=0

ρ∗(gt+i)h(ot)||22

such that for all (j, t)

h(ot+j) =

j−1∏
i=0

ρ∗(gt+i)h(ot)

In particular for j = 1

h(ot+1) = ρ∗(gt)h(ot)

by the generative model assumptions

ot+1 = b(wt+1) = b(gt ·W wt)

Also ot = b(wt), finally

h ◦ b(gt ·W wt) = ρ∗(gt)h ◦ b(wt)

C EXPERIMENTS

C.1 DATA

We use a subset of the dSprites dataset consisting only of
the ellipse at a fixed scale and orientation with varying
x and y positions, there are 32 equally spaced positions
for each. We consider that the ellipse is acted on by the
group G = Gx ×Gy of cyclic translations, where the sprite
warps to the opposite extremity when it reaches an extremal
position. For each image o1 we sample group elements
g̃1 = (g̃x, g̃y) uniformly from a square around identity span-
ning the range J−10, 10K. We assume the agent observes
g1 = φ45(g̃1) =

√
2
2 (g̃x − g̃y, g̃x + g̃y). We obtain the first

transition (o1, g1, o2), we do the same for o2 to get 2-step
transitions (o1, g1, o2, g2, o3).



C.2 LEARNING A DISENTANGLED
REPRESENTATION

C.2.1 Hyperparameters

Model architecture We use a symmetrical architecture
for the encoder and decoder, which we summarize in Table
1. The network was trained on the combined loss:

L = L2
rec(ρ, h) + γL2

pred(ρ, h)

Where we use the Binary Cross Entropy loss for the recon-
struction term instead of the Mean Squared Error as it is
better behaved during training.

Table 1: Network architecture.

Parameter Value

Conv. Channels [64, 64, 64, 64]
Kernel Sizes [6, 4, 4, 4]

Strides [2, 2, 1, 1]
Linear Layer Size 1024

Activation ReLU
Latent space 4

γ 400
Group representation dimensions [2,2]

Training hyperparameters We trained the network using
the hyperparameters summarized in Table 2.

Table 2: Training hyperparameters.

Parameter Value

Optimizer Adam
Learning rate 0.001

Number of training sequences 10000
Batch size 500

Epochs 101

C.2.2 Visualization

We obtained Figure 3 by projecting the 4D representation
vector for each image in the dataset on a random 2D plane
through Random Matrix Projection. We chose the projection
with the most explainable visualization.

C.2.3 Latent Traversal

We show how learning a mapping to the group algebra can
be leveraged to navigate the group and the data manifold.
We remind that ρ = exp ◦ϕ, where ϕ maps to the algebra
g of the group G, and exp is the matrix exponential which
gives a connection between the algebra and the lie group.

The mapping ϕ = ϕ1 ⊕ ϕ2 and the group representation
ρ = ρ1 ⊕ ρ2 are constrained on the space of block diago-
nal matrices of the form M = M1 ⊕ M2 each of dimen-
sion 2× 2. However since each block is made of elements
from a 1D subgroup of GL2(R): SO(2), its algebra is the
1D subalgebra of M2(R) of skew-symmetric matrices. We
find this subspace by performing a PCA over each of the
sets {ϕ1(gt)}t and {ϕ2(gt)}t for a batch {gt}t of observed
transitions. The first component for each block E1 and E2

corresponds to the only base vector for that subalgebra. We
find:

E1 ⊕ 02,2 =


−0.04 −0.65 0 0
0.76 −0.04 0 0
0 0 0 0
0 0 0 0



02,2 ⊕ E2 ≈


0 0 0 0
0 0 0 0
0 0 0.01 −0.65
0 0 0.76 0.01


We obtain the figure 7 by linearly traversing the subalgebras
through t(E1 ⊕ 02,2) and t(02,2 ⊕ E2) for equally spaced
values of t ∈ J0, 9K and passing it to the matrix exponential
which yields invertible matrices of the form R1,t = etE1 ⊕
I2 and R2,t = I2 ⊕ etE2 . We encode an arbitrary initial
observation to obtain its representation vector z, and traverse
the latent space through Ri,tz. We decode the obtained
vectors to obtain the predicted images.

The group algebra offers a smooth parametrization of the
group and consequently of the data manifold and enables the
prediction of observations evolution in the absence of per-
formed actions. Indeed, in the above example, all transfor-
mations can be obtained in the form exp(t1E1)⊕exp(t2E2)
for t1, t2 ∈ R.

Figure 7: We visualize the linear traversal of the group
algebra and its effect on the predicted image reconstruction.
The first line corresponds to a traversal tE1 ⊕ 02,2, while
the second line corresponds to the traversal 02,2 ⊕ tE2.

C.2.4 Additional Experiment

We consider a subset of the dataset consisting of all varia-
tions of the heart under a fixed scale. As such the heart is
acted on by the group G = Gθ ×Gx ×Gy = C39 ×C32 ×
C32. We train a similar model to the one described in the sec-
tion C.2.1 by changing the latent space to 6 dimensions, the
group representation is fixed of the form ρ = ρ1 ⊕ ρ2 ⊕ ρ3



each of dimension 2. We expect a disentangled representa-
tion space Z = Z1 ⊕ Z2 ⊕ Z3. For the visualization of the
learned representation manifold Figure 8, we visualize each
subspace Zi separately by only varying one generative fac-
tor and keeping all else fixed. We also visualized the learned
representations for a subset of transitions corresponding to
the elementary generative transitions for each subgroup in
Figure 9.
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Figure 8: Visualizaion of the 6D embedding vectors for the
heart dataset. For each visualized 2D subspace, we only vary
the latent represented by the subspace. Color indicates the
true latent value.
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Figure 9: Evaluation of the learned group representation for
the identity (upper left) and generative transitions of each
subgroup yields disentangled block rotation matrices.

C.3 ROLLOUTS PREDICTION

We perform the rollout experiment using the sampling strat-
egy described in Section C.1 where actions were sampled
around the identity uniformly. For simplicity, we reduce the
range of the actions from J−10, 10K to J−3, 3K. Similarly,
we only consider x-y translations in this experiment.

We train each method with a set of pre-generated set of
2-step trajectories and evaluate on a hold-out pre-generated
set of 128-step trajectories. For each trajectory, we begin
by sampling a random initial state (x,y position) from all
possible states.

After that, we sample actions uniformly from the possible
actions at each step until the number of steps is satisfied.

For HAE, we map actions to block-diagonal matrices as de-
scribed in Section 3.2. For the Rotations method [Quessard
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Figure 10: Step-wise reconstruction loss. Lines and shadings
represent the mean and one standard error over 15 seeds.

et al., 2020], we map each action to a matrix ρ(g) through a
lookup table for all possible actions. For the Unstructured
method, we use a 2 layer MLP of size [128, 128] to model
the transition by zt+1 = fθ(zt, gt), where we concatenate
the latent vector zt and the one-hot encoding of action at.

The reconstruction loss is the same for all three methods, as
described in Section 3.3. For HAE, we additionally add the
latent prediction loss Lpred as described in Section 3.3. We
increase γ to 1600 which we found to be more stable when
matrices are directly parameterized instead of mapped from
MLPs. For the Rotations method, an additional entangle-
ment loss Lent is required to encourage each matrix to act
on a specific subspace of the latent space, which is equal to

Lent =
∑
g

∑
(i,j)̸=(α,β)

|θgi,j |
2 with θgα,β = max

i,j
|θgi,j |.

For the Unstructured method, we only use the reconstruction
loss and no additional terms.

We also perform another experiment which adapts the set-
ting of multi-step prediction as in Quessard et al. [2020],
where agents can perform multiple simple actions (actions
only involve changes in a single generating factor) to the
object. In our experiment, we allow the agent to control the
object in the dSprite dataset with 7 actions. Namely, transla-
tion in the x-y axes, rotation in both directions (clockwise,
counter-clockwise), and idle. Each action corresponds to an
increment/decrement in one of the generating factors of the
dataset, except for idle, which does nothing. Additionally,
we use the heart shape from the dataset to fully utilize the
orientation latent factor. Figure 10 shows that the Rotations
method performs better than the Unstructured method in
this setting. This is likely because the actions sampling pro-
cess satisfies the disentanglement assumption described in
Quessard et al. [2020]. However, we see that HAE still out-
performs both significantly, suggesting that HAE can also
learn efficiently under this setting.

C.4 MULTI-OBJECTS

We use a similar dataset to the one described in section
C.2 except that we use all three shapes: Heart, Ellipse and
Square. Because we are considering the action of the same
group, observation sequences that start with a given shape
have the same shape throughout at different positions. We
use a model with a 5D latent, where the last latent is acted
on trivially, meaning that the group representation keeps
it unchanged. This is equivalent to having a representation
of the form ρ = ρx ⊕ ρy ⊕ 1. We also project the 5D
encodings of the dataset on a 2D space through Random
Matrix Projection. Note that although the three different
tori appear of different sizes, it is only an artifact of the
projection while the tori are identical.

C.5 COMPUTATIONAL RESOURCES

The experiments were performed on an NVIDIA GeForce
RTX 3090 and A100 GPUs. The training of our optimal
models run for approximately 20 mins.

D THIRD-PARTY SOFTWARE

D.1 DEEP LEARNING FRAMEWORK

To implement our architecture we used the deep learning
framework PyTorch. Paszke et al. [2019]

D.2 HYPERPARAMETER SEARCH

We used the hyperparameter search utility provided
in the hypnettorch project https://github.com/
chrhenning/hypnettorch/tree/master/
hypnettorch/hpsearch to perform a random grid
search.

D.3 DATASET

In the presented experiments, we used the dSprites dataset
Matthey et al. [2017]. The dSprites dataset is an image
dataset of white sprites on a black background, varying in
shape (heart, ellipse, square), in scale (6 values), in orien-
tation (39 values, cyclic), in x and y position (32 values
each). We consider all factors besides shape to be cyclic,
in particular for the x and y positions, we "glued" opposite
borders of images into a torus. The resolution of the images
is 64× 64 pixels.

E SOCIETAL IMPACT

This work proposes new findings in basic research. To the
best of our knowledge, this work does not have immediate

https://github.com/chrhenning/hypnettorch/tree/master/hypnettorch/hpsearch
https://github.com/chrhenning/hypnettorch/tree/master/hypnettorch/hpsearch
https://github.com/chrhenning/hypnettorch/tree/master/hypnettorch/hpsearch


applications with a negative societal impact.
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