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Figure 1: Real-Robot Trajectory. Our robot demonstrates diverse agile locomotion skills, including running,
jumping, and back-flipping in real using a single motion prior and without fine-tuning.

Abstract: The agility of animals, particularly in complex activities such as running,
turning, jumping, and backflipping, stands as an exemplar for robotic system design.
Transferring this suite of behaviors to legged robotic systems introduces essential
inquiries: How can a robot learn multiple locomotion behaviors simultaneously?
How can the robot execute these tasks with a smooth transition? How to integrate
these skills for wide-range applications? This paper introduces the Versatile In-
structable Motion prior (VIM) – a Reinforcement Learning framework designed
to incorporate a range of agile locomotion tasks suitable for advanced robotic
applications. Our framework enables legged robots to learn diverse agile low-level
skills by imitating animal motions and manually designed motions. Our Function-
ality reward guides the robot’s ability to adopt varied skills, and our Stylization
reward ensures that robot motions align with reference motions. Our evaluations
of the VIM framework span both simulation and the real world. Our framework
allows a robot to concurrently learn diverse agile locomotion skills using a single
learning-based controller in the real world. Videos can be found on our website:
https://generalizedanimalimitator.github.io
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1 Introduction
Researchers have been studying for years equipping legged robots with agility comparable to that of
natural quadrupeds. Picture a golden retriever gracefully maneuvering in a park: darting, leaping over
obstacles, and pursuing a thrown ball. These tasks, effortlessly performed by many animals, remain
challenging for contemporary legged robots. To accomplish such tasks, robots need not only master
individual agile locomotion skills like running and jumping, but also the capacity to adaptively select
and configure these skills based on sensory inputs. The inherent ability of quadrupeds to smoothly
execute diverse locomotion skills across varied tasks inspires our pursuit of a control system with
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Figure 2: Our system learns a single instructable motion prior, from a diverse reference motion dataset.

Table 1: Comparison of Skill Learning Framework. (More Details in Appendix D)
Function Style Agility Control Multiple Diverse Reusable No Privileged Real
Tracking Tracking Skills to Learn Skills Sources Information Deployment

Peng et al. [4] ✓ ✓ ✓ ✓
AMP [22] ✓ ✓ ✓ ✓

WASABI [23] ✓ ✓ ✓ ✓
ASE [18] ✓ ✓ ✓ ✓

Motion Imitation [17] ✓ ✓ ✓ ✓ ✓ ✓ ✓
VIM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

a general locomotion motion prior that includes these skills. We introduce a novel RL framework,
Versatile Instructable Motion prior (VIM) aiming to endow legged robots with a spectrum of reusable
agile locomotion skills by integrating existing agile locomotion knowledge.

Agile gaits[1, 2, 3] for legged robots have been sculpted using model-based or optimization methods
at the price of demanding significant engineering input and precise state estimation. Imitation-based
controllers are also proposed to learn from motion sequences from animals [4] or optimization
methods [5]. Recent works [6, 7, 8, 9, 10, 11, 12, 13, 14] also incoporate perception for legged robots.
Despite encouraging results, most of these works focus on building a single controller from scratch,
even though much of the learned locomotion skills could be shared across tasks. Recent works build
reconfigurable low-level motion priors [15, 16, 17, 18, 19, 20] for downstream applications, but fail
to make the best use of existing skills to learn diverse locomotion skills with high agility.

In this work, we focus on building low-level motion prior to utilize existing locomotion skills
in nature and previous optimization methods, and learn multiple highly agile locomotion skills
simultaneously, as in Figure 2. We utilize motion sequences to offer a consistent representation of
diverse agile locomotion skills. Our motion prior extracts and assimilates a range of locomotion skills
from reference motions, effectively mirroring their dynamics. These references comprise motion
capture (mocap) sequences from quadrupeds, synthetic motion sequences complementing mocap
data, and optimized motion trajectories. We translate varied reference motion clips into a unified
latent command space, guiding the motion prior to recreate locomotion skills based on these latent
commands and the robot’s state. For legged robots, a locomotion skill is the ability to produce a
specific trajectory. We classify this into two aspects: Functionality and Style. Functionality involves
fundamental movement objectives, like moving forward at a set speed, while Style focuses on how a
robot accomplishes a task, for example, two robots could run at the same speed, but with different
gait. Teaching both aspects simultaneously is challenging [21]. We use three feedback: objective
performance metrics, qualitative assessments, and detailed kinematic guidance. This structured
approach helps the robot master basic functional objectives before refining its locomotion gaits.

By incorporating diverse reference motions and our reward design, our VIM learns diverse agile
locomotion skills and makes them available for intricate downstream tasks. We evaluate our method
in the simulation and real world, as Figure 1. Our method significantly outperforms baselines in
terms of final performance and sample efficiency.

2 Related Work
Blind Legged Locomotion: Classical legged locomotion controllers [24, 25, 26, 27, 1, 28] based
on model-based methods [29, 30, 31, 32, 33, 34, 35] and trajectory optimization [36, 3] have shown
promising results in diverse tasks with high levels of agility. Nonetheless, these methods normally
come with considerable engineering work for the specific task, high computation requirements during
deployment, or fragility to complex dynamics. Learning-based methods [6, 37, 13, 38, 39, 40, 41]
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Figure 3: VIM and Reward: Our reference motion encoder maps reference motions into latent skill space and
low-level policy output motor command. Vlow is the low-level critic for RL training. Our reward encourages the
robot to track the root trajectory and the joint motion of the reference motion.

controllers are proposed to offer robust and lightweight controllers for deployment at the cost of
offline computation. Peng et al [42] developed a controller producing non-agile life-like gaits
by imitating animals. Though previous works offer robust or agile locomotion controllers across
complex environments, these works focus on finishing a single task at a time without reusing previous
experience. Peng et al [22] leverage reference motions as prior knowledge when directly addressing
specific tasks. Li et al [23] obtain an agile locomotion skill from a single partial rough demonstration
including only robot root trajectory. Smith et al. [43] utilize existing locomotion skills to solve
specific downstream tasks. Hoeller et al [44] built multiple individual locomotion skills and utilized
them for agile navigation. Vollenweider et al. [45] utilize multiple AMP [22] to develop a controller
to solve a fixed task set. In this paper, our motion prior captures diverse agile locomotion skills from
reference motions including mocap trajectories and trajectories generated by trajectory optimization,
and provides them for intricate future downstream tasks.

Motion Priors: Due to the low sample efficiency and considerable effort required for reward
engineering of RL, low-level skill pre-training has drawn growing attention. Singh et al [15]
utilize a flow-based model to build an actionable motion prior with motion sequences generated by
scripts. More recent works [16, 17, 18, 19, 46, 20, 47] focus on building low-level motion prior
for downstream tasks but fail to include diverse highly agile locomotion skills. Luo et al [48, 49]
developed unified motion prior for simulated humanoid robot. Peng et al [18] develop a simulation-
based low-level motion prior entirely through unsupervised methods, yet they do not assure the
acquisition of agile skills from the reference motion dataset (Additional discussion in Appendix C). In
this work, we build motion prior with reference motions consisting of mocap sequences, synthesized
motion sequences, and trajectories from optimization methods and learn multiple highly agile
locomotion skills with a single controller. Comprehensive comparison is provided in Table 1.

3 Learn Versatile Instructable Motion Prior (VIM)
Building Versatile Instructable Motion prior (VIM), as shown in Figure 3, involves: constructing a
reference motion dataset, and training the motion prior with an imitation-based reward system.

Reference motion dataset: Our dataset includes N reference motions for various locomotion skills
such as cantering, turning, backflips, and jumps. Reference motions are from: (a) Mocap data [50] of
quadrupeds; (b) synthesized motions from a generative model[50] to enhance diversity; (c) motions
from trajectory optimization methods. While mocap and synthesized motions provide extensive
data, not all are feasible for the robot. Thus, trajectory-optimized motions are included for complex
moves like jumps and backflips. The detailed motion list is in the Appendix A. To address differences
between animals and our robot, we retarget mocap and synthesized sequences as per Peng et al. [4].
Each trajectory is noted as (sref

0 , · · · , sref
T ), where sref

i is the reference robot state at ith timestep, and T
is the length of the reference motion. We denote the dataset as D = {(sref

0 , · · · , sref
T )i}Ni=1. Each frame

includes the robot’s pose, velocity, foot position, foot height, and joint angle and velocity without
motor commands. Privileged information like robot pose and velocity is used only in simulation, and
policies do not require it in the real world.

3.1 Motion Prior Structure

Our motion prior consists of a reference motion encoder and a low-level policy. Reference motion
encoder maps varying reference motions into a condensed latent skill space, and low-level policy
utilizes our imitation reward and reproduces the robot motion given a latent command.
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Reference motion encoder: Our reference motion encoder Eref(·) maps segments of reference
motion to latent commands in a latent skill space that outlines the robot’s prospective move-
ment. These segments are expressed as ŝref

t = {sref
t+1, s

ref
t+2, s

ref
t+5, s

ref
t+10, s

ref
t+30}. Specifically, we

choose sref
t+1, s

ref
t+2, s

ref
t+5 to provide immediate desired future motion, sref

t+10, s
ref
t+30 to provide de-

sired motion over a longer time-span. We model the latent command as a Gaussian distribution
N (Eµ

ref(ŝ
ref
t ),Eσ

ref(ŝ
ref
t )) from which we draw a sample at each interval to guide the low-level pol-

icy. To maintain a temporal-consistent latent skill space, our training integrates an information
bottleneck [51, 52] objective LAR, where the prior follows an auto-regressive model [53]. Specif-
ically, given the sampled latent command for the previous time step zt−1, we minimize the KL
divergence between the current latent Gaussian distribution and a Gaussian prior parameterized by
zt−1, LAR(ŝ

ref
t , zt−1) = βKL

(
N (µt, σ

2
t ) ∥ N (αzt−1, (1− α2)I)

)
where α = 0.95 is the scalar

controlling the effect of correlation, β is the coefficient balancing regularization.

Low-level policy training: Our low-level policy πlow takes latent command zt and robot’s pro-
prioceptive state st and outputs motor commands at for the robot, where st is encoded with a
proprioception encoder Eprop. We train low-level policy and reference motion encoder using PPO [54]
in an end-to-end manner. We introduce learnable motion embeddings for the critic (Vlow in Figure 3)
to distinguish reference motions. Episodes initiate with random frames of the dataset and terminate
when the root pose tracking error is too large or the episode length is beyond the maximum length.

3.2 Imitation Reward for Functionality and Style

Given the formulation of our motion prior, the robot learns diverse agile locomotion skills with our
imitation reward and reward scheduling mechanics. Our reward offers consistent guidance, ensuring
the robot captures both the functionality and style inherent to the reference motion.

Learning Skill Functionality: To mirror the functionality of the reference motion, we translate the
root pose discrepancy between agent trajectories and reference motion into a reward. The functionality
reward rfunc includes tracking rewards for robot root position rpos

func and orientation rori
func. Recognizing

the distinct importance of vertical movement in agile tasks, the root position tracking is further split
into rewards for vertical rpos-z

func and horizontal movements rpos-xy
func .

rfunc(st, ŝ
ref
t ) = wori

func ∗ rori
func + wpos-xy

func ∗ rpos-xy
func + wpos-z

func ∗ rpos-z
func

The formulation of our functionality rewards is provided as follows, similar to previous work[4]:
rori

func(st, ŝ
ref
t ) = exp

(
−10 ∥q̂root

t − qroot
t ∥2

)
, rpos-xy

func (st, ŝ
ref
t ) = exp

(
−20

∥∥x̂root-xy
t − xroot-xy

t

∥∥2),

rpos-z
func (st, ŝ

ref
t ) = exp

(
−80 ∥x̂root-z

t − xroot-z
t ∥2

)
where q, q̂ and x, x̂ are the root orientation and

position from the robot and reference motion respectively. Unlike previous work [4], we emphasize
root height in our reward, crucial for mastering agile locomotion skills such as backflips and jumps.

Learning Skill Style: Capturing the style of a reference motion, in addition to its functionality,
expands the application of the locomotion skills by meeting criteria such as energy efficiency, and
robot safety. Drawing inspiration from how humans learn [55, 56] - starting by emulating the broader
style before focusing on intricate joint movements - our robot first mimics the broader locomotion
style with an adversarial style reward and later refines its technique with a joint angle tracking reward.

Adversarial Stylization Reward: We train discriminators Di, i = 1..N for all N reference motions
separately to distinguish robot transitions from the transition of reference motion [22, 45] and use the
output to provide high-level feedback to the agent. Our discriminator is trained with:

argmin
Di

E
dMi (st,st+1)

(Di(st, st+1)− 1)2 + E
dπi (st,st+1)

(Di(st, st+1) + 1)2

where dMi (st, st+1) and dπi (st, st+1) denote the state transition pair distribution of the dataset, and
the state transition pair distribution generated by the policy for ith reference motion respectively.
For each reference motion, the likelihood from the discriminator is then converted to a reward with:
radv

style(st, st+1) = 1 − 1
4 ∗ (1−D(st, st+1))

2 Initially, our adversarial stylization reward provides
dense reward and enables the robot to learn a credible gait, but it can not provide more detailed
instructions as the training proceeds, which leads to mode collapse and unstable training.
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Table 2: Evaluation of Motion Prior in Simulation: We compare Horizontal and Vertical Root Position (Root
Pos (XY), Root Pos (Height)), Root Orientation (Root Ori), Joint Angle, and End Effector Position (EE Pos)
tracking errors and RL objectives of all methods. Our methods outperform all baselines in terms of smaller
tracking errors, higher episodic returns, and longer episode lengths. GAIL baseline shows a smaller root position
tracking error since it can’t follow the reference motion leading to early termination of the episode.

Tracking Error ↓ RL Objectives ↑
Method Root Pos (XY) Root Pos (Height) Root Ori Joint Angle EE Pos Episode Return Episode Length

(m2) (m2) (rad2) (rad2) (m2)

VIM 1.24±0.62 0.01±0.02 0.11±0.06 0.08±0.06 0.03±0.03 13.313±11.48 166.783±120.217

VIM (w/o Scheduling) 1.28±0.67 0.009±0.0123 0.1±0.06 0.1±0.08 0.05±0.04 13.963±11.395 179.047±121.788

Motion Imitation 1.39±0.66 0.0077±0.0114 0.11±0.05 0.25±0.14 0.14±0.08 9.536±9.049 143.393±114.514

GAIL 1.04±0.86 0.03±0.03 0.13±0.05 0.17±0.1 0.09±0.05 3.586±6.166 54.723±75.984

WASABI 0.54±0.68 0.03±0.03 0.13±0.06 4.14±1.06 0.21±0.07 0.71±0.58 22.82±16.13

VIM (w/o Func Reward) 1.24±0.67 0.01±0.02 0.11±0.06 0.61±0.59 0.02±0.02 10.66±12.92 115.19±117.74

VIM (w/o Style Reward) 1.49±0.69 0.00±0.01 0.12±0.06 5.14±1.71 0.25±0.06 6.28±6.73 109.76±110.67

Joint Angle Tracking Reward: On the contrary, joint angle tracking reward [57, 17] provides stable
instruction for the robot to mimic the gait of reference motion, while the reward signal is small in
scale during the initial training stage when the joint angle is away from joint target. Similar to our
root pose tracking reward, our joint angle tracking reward has the following formulation:

r
joint
style(st, ŝ

ref
t ) = exp

−5
∑

j∈joints

∥∥∥q̂j
t − q

j
t

∥∥∥2

 + exp

−20
∑

f∈feet

∥∥∥êf
t − e

f
t

∥∥∥2

 + exp

−20
∑

f∈feet

∥∥∥ĥf
t − h

f
t

∥∥∥2



where qj
t , q̂

j
t are the joint angle of robot and reference motion, eft , ê

f
t are the end-effector positions

of robot and reference motion, hf
t , ĥ

f
t are the end-effector height of robot and reference motion.

Stylization Reward Scheduling: To learn the style quickly and stably, we propose to use both
adversarial stylization reward and joint angle tracking reward with a balanced scheduling mechanism.
Considering the discriminator as a "coach", We utilize the mean adversarial reward as an indication of
how the coach is satisfied with the current performance. When it’s not satisfied with the current perfor-
mance of the robot, it provides detailed instructions for the robot to learn. Specifically, our stylization
reward follows: rstyle(st, ŝ

ref
t ) = wadv

style∗radv
style+wjoint

style∗r
joint
style+wadv

style∗(1− E
st∈S

(radv
style(st, st+1)))∗rjoint

style

With this formulation, our stylization reward provides dense rewards at the beginning of training,
enabling the robot to quickly catch the essence of different agile locomotion skills, and provides
detailed instruction as the training proceeds, enabling the robot to refine its gait.

3.3 Solving Downstream Tasks with Motion Prior:
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Figure 4: Solving High-level Tasks with Our Motion
Prior. Our high-level policy outputs high-level latent
command for low-level policy.

For intricate tasks like jumping over gaps, start-
ing from scratch is challenging due to the need
for agile locomotion skills and the intensive en-
gineering to balance rewards and regularize mo-
tion. Using a low-level motion prior, robots
can immediately use existing skills and focus
on high-level strategies. For each distinct down-
stream task, we train a high-level policy πhigh
(As shown in Figure 4) takes the high-level ob-
servation ohigh, and proprioception of the robot and outputs latent command for low-level motion
prior to utilize the existing skills: at = πlow(πhigh(ohigh,st),Eprop(st)).

Additional implementation details about observation/action space, reference/proprioception encoder,
low-level/high-level policy, and value network can be found in the Appendix F.

4 Experiments

We evaluate our system in simulation and real-world, comparing with prior work for low-level skill
learning and various high-level tasks. Our robot demonstrates life-like agility in the real world.
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Figure 5: Real World Backflip Trajectory: Each row represents a single trajectory (From top to bottom:
Reference Motion, VIM, GAIL, Motion Imitation). Trajectories are shown from left to right.

Table 3: Evaluation of Motion Prior in Real: We collect representative metrics for different skills with
corresponding metrics from reference motion. N/A denotes completely failed skills in real.

Metrics Unit VIM Motion Imitation GAIL Reference Motion

Height (Jump While Running) (m) 0.50±0.003 0.42±0.01 0.41±0.04 0.53±0.005

Height (Jump Forward) (m) 0.44±0.01 0.42±0.01 0.27±0.006 0.59±0.006

Height (Jump Forward (Syn)) (m) 0.52±0.01 N/A N/A 0.55±0.007

Height (Backflip) (m) 0.62±0.01 0.49±0.01 N/A 0.60±0.005

Distance (Jump While Running) (m) 0.48±0.08 0.35±0.02 0.40±0.003 0.56±0.008

Distance (Jump Forward) (m) 0.76±0.05 0.40±0.01 0.10±0.002 0.82±0.003

Distance (Jump Forward (Syn)) (m) 0.49±0.04 N/A N/A 0.54±0.007

Linear Velocity (Pace) (m/s) 0.76±0.01 0.97±0.07 0.50±0.02 0.72±0.05

Linear Velocity (Canter) (m/s) 1.49±0.15 N/A N/A 3.87±0.17

Linear Velocity (Walk) (m/s) 0.90±0.04 0.96±0.06 0.53±0.58 0.97±0.42

Linear Velocity (Trot) (m/s) 1.33±0.17 1.05±0.02 0.93±0.01 1.16±0.12

Angular Velocity (Left Turn) (rad/s) 1.71±0.04 0.00±0.00 0.91±0.04 1.01±0.05

Angular Velocity (Right Turn) (rad/s) 0.81±0.02 0.62±0.02 0.63±0.05 0.41±0.09

Joint Angle Tracking Error (rad2/joint) 0.10±0.08 0.27±0.16 0.22±0.10 -
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Our system outperforms all baselines.

4.1 Evaluation of Learned Low-level Motion Priors

Baselines: We benchmark our method against three representative baselines: Motion Imitation [4,
17, 20] baseline represents a thread of recent works whose imitation rewards are defined solely with
errors between current robot states and the corresponding reference states. Generative Adversarial
Imitation Learning (GAIL) baseline represents a thread of recent work [18], whose imitation reward
is solely provided by the discriminator trained to distinguish trajectories generated by the policy from
the ground truth reference motions. WASABI baseline represents a modified version of WASABI [23]
for our setting. Each method trains for 2× 109 samples across 3 random seeds. Both our method and
the Motion Imitation baseline adopt identical reward scales for all motion error-tracking rewards.
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Table 4: High-level Tasks in Real World: We compare Following Command + Jump Forward
policies of all methods in real. N/A denotes completely failed skills in real. Our methods outperform all
baselines in real for most metrics.

Metrics Unit Ours AMP PPO HRL

Max Linear Velocity (m/s) 1.78±0.13 1.74±0.21 1.75±0.26 1.70±0.08

Max Angular Velocity (Left) (rad/s) 1.78±0.004 1.07±0.09 2.24±0.05 0.00±0.00

Max Angular Velocity (Right) (rad/s) 2.05±0.02 0.83±0.09 1.75±0.19 0.95±0.37

Jump Distance (m) 0.50±0.07 0.00±0.00 N/A N/A
Jump Height (m) 0.50±0.02 0.38±0.01 N/A N/A

Simulation Evaluation: In the simulation, we measure average imitation tracking errors, episode
returns, and trajectory lengths across random seeds. As listed in Table 2, the tracking error of root
pose represents the ability of the robot to reproduce the locomotion skill, and the tracking error of
joint angle and end effector position represents the ability of the robot to mimic the style of reference
motion. Our method achieves a similar root pose tracking error as the motion imitation baseline with
a much smaller joint angle tracking error. This shows that our method strikes a balance between
functionality and style, superior to the motion imitation baseline that focuses mainly on functionality.
Meanwhile, the GAIL baseline failed to learn the functionality of the reference motions leading to
short episode length and the least episode return. We surmise that the GAIL baseline’s inadequacy
arises from the adversarial reward does not offer temporally consistent guidance throughout skill
learning and the mode collapse issue inherent in adversarial training hinders the robot from mastering
highly agile skills, such as backflipping. The poor performance of the Motion Imitation baseline may
stem from the challenges of balancing different terms and selecting suitable hyperparameters when
concurrently learning multiple agile locomotion skills.

Ablation Study of Learned Motion Prior: We provide the ablation study over the reward term
and the scheduling mechanism as shown in Table 2. We found that without Functionality reward, the
learned controller could not robustly track the reference motion resulting in smaller Episode Return
and, shorter Episode Length on the other hand, removing Style reward results in a significantly higher
Joint Angle and End-Effector tracking error. Comparing VIM with and without stylization reward
scheduling, we find the former exhibits enhanced style tracking performance, underscoring the value
of stylization reward scheduling in refining robot gait tracking.

Real World Evaluation: We evaluated learned agile locomotion skills in the real world using specific
metrics tailored to different skills, as detailed in Table 3. We repeated our experiment three times per
skill per method per seed since our real-world experiment. For Jump While Running/Jump
Forward/Jump Forward (Syn)/Backflip, we measured jumping height and distance. For
Pace/Canter/Walk/Trot and Left Turn/Right Turn, we measured linear and angular
velocity. Results show our method retains most of the reference motion functionality. The only
significant deviation observed in Canter is due to differences between animal and robot capabilities,
as quadrupeds use tendons to achieve higher running speeds, which our robot lacks. Despite similar
root pose tracking errors in simulations, our method outperforms the Motion Imitation baseline in
real-world metrics like jumping height, distance, and velocity tracking error, indicating that mirroring
reference motion style improves sim2real transfer for natural gaits. The GAIL baseline struggled
with real-world locomotion skills. Figure 5 visually compares real-world trajectories, showing
our method’s superiority in capturing both motion functionality and style. Due to poor simulation
performance, the WASABI baseline was not evaluated in the real world.

Latent Skill Space Visualization: We visualize the learned latent skill space in Figure 6 by vi-
sualizing the latent embedding corresponding to motion segments in our reference motion dataset
via t-SNE [58]. We find that different skills are separated into different regions with clear bound-
aries. Our reference motion encoder also clusters the skills with similar semantic meaning together:
embeddings from Left Turn / Right Turn sequence are close, which enables the smooth tran-
sition between different skills. embeddings from Jump While Running & Jump Forward
& Jump Forward (Syn) sequence are clustered together. These observations suggest that our
system learned a smooth and semantically meaningful latent skill space for solving high-level tasks.
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4.2 Evaluation on High-level Tasks

To evaluate how our method leverages learned agile locomotion skills for high-level tasks, we
designed a set of tasks and tested our method against baselines in simulation and the real world.

High-level Tasks & Observation: Our tasks include: Following Command: directing the robot
to move with specific linear and angular velocities. Linear velocity commands range from 0 ∼ 2 m/s,
and angular velocity commands range from −2 ∼ 2 rads/s. In our motion prior, the robot is trained to
move and turn at the reference motion’s speed. Hence, to follow a command precisely, the high-level
policy needs to smoothly interpolate between different speeds. Jump Forward: directing the robot
to jump while running. We have adapted a subset of jumping rewards from CAJun [59] to evaluate
policy interpolation between jumping and running motions within a fixed timeframe. Following
Command + Jump Forward: directing the robot to either jump forward or adjust to changing
commanded speeds. To optimize episode return, the robot should not only use the agile locomotion
skills from the reference motion dataset but also develop unobserved skills like executing sharp turns.
Detailed high-level observations for different tasks are provided in the Appendix F.

Baselines: Given the baseline’s subpar performance in low-level motion prior training, we compare
our system with three representative baselines without pre-trained low-level controllers: PPO [54]:
Controllers trained exclusively on high-level task rewards. AMP [22]: Utilizes reference motion for
styling reward in adversarial imitation learning and learns high-level tasks while mimicking reference
motions. Hierarchical Reinforcement Learning (HRL) from Jain et al. [60]: Learns a high-level
policy sending latent commands to a low-level controller, resembling works that decompose tasks into
sub-problems [61, 62, 63, 64, 65, 66, 67]. For fair comparison, we removed the trajectory generator
in [60], used PPO for AMP and HRL, and used full reference motion for AMP and HRL with AMP.

Evaluation in Simulation & Real World: We trained all methods on each high-level task for
4 × 108 samples with 3 random seeds. Simulation results are detailed in Figure 7, and real-world
results are provided in Table 4. Real-world Following Commands trajectory is also provided in
Appendix I. For the Following Command task, all methods mastered basic locomotion, but
ours excelled in efficiency and smooth transitions between diverse linear and angular velocities.
In the Jump Forward and Following Command + Jump Forward tasks, which required
advanced jumping abilities, baselines struggled. They either moved forward continuously, remained
grounded when prompted to jump, or toppled to avoid energy consumption penalties. In contrast,
our system seamlessly integrated jumping and running actions, achieving the highest episode return.
Despite having a comprehensive reference motion dataset, baselines couldn’t harness the skills
effectively. This likely stems from the difficulty of deriving agile locomotion skills using only
adversarial stylization rewards, similar to the GAIL baseline’s poor performance in low-level training.

5 Limitations

Our current system exhibits several limitations: 1) Safety is not assured with our current method.
Introducing safety constraints during training could mitigate this issue; 2) The robot’s limited capacity
restricts its ability to fully replicate certain motion capture data, like cantering. Upgrading the
hardware could address this limitation; 3) Currently, our system does not incorporate dynamics
information. This could be improved by integrating adaptation techniques during deployment; 4) The
system’s low-level motion priors and high-level policies currently lack perceptual information.

6 Conclusion

In this paper, we propose Versatile Instructable Motion prior (VIM) which learns agile locomotion
skills from diverse reference motions with a single motion prior. Our simulation and real-world results
show that our VIM captures both the functionality and style of locomotion skills from reference
motions. Our VIM also provides a temporally consistent and compact latent skill space representing
different locomotion skills for high-level tasks. With agile locomotion skills in our VIM, complex
High-level tasks can be solved efficiently with minimum human effort.
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Appendix

A Reference Motion Dataset

Our reference motions (11 reference motions in total) come from motion capture of animal motion,
trajectory optimization method, and synthesized data with a generative model. The length of our
reference motion ranges from 32 to 500. During training, we repeat the reference motions cyclically
to fit the length of the episode.

Table 5: Reference Motion Dataset:
Skill Name Walk (Mocap) Trot (Mocap) Jump while Running (Mocap) Right Turn (Mocap) Left Turn (Mocap) Pace (Mocap)

Motion length 500 32 500 38 45 38

Skill Name Jump Forward (Synthetic) Left Turn (Synthetic) Backflip (Optimization) Jump Forward (Optimization) Canter (Mocap)

Motion length 500 500 129 120 64

B Performance Across Different Reference Motions

In our framework, when the root pose of the simulated robot diverges too much from the reference
root pose, we terminate the episode, as described in Sec 3.1 . In this case, the episode length is a
good indicator of whether the learned policy could follow the reference motions. As shown in Fig. 8 ,
the performance of our framework varies when imitating different reference motions. When imitating
relatively steady motions like Walk (Mocap), Pace (Mocap), Left Turn (Mocap), the learned controller
could track the motion for a longer period. When imitating relatively agile motions, especially with
high moving speed, such as Canter (Mocap), Jump While Running (Mocap), the performance of our
system drops. This phenomenon is rooted in the methodology disparities between our robot and real
animals.
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Figure 8: Performance for different reference motions: We provide the average episode length of
the learned motion prior when it imitates different reference motions.

C Additional Discussion about ASE

We would like to clarify the significant differences between our method and the ASE baseline in the
following aspects:

• Skill Control and Learning: Unlike ASE, which learns motor skills from a transition
dataset in an unsupervised manner without controlling the outcome, our method intentionally
learns specific motor skills from our reference motion dataset. This controlled learning
approach ensures that critical skills, such as the jump motion are effectively acquired. This
capability is crucial for constructing a motion prior tailored for varied high-level tasks. As
shown in ASE video and demonstration even though there is jump motion in their dataset,
ASE failed to learn it.

• Long-Term Skill Acquisition: ASE focuses on learning motor skills at the transition level,
limiting its ability to learn complex, long-term motor skills like backflipping, which require
extended motion sequences. Our method, however, leverages a combination of adversarial
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styling and dense tracking rewards, providing structured supervision for acquiring long-term
motor skills, including agile locomotion abilities like backflipping and jumping forward.
This sequence-level modeling is essential for the effective learning of complex locomotion
skills.

• Performance Evaluation: Since ASE learns different motor skills in an unsupervised
manner, it’s difficult to evaluate the performance of the learned low-level controller (There
is no evaluation or benchmark for the low-level controller in ASE paper). While our
method learns to imitate different locomotion skills in the dataset at the sequence level, we
could directly benchmark the tracking error to evaluate the quality of the learned low-level
controller. Benchmark over the low-level controller is also important if we want to build a
backbone of low-level skills for diverse potential high-level tasks.

D Additional Discussion over Skill Learning Frameworks

In this section, we provide further discussion on the existing skill-learning framework:

• Function Tracking: The resulting controller of a skill-learning framework can accurately
track the movement of the robot’s base.

• Skill Tracking: The resulting controller can faithfully replicate the joint movement patterns
of the robot.

• Agility: The controller is capable of producing highly agile locomotion skills. Since there is
no universally accepted definition of "agile", in our work, we consider a skill "agile" if it
involves the robot leaving the ground, such as in a backflip or jump, or running/turning at
high speed.

• Control Skills to Learn: Given a fixed set of reference motions, the resulting controller
can reliably reproduce specific skills. Unsupervised methods like ASE do not guarantee
performance on any particular skill in the dataset.

• Multiple Skills: The resulting controller is capable of performing a variety of different
skills.

• Diverse Sources: The resulting controller learns different skills from various sources.

• Reusable: The resulting controller can be reused for tasks beyond reproducing the reference
motion’s skills.

• No Privileged Information: The resulting controller does not require privileged information
(such as the robot’s velocity or position in the world frame) during deployment.

• Real Deployment: The proposed framework is validated in real-world scenarios.

Additional discussion on the performance of ASE/AMP-based methods in agile locomotion
skills: ASE struggles to capture agile locomotion skills for the following reasons:

• Difficulty in Learning Agile Skills: Agile locomotion skills, such as jumping and back-
flipping, are inherently more challenging to learn compared to other locomotion skills like
walking or trotting. Due to the well-known mode-collapse issue in the generative adver-
sarial learning paradigm, it is particularly difficult for generative adversarial methods (like
ASE/AMP) to discover and learn these complex skills in an unsupervised manner.

• Limitations of Transition-Level Learning: As discussed in Appendix C, ASE/AMP
performs adversarial learning at the transition level, focusing on the current and previous
states of the robot (as shown in Formula (3) in ASE[18]). However, skills that require a
longer sequence of actions, such as backflipping or jumping, are difficult to learn with this
approach. For example, executing a backflip involves multiple stages: sitting down, lifting
the front legs, pushing off with the rear legs, adjusting the pose in mid-air, and landing.
Similarly, jumping and running require coordinated stages of movement. Transition-level
supervision lacks the long-term guidance needed to learn these complex, agile skills.
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Table 6: Evaluation of Motion Prior in Simulation for single Reference motion: We compare Horizontal
and Vertical Root Position (Root Pos (XY), Root Pos (Height)), Root Orientation (Root Ori), Joint Angle, and
End Effector Position (EE Pos) tracking errors and RL objectives of all methods.

Tracking Error ↓ RL Objectives ↑
Method Root Pos (XY) Root Pos (Height) Root Ori Joint Angle EE Pos Episode Return Episode Length

(m2) (m2) (rad2) (rad2) (m2)

Jump Forward (Optimization)

VIM 1.16±0.52 0.01±0.01 0.10±0.05 0.99±0.30 0.04±0.01 38.47±9.18 422.49±96.00

Motion Imitation 1.19±0.45 0.00±0.00 0.13±0.06 4.24±1.30 0.12±0.02 26.11±8.76 325.08±105.22

GAIL (Single Skill AMP) 2.00±0.48 0.04±0.01 0.10±0.05 0.92±0.22 0.03±0.01 11.71±6.59 161.38±83.92

Jump While Running (Mocap)

VIM 1.58±0.56 0.01±0.01 0.09±0.03 1.63±0.18 0.06±0.01 13.36±7.16 172.90±90.81

Motion Imitation 1.50±0.49 0.00±0.00 0.09±0.03 3.04±0.99 0.13±0.06 10.93±5.08 163.36±74.99

GAIL (Single Skill AMP) 2.19±0.84 0.04±0.01 0.17±0.04 2.48±0.61 0.11±0.02 4.61±2.84 120.48±81.14

Trot (Mocap)

VIM 1.21±0.32 0.00±0.00 0.08±0.04 0.18±0.03 0.01±0.00 21.52±10.58 213.10±103.26

Motion Imitation 1.21±0.29 0.00±0.00 0.10±0.05 0.17±0.03 0.01±0.00 17.62±8.86 174.88±87.40

GAIL (Single Skill AMP) 1.76±0.78 0.00±0.00 0.08±0.05 0.61±0.60 0.03±0.03 14.87±8.76 159.49±90.19

Left Turn (Mocap)

VIM 0.07±0.08 0.00±0.00 0.16±0.07 0.15±0.02 0.01±0.00 31.64±14.21 299.63±135.47

Motion Imitation 0.11±0.12 0.00±0.00 0.14±0.07 0.60±0.41 0.03±0.02 35.31±14.05 383.56±135.10

GAIL (Single Skill AMP) 0.15±0.16 0.00±0.00 0.17±0.08 0.18±0.10 0.01±0.01 27.75±16.92 268.36±162.53

• Limited Input for Discriminator: ASE/AMP discriminators only consider joint angles as
input, making it more challenging for the robot to learn agile locomotion skills that involve
significant changes in the robot’s position and orientation.

E Single Skill Comparison in Simulation

We conducted additional evaluations focusing on single skill learning, where all methods are required
to learn a single reference motion using identical hyperparameters. For these experiments, we
removed the motion embedding from the critic since there is only one skill to learn. We selected
Jump Forward (Optimization), and Jump while Running (Mocap) as representative skills for agile
locomotion, and Trot (Mocap) and Left Turn (Mocap) as representative skills for normal locomotion.
Each method was trained with 2× 109 samples per skill across three random seeds.

In general, as shown in Table 6, single-skill tracking tends to deliver better results, in terms of longer
episode length and higher episode return (representing the overall performance), for the specified
skill because the task is easier to learn and more samples are dedicated to that particular skill. (In
our low-level motion prior training stage, all skills share the total number of samples.) For agile
locomotion skills, our method outperforms both GAIL (Single Skill AMP) in terms of better tracking
of the robot’s root movement and the motion imitation baseline by achieving smaller joint tracking
errors. For normal locomotion skills, all methods deliver reasonable results for both Trot (Mocap) and
Left Turn (Mocap). However, GAIL (Single Skill AMP) exhibits slightly higher joint tracking error
for Trot, which we attribute to the lack of temporal alignment in the adversarial reward. Although
the GAIL baseline can faithfully reproduce the skill, it shows a slightly higher tracking error. It’s
important to note that the results in Table 6 should not be directly compared with those in Table 2 as
longer episodes tend to accumulate more errors, leading to larger tracking errors, and the experiment
setting is not identical.

F Implementation Details

Observation & Action Space: Our low-level observation includes joint angles, joint velocities,
gravity vector in the robot frame, and the previously executed actions. Our controller outputs target
joint angles for 12 joints of our robot in 25hz. The target joint angles are converted to torque command
with PD controller where KP=40, KD=1.0.

High-level Observation For Following Command task, our high-level observation includes
the target linear velocity and target angular velocity. For Jump Forward task, our high-level
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observation includes the target jumping forward velocity and the normalized phase information in
the jumping forward cycle. For Following Command + Jump Forward task, our high-level
observation includes the high-level observation for both Following Command and Jump Forward
tasks as well as an additional binary command indicating whether following command or jump
forward at current time-step

Reference Encoder Eref & Proprioception Encoder Eprop: Our reference encoder proprioception
encoder are both two-layer MLP with [256] hidden units, mapping the reference motion segment into
a 64 dimensional latent distribution and proprioception into a 64-dim robot state feature, respectively.

Low-level Policy πlow and Value Network Vlow: Our low-level policy is a three-layer MLP with
[256, 128] hidden units, mapping the robot state feature and latent command to 12-dim robot target
joint angles. Our low-level value network shares the same structure while taking a motion embedding
as additional input, and output 1-dim value for RL training. Our learnable motion embedding is a
64-dim vector for each reference motion.

High-level Policy πhigh and Value Network Vhigh: Our high-level is formulated as a three-layer
MLP with [256, 128] hidden units, mapping proprioception information and high-level task informa-
tion to high-level latent command for low-level motion prior. Our high-level value network shares the
same structure. High-level task information depends on specific task. Additional implementation
details are provided in the supplementary materials

Reward Coefficients: In our experiment, we use wori
func = wpos−xy

func = 0.1875, wpos−z
func = 1.5,

wadv
style = 1, wjoint

style = 0.5.

Other Rewards: To smooth the robot trajectory, we also include energy penalty renergy, and action
smooth reward raction. renergy = −1e− 3 ∗

∑
i |τi × q̇i| where τi is the the motor torques applied to

the ith joint, and the q̇i is the joint velocity for the ith joint. raction = −1e− 2 ∗
∑

i |ati − at−1
i | where

ati and at−1
i are the action from policy for ith joint at current timestep and the previous timestep.

Simulation Setup: We utilize IsaacGym[68] to simulate 4096 robots in parallel and our simulation
runs in 200 Hz. During motion prior training, for each robot, we uniformly sample a reference motion
from the dataset for it to track.

G High Level Task Reward

Our high level jumpping reward is adapted from CAJun [59] with the following terms.

rjump = 2 ∗ (2− ∥vrobot − 2∥)/2 + 5 ∗ (Base Height − 0.6) ∗max(
∑

f∈feet

ĉf − 4, 0)

+ 3 ∗
∑

f∈feet

∥1 + cf − ĉf∥2 + 1 ∗
∑

f∈feet

∥cf − ĉf∥ ∗min(hf , 0.16)/0.16

Here our desired foot contact ĉf at each step is a binary value generated by the task generator as in
CAJun [59] with value 0 for no contact, and value 1 for contact, similar for the actual contact cf , and
hf is the foot height over the ground.

Our high level command following reward is defined as follows.

rfollowing cmd = 1.5 ∗ exp
(
∥vcommand − vrobot∥2 /0.25

)
+ 1.5 ∗ exp

(
∥ωcommand − ωrobot∥2 /0.25

)
− 2 ∥Base Height − Target Height∥

Here the vcommand is the commanded target linear forward velocity, vrobot is the current forward
velocity of the robot. The ωcommand is the commanded target angular velocity, ωrobot is the current
angular velocity of the robot.

We also include energy penalty and action smooth reward as shown in the other rewards in Appendix F.
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H Additional Low-level Skill Comparison

In addition to the low-level skill comparison in Figure 5, we provide another low-level skill compari-
son in Figure 9. Our controller learned to jump forward in the air with a natural gait, while baselines
failed to leave the ground or failed to move forward

Figure 9: Real World Jump Forward Trajectory Comparison: Each row represents a single
trajectory (From top to bottom: Reference Motion, VIM, GAIL, Motion Imitation). Trajectories are
shown from right to left.

I High-level Policy Visualization

To better understand of the performance of our high-level policy, we provide Following Command
trajectory in Figure 10. Though our low-level controller only learns to turn with specific angular
velocity, our high-level could track different angular velocity in the real world.

Figure 10: Real World high-level Following Commands trajectory: Our high-level Following
Command policy can track wide-range linear and angular velocity commands even for velocities
absent in the reference motion dataset, indicating high-level policy can manipulate the motion prior
for High-level tasks. The trajectory is shown from left to right, from top to down.

J Detailed Observation Space

We provide more detailed observation space for our motion prior. Our Unitree A1 robot has 12
joints, corresponding to 12 Degrees of Freedom (DoF), and we use positional control for the 12 DOF
(KP = 40 and KD = 1.0). Specifically, the proprioceptive state of the robot contains:
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• Joint Angle - R12×3 contains joint rotations for all joints (12D) for the past three control step.

• Joint Velocity - R12×3 contains joint velocities for all joints (12D) for the past three control step.

• Previous Action - R12×3 contains positional command for all joints (12D) for the past three control
step.

• Projected Gravity - R3×3 contains the projected gravity in the robot frame, representing the
orientation of the robot for the past three control steps.

• Foot position - R3×4×3 contains the robot foot positions in the robot frame, 3 dim per foot per
timestep for the past three control steps

Note that, our discriminators used for adversarial reward only use the joint angle transition for training
and reward calculation.

We also provide additional high-level observation for the example high-level tasks we used. For
Following Command task, we provide target linear velocity and target angular velocity as high-level
observation. For Jumping Forward task, since the robot is tasked to jump forward in a fixed frequency,
we provide normalized temporal phase as high-level observation.

K Domain Randomization

Here we provide our hyperparameters related to domain randomization for better sim2real transfer
and shared by all methods.

Parameter Range
Added Mass for the base [-1, 3]
Friction [0.1, 1.3]
Restitution Range [0, 1.0]
COM shift [-0.05, 0.05]
Motor Strength ratio [0.7, 1.1]
KP randomize ratio [0.8, 1.5]
Kd randomize ratio [0.5, 1.5]
Proprioception noise [0, 0.01]
Action noise [0, 0.05]

L RL Training Details

Here we provide hyperparameters related to RL training and shared by all methods.

Hyperparameter Value
Max Episode Length 500
Non-linearity ELU
Policy initialization Standard Gaussian
# of samples per iteration 4096 * 48
Discount factor .99
Parallel Environment 4096
Optimization epochs 5
# of batches 16
Clip parameter 0.1
Policy network learning rate 3e-4
Value network learning rate 3e-4
Discriminator learning rate 1e-5
Entropy 0.001
Optimizer Adam
β for latent regularization 1e-5
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M Additional Results Regarding Stylization Tracking

Though adversarial training is generally unstable, we found it relatively stable during our training.
We provide the training log of our discriminator and the average adversarial reward across epochs in
Figure 11. Specifically, We applied the following techniques to stabilize the adversarial training.

• We clipped the gradient of the discriminator to have the maximum norm of 0.5

• We applied gradient penalties during the training of the discriminator, following AMP [22]

We think our motion imitation reward also helped stabilize the adversarial training since our joint
tracking and end-effector position tracking reward provide fine-grained instruction for policy training.
We didn’t observe specific latent skill space collapse during our training, we think this is for the
following reasons:

• We provide motion embedding for the value function to distinguish different reference
motions during training, as shown in Figure 3 in the manuscript. With motion embedding,
the value function in our method could learn to distinguish different skills easily.

• Our tracking reward terms provided dense instruction for the controller to generate different
behaviors, which further regularized the latent skill space during training.
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Figure 11: Adversarial Training Log

To study the training behavior in more detail, we visualized the episode return for the joint angle
tracking term with the average adversarial reward in Figure 12. We found that in the first 1000 epoch,
the episode return of joint tracking increased swiftly corresponding to the rapidly decreasing period
of average adversarial reward. After 1000 epochs, the increasing rate of the episode return of joint
tracking drops. We think this phenomenon corresponds to our claim in the manuscript that the model
transits from learning the overall motion, where the episode return of joint tracking boost, towards
learning the fine-grained behavior using the joint angle tracking reward, where the episode return of
joint tracking grows slowly.
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Figure 12: Average Adversarial Reward with Episode Return (Joint Angle Tracking)
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