
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRUC & PLAY: PROBABILISTIC RESIDUAL USER
CLUSTERING FOR RECOMMENDER SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern recommender systems are typically based on deep learning (DL) models,
where a dense encoder learns representations of users and items. As a result, these
systems often suffer from the black-box nature and computational complexity of
the underlying models, making it difficult to systematically interpret their out-
puts and enhance their recommendation capabilities. To address this problem, we
propose Probabilistic Residual User Clustering (PRUC), a causal Bayesian rec-
ommendation model based on user clustering. Specifically, we address this prob-
lem by (1) dividing users into clusters in an unsupervised manner and identifying
causal confounders that influence latent variables, (2) developing sub-models for
each confounder given the observable variables, and (3) generating recommenda-
tions by aggregating the rating residuals under each confounder using do-calculus.
Experiments demonstrate that our plug-and-play PRUC is compatible with various
base DL recommender systems, significantly improving their performance while
automatically discovering meaningful user clusters.

1 Introduction

Over the past decade, personalized recommendations have significantly improved user experiences
in domains such as e-commerce and social media. The recommender systems driving these ad-
vancements often rely on sophisticated deep learning (DL) models (Chung et al., 2014; Vaswani
et al., 2017; Wu et al., 2019) capable of handling vast amounts of data, enabling highly accurate pre-
dictions and personalized interactions. Despite their effectiveness, these models often function as
black boxes, lacking transparency and interpretability. This limitation poses significant challenges,
particularly when diagnosing and enhancing the performance of recommender systems in scenarios
involving domain shifts, such as changes in users’ countries. Cold-start scenarios, a critical problem
in recommendation systems, exacerbate these issues due to the presence of heterogeneous features
and the influence of diverse and spurious patterns. As a result, existing models exhibit notably low
performance in such settings.

Existing work (Yuan et al., 2020; Wu et al., 2020; Bi et al., 2020; Li et al., 2019; Hansen et al.,
2020; Liang et al., 2020; Zhu et al., 2020; Liu et al., 2020) often addresses domain shift by estab-
lishing connections across different domains through shared users or items. However, in real-world
applications, such overlap is often unavailable. For instance, when recommending distinct items to
users from different countries, there is typically no overlap in either users or items. This scenario
demands more sophisticated modeling to account for shared confounders. For example, consider
position/exposure bias in recommender systems: if the system ranks the item (e.g., an ad) higher,
users are biased to rate it higher or have a higher probability to click it. Another example is popular-
ity bias; users have a higher probability to click popular or trending items. A system needs to correct
for such biases; otherwise the system’s accuracy will drop significantly when the once popular items
become less popular. Additionally, existing methods often fail to consider latent user clusters when
cluster IDs are not available in the datasets, therefore failing to model (dis)similarities among users.

To address these problems, we propose a novel causal hierarchical Bayesian deep learning model,
dubbed Probabilistic Residual User Clustering (PRUC), which divides users into latent clusters and
makes recommendations based on causal confounders. Our Bayesian causal framework models the
residual between the ground-truth rating (or CTR) and the base model’s predicted rating, thereby
achieving more precise recommendations. Notably, PRUC is plug-and-play, meaning that it is com-
patible with any base DL recommendation model and can enhance the original model’s performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

෩𝑹 𝒗

𝒖 𝒔

𝒙𝒗

J

I

𝝅

𝝁 𝚺
K

෩𝑹: residual rating 𝒗𝒋: item j’s latent vector

𝒖𝒊: user i’s latent vector 𝝅𝒊: cluster ID for user
𝒙𝒋

𝒗: item j’s raw features 𝒔: causal confounder

𝝁𝒌: mean of cluster k 𝚺𝐤: covariance of cluster k

Deep Learning Model

Figure 1: Probabilistic graphical model of our PRUC framework.

Our contributions are as follows:

1. We identify the existence of user clusters in various datasets, as well as latent confounders
that have a causal effect on user and item hidden representations in DL models.

2. We propose a causal Bayesian framework to discover the latent structures of users, items,
and ratings. We incorporate user clusters and causal confounders as latent variables in the
causal structural model (SCM) and perform inference via do-calculus over the confounders.

3. We formulate the rating prediction problem as residual prediction, i.e., predicting the dif-
ference between the ground-truth user ratings and the base DL model’s predicted ratings,
to enhance the performance of base DL recommenders.

4. Experiments verify that our plug-and-play PRUC is compatible with various base DL rec-
ommender systems, significantly improving their performance while automatically discov-
ering meaningful user clusters.

2 Probabilistic Residual User Clustering

In this section, we describe our proposed PRUC framework.

2.1 Problem Setting and Notations

Consider a recommendation dataset containing I users and J items. A DL encoder fv(·) : Rd → Rh

encodes each item j’s raw features xv
j ∈ Rd into fv(x

v
j); assume there exists another decoder deep

learning model fx(·) : Rh → Rd, which decodes latent representation vj back to the raw item
features xv

j . For a given user i and an item j, there is a ground-truth rating Rij ∈ R, a base
predicted rating R̂ij ∈ R provided by a base recommender, and a residual rating R̃ij = Rij − R̂ij .
There is a latent cluster ID k (k ∈ {1, ...,K}) that indicates which user group user i belongs to.
We assume that there exists a user latent vector ui ∈ Rh for each user i and an item latent vector
vj ∈ Rh for each item j; they are both impacted by a causal confounder s ∈ Rg , where g ≪ h.

Our goal is to predict the final rating R using the residual R, i.e., R = R̂ + R̃, where R̂ represents
the rating from the original (base) DL recommender. When the original recommender is provided,
R̂ is fixed; therefore we only need to learn R̃ in order to predict the final rating R. For generality,
we assume M domains, with mi and mj denoting the domain ID of user i and item j, respectively.

2.2 Method Overview

We use a variational Bayesian framework to learn the latent parameters. Fig. 1 illustrates the corre-
sponding probabilistic graphical model (PGM).

Generative Process. Below we describe the generative process of PRUC shown in Fig. 1.

For each domain m ∈ {1, 2, . . . ,M}:

• Draw the confounder sm from a prior distribution, for example, p(s) ∼ N (0, I):

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• For each user i:
– Draw the user cluster ID πi from categorical distribution π.
– Draw user latent variable ui from the πi’th Gaussian distribution, i.e.,
p(ui|{µk,Σk}Kk=1, s, π) ∼ N (µπi

+ Wusm,Σπi
). Notice that Wu is the learnable

global parameter shared by all users.
– For each item j:

* Draw item latent variable vj from distribution p(vj |s) ∼ N (Wvsm, λ−1
v I), where Wv

is the learnable global parameter shared by all items, I is the identity matrix, and λv ∈ R
is the precision.

* Draw the residual rating R̃ij from distribution p(R̃ij |ui,vj , s) ∼ N (u⊤
i vj +

w⊤
Rsm, λ−1

R̃ij
), where wR is the learnable vector shared by all ratings and λR̃ij

is the
precision.

* Draw raw item features xv
j from distribution p(xv

j |vj) ∼ N (fx(vj), λ
−1
x I), where I is

the identity matrix and λx ∈ R is the precision. fx is a parameterized function that could
be learned.

Model Factorization. As shown in Fig. 1, we factorize the generative model into five conditional
distributions:

p(ui,vj ,x
v
j , R̃ij |{µk,Σk}Kk=1, sm, π) = p(R̃ij |ui,vj , sm)p(ui|{µk,Σk}Kk=1, sm, π)p(xv

j |vj)p(vj |sm). (1)

Each distribution is assumed as a gaussian distribution and is shown as follows:

p(R̃ij |ui,vj , sm) = N (u⊤
i vj +w⊤

Rsm, λ−1

R̃ij
), (2)

p(ui|{µk,Σk}Kk=1, sm, π) = N (µπi
+Wusm,Σπi), (3)

p(xv
j |vj) = N (fx(vj), λ

−1
x I), (4)

p(vj |sm) = N (Wvsm, λ−1
v I), (5)

where i and j refers to the user index and the item index, respectively. We employ an inference
distribution q(ui,vj |xv

j) to approximate the distribution p(ui,vj |xv
j) for the inference model.

q(ui,vj |xv
j) = q(ui)q(vj |xv

j). (6)

More specifically, we assumes q(vj |xv
j) follows a gaussian distribution:

q(vj |xv
j) = N (fv(x

v
j),Λ

−1
v I). (7)

Here, j is the item index, Λv ∈ R refers to the precision, and fv is a learnable mapping function.

Learning Objective. We maximize an evidence lower bound (ELBO) as our learning objective for
both generative and inference model.

LELBO(x
v
j , R̃ij) = Eq(ui,vj |xv

j
)

[
log p(ui,vj ,x

v
j , R̃ij |{µk,Σk}K

k=1, sm, π)
]
− Eq(ui,vj |xv

j
)

[
log q(vj |xv

j)]. (8)

Combining Eqn. 1 and Eqn. 6, we obtain the following decomposition:

LELBO(x
v
j , R̃ij) = Eq(ui)

[
log p(ui|{µk,Σk}Kk=1, sm, π)

]
(9)

+ Eq(vj |xv
j)

[
log p(xv

j |vj)
]

(10)

+ Eq(ui,vj |xv
j)

[
log p(R̃ij |ui,vj , sm)

]
(11)

− DKL

(
q(vj |xv

j)∥p(vj |sm)
)
, (12)

where DKL(·∥·) is the Kullback-Leibler (KL) divergence. For Eqn. 9, we compute the log likeli-
hood for each cluster k as

log p(ui|{µk,Σk}, sm, π) = −
1

2

∑
i∈Ik

[
log |Σk|+ (ui − µk −Wusm)⊤Σ−1

k (ui − µk −Wusm)
]
+ C, (13)

where i is the user index, Ik is the set of user index that belongs to cluster k, and C is a constant.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Similarly, all the other terms can be expanded as:

log p(xv
j |vj) = −λx

2
∥xv

j − fx(vj)∥2 + C, (14)

log p(R̃ij |ui,vj , s) = −
λR̃ij

2

(
R̃ij − u⊤

i vj −w⊤
Rsm

)2

+ C, (15)

DKL

(
q(vj |xv

j)∥p(vj |sm)
)
=

λv

2
∥vj −Wvsm∥2 − Λv

2
∥vj − fv(x

v
j)∥2 + C. (16)

Intuition for Each Term in Eqn. 8. Below, we describe the intuition of each term in Eqn. 8:

1. Regularize Latent Variable ui (Eqn. 9). Eq(ui)[p(ui|{µk,Σk}Kk=1, sm, π)] aims to regu-
larize user i’s latent variable ui, ensuring ui is close to the center of its corresponding user
cluster πi, and therefore close to other users’ latent embeddings in the same cluster.

2. Reconstruct Data xv
j from vj (Eqn. 10). q(vj |xv

j) and p(xv
j |vj) are to reconstruct data xv

j
from the inferred vj , which encourage the latent variable vj to maintain as much relevant
information as possible from the raw features xv

j .

3. Predict Residual Rating R̃ij from ui and vj (Eqn. 11). p(R̃ij |ui,vj , sm) use the in-
ferred ui, vj , and the causal confounder sm to predict the residual rating, thereby encour-
aging ui and vj to retain more information to maximize prediction performance.

4. Regularize Latent Variable vj (Eqn. 12). DKL(q(vj |xv
j)∥p(vj |sm)) is the KL diver-

gence term between the inference model q(·|xv
j) and the generative model p(·|sm); this

encourages the inferred posterior q(vj |xv
j) to be close to the prior distribution p(vj |sm).

2.3 Inference and Learning

In our framework, we need to learn several parameters, including the Gaussian parameters
{µk,Σk}Kk=1, user latent u, item latent v, and the parameters of the functions fx(·) and fv(·),
as well as Wu, Wv , and wR. The following sections detail the learning process for all these pa-
rameters. The complete algorithm is outlined in Algorithm 1.

1) {µk,Σk}Kk=1. To optimize {µk,Σk}Kk=1, we take derivative of Eqn. 13 w.r.t. µk and Σk as
follows:

∂L
∂µk

= Σ−1
k (ui − µk −Wusm) , (17)

∂L
∂Σk

=
1

2
Σ−1

k

[
(ui − µk −Wusm) (ui − µk −Wusm)

⊤ −Σk

]
Σ−1

k . (18)

Setting Eqn. 17 and Eqn. 18 to zero leads to the following update rules, respectively:

µk =
1

|Ik|
∑
i∈Ik

(ui −Wusm) , (19)

Σk =
1

|Ik|
∑
i∈Ik

(ui − µk −Wusm) (ui − µk −Wusm)
⊤
, (20)

where Ik is the set of user index i that belongs to cluster k.

2) ui,vj . After computing the gradients of Eqn. 8 w.r.t. to ui and vj , we obtain the following
update rules:

ui = (ΣπiVλ
R̃(i,:)

V⊤ + I)−1[µπi
+Wusm +ΣπiVλ

R̃(i,:)
(R̃(i,:) −w⊤

RsmI)], (21)

vj = [Uλ
R̃(:,j)

U⊤ + (λv − Λv)I]
−1[λvWvsm − Λvfv(x

v
j) +Uλ

R̃(:,j)
(R̃(:,j) −w⊤

RsmI)]. (22)

Note that here U and V refer to user latent matrix (ui)
I
i=1 and item latent matrix (vj)

J
j=1.

R̃(i,:) = (R̃i1, · · · , R̃iJ)
⊤, R̃(:,j) = (R̃1j , · · · , R̃Ij)

⊤ . λR̃(i,:)
= diag(λR̃i1

, · · · , λR̃iJ
), λR̃(:,j)

=

diag(λR̃1j
, · · · , λR̃IJ

).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Inference and Learning Algorithm of PRUC
Input: Raw item features xv , initialized fx(·) and fv(·) parameters, Wu,Wv,wR, initialized
Gaussian parameters {µk,Σk}Kk=1, and the number of epochs T.
for t = 1 : T do

for m = 1 : M do
Update ui and vj using Eqn. 21 and Eqn. 22.
Update Wu,Wv,wR using Eqn. 23, Eqn. 24 and Eqn. 25.
Update the parameters of fv(·) using gradient ascent of L in Eqn. 8.

Update {µk,Σk}Kk=1 using Eqn. 19 and Eqn. 20, respectively; update parameters of fx(·) using
gradient ascent of L in Eqn. 8.
Output: fx(·) and fv(·) parameters, Wu,Wv,wR, and Gaussian parameters {µk,Σk}Kk=1.

3) Wu, Wv , wR. The update rules for Wu, Wv , and wR are as follows:

Wu =
1

I
(

I∑
i=1

ui −
K∑

k=1

|Ik|µk)s
⊤
m(sms⊤m)−1, (23)

Wv =
1

J

J∑
j=1

vjs
⊤
m(sms⊤m)−1, (24)

wR =

∑
i,j λR̃ij

(R̃ij − u⊤
i vj)∑

i,j λR̃ij

(sms⊤m)−1sm. (25)

4) Parameters of fx(·) and fv(·) . We use gradient ascent of L in Eqn. 8 to update these parameters.

Inference. Inference includes the E-Step in Algorithm 1, where PRUC updates learnable parameters
Wu,Wv , wR, and the parameters of encoder model fv(·) using gradient ascent of L in Eqn. 8.

Learning. Learning includes the iteration between the E-Step and M-Step in Algorithm 1 until con-
vergence. In each M-Step, we update the Gaussian parameters {µk,Σk}Kk=1 following the update
rule from Eqn. 19 and Eqn. 20, respectively; we also update parameters of decoder model fx(·)
using gradient ascent of L in Eqn. 8.

2.4 Plug-and-Play PRUC

Below we discuss the key components of our plug-and-play PRUC as a Bayesian causal inference
framework.

Inferring User Cluster πi. With the learned Gaussian mixture’s parameters, i.e., the mean and
covariance µk and Σk for each Gaussian component k (each Gaussian component represents one
user cluster), PRUC infers the cluster for each user i, i.e., p(πi|R̃ij , {ui}, {vj}, {µk,Σk}Kk=1), i.e.,
which cluster πi user i belongs to.

Isolating Causal Confounders sm. With the learned structured causal model (SCM), we iso-
late the causal confounders sm for each domain m by approximating its posterior distribution
p(sm|R̃,xv

j , {µk,Σk}Kk=1) via variational domain indexing (VDI) (Xu et al., 2023). In this way,
we can minimize the bias introduced by the causal confounder sm when inferring ui and vj us-
ing Eqn. 3 and Eqn. 7, respectively.

Debiasing the Causal Confounders. Under our PRUC framework, for each inferred user cluster k,
we perform causal inference for each user i in the cluster to predict the residual R̃ij (for each item j)
while debiasing the causal confounders s. Specifically, with inferred ui and vj , we can predict R̃ij

by do-calculus as

p(k)(R̃ij |do(ui), do(vj)) =
∑M

m=1
p(k)(R̃ij |ui,vj , sm)p(sm), (26)

where p(k)(R̃ij |ui,vj , s) represents the k’th sub-model trained from the k’th cluster’s user data. In
practice, we use k = πi (πi is user i’s cluster) when predicting user i’s rating R̃ij .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

෩𝑹 𝒗

𝒖 𝒔

𝒙𝒗
J

I

𝝅

𝝁 𝚺
K

×

×

Figure 2: Causal inference in PRUC
is equivalent to cutting the the con-
founder s’s influence on ui and v.

Note that performing causal inference by intervening (ui,vj) ef-
fectively cuts the relations between the causal confounders s and
(ui,vj). Fig. 2 demonstrate the do-calculus that PRUC performs
for debiasing the causal confounder s.

Intuition behind Do-Calculus. The rationale of performing do-
calculus in PRUC is that getting interventional distributions of-
ten requires intervening the recommender system to collect train-
ing data, which is expensive in practice. In contrast, do-calculus
works by leveraging existing data to estimate the conditional dis-
tribution p(k)(R̃ij |ui,vj , s), and therefore prevent the potential
cost (and risk) of actually intervening the system.

Summary. To summarize, for each user i, PRUC causally infer
the residual rating R̃i as follows:

1. Infer the user cluster πi by approximating its posterior p(πi|ui,vj ,x
v
j , {µk,Σk}Kk=1).

2. Infer the residual rating R̃ij by causal Bayesian model averaging defined in Eqn. 26.
3. Predict the final rating as R = R̃+ R̂, where R̂ is the base recommender’s prediction.

3 Experiments

In this section, we evaluate our PRUC as a plug-and-play framework to enhance arbitrary base
recommenders on XMRec, which contains data from 18 countries.

3.1 Datasets

Table 1: Three source-target domain splits for XMRec.

Split Source Domains Target Domains

1 France, Italy, India Japan, Mexico

2 Mexico, Spain, India Japan, Germany

3 Germany, Italy, Japan United States, India

XMRec (Bonab et al., 2021) is a collection
of datasets that encompass 18 local mar-
kets (i.e., countries), 16 distinct product cat-
egories, and 52.5 million user-item interac-
tions. For each item j, we use its item de-
scriptions from the dataset as the item fea-
tures xv

j . To minimize unnecessary noise,
users who have made fewer than three pur-
chases are excluded from our experiments
for all models. Table 1 shows the source-target domain splits for XMRec. For example, in Split 1,
we use France, Italy, and India as the source domains and Japan and Mexico as the target domains.
The goal is to improve performance in the target domains.

In all experiments, we focus on the cold-start setting where for the target domains, only one rating
per user is available in the training set, making the recommendation task extremely challenging.

3.2 Base Recommenders and Baselines

Note that our PRUC method is a plug-and-play solution, compatible with any base recommenders.
In this paper, we select the following three base recommenders as base models to demonstrate that
PRUC can enhance state-of-the-art recommendation models.

• CDL (Wang et al., 2015) is a hierarchical Bayesian framework that jointly integrates deep rep-
resentation learning of content information with collaborative filtering on the ratings (feedback)
matrix within a unified model.

• DLRM (Naumov et al., 2019) is a deep learning recommendation model that uses embeddings
to represent sparse and dense features and predicts event probability.

• PerK (Kweon et al., 2024) is a recommendation approach that calculates the expected user
utility by leveraging calibrated interaction probabilities and selects the recommendation size K
that maximizes this utility.

Here CDL, DLRM, and PerK serve as both (1) our baselines to compare against and (2) our base
recommenders to enhance (see Fig. 1). Our experiments below will show that our PRUC can be

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

plugged in to any of these base recommenders and improve their recommendation performance. For
more details on training configurations, see Appendex A.2.

3.3 Metrics

We use five metrics for evaluation: Recall, NDCG, F1, Precision, and mAP.

Recall. Recall@N measures the proportion of relevant items retrieved among the top N recom-
mended items for user i. It is defined as:

Recalli@N =

∑N
n=1 reli,n
|Ji|

, (27)

where reli,n is an indicator that equals 1 if the item at rank n is relevant to user i, and 0 otherwise.
|Ji| denotes the total number of relevant items for user i.

Precision. Precision@N measures the proportion of the top N recommended items that are relevant
to user i. It is defined as:

Precisioni@N =

∑N
n=1 reli,n
N

, (28)

where reli,n is 1 if the item at rank n is relevant to user i, and 0 otherwise.

mAP. Mean Average Precision (mAP) computes the average precision over all relevant items for
user i. See Appendix A.1 for more details.

F1-score. The F1 Score@N for user i is the harmonic mean of Precision@N and Recall@N, pro-
viding a balance between the two metrics:

F1i@N = 2× Precisioni@N × Recalli@N

Precisioni@N + Recalli@N
, (29)

where Precisioni@N and Recalli@N are as previously defined for user i at rank N .

NDCG. Normalized Discounted Cumulative Gain (NDCG@N) evaluates the quality of the ranked
list by considering the positions of the relevant items, giving higher scores to items appearing earlier
in the list. See Appendix A.1 for more details.

Note that all metrics are computed by averaging over all users i.

3.4 Results

Results for Different Base Models. Table 2 shows the performance of our PRUC with different
base models, i.e., CDL, DLRM, and PerK in terms of different metrics. We can see that our PRUC,
even without the causality component (i.e., “PRUC w/o Causality”) can often enhance the perfor-
mance of different base models, and our full PRUC (i.e., “PRUC (Full)”) can further improve the
recommendation performance.

Recall@N with Larger N . Fig. 3 shows Recall@N for N = 50, 100, 150, 200, 250, 300 across all
three base models (CDL, DLRM, and PerK) and three source-target domain splits (Table 1). These
figures indicate that PRUC, even without causality, consistently outperforms the base models, while
our full PRUC consistently outperforms PRUC without causality in all settings.

Results for Different Clusters Discovered by PRUC. Table 3, Table 4, and Table 5 show the
performance of our PRUC with CDL, DLRM, and PerK as the base model (base recommender). We
can see that our PRUC, even without the causality component (i.e., “PRUC w/o Causality”) can often
enhance the performance of the base model consistently across all clusters. Besides, our full PRUC
(i.e., “PRUC (Full)”) can further improve the recommendation performance. For example, CDL as
the base model achieves a recall@20 of 0.0241 for User Cluster 1 in the domain split of “France,
Italy, India → Japan, Mexico”. Our PRUC without the causal inference component improves the
recall to 0.0278. Our full PRUC then further improves its recall@20 to 0.0708.

Visualization of PRUC’s Discovered User Clusters. Fig. 4 shows the visualization of the discov-
ered user clusters from PRUC with base models CDL (left), DLRM (middle), and PerK (right) for
the domain split “France, Italy, India → Japan, Mexico”.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance of PRUC with different base models. The best results are marked with bold face.

Data Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0143 0.0016 0.0028 0.0009 0.0009
PRUC w/o Causality 0.1058 0.0126 0.0333 0.0088 0.0067

PRUC (Full) 0.1091 0.0128 0.0463 0.0108 0.0068
DLRM (Base Model) 0.0044 0.0004 0.0004 0.0002 0.0002
PRUC w/o Causality 0.0232 0.0026 0.0039 0.0014 0.0014

PRUC (Full) 0.0295 0.0035 0.0048 0.0018 0.0018
PerK (Base Model) 0.1098 0.0128 0.0512 0.0112 0.0068

PRUC w/o Causality 0.1376 0.0160 0.0558 0.0129 0.0085
PRUC (Full) 0.1634 0.0189 0.0626 0.0148 0.0100

Mexico, Spain, India →Japan, Germany

CDL (Base Model) 0.1127 0.0135 0.0301 0.0086 0.0072
PRUC w/o Causality 0.1688 0.0209 0.0573 0.0151 0.0111

PRUC (Full) 0.1837 0.0238 0.0605 0.0168 0.0127
DLRM (Base Model) 0.0756 0.0093 0.0085 0.0041 0.0049
PRUC w/o Causality 0.1455 0.0181 0.0275 0.0098 0.0097

PRUC (Full) 0.2017 0.0246 0.0545 0.0156 0.0131
PerK (Base Model) 0.1443 0.0177 0.0601 0.0143 0.0094

PRUC w/o Causality 0.2260 0.0269 0.0920 0.0219 0.0142
PRUC (Full) 0.2641 0.0322 0.1082 0.0258 0.0171

Germany, Italy, Japan →United States, India

CDL (Base Model) 0.0252 0.0055 0.0084 0.0040 0.0031
PRUC w/o Causality 0.0194 0.0045 0.0049 0.0030 0.0026

PRUC (Full) 0.0222 0.0053 0.0066 0.0037 0.0030

DLRM (Base Model) 0.0024 0.0006 0.0003 0.0003 0.0003
PRUC w/o Causality 0.0045 0.0012 0.0011 0.0008 0.0007

PRUC (Full) 0.0066 0.0016 0.0024 0.0012 0.0009
PerK (Base Model) 0.0148 0.0033 0.0041 0.0022 0.0018

PRUC w/o Causality 0.0197 0.0044 0.0054 0.0029 0.0025
PRUC (Full) 0.0206 0.0046 0.0059 0.0031 0.0026

Figure 3: Recall@N on XMRec for PRUC with three base models, i.e., CDL, DLRM, and PerK.

Figure 4: Visualization of the discovered user clusters from PRUC with base models CDL (left), DLRM
(middle), and PerK (right) for the domain split “France, Italy, India → Japan, Mexico”.

Ablation Study. Comparing the performance of “PRUC w/o Causality” and “PRUC (Full)” in both
Table 2 and Fig. 3, we can see that the full PRUC often outperforms the original “PRUC w/o Causal-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance of PRUC on different user clusters with CDL as the base model. “-” means a cluster
contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

CDL (Base Model) 0.0241 0.0028 0.0062 0.0018 0.0015
1 PRUC w/o Causality 0.0278 0.0033 0.0056 0.0018 0.0017

PRUC (Full) 0.0708 0.0074 0.0652 0.0105 0.0039
CDL (Base Model) 0.0126 0.0014 0.0022 0.0007 0.0008

2 PRUC w/o Causality 0.0075 0.0007 0.0007 0.0003 0.0004
PRUC (Full) 0.1156 0.0138 0.0431 0.0109 0.0073

CDL (Base Model) - - - - -
3 PRUC w/o Causality 0.1720 0.0205 0.0564 0.0146 0.0109

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

CDL (Base Model) 0.1742 0.0225 0.0333 0.0123 0.0120
1 PRUC w/o Causality 0.2360 0.0286 0.0721 0.0202 0.0152

PRUC (Full) 0.1950 0.0253 0.0677 0.0191 0.0135

CDL (Base Model) 0.0903 0.0102 0.0289 0.0072 0.0054
2 PRUC w/o Causality 0.1540 0.0199 0.0570 0.0146 0.0106

PRUC (Full) 0.1796 0.0233 0.0579 0.0160 0.0124
CDL (Base Model) - - - - -

3 PRUC w/o Causality 0.0692 0.0076 0.0277 0.0059 0.0040
PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

CDL (Base Model) 0.0262 0.0059 0.0079 0.0041 0.0033
1 PRUC w/o Causality 0.0263 0.0064 0.0071 0.0049 0.0036

PRUC (Full) 0.0262 0.0064 0.0065 0.0042 0.0036
CDL (Base Model) 0.0244 0.0054 0.0088 0.0042 0.0031

2 PRUC w/o Causality 0.0205 0.0045 0.0061 0.0032 0.0025
PRUC (Full) 0.0208 0.0050 0.0070 0.0036 0.0028

CDL (Base Model) 0.0277 0.0049 0.0066 0.0028 0.0027
3 PRUC w/o Causality 0.0101 0.0024 0.0010 0.0011 0.0013

PRUC (Full) 0.0137 0.0026 0.0030 0.0016 0.0014

Table 4: Performance of PRUC on different user clusters with DLRM as the base model. “-” means a cluster
contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

DLRM (Base Model) 0.0051 0.0005 0.0004 0.0002 0.0003
1 PRUC w/o Causality 0.0137 0.0013 0.0019 0.0006 0.0007

PRUC (Full) 0.0345 0.004 0.0056 0.0021 0.0021
DLRM (Base Model) 0.0000 0.0000 0.0000 0.0000 0.0000

2 PRUC w/o Causality 0.0208 0.0024 0.0045 0.0014 0.0013
PRUC (Full) 0.0000 0.0000 0.0000 0.0000 0.0000

DLRM (Base Model) - - - - -
3 PRUC w/o Causality 0.0334 0.0038 0.0052 0.0021 0.0020

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

DLRM (Base Model) 0.0000 0.0000 0.0000 0.0000 0.0000
1 PRUC w/o Causality 0.1621 0.0176 0.0218 0.0085 0.0093

PRUC (Full) 0.3074 0.0395 0.0213 0.0152 0.0211
DLRM (Base Model) 0.0780 0.0096 0.0087 0.0042 0.0051

2 PRUC w/o Causality 0.1607 0.0201 0.0363 0.0113 0.0107
PRUC (Full) 0.1984 0.0241 0.0555 0.0157 0.0128

DLRM (Base Model) - - - - -
3 PRUC w/o Causality 0.1128 0.0166 0.0245 0.0095 0.0090

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

DLRM (Base Model) 0.0023 0.0006 0.0003 0.0003 0.0003
1 PRUC w/o Causality 0.0039 0.0010 0.0013 0.0008 0.0006

PRUC (Full) 0.0046 0.0011 0.0009 0.0007 0.0006
DLRM (Base Model) 0.0018 0.0005 0.0003 0.0003 0.0003

2 PRUC w/o Causality 0.0053 0.0015 0.0011 0.0009 0.0008
PRUC (Full) 0.0045 0.0011 0.0012 0.0007 0.0007

DLRM (Base Model) 0.0036 0.0008 0.0005 0.0004 0.0004
3 PRUC w/o Causality 0.0028 0.0006 0.0003 0.0003 0.0004

PRUC (Full) 0.0141 0.0034 0.0075 0.0032 0.0019

ity”, demonstrating the causal inference’s value in PRUC. Similarly, comparing the performance of
the base model and “PRUC w/o Causality”, we can see that the functionality of discovering mean-
ingful user clusters does improve the performance.

4 Related Work

Domain-Dependent Recommendation. Previous work has explored various in-domain recom-
mendation scenarios. Early methods, such as PMF (Mnih & Salakhutdinov, 2007) and BPR (Ren-
dle et al., 2012), applied collaborative filtering techniques to address recommendation challenges.
Later, methods such as GRU4Rec (Hidasi et al., 2016), SAS4Rec (Kang & McAuley, 2018) and
KGAT (Wang et al., 2019) leveraged advanced deep learning models to enhance the performance
of recommender systems. These approaches focus on rating data between items and users but do

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Performance of PRUC on different user clusters with PerK as the base model. “-” means a cluster
contains only training-set users, i.e., no test-set users to evaluate. The best results are marked with bold face.

Data Cluster Method Recall@20 F1@20 MAP@20 NDCG@20 Precision@20

France, Italy, India →Japan, Mexico

PerK (Base Model) 0.1752 0.0204 0.1152 0.022 0.0108
1 PRUC w/o Causality 0.0544 0.0065 0.0084 0.0036 0.0035

PRUC (Full) 0.1662 0.0188 0.1087 0.0205 0.0099

PerK (Base Model) 0.0986 0.0115 0.0403 0.0094 0.0061
2 PRUC w/o Causality 0.1899 0.0220 0.0841 0.01880 0.0117

PRUC (Full) 0.1629 0.0189 0.0548 0.0138 0.0100

PerK (Base Model) - - - - -
3 PRUC w/o Causality 0.0000 0.0000 0.0000 0.0000 0.0000

PRUC (Full) - - - - -

Mexico, Spain, India →Japan, Germany

PerK (Base Model) 0.1434 0.0176 0.0582 0.014 0.0094
1 PRUC w/o Causality 0.2724 0.0325 0.1064 0.0261 0.0173

PRUC (Full) 0.2826 0.0345 0.1152 0.0275 0.0184
PerK (Base Model) 0.1495 0.0184 0.0723 0.0166 0.0098

2 PRUC w/o Causality 0.2536 0.0295 0.1082 0.0244 0.0157
PRUC (Full) 0.1499 0.0176 0.0651 0.0150 0.0093

PerK (Base Model) - - - - -
3 PRUC w/o Causality 0.0530 0.0072 0.0227 0.0063 0.0039

PRUC (Full) - - - - -

Germany, Italy, Japan →United States, India

PerK (Base Model) 0.0194 0.0043 0.0057 0.003 0.0024
1 PRUC w/o Causality 0.0296 0.0070 0.0091 0.0050 0.0039

PRUC (Full) 0.0308 0.0068 0.0086 0.0046 0.0038

PerK (Base Model) 0.0126 0.0028 0.0032 0.0018 0.0016
2 PRUC w/o Causality 0.0188 0.0039 0.0047 0.0025 0.0022

PRUC (Full) 0.0162 0.0037 0.0048 0.0025 0.0021

PerK (Base Model) 0.0261 0.0035 0.0091 0.0025 0.0019
3 PRUC w/o Causality 0.0137 0.0031 0.0037 0.0020 0.0018

PRUC (Full) 0.0174 0.0027 0.0016 0.0013 0.0015

not account for item features. Collaborative deep learning (CDL) models (Wang et al., 2015; 2016;
Zhang et al., 2016; Li & She, 2017) incorporate feature data to enable pretrained recommenders,
making them more versatile in different contexts, such as cold start scenarios.

Despite significant advances in in-domain recommendations, cross-domain recommendation re-
mains relatively understudied. Existing work has utilized domain adaptation techniques (Xu et al.,
2023; Liu et al., 2023; Shi & Wang, 2023; Xu et al., 2022; Wang et al., 2020a; Ganin et al.,
2016) to tackle this challenge, often relying on common users or items across source and target
domains (Yuan et al., 2020; Wu et al., 2020; Bi et al., 2020; Li et al., 2019; Hansen et al., 2020;
Liang et al., 2020; Zhu et al., 2020; Liu et al., 2020). On the other hand, some methods enhance rec-
ommendation performance in both source and target domains simultaneously (Li & Tuzhilin, 2020;
Hu et al., 2018; Zhao et al., 2019). In contrast to existing approaches, our PRUC first infers the user
clusters and confounders, and subsequently makes recommendations based on the identified user
clusters, offering better generalization and stronger robustness against domain shifts.

Causal Inference for Recommendation. Causal inference (Pearl, 2009) has been widely applied
to model cause-and-effect relationships between variables in the machine learning community. Re-
cently, it has been employed to improve the performance of recommender systems (Wang et al.,
2020b). PDA (Zhang et al., 2021) uses causal intervention to address popularity bias in recommen-
dations, while DICE (Zheng et al., 2021) learns representations from user interactions based on the
structured causal model (SCM). Additionally, some work focuses on debiasing recommendations
without a causal inference perspective (Li et al., 2021; Wang et al., 2022; Chen et al., 2023). How-
ever, these approaches do not account for user groups in SCM modeling. In contrast, our method
divides users into clusters based on a confounder variable and recommends by aggregating users’
ratings through do-calculus, offering a more interpretable and sophisticated approach.

5 Conclusion

In this paper, we address the problem of cross-domain recommendation by introducing a novel
causal Bayesian framework, named Probabilistic Residual User Clustering (PRUC). PRUC gener-
ates recommendations by: (1) inferring the user cluster ID, (2) inferring the residual rating based
on our causal debiasing framework, and (3) predicting the final rating as a correction to the base
model’s prediction. PRUC can enhance the performance of any base recommenders in a plug-
and-play manner, and automatically discover meaningful user clusters. As a general probabilistic
framework compatible with various recommendation systems, PRUC can be extended to additional
modalities beyond textual data in future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References

Ye Bi, Liqiang Song, Mengqiu Yao, Zhenyu Wu, Jianming Wang, and Jing Xiao. A heterogeneous
information network based cross domain insurance recommendation system for cold start users.
In SIGIR, pp. 2211–2220, 2020.

Hamed Bonab, Mohammad Aliannejadi, Ali Vardasbi, Evangelos Kanoulas, and James Allan.
Cross-market product recommendation. In Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management, pp. 110–119, 2021.

Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and debias
in recommender system: A survey and future directions. ACM Transactions on Information
Systems, 41(3):1–39, 2023.

Junyoung Chung, cCaglar Gülccehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL
http://arxiv.org/abs/1412.3555.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Franccois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. JMLR, 17(1):2096–2030, 2016.

Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, and Christina Lioma.
Content-aware neural hashing for cold-start recommendation. In SIGIR, pp. 971–980, 2020.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. In Yoshua Bengio and Yann LeCun (eds.), ICLR,
2016.

Guangneng Hu, Yu Zhang, and Qiang Yang. CoNet: Collaborative cross networks for cross-domain
recommendation. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, CIKM, pp. 667–676, 2018.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Wonbin Kweon, SeongKu Kang, Sanghwan Jang, and Hwanjo Yu. Top-personalized-k recommen-
dation. In Proceedings of the ACM on Web Conference 2024, pp. 3388–3399, 2024.

Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, and Zi Huang. From zero-shot learning
to cold-start recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4189–4196, 2019.

Pan Li and Alexander Tuzhilin. DDTCDR: deep dual transfer cross domain recommendation. In
James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (eds.), WSDM ’20: The Thirteenth
ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February
3-7, 2020, pp. 331–339. ACM, 2020. doi: 10.1145/3336191.3371793. URL https://doi.
org/10.1145/3336191.3371793.

Siqing Li, Liuyi Yao, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Tonglei Guo, Bolin Ding, and Ji-
Rong Wen. Debiasing learning based cross-domain recommendation. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3190–3199, 2021.

Xiaopeng Li and James She. Collaborative variational autoencoder for recommender systems. In
KDD, pp. 305–314, 2017.

Tingting Liang, Congying Xia, Yuyu Yin, and Philip S. Yu. Joint training capsule network for cold
start recommendation. In SIGIR, pp. 1769–1772, 2020.

Siwei Liu, Iadh Ounis, Craig Macdonald, and Zaiqiao Meng. A heterogeneous graph neural model
for cold-start recommendation. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 2029–2032, 2020.

11

http://arxiv.org/abs/1412.3555
https://doi.org/10.1145/3336191.3371793
https://doi.org/10.1145/3336191.3371793

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianyi Liu, Zihao Xu, Hao He, Guangyuan Hao, Guang-He Lee, and Hao Wang. Taxonomy-
structured domain adaptation. In ICML, 2023.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. Advances in neural
information processing systems, 20, 2007.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundara-
man, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al.
Deep learning recommendation model for personalization and recommendation systems. arXiv
preprint arXiv:1906.00091, 2019.

Judea Pearl. Causality. Cambridge university press, 2009.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory:
Theory and algorithm. In NeurIPS, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender sys-
tems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1235–1244, 2015.

Hao Wang, SHI Xingjian, and Dit-Yan Yeung. Collaborative recurrent autoencoder: Recommend
while learning to fill in the blanks. In NIPS, pp. 415–423, 2016.

Hao Wang, Hao He, and Dina Katabi. Continuously indexed domain adaptation. In ICML, 2020a.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat: Knowledge graph
attention network for recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 950–958, 2019.

Yixin Wang, Dawen Liang, Laurent Charlin, and David M Blei. Causal inference for recommender
systems. In Proceedings of the 14th ACM Conference on Recommender Systems, pp. 426–431,
2020b.

Zimu Wang, Yue He, Jiashuo Liu, Wenchao Zou, Philip S. Yu, and Peng Cui. Invariant prefer-
ence learning for general debiasing in recommendation. In KDD ’22: The 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1969–1978, 2022.

Le Wu, Yonghui Yang, Lei Chen, Defu Lian, Richang Hong, and Meng Wang. Learning to transfer
graph embeddings for inductive graph based recommendation. In SIGIR, pp. 1211–1220, 2020.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based rec-
ommendation with graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 346–353, 2019.

Zihao Xu, Guang-He Lee, Yuyang Wang, Hao Wang, et al. Graph-relational domain adaptation. In
ICLR, 2022.

Zihao Xu, Guangyuan Hao, Hao He, and Hao Wang. Domain indexing variational bayes: Inter-
pretable domain index for domain adaptation. In ICLR, 2023.

Fajie Yuan, Xiangnan He, Alexandros Karatzoglou, and Liguang Zhang. Parameter-efficient transfer
from sequential behaviors for user modeling and recommendation. In SIGIR, pp. 1469–1478,
2020.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative knowl-
edge base embedding for recommender systems. In KDD, pp. 353–362. ACM, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui Ling, and Yongdong
Zhang. Causal intervention for leveraging popularity bias in recommendation. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 11–20, 2021.

Cheng Zhao, Chenliang Li, and Cong Fu. Cross-domain recommendation via preference propa-
gation graphnet. In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM, pp. 2165–2168, 2019.

Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. Disentangling user in-
terest and conformity for recommendation with causal embedding. In Proceedings of the Web
Conference 2021, pp. 2980–2991, 2021.

Ziwei Zhu, Shahin Sefati, Parsa Saadatpanah, and James Caverlee. Recommendation for new users
and new items via randomized training and mixture-of-experts transformation. In SIGIR, pp.
1121–1130, 2020.

A Experimental Details

A.1 Metrics

mAP. mAP is defined as:

APi =
1

|Ji|

N∑
n=1

reli,n × Precisioni@n, (30)

where N is the total number of recommended items, Precisioni@n is the precision at rank n, and
|Ji| is the total number of relevant items for user i. The mean Average Precision (mAP) is then
calculated by averaging APi over all users:

mAP =
1

|I|

|I|∑
i=1

APi, (31)

where |I| is the total number of users.

NDCG. NDCG@N is computed as follows:

First, the Discounted Cumulative Gain (DCG@N) is calculated:

DCGi@N =

N∑
n=1

2reli,n − 1

log2(n+ 1)
, (32)

where reli,n denotes the relevance of the item at position n for user i. Next, the Ideal Discounted
Cumulative Gain (IDCG@N), representing the maximum possible DCG (i.e., all relevant items
ranked at the top), is calculated as:

IDCGi@N =

min(N,|Ji|)∑
n=1

21 − 1

log2(n+ 1)
=

min(N,|Ji|)∑
n=1

1

log2(n+ 1)
, (33)

where |Ji| denotes the total number of relevant items for user i.

Finally, the Normalized Discounted Cumulative Gain is obtained by normalizing DCG@N by
IDCG@N:

NDCGi@N =
DCGi@N

IDCGi@N
. (34)

Here the logarithmic term log2(n + 1) discounts the relevance based on the item’s position in the
ranked list, serving as the normalization factor.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 Training Configurations

We set the hidden dimension h = 50 for all latent vectors, as well as for the encoder and decoder
networks. During training, we use AdamW (Kingma & Ba, 2015) as our optimizer, with a learning
rate of 10−3 and a batch size of 256. The base models were trained for 100 epochs, while PRUC
was trained for 150 epochs. All experiments were conducted on an NVIDIA RTX A5000 GPU.

A.3 Explanation of the Cluster

Figure 5 illustrates the relationship between user clusters and items, as inferred by the CDL-based
PRUC model. For each user, we selected the item with the highest rating, recorded its rating, and
visualized the results. Different clusters are represented using distinct colors, effectively showcasing
the distribution and preferences of users within each cluster. The figure shows that different clusters

Figure 5: the explanation of cluster

represent distinct preferences of users for items. For example, Cluster 1 (Red) exhibits more focused
preferences for certain items with distinct item indices. This finding effectively explains the effect
of user clustering in enhancing the performance of PRUC’s recommender.

14

	Introduction
	Probabilistic Residual User Clustering
	Problem Setting and Notations
	Method Overview
	Inference and Learning
	Plug-and-Play PRUC

	Experiments
	Datasets
	Base Recommenders and Baselines
	Metrics
	Results

	Related Work
	Conclusion
	Experimental Details
	Metrics
	Training Configurations
	Explanation of the Cluster

