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Figure 1: MultiCrafter enables multi-subject personalization. Input are surrounded by squares.

ABSTRACT

Multi-subject image generation aims to synthesize user-provided subjects in a
single image while preserving subject fidelity, ensuring prompt consistency, and
aligning with human aesthetic preferences. However, existing methods, partic-
ularly those built on the In-Context-Learning paradigm, are limited by their re-
liance on simple reconstruction-based objectives, leading to both severe attribute
leakage that compromises subject fidelity and failing to align with nuanced human
preferences. To address this, we propose MultiCrafter, a framework that ensures
high-fidelity, preference-aligned generation. First, we find that the root cause of
attribute leakage is a significant entanglement of attention between different sub-
jects during the generation process. Therefore, we introduce explicit positional
supervision to explicitly separate attention regions for each subject, effectively
mitigating attribute leakage. To enable the model to accurately plan the attention
region of different subjects in diverse scenarios, we employ a Mixture-of-Experts
architecture to enhance the model’s capacity, allowing different experts to focus
on different scenarios. Finally, we design a novel online reinforcement learning
framework to align the model with human preferences, featuring a scoring mecha-
nism to accurately assess multi-subject fidelity and a more stable training strategy
tailored for the MoE architecture. Experiments validate that our framework sig-
nificantly improves subject fidelity while aligning with human preferences better.
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1 INTRODUCTION

Subject-driven image generation, which aims to create images featuring user-provided subjects, has
become a cornerstone of personalized content creation. Propelled by higher-quality data and the
widespread adoption of Diffusion Transformers (Labs, 2024; Esser et al., 2024; Gao et al., 2025; Li
et al., 2024b), text-to-image models have seen rapid advancements. This progress has significantly
enhanced single-subject image generation, where models now excel at preserving subject fidelity (Li
et al., 2025c; Feng et al., 2025; He et al., 2025). Among the various techniques, the In-Context-
Learning (ICL) paradigm (Huang et al., 2024a;b; Tan et al., 2024) has emerged as a mainstream
approach. Its high adaptability to the transformer architecture and strong capability for maintaining
subject fidelity have made it particularly effective for single-subject tasks.

However, extending this success from single-subject to multi-subject generation is not trivial. Build-
ing on the ICL framework, recent works like UNO (Wu et al., 2025c) and OmniGen (Xiao et al.,
2025) have ventured into this complex multi-subject customization task. Despite their efforts, these
methods often produce suboptimal results, especially when dealing with intricate subjects like hu-
man faces. They frequently suffer from suboptimal results, such as identity fusion and attribute
leakage between subjects. This raises a critical question that forms the very foundation of our work:
why do existing ICL-based methods falter in the multi-subject setting?

The primary challenge stems from the training objective. Existing ICL-based methods are typically
optimized with a simple reconstruction loss. This objective implicitly tasks the model with the
dual responsibilities of distinguishing subject features and arranging them spatially. However, such
supervision alone proves insufficient for the complexities of multi-subject scenarios. As shown in
Fig. 2, this inadequacy leads to an undesired entanglement between subject-specific attention fields
in these methods, like UNO. This phenomenon, which we term attention bleeding, causes attribute
leakage and severely damages subject fidelity. Furthermore, a simple reconstruction objective fails
to capture nuanced human preferences, such as aesthetic quality and precise prompt alignment.

To address these limitations, we introduce MultiCrafter, a framework that achieves high-fidelity,
preference-aligned multi-subject image generation through three key innovations. To address the
attribute leakage caused by attention bleeding, we propose an Identity-Disentangled Attention
Regularization. This mechanism applies explicit positional supervision only during the training
phase to double blocks in FLUX (Labs, 2024), which are pivotal regions for feature injection and
spatial control. This compels the model to distinguish between different subject features and learn
distinct, disentanglement attention regions for each subject, drastically reducing attribute leakage.

Considering a single model struggles to cope with various attention layouts caused by a diverse
range of subjects and prompts, we enhance its capacity by incorporating a Mixture-of-Experts (MoE)
architecture. Inspired by MoE-LoRA’s success in multitask tuning (Feng et al., 2024; Zhang et al.,
2025), our Efficient Adaptive Expert Tuning allows different expert networks to specialize in
varied scenarios, dynamically selected via a routing mechanism. This ensure our method to maintain
excellent subject fidelity in various scenarios without an increase in inference complexity.

For aligning with human aesthetic and semantic preferences while ensuring subject fidelity, we
design a novel online reinforcement learning framework. We introduce Identity-Preserving Pref-
erence Optimization that aligns the model across three axes: aesthetic quality, text-image align-
ment, and subject fidelity. To accurately measure subject fidelity, we introduce Multi-ID Alignment
Reward, which use the Hungarian matching algorithm to maximize the overall match quality be-
tween multiple generated subjects and their references for precise scoring. Besides, we introduce
Group Sequence Policy Optimization (GSPO) Zheng et al. (2025) to adapt to our MoE-LoRA de-
sign, thereby avoiding the core issue of training instability caused by expert-activation volatility
inherent in MoE architectures. Our experiments demonstrate that MultiCrafter achieves significant
improvements over existing methods. Our main contributions are as follows:

• We propose explicit positional supervision that disentangles attention across subjects,
thereby reducing attribute leakage and enhancing subject fidelity.

• We integrate an MoE-LoRA architecture that increases capacity for diverse subjects and
spatial layouts while maintaining inference efficiency.

• We design the first online reinforcement learning framework tailored for multi-subject gen-
eration, introducing a Multi-ID Alignment Reward and GSPO for stable and preference-
aligned training.
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Figure 2: Visual comparison of attention maps. The ICL-based method UNO, which only relies on reconstruc-
tion loss (left), fails to preserve the subject fidelity, where the double block’s attention regions for each subject
are entangled, leading to attribute leakage. Our method overcomes this problem and maintains subject fidelity.

2 RELATED WORK

Subject-driven Generation has attracted increasing attention (Chen et al., 2023; Han et al., 2023;
Shi et al., 2024; Ruiz et al., 2024; Hua et al., 2023; Han et al., 2024; Liu et al., 2023a;b; Gu et al.,
2024; Feng et al., 2025). These works can be broadly categorized into two types. (1) Fine-tuning-
based methods, includes methods such as Textual Inversion (Gal et al., 2022), DreamBooth (Ruiz
et al., 2023), and Custom Diffusion (Kumari et al., 2023). These approaches achieve customization
by fine-tuning part of the model’s parameters. (2) Tuning-free methods, like IP-Adapter (Ye et al.,
2023), InstantID (Wang et al., 2024), and PhotoMaker (Li et al., 2024a). These approaches leverage
large-scale training to eliminate the need for retraining when the subject changes. However, cus-
tomized generation of multiple subjects from a single image introduces new challenges, especially
in maintaining individual subject fidelity and mitigating attribute entanglement. Recently, the pow-
erful capabilities of foundation models based on the DiT (Peebles & Xie, 2023) architecture have
greatly enhanced the generation of multiple subjects, leading to the emergence of a series of works
such as HunyuanCustom (Hu et al., 2025), OmniControl (Tan et al., 2024), UniReal (Chen et al.,
2025b), UNO (Wu et al., 2025c), DreamO (Mou et al., 2025) and XVerse (Chen et al., 2025a).

Reinforcement Learning for Text-to-Image Generation has become an active area of research.
Initial strategies included policy gradient methods like Proximal Policy Optimization (PPO) (Schul-
man et al., 2017; Black et al., 2023; Fan et al., 2023; Gupta et al., 2025; Miao et al., 2024; Zhao et al.,
2025). A subsequent major development is the adoption of Direct Preference Optimization (DPO)
and its variants (Wallace et al., 2024; Yang et al., 2024; Yuan et al., 2024; Liu et al., 2025b; Zhang
et al., 2024; Furuta et al., 2024; Li et al., 2025a). Some recent works have introduced online RL tech-
nology, Group Relative Policy Optimization (GRPO) Shao et al. (2024), into Text-to-Image Gener-
ation, achieving significant performance gains. Flow-GRPO (Liu et al., 2025a), DanceGRPO (Xue
et al., 2025) introduce exploration by reformulating the deterministic Ordinary Differential Equa-
tion (ODE) of flow-matching models into a Stochastic Differential Equation (SDE). The improved
MixGRPO (Li et al., 2025b) further boosts training efficiency with a mixed ODE-SDE framework.
However, these methods have been limited to the basic text-to-image task, leaving the application of
online reinforcement learning to multi-subject driven generation largely unexplored.

3 PRELIMINARY

Flow Matching. Flow Matching (Lipman et al., 2022) is gradually replacing DDPM as the main-
stream for text-to-image models due to its more efficient sampling strategies. These models typically
first train an autoencoder (consisting of an encoder E and a decoder D) to obtain the latent space
representation z0 = E(x) of an image x. Let z0 be a data sample, ϵ ∈ N (0, 1) is the Gaussian
noise, and ctext be the prompt of this image. Flow Matching formulates generation as a continuous
transformation along an Ordinary Differential Equation (ODE), dzt

dt = v(zt, t), t ∈ [0, 1], which
deterministically maps noise to data. The interpolated data at time t is zt = (1− t)z0 + tϵ. A neural
network vθ(xt, t) is trained to approximate the velocity field of this ODE, with the objective

Ldiff = Et,z0,ϵ∈N (0,1)∥v − vθ(zt, t, ctext)∥2, v = z0 − ϵ. (1)

The DiT framework and Flow Matching are widely used in recent diffusion models, such as Stable
Diffusion3 (Esser et al., 2024) and Flux (Labs, 2024). In this paper, we use Flux as our base model.
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Figure 3: Overall pipeline of MultiCrafter. Our framework is built on three core innovations: (Top Left)
Identity-Disentangled Attention Regularization uses positional supervision to prevent attribute leakage; (Top
Right) the MoE-LORA architecture boosts model capacity for diverse scenarios; and (Bottom) the Identity-
Preserving Preference Alignment framework employs a novel online reinforcement learning strategy with a
Multi-ID Alignment Reward and the stable GSPO algorithm to align the model with human preferences.

Group Relative Policy Optimization (GRPO). GRPO struggles with ODE-based flow models be-
cause their deterministic systems lack the inherent stochasticity essential for reinforcement learn-
ing frameworks. So DanceGRPO Xue et al. (2025) and Flow-GRPO Liu et al. (2025a) convert
ODEs to SDEs, enabling stochastic reinforcement learning for image generation. MixGRPO Li
et al. (2025b) further improves efficiency by applying this only within a sliding time window during
training. Given the prompt ctext, the training process in MixGRPO is similar to Flow-GRPO and
DanceGRPO, but only optimizes the time steps sampled within the interval S. The behavior of this
window is governed by key hyperparameters: the window size w sets the number of consecutive
timesteps to optimize at once, the shift interval τ determines how many training iterations pass be-
fore the window moves, and the window stride s specifies how many timesteps the window advances
during a shift. The final training objective is given by:

J(θ) = Ec∼ctext,{xT
i }N

i=0∼πθold (·|c)

[
1

N

N∑
i=1

1

|S|
∑
t∈S

min
(
rti(θ)Ai, clip(r

t
i(θ), 1− β, 1 + β)Ai

)]
,

(2)
where rti(θ) is the policy ratio and Ai is the advantage score. β is a hyperparameter that serves to
clip the policy ratio, ensuring stable updates, and

rti(θ) =
πθ(xt+1 | xt, c)

πθold(xt+1 | xt, c)
, Ai =

R(xT
i , c)−mean{R(xT

i , c)}Ni=1

std{R(xT
i , c)}Ni=1

, (3)

where πθ(xt+1 | xt, c) is the policy function and R(x0
i , c) is provided by the reward model.

4 METHODS

In this section, we first explore the underlying causes of feature entanglement in multi-subject cus-
tomized generation and present the overall framework of our method in Sec. 4.1. Then, in Sec. 4.2,
we introduce Identity-Disentangled Attention Regularization to address attribute leakage issues
arising from attention bleeding. To enhance the model’s ability to maintain subject fidelity in differ-
ent scenarios, we introduce Efficient Adaptive Expert Tuning in Sec. 4.3. Lastly, we incorporate
Identity-Preserving Preference Optimization in Sec. 4.4, leveraging reinforcement learning to
align the model with human preferences.
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4.1 EXPLORE THE IN-COTEXT-LEARNING

Given N reference images of different subjects, we aim to enable the model to generate images
of these subjects according to a text prompt. Existing ICL-based methods encodes the N subject
images through an encoder E to obtain latent space feature of these subjects, Z = {zrefi }Ni=1, where
each zrefi ∈ Rc×w×h, (w, h) is spatial size, c is the number of channels. However, we find that when
multiple subjects are input, especially when the attributes of the subjects themselves are similar, it
is easy to cause confusion between the attributes of different subjects, resulting in a decrease in
subject fidelity. To investigate the underlying reasons, we leveraged a representative method (Wu
et al., 2025c) to visualize the attention maps between each reference feature zrefi and the feature of
the generated image ẑ. Since the base model Flux comprises both double block and single block
structures, we visualized the attention maps for each block type separately.

As shown on the left of Fig. 2, we identify two key phenomena. First, the double blocks of Flux
are far more pivotal in determining the spatial layout of the reference subject than the single block.
Second, methods trained solely on a reconstruction loss lead to an undesired entanglement between
subject-specific attention fields, causing attribute leakage and severely compromising subject fi-
delity. We can therefore infer a critical condition for high fidelity: the peak response within the
double block’s attention scores, corresponding to a specific subject, must consistently align with
that subject’s spatial region in the generated output. We leverage this in our method. Furthermore,
this simple supervision method fails to account for human preferences adequately. Therefore, we
introduce reinforcement learning as a post-training to align human preferences.

4.2 IDENTITY-DISENTANGLED ATTENTION REGULARIZATION

Based on that, the subject fidelity can be enhanced by strictly aligning the hot spot areas of the
attention scores of double blocks with the spatial positions of the corresponding subjects in the
generated image. We design a simple but effective regularization. Specifically, during the training
process, for the latent space feature zrefi of the i-th reference subject. Following (Wu et al., 2025c),
we partition the reference feature zrefi into patches and apply positional encoding, resulting in a
sequence of 1D tokens zr′i ∈ Rl×c, l is the number of tokens, c is the number of channels. Then, we
can obtain its attention map with the generated content zt at the k-th double block:

mi
k = Softmax(

Qk,iK
T
k√

d
), (4)

where Qk,i ∈ Rl×c is the query generated from the i-th subject image within the k-th double block,
K ∈ Rlt×c is the key produced by the noisy image latent tokens in the current layer, and lt denotes
the number of tokens in the noisy image latent. For a model with K double blocks, we can obtain
the attention maps corresponding to the i-th subject from all blocks, which are aggregated into a
set {mi

1,m
i
2, ...,m

i
K}. We then average and normalize this set to obtain the mean attention map

M̂i. By pre-annotating the training data, we obtain the ground-truth mask Mi corresponding to the
i-th subject within the generated image. Notably, for human subjects, we exclusively use the facial
region as the reference image and similarly focus only on the facial area for the generated image.

Finally, we employ the dice loss (Milletari et al., 2016), a standard loss function for segmentation
tasks, to minimize the discrepancy between each ground-truth mask Mi and the corresponding mean
attention map M̂i. The formulation is as follows:

Lattn =

N∑
i=1

(
1−

2
∑

j(M̂i,j ·Mi,j) + ϵ∑
j M̂i,j +

∑
j Mi,j + ϵ

)
, (5)

where the index j iterates over all spatial locations of the maps, and ϵ is a small constant added for
numerical stability. By minimizing this attention regularization loss Lattn, we explicitly encourage
the model’s attention mechanism to concentrate on the precise spatial regions occupied by each
subject. This forces a spatial disentanglement of subjects within the attention maps. This avoids
attribute leakage and improves the subject fidelity of the generated image. The final loss function of
our framework is defined as (λ is a factor that balances the loss weight):

L = Ldiff + λ · Lattn. (6)

5
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4.3 EFFICIENT ADAPTIVE EXPERT TUNING

For efficient training, existing ICL-based methods usually use LoRA to fine-tune the model. But
the significant variance in the spatial layout of subjects across various subjects and prompts poses
a challenge for a standard LoRA, whose limited capacity is insufficient for diverse subject-driven
generation. To address this, and inspired by the success of MoE-LoRA in multitask tuning (Feng
et al., 2024; Liu et al., 2024; Gou et al., 2023), we adopt an MoE-LoRA architecture to expand model
capacity without a substantial increase in inference overhead. This enables different experts to focus
on spatial layout for a variety of scenarios, effectively tackling the challenge of scene diversity.

We strategically integrate the MoE-LoRA into the output feed-forward network (FFN) layers of the
Flux, while other layers are adapted using standard LoRA for parameter efficiency. Specifically,
given an input vector h to the FFN layer, we define the number of experts as Ne, the rank of each
LoRA as r, and the scaling factor as α. A lightweight gating network, gθ, which dynamically routes
the input vector h to the most suitable experts, computes a vector of logits, p ∈ RNe , for the experts:

p = Softmax(TopK(Wg · h, k))

where Wg ∈ RNe×din is the weight of the gating network. TopK(·, k) enforces sparsity by retaining
only the top k logit values and masking the others to −∞, thus activating only a small subset
of experts. Each of the Ne experts is an independent LoRA module, parameterized by matrices
W i

A ∈ Rr×din and W i
B ∈ Rdout×r. The final output of the MoE-LoRA layer, hout, is computed by

adding the weighted sum of the selected experts’ outputs to the output of the original FFN layer:

hout = FFN(h) +

Ne∑
i=1

pi ·
(α
r
·W i

B ·W i
A · h

)
.

4.4 IDENTITY-PRESERVING PREFERENCE OPTIMIZATION

To further enhance the generation quality and align with human preferences, we introduce a post-
training stage using reinforcement learning. This final stage aims to refine aesthetic appeal and
text-image alignment without compromising the subject fidelity. We adapt the efficient MixGRPO
framework (Li et al., 2025b), which confines stochastic optimization to a sliding window S. How-
ever, standard GRPO with its token-level policy ratios can exhibit instability, particularly when
training MoE models due to expert routing fluctuations (Zheng et al., 2025). To mitigate this and
better suit our MoE-LoRA architecture from Sec. 4.3, we replace the GRPO objective with the more
stable Group Sequence Policy Optimization (GSPO) (Zheng et al., 2025). Specifically, we replace
the token-level policy ratio in Eq. (3) with a sequence-level policy ratio si(θ) defined over the de-
noising steps within the sliding window S:

si(θ) = exp

(
1

|S|
∑
t∈S

log
πθ(xt+1|xt, c,Z)

πθold(xt+1|xt, c,Z)

)
. (7)

This sequence-level ratio reflects the overall policy shift for the entire sequence within the optimiza-
tion window, leading to more stable gradients. The advantage score Ai is calculated as in Eq. (3),
but using our composite reward from Eq. (9). The final optimization objective is thus:

JMixGSPO(θ) = Ec,Z,{xT
i }N

i=0∼πθold (·|c,Z)

[
1

N

N∑
i=1

min
(
si(θ)Ai, clip(si(θ), 1− β, 1 + β)Ai

)]
.

(8)

Besides, a good reward model is very important for online reinforcement learning. We construct a
reward model based on three dimensions: aesthetics, text alignment, and subject fidelity. The total
reward R(xT

i , c,Z) for a generated image xT
i given a text prompt ctext and a set of reference subject

latents Z is a weighted sum of three scores:

R(xT
i , c,Z) = wtextRtext + waesRaes + widRid, (9)

where Rtext is the text alignment reward from a pre-trained CLIP model, Raes is an aesthetic re-
ward from a predictor like HPSv2 (Wu et al., 2023), Rid is used to evaluate subject fidelity, and
wid, wtext, waes are their corresponding weights, . To accurately measure the subject fidelity of

6
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Methods Multi Human Genertaion Multi Object Generation Overall

CLIP-T Face-Sim DINO-I CLIP-I HPS CLIP-T DINO-I CLIP-I HPS AVG

MS-Diffusion 0.2498 0.0945 0.4767 0.5801 0.2461 0.2887 0.4002 0.6681 0.2685 0.3636
MIP-Adapter 0.2631 0.2117 0.6959 0.7140 0.2791 0.2984 0.5470 0.7776 0.2374 0.4471
OmniGen 0.2741 0.3238 0.7225 0.7642 0.2996 0.3151 0.6727 0.8085 0.2561 0.4930
UNO 0.2645 0.1474 0.5972 0.6489 0.2954 0.3259 0.7374 0.8392 0.2676 0.4582
OmniGen2 0.2837 0.2453 0.6788 0.7205 0.3103 0.3310 0.7538 0.8470 0.2872 0.4953
DreamO 0.2747 0.3345 0.7441 0.7988 0.3056 0.3207 0.7394 0.8393 0.2637 0.5134
XVerse 0.2591 0.4117 0.7665 0.8027 0.2498 0.2981 0.7449 0.8456 0.2595 0.5153
Ours 0.2753 0.5284 0.8294 0.8524 0.2915 0.3380 0.7824 0.8608 0.2748 0.5592

Table 1: Quantitative comparison with state-of-the-art methods on the multi-human and multi-object gener-
ation. The best results are in bold, and the second-best are underlined. Our method outperforms others,
especially in subject fidelity metrics, and achieves the highest overall average score.

multi-subject generation results, we built the Multi-ID Alignment Reward using the Hungarian
matching algorithm. For human subjects, we first employ a face detector (Deng et al., 2020) to
extract facial embeddings from each reference image. We then apply the same detector to the gener-
ated image to identify all present faces and extract their embeddings. Then we construct a pairwise
similarity matrix C where Cij is the cosine similarity between the embedding of the i-th reference
face and the j-th detected face. The Hungarian algorithm is then used to solve the assignment
problem by finding an assignment matrix X ∈ {0, 1}Nref×Ngen that maximizes the total similarity:

max
X

Nref∑
i=1

Ngen∑
j=1

CijXij s.t.
Ngen∑
j=1

Xij ≤ 1,

Nref∑
i=1

Xij ≤ 1. (10)

where Nref and Ngen are the number of reference and generated faces, respectively. These en-
sure each face is matched at most once, preventing reward hacking, stopping the model from using
attribute leakage to generate multiple “average faces" for an unearned high reward. For object sub-
jects, each reference object is pre-annotated with a text prompt. We leverage Florence-2 (Xiao et al.,
2024) and SAM2 (Ravi et al., 2024) to locate the corresponding object in the generated image. Then
we compute the cosine similarity between the DINOv2 (Oquab et al., 2023) embeddings of the
segmented region and the reference object. We provide the complete pseudocode at Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implementation Details. To achieve precise multi-subject customized generation, our training pro-
cess is divided into three stages: Single-Subject Pre-training, Multi-Subject Customization Training,
and Identity-Preserving Preference Optimization. Following (Wu et al., 2025c), we set the resolu-
tion of generated images to 512 × 512 , the resolution of reference images to 320 × 320, and each
LoRA module’s rank to r = 512. For the MoE-LoRA applied to the FFN layers, we configure it
with 4 experts and activate 1 expert per forward pass. For reinforcement learning, we configure with
a sampling step 16, a window size of w = 2, a shift interval of τ = 50, and a window stride of
s = 1. More details settings can be found in Appendix B.

Datasets and BenchMark. We constructed separate datasets for multi-human and multi-object
generation. Due to the scarcity of public multi-human customization datasets with adequate anno-
tations, we designed a data collection pipeline to curate a new dataset from videos for multi-human
customization. We supplemented the details in the Appendix C. A total of 200k pairs of cross-pair
data were obtained for training. For the reinforcement learning stage, we curated a face collection
of 80 celebrities and 80 non-celebrities. We paired the faces in the collection and used Qwen2.5-
VL (Bai et al., 2025) to generate a prompt for each pair, resulting in 12,720 data points. We randomly
selected 1,000 of these data points as our benchmark, and the remaining data was used as reinforce-
ment learning training data. For multi-object customization, we use the public MUSAR-Gen (Guo
et al., 2025) Dataset as our foundation. We use Florence-2 and SAM to obtain the detailed positions
of reference objects. To ensure segmentation quality, we further employ Qwen2.5-VL to filter the
results. We split 1,000 samples from this dataset that were not seen during training as a benchmark.

Evaluation metrics. Following the (Le et al., 2025; Mou et al., 2025), we evaluate generated image
quality using standard metrics. We calculate the cosine similarity between the prompt and the image
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Two women are 

standing on a mountain 

viewpoint.

Two men are seated at 

an outdoor café as 

twilight settles.

Two women are seated 

at an outdoor café in 

the late afternoon.

Two men are walking 

through a snowy 

landscape.

A man and a woman 

are seated at a 

minimalist office table.

Two people in sharp 

suits shaking hands in 

bright modern office.

MIP-Adapter UNO OmniGen OmniGen2 DreamO XVerse OursInput

Figure 4: Qualitative comparison with existing methods on the multi-human generation (Zoom in for best visual
comparison). Our method significantly improves subject fidelity.

CLIP (Radford et al., 2021) embeddings (CLIP-T) to evaluate text fidelity. We also use HPSv2 for
aesthetic and human preference scoring. For subject fidelity, we employ cosine similarity measures
between generated images and reference images within CLIP and DINO (Zhang et al., 2022) spaces,
referred to as CLIP-I and DINO-I scores, respectively. Note that in order to accurately calculate
CLIP-I and DINO-I, we first use a face detector (Deng et al., 2019) or Florence-2 to accurately
locate the position of subjects in the generated image, and then calculate them. Additionally, for
multi-human generation, we incorporate Face Similarity (Face-Sim) (Deng et al., 2019) and the
Hungarian algorithm, enabling them to assess subject fidelity more accurately.

5.2 QUANTITATIVE COMPARISON

We conducted comprehensive comparisons with existing methods in both multi-subject and multi-
object customized generation. These methods include MS-Diffusion (Wang et al., 2025), MIP-
Adapter (Zhong et al., 2025), OmniGen (Xiao et al., 2025), UNO (Wu et al., 2025c), OmniGen2 (Wu
et al., 2025b), DreamO (Mou et al., 2025), and XVerse (Chen et al., 2025a). The results, as shown
in Tab. 1, demonstrate that our method achieves significant improvements over existing approaches,
particularly in terms of subject fidelity. In the multi-human generation task, our model shows a
commanding lead in identity preservation, achieving the top scores in subject fidelity. Notably,
the significant 28.3% relative improvement in the Face-Sim over the next-best method highlights
our model’s ability to effectively distinguish between different subjects and preserve their individ-
ual detailed features. This is crucial for accurately and reliably accomplishing the highly sensitive
and challenging task of multi-human customization. Concurrently, the model remains highly com-
petitive in text-image alignment, achieving a strong balance between subject fidelity and prompt
alignment. This outstanding performance extends to the multi-object generation benchmark, where
our method again secures the top ranks in text alignment and subject fidelity, validating its robust-
ness and versatility. While HPS score tends to vibrant yet unnatural ("oily") outputs, our model
is specifically trained for multi-human customization with an emphasis on photorealism. To pre-
serve this quality, we follow Xue et al. (2025) and employ the CLIP Score during reinforcement
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IDAR MoE-LoRA IPPO CLIP-T Face-Sim DINO-I CLIP-I HPS

✗ ✗ ✗ 0.2645 0.1474 0.5972 0.6489 0.2954
✓ ✗ ✗ 0.2637 0.4983 0.7953 0.8032 0.2653
✓ ✓ ✗ 0.2674 0.5154 0.8107 0.8480 0.2661
✓ ✓ ✓ 0.2753 0.5284 0.8294 0.8524 0.2915

Table 2: Ablation study of the core module of MultiCrafter. IDAR is Identity-Disentangled Attention Regular-
ization (Sec. 4.2), MoE-LoRA is our Efficient Adaptive Expert Tuning (Sec. 4.3) , and IPPO is our Identity-
Preserving Preference Optimization (Sec. 4.4). The results demonstrate the effectiveness of each module.

learning. Therefore, we only achieve competitive objective scoring results in aesthetics, but we can
generate more realistic results. Ultimately, by achieving the best overall score, our method achieves
significant improvements over existing methods, validating the effectiveness of our framework.

5.3 QUALITATIVE COMPARISON

We provide a qualitative comparison against existing methods on the more challenging task of multi-
human customized generation in Fig. 4. As shown in the first two rows of Fig. 4, methods trained
directly with In-Context Learning, such as UNO, OmniGen, and OmniGen2, struggle with attribute
confusion when generating subjects of the same gender, which degrades subject fidelity. In con-
trast, our method accurately preserves the unique features of each individual. Our method maintains
strong subject fidelity even in interactive scenarios, as shown in the third row of Fig. 4. This result
validates the effectiveness of our framework. Aesthetically, while DreamO and OmniGen2 produce
vibrantly colored images, our approach generates images with a higher degree of realism. Addi-
tional qualitative comparisons for both multi-subject generation (includes both human and object)
are provided in the Appendices G to I.

5.4 ABLATION STUDIES

We conduct detailed ablation studies to validate the effectiveness of each component of our proposed
framework. Since the multi-human customization evaluation metrics is more accurate, we conducted
an ablation experiment on multi-human customization. We use UNO as our baseline for compari-
son, and the detailed results are presented in Tab. 2. The baseline model relies solely on a simple
reconstruction loss. As shown in Tab. 2, the base model performs poorly in terms of subject fidelity,
achieving a Face-Sim score of only 0.1474. This confirms that a simple objective is insufficient for
handling complex multi-subject scenarios. Upon introducing our Identity-Disentangled Attention
Regularization (IDAR), we observe a dramatic improvement across all subject fidelity metrics. As
shown on the left of Fig. 2, our method successfully separates the attention of different subjects.
This result underscores the critical role of our IDAR in explicitly disentangling subject features and
preventing attribute leakage. We attribute the slight decrease in the HPS score to the quality of our
training dataset, a point we discuss further in the Appendix E. Building on this, we integrate the
MoE-LoRA architecture, which yields further gains across subject fidelity while also improving text
alignment. This demonstrates that our strategy of using MoE to allow different experts to specialize
in handling diverse spatial layouts is effective in enhancing generation quality. Finally, Identity-
Preserving Preference Optimization (IPPO) further boosts subject fidelity. More importantly, it
significantly enhances alignment with human preferences, leading to notable improvements in both
text alignment and aesthetic scores. This shows that our IPPO successfully aligns the model’s output
with human preferences without compromising the subject fidelity.

6 CONCLUSION

In this paper, we introduced MultiCrafter, a novel framework designed to address the critical chal-
lenges of feature bleed and identity degradation in multi-subject customized generation. Our frame-
work uses Identity-Disentangled Attention Regularization to prevent "attention bleeding" and allevi-
ate the degradation of subject fidelity caused by attribute leakage. Then, we introduce a Mixture-of-
Experts architecture to enhance model capacity. We further align the model with human preferences
using a novel online reinforcement learning framework featuring a Multi-ID Alignment Reward
and the stable GSPO algorithm. Experiments show that MultiCrafter significantly improves subject
fidelity while better aligning with human preferences and generating realistic images.
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A MORE DETAILS FOR IDENTITY-PRESERVING PREFERENCE OPTIMIZATION

We provide a detailed algorithm execution flow for Identity-Preserving Preference Optimiza-
tion Sec. 4.4, as shown in Algorithm 1.

Algorithm 1 Identity-Preserving Preference Optimization Training Process
Require: initial policy model πθ; composite reward model R; prompt dataset C; reference subjects dataset
Zdata; total sampling steps T ; number of samples per prompt N ; sliding window W (l), window size w,
shift interval τ , window stride s

1: Init left boundary of W (l): l← 0
2: for training iteration m = 1 to M do
3: Sample batch prompts Cb ∼ C and corresponding subjects Zb ∼ Zdata
4: Update old policy model: πθold ← πθ

5: for each prompt c ∈ Cb and subject Z ∈ Zb do
6: Init the same noise s0 ∼ N (0, I)
7: for generate i-th image from i = 1 to N do
8: for sampling timestep t = 0 to T − 1 do ▷ πθold mixed sampling loop
9: if t ∈W (l) then

10: Use SDE Sampling to get sit+1

11: else
12: Use ODE Sampling to get sit+1

13: end if
14: end for
15: end for
16: Calculate advantage: Ai ←

R(siT ,c,Z)−mean({R(s
j
T
,c,Z)}Nj=1)

std({R(s
j
T
,c,Z)}Nj=1)

17: for optimization timestep t ∈W (l) do ▷ optimize policy model πθ

18: Update policy model via gradient ascent: θ ← θ + η∇θJGSPO

19: end for
20: end for
21: if m mod τ = 0 then ▷ move sliding window
22: l← min(l + s, T − w)
23: end if
24: end for

B MORE IMPLEMENTATION DETAILS.

In this section, we provide more details on the hyperparameter settings and specific training details.
As mentioned in the main text, we divide the training phase into three parts, and the details of each
phase are as follows: 1. Single-Subject Pre-training. We first pre-train the model for 40,000 steps
on an internal single-subject dataset to equip it with foundational subject customization capabilities.
In this stage, only Ldiff is used for supervision. We use the AdamW optimizer with a 3 × 10−5

learning rate and a weight decay of 1 × 10−2. We use 8 cards for training and set the batch size of
each card to 6. 2. Multi-Subject Customization Training. Then we train two models for customized
human generation and object generation, respectively. For multi-human customized generation, we
decrease the learning rate to 1× 10−5, set the loss weight λ = 0.3, and introduce the attention loss
Lattn. This stage runs for 25,000 steps. We use 8 cards at this stage and set the batch size to 4.
For multi-object customized generation, since the size of the dataset is smaller than multi-human
datasets, we only train for 15,000 steps. 3. Identity-Preserving Preference Optimization. Finally,
we fine-tune the model using our proposed reinforcement learning method. Following (Li et al.,
2025b), we configure with a sampling step of 16, a window size of w = 2, a shift interval of τ = 50,
and a window stride of s = 1. This stage consists of 300 steps. For multi-human customization, the
reward weights are set to wid = 0.5, wtext = 1.4, and waes = 0.7. For multi-object customization,
we adjust the subject fidelity weight to wid = 1.0, while keeping wtext = 1.4 and waes = 0.7. In
this stage, we used 16 cards for training and set the batch size of each card to 1.
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C TRAINING DATASET CONSTRUCTION PIPELINE.

Due to the scarcity of public multi-human customization datasets with adequate annotations, we
designed a comprehensive and automated data curation pipeline as shown in Fig. 5. This pipeline
processes raw video clips to generate structured training samples, each containing a target image
with multiple subjects, corresponding identity reference images, segmentation masks, and a detailed
textual description. The entire workflow ensures subject fidelity, high image quality, and rich an-
notation. Specifically, we sample video clips featuring two individuals from a large database. The
process begins with frame selection and subject localization. For each input video, we sample an
initial frame as the source for reference images and a middle frame as the target scene. We first
employ a YOLO-Pose (Maji et al., 2022) to obtain initial bounding boxes and keypoint information
for each person. Following localization, we leverage the Segment Anything Model (SAM) (Ravi
et al., 2024) to generate high-fidelity segmentation masks for each individual, effectively isolating
them from the background. To refine this output, only the largest connected component of the mask
is retained. A critical subsequent step is ensuring subject fidelity across frames. We apply a face
detection modell (Deng et al., 2019) to the segmented portraits to locate facial regions, and then use
a face recognition model (Deng et al., 2019) to extract a normalized feature embedding for each
face. By computing the cosine similarity between embeddings from the reference and target frames,
we enforce a stringent threshold to discard pairs where identity cannot be confidently verified. Once
a pair of frames passes this verification, the pipeline generates the final training sample. The seg-
mented portraits and cropped faces from the initial frame are saved as the reference =images. The
target frame is cropped into a square as target image, with its corresponding body and face masks
preserved. Finally, a powerful vision-language model, Qwen2.5-VL (Bai et al., 2025), is prompted
with the reference images and the target image to produce a rich text prompt of the entire scene,
ensuring descriptive consistency for each subject.

Video Frames

First Frame

Last Frame

Portrait Extraction​

Filter / SAM

Filter / SAM

Discrimination
（Keep vs. Remove​）

Cal.
Similarity

Target Image
Ref image

（First Frame）

Qwen

A man and a woman is on a television talk 
show set. The woman, with long sleek 
dark hair and wearing a vibrant blue dress, 
is speaking animatedly. The man, in a grey 
suit jacket and a white shirt, is smiling as 
he listens to her. 

A man and a woman is on a television talk 
show set. The woman, with long sleek 
dark hair and wearing a vibrant blue dress, 
is speaking animatedly. The man, in a grey 
suit jacket and a white shirt, is smiling as 
he listens to her. 

Training Data Generation

Thresholding​

Multi-ID
Face Mask

Figure 5: Data processing pipeline for customized multi human image generation.

D MORE DETAILS FOR OUR BENCHMARK.

To advance research on high-fidelity multi-subject generation, we constructed a benchmark dataset
by collecting images from publicly available sources and extracting the corresponding facial regions
as reference images. The dataset comprises 80 celebrities and 80 non-celebrities, covering diverse
attributes in terms of gender, age, and ethnicity (male/female; young/elderly; Caucasian, Black, and
Asian). We used this face collection as a reference pool and paired faces within it. For each pair, we
employed Qwen2.5-VL to generate distinctive natural-language prompts to provide diverse textual
descriptions. Representative samples are shown in Fig. 6.
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celebrity non-celebrity

Figure 6: Visualization for part of our multi-human evaluation benchmarks.

E LIMITATION.

Although MultiCrafter has achieved excellent performance in multi-subject driven image generation
tasks, our work still has certain limitations, which also point the way for future research.

First, the scale and quality of the training data are the primary limiting factors. Currently, high-
quality, publicly available datasets for multi-subject driven generation remain scarce (Wu et al.,
2025c; Chen et al., 2025a). Although we have designed a complete automated data processing
pipeline to extract training samples from videos, our dataset is still limited in scale and diversity due
to the quantity and quality of open-source video data.

Second, the effectiveness of our method has been primarily validated in two-subject scenarios.Since
our multi-person dataset and the public MUSAR dataset (Guo et al., 2025) mainly contain two
subjects, the experiments in this paper were centered around this setting. The model’s generation
capability when handling three or more subjects has not been fully verified. It is worth noting that our
framework was designed with scalability in mind; both the attention regularization mechanism and
the Multi-ID Alignment Reward (based on the Hungarian algorithm) in the reinforcement learning
framework can be directly extended to scenarios with more subjects.

For future work, we plan to explore improvements from both data and model perspectives. On one
hand, we will attempt to construct larger, higher-quality datasets containing a more diverse number
of subjects by combining synthetic data with image editing Wu et al. (2025a) techniques. On the
other hand, we will train and evaluate the model in scenarios with more subjects to further enhance
the generalization and robustness of MultiCrafter, enabling it to handle more complex personalized
image generation.

F THE USE OF LARGE LANGUAGE MODELS.

In this paper, we only use the large language model to help polish our text. The large language
model has no role in the research conception.

G MORE RESULTS OF MULTI-HUMAN PERSONALIZATION.

To further demonstrate our method’s performance in multi-human personalization, we present qual-
itative comparisons in Fig. 7 and Fig. 8. The results show that our model effectively preserves the
identity of each subject and avoids the "attribute leakage" common in other methods. This outcome
validates the efficacy of our Identity-Disentangled Attention Regularization (IDAR). While some
baselines produce more stylized outputs that may yield higher HPSv2 scores, this is often at the
expense of subject fidelity. Our method prioritizes photorealism and faithful subject appearance
consistency, which leads to more reliable results in multi-subject customization.
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MIP-Adapter UNO OmniGen OmniGen2 DreamO XVerse OursInput

A man and a woman stand on 
a rooftop at twilight.

Two women walk 
through an ancient stone 

courtyard.

Two men stand near a 
fountain in a public square.

Two women sit side by 
side on a train.

Two women sit on a 
sunny beach.

A man and a woman walk 
along a snowy street at night.

Figure 7: More Visualization of our method in Multi-Human Personalization.

H MORE RESULTS OF MULTI-OBJECT PERSONALIZATION.

To evaluate the generalization of our framework, we showcase multi-object customization compar-
isons in Fig. 9. Our method demonstrates high object fidelity, accurately preserving core visual
attributes such as a toy’s texture or a glass’s geometry. In contrast, competing approaches often
introduce artifacts like deformation and detail loss. This highlights our model’s strength in precise
subject representation rather than hyper-stylization, a crucial capability for practical applications
that require accuracy.

I MORE RESULTS OF SINGLE-SUBJECT PERSONALIZATION.

Effective multi-subject generation builds on strong single-subject performance. We validate this
capability in Fig. 10 and Fig. 11, showing six diverse samples for each of four individuals and
six frontal single-subject comparisons against SOTA models. Our method consistently preserves
identity across varying styles, poses, and scenes, and even improves fidelity to the reference over
baselines. These results confirm that the proposed framework not only enables reliable multi-subject
generation but also enhances single-subject identity fidelity.
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MIP-Adapter UNO OmniGen OmniGen2 DreamO XVerse OursInput

A man and another man are 
sitting on a sofa.

Two men sit at a wooden table 
in a quiet library, reading 

books side by side.

Two men ride bicycles on 
a country path.

Two men sit on a train.

A man and another man 
are walking on the street.

Two women stand on a 
rooftop at twilight.

Figure 8: More Visualization of our method in Multi-Human Personalization.

A small doll stands next 
to a traditional drum.

A cartoon baby sits next 
to orange basketball.

A small brown robot toy 
stands next to a glass mug 

filled with liquid.

A tabby kitten sits 
beside a plush teddy 

bear.

A modern tram and a plush 
bear toy are placed on a 

white fluffy rug.

There is a model yacht at the 
dock and a castle on an island 

in the turquoise lake.

MIP-Adapter UNO OmniGen OmniGen2 DreamO XVerse OursInput

Figure 9: Visualization of our method in Multi-Object Personalization.
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(a) A young woman waiting at a modern, minimalist bus stop, looking 

towards the camera. (b) A portrait of a young woman sitting on a grassy 

coastal hill, looking at the camera. The bright sky and a sliver of the distant 

sea are visible in the background. (c) A modern, stylish portrait of a woman 

standing against a solid, textured concrete wall. She looks confidently at the 

camera. (d) A stunning portrait of a woman standing under a blooming 

cherry blossom tree, looking at the camera. (e) A friendly women in a

simple apron, standing in front of a clean, minimalist cafe counter. He is

smiling and looking at the camera as if about to take an order. Warm,

inviting indoor lighting. professional portrait. (f) A clean, bright portrait of a 

young woman in a simple white linen shirt, walking on a white sand beach. 

She is looking at the camera with a soft smile.

(a) A women with a gentle smile, looking directly at the camera.

She is holding a ceramic coffee mug, sitting by a large window

with soft morning light. (b) A modern, stylish portrait of a woman 

standing against a solid, textured concrete wall. (c) Medium shot 

of a woman in a casual jacket, standing on a quiet European-style 

cobblestone street corner, looking at the camera. (d) A stunning 

portrait of a woman standing under a blooming cherry blossom 

tree, looking at the camera. (e) A clean, bright portrait of a young 

woman in a simple white linen shirt, walking on a white sand 

beach. (f) A gentle close-up of a woman holding a single white 

daisy, looking at the camera with a soft smile. 

(a) A man in a fashionable coat, standing in the middle of a 

charming European cobblestone alley. (b) A man in a sharp, dark 

suit standing in front of a modern glass skyscraper.  (c) A man in a 

casual shirt sitting on a weathered wooden bench by the sea at 

sunset. (d)A cheerful man in a vibrant, stylish tropical-print shirt,

leaning against a palm tree on a sunny beach. (e) A man in a smart-

casual look with a blazer and white trousers, sitting at an elegant 

outdoor lounge at a luxury beach resort. (f) A relaxed man in an 

open white linen shirt and shorts, walking along the shoreline. 

(a) A man in a fashionable coat, standing in the middle of a 

charming European cobblestone alley. (b) A man in a sharp, dark 

suit standing in front of a modern glass skyscraper.  (c) A man 

walking through a bright, airy modern art gallery with high ceilings 

and white walls. He pauses and turns to look at the camera.  (d)A

cheerful man in a vibrant, stylish tropical-print shirt, leaning against

a palm tree on a sunny beach. (e) A stylish man standing on a 

bustling Tokyo street at night, looking directly at the camera. (f) A 

relaxed man in an open white linen shirt and shorts, walking along 

the shoreline. 

Figure 10: Visualization of our method in Single-Subject Personalization.
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OmniGen OmniGen2 DreamO XVerse OursInput

A man walking along a 

narrow cobblestone 

street at dusk.

A young woman sitting 

on a grassy coastal hill

A man stands in a sleek, 

modern interior with 

polished metal surfaces .

A woman in a casual 

jacket, standing on a 

quiet cobblestone street.

A man standing beside a 

large window in a cozy, 

quiet coffee shop.

A woman standing 

under a blooming cherry 

blossom tree.

Figure 11: Qualitative comparison with existing methods on the single human generation.
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