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Abstract

From the impressive empirical success of Score-based diffusion models, it is re-
cently spotlighted in generative models. In real-world applications, the controllable
generation enriches the impact of diffusion models. This paper aims to solve the
challenge by presenting the method of control in an unsupervised manner. We
propose the Latent Code Guidance Diffusion Model (LCG-DM), which is the first
approach to apply disentanglement on Score-based diffusion models. Disentangled
latent code can be considered as a pseudo-label, since it separately expresses se-
mantic information in each dimension. LCG-DM is a Score-based diffusion model
that reflects disentangled latent code as the condition. LCG-DM shows the best
performance among baselines in terms of both sample quality and disentanglement
on dSprites dataset. LCG-DM can manipulate images on CelebA dataset, with
comparable FID performance compared to non-disentangling Score-based diffu-
sion models. Furthermore, we provide experimental results of scaling method that
reflects more on pseudo-label with MNIST dataset.

1 Introduction

Deep generative models (DGMs) estimate the underlying data distribution from a finite number of
observed data samples [23]. This estimation comes from the iterative minimization of the statistical
divergence between the model distribution and the data distribution [16]. One branch of DGM starts
the divergence minimization by explicitly specifying the model distribution and its transformations,
i.e. autoregressive models [18], Variational Autoencoder (VAE) [12, 4, 28], Flow-models [21], Score-
based diffusion models [27, 24, 10], etc, and this paper refers to these DGM variants as likelihood-
based models. Among them, the Score-based diffusion models have been recently developed with the
high quality of sampled data instances, which Generative Adversarial Network(GAN), a likelihood-
free model, had been considered the best approach. Given the better sample quality with an explicit
density model by the Score-based diffusion models, researchers are expanding research questions
on diffusion models to control [19, 22], guide [5, 8], and disentangle the model distribution while
maintaining the sample quality.

The control and the disentanglement on the model distribution are enabling factors to utilize DGM
in many industrial applications [20, 6]. Meanwhile, the controllable generation [1, 22] requires
complete joint annotations on data instances, so the joint condition will specify the correlation
between individual condition random variables. Because of the large joint condition space and limited
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data samples to sufficiently shape the density on the condition space, the disentangled representation
learning (DRL) on the condition variables makes controllable generation feasible with limited data
instances [7, 11, 2, 3, 13]. Moreover, DRL enables synthesizing a data instance on a certain condition
dimension with minimal impact on the other conditions. This disentanglement statistically results
in independence across the condition random variables, and the learning objectives of DRL require
mechanisms to ensure such independence.

There are several approaches of DRL, mostly originating from VAE [7, 11, 2] and GAN [3, 13]
frameworks. In VAE, latent variables are regularized to be dimension-wise independent when they
are inferred. However, the regularization for the disentanglement significantly reduces sample quality.
In GAN, the regularization by mutual information makes the latent code disentangled, yet this
regularization on GAN still degrades the sample quality with further learning instability.

Given the advanced sample quality from the Score-based diffusion model, it is natural progress to
formulate a DRL variation of diffusion models. This paper proposes Latent Code Guidance Diffusion
Model (LCG-DM), enabling unsupervised controllable sample generation, which is the first DRL
model in the community of Score-based diffusion models.

2 Preliminary

2.1 Score-based diffusion models

Score-based diffusion models consist of forward and reverse diffusion processes. The forward
diffusion process refers to adding noise to data, which is defined as Eq. (1) with a drift function,
f(xt, t) and a volatility function, g(t). x0 denotes a data random variable and xt denotes a perturbed
random variable at t. wt refers to the standard Wiener process.

dxt = f(xt, t)dt+ g(t)dwt (1)

While the forward process is a simple noise additive process, diffusion models define the reverse
diffusion to denoise an image from a noisy input. Given that reverse diffusion is the reverse process
of the forward diffusion, Eq. (2) derives the reverse diffusion. pt(xt) is a probability distribution of
xt.

dxt = [f(xt, t)− g2(t)∇ log pt(xt)]dt+ g(t)dwt (2)
The score function ∇ log pt(xt) has every information to reconstruct the data distribution after the
reverse process. The estimation of the score function sθ(xt, t) ≈ ∇ log pt(xt) is the goal of training.

Ldsm(θ;λ) =
1

2
Et

[
λ(t)Ep(x0),p0t(xt|x0)[∥sθ(xt, t)−∇logp0t(xt|x0)∥22]

]
(3)

Since it is intractable to obtain the score ∇ log pt(xt) from xt, some approaches approximate the
score function with Ldsm [25, 26], where λ(t) is a weighting function.

2.2 Disentangling Variational Autoencoders

A typical approach to disentangle latent variables in VAE is regularizing variational distribution
qϕ(z), so z could be dimension-wise independent. The simplest approach is β-VAE to place a higher
coefficient on DKL(qϕ(z|x0)||p(z)) in the evidence lower-bound (ELBO), so the Kullback–Leibler
divergence enforces qϕ(z|x0) to be closer to N(0, I), which is given as the prior distribution of p(z).
Later, Factor-VAE [11] and β-TCVAE [2] proposed Eq. (4) with γ > 1 showing better trade-off curve
of the reconstruction sample quality and the disentanglement strength, where qϕ(z) =

∏d
j=1 qϕ(zj).

Lfvae(ϕ, ψ) = −Eqϕ(z|x0)[logpψ(x0|z)] +DKL(qϕ(z|x0)||p(z)) + γDKL(qϕ(z)||qϕ(z)) (4)

While we inherit the idea of disentangling regularization from Eq. (4) with hyper-parameter γ, we do
not impose them directly on the loss function of Eq. (4) for a generation. Instead, LCG-DM creates a
structure that uses inferred z as a condition in Score-based diffusion models.

3 Method

Figure 1 shows the overall structure of LCG-DM. qϕ(z|x0) maps from x0 to disentangled latent
code z. The disentangled latent code vector z expresses semantic information with the independent
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Figure 1: Overall structure of proposed model: Latent Code Guidance Diffusion Model (LCG-DM). The left
figure indicates the feed-forward structure and the right figure indicates the diffusion process.

dimensions of z. From an alternative perspective, z becomes a pseudo-label of x0 in the ideal setting.
Hence, we design LCG-DM to be a z-conditional Score-based diffusion model with the disentangling
mechanism.

In Figure 1, sθ(xt, t, z) is the function to estimate the score given z, so sθ becomes the score
estimation for learning. Meanwhile, the disentangled latent code of z is not provided from the dataset,
so we create a VAE structure to extract the disentangled z from qϕ and pψ. This VAE structure
follows Factor-VAE, and we utilize Eq. (4) in LCG-DM, which means that we have γ-controlled
disentanglement term.

Since we leverage the disentangled latent condition z in training the diffusion model of sθ, it is
necessary to have stable signals from z in the diffusion model learning. Therefore, it is natural to
have a step-wise approach in training.

Loverall(ψ, ϕ, θ) = Lfvae(ψ, ϕ) + Lcdsm(ϕ, θ) (5)

In detail, Loverall in Eq. (5) denotes the loss function of LCG-DM. We conducted the training
using two stages. In Stage 1, the model optimizes Lfvae, so that qϕ extracts disentangled latent
code z. Once we have convergence in obtaining z, we initiate Stage 2, which optimizes Lcsdm, so
that sθ estimates the score function of conditional distribution ∇logpt(xt|z). We derive that the
minimization of conditional denoising score matching Lcdsm equals L2 minimization of conditional
score matching in Appendix A.5.

Lcdsm(ϕ, θ;λ) =
1

2
Et[λ(t)Ep(x0),p0t(xt|x0),qϕ(z|x0)[∥sθ(xt, t, z)−∇logp0t(xt|x0)∥22]] (6)

4 Results

(a) (b) (c)
Figure 2: Latent traversals on dSprites (a), and CelebA (b, c) datasets. The leftmost image in each row from
z =

−→
0 , and xT is fixed in (a), (b). (a) shows each latent dimension corresponds to size, angle, X-axis, and

Y-axis. (b) shows each latent dimension corresponds to age, hair brightness, azimuth, and face brightness. (c)
shows different leftmost images since they sampled from different xT . Each colored arrow indicates changing of
each latent dimension, and corresponding factors are changed. It shows that the image can be edited as desired.

We experimented with two benchmark datasets: dSprites [15] and CelebA [14]. dSprites is chosen
because of its synthetic nature, so we can comprehend and measure the disentangled conditional latent
variable z, and its quality. CelebA provides real-world images for generation tasks by manipulating
the disentangled latent variables.

4.1 dSprites dataset
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Model FID(↓) FVM(↑) MIG(↑)

VAE 74.10 0.58 0.05
β - VAE 130.01 0.60 0.23
β - TCVAE 143.99 0.67 0.23
FactorVAE 132.62 0.71 0.29

InfoGAN 8.74 0.47† 0.01†
ID-GAN 2.00† 0.65† 0.28†

DDPM++ +ST 1.28 N/A N/A

LCG-DM 1.01 (encoded) 0.84 0.34
1.03 (prior) N/A N/A

Table 1: Comparison of FID and disentangling
metrics on dSprites dataset. The symbol † de-
notes the results from other literature.

dSprites is a synthetic dataset that has known six latent
factors, i.e. shape, scale, position, etc, in generating a
single image [15]. Therefore, we can explicitly measure
the disentanglement quality by FVM [11] and MIG [2].
We compared the performance of LCG-DM against
the disentangling structures of 1) VAE variations (β-
VAE [7] and FactorVAE [11]), and 2) GAN variations
(InfoGAN [3] and ID-GAN [13]). Additionally, we
included DDPM++ +ST [10], which is the backbone
diffusion model we use. DDPM++ +ST is not designed
for disentanglement while the proposed model, LCG-
DM, is the first disentanglement diffusion model to our
knowledge.

γ FID(↓) FVM(↑) MIG(↑)

0 0.75 0.40 0.01
10 1.38 0.58 0.26
20 1.03 0.84 0.34

Table 2: Sample quality and disen-
tangling metrics by changing of γ
on dSprites dataset.

Table 1 shows the evaluation result from two perspectives: im-
age generation and disentanglement. LCG-DM shows the best
image generation in FID, and LCG-DM also provides the most
disentangled latent variable z in FVM and MIG. Particularly, we
experimented in two versions of LCG-DM: the prior version draws
a sample from z,xT ∼ N(0, I), and the encoded version draws
a sample from z ∼ qϕ and xT ∼ N(0, I). The encoded version is
slightly better because it takes advantage in drawing the condition
with a sample image x0 via encoder qϕ. The outperformed FID is achieved by diffusion model
structure, and the proposed conditioning structure makes higher γ minimally damages the generation.

Table 2 shows the impact of γ, which is a strength hyperparameter for disentanglement. As γ
increases, FVM and MIG become better as expected. However, FID seems to be uncorrelated with γ,
and the reason could be the separated training stages between the disentanglement by VAE and the
generation by a diffusion model.

4.2 CelebA dataset

Model FID(↓)

VAE 132.80
β - VAE 136.23
β - TCVAE 139.07
FactorVAE 134.52

GAN 3.34†
InfoGAN 4.93†
ID-GAN 4.08†

LCG-DM 2.57 (encoded)
10.65 (prior)

Table 3: FID comparison on
CelebA (64× 64) dataset.

Table 3 shows the FID evaluation across disentangling models. We
observe LCG-DM beats all baselines in its generation at the cost of
encoded sampling. However, the gap between prior and qϕ yields a large
discrepancy, and we attribute this to the inflexibility of the VAE structure.
The large variational gap is observed not in dSprites dataset, but in CelebA
datasets. This is because CelebA contains more complex information, so
latent space also be more complex.

Table 4 shows the FID evaluation across diffusion models without disen-
tanglement, except LCG-DM. While LCG-DM shows the worst FID from
the prior version, it should be noted that 1) the NLL is comparable; and
2) LCG-DM has the disentangled latent variables unlike NCSN++ [27]
and DDPM++ +ST [10].

Model FID(↓) NLL(↓)

NCSN++ 3.95† 2.39†
DDPM++(FID) +ST 1.90† 2.10†
DDPM++(NLL) +ST 2.90† 1.96†

LCG-DM 2.57(encoded) 2.29
10.65(prior)

Table 4: FID and NLL comparison with non-
disentangling Diffusion Models on CelebA
(64× 64) dataset.

Finally, Figure 2 shows the manipulation of a disentangled
latent in image generations. Figure 2-(b) shows that the
independent factor is smoothly changed for each z dimen-
sion. Figure 2-(c) shows that editing of image by adjusting
each dimension. The same arrow means the change of the
same dimension.

5 Conclusion

This paper presents the first disentanglement diffusion model, LCG-DM. The proposed model utilizes
a conditioning structure, so the impact of the disentanglement constraint minimally damages the
image generation performance. This disentanglement diffusion model is a gateway to causal inference
and counterfactual generations for various machine learning tasks, i.e. fairness research.
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A Appendix

A.1 Scaling method

It is also an important problem to reflect the condition well in the generation, in conditional diffusion
models. The estimation target of the conditional diffusion model is the score function of conditional
probability ∇logpt(xt|z). Since ∇logpt(xt|z) = ∇logpt(xt) +∇logpt(z|xt), some paper propose
separately estimating 1) an unconditional score function and 2) an additional network, which would
become a classifier when z is regarded as a class label [27]. On top of this structure separation between
∇logpt(xt) and ∇logpt(z|xt), recent works propose a scaling method that uses ∇logpt(xt) + λ ·
∇logpt(z|xt) as a conditional score function to strengthen the conditional input in the generation
process [5].
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Instead of separating and utilizing an adhoc network of ∇logpt(z|xt), we adopt the classifier-free
guidance method without the adhoc network. Subsequently, we estimate ∇logpt(xt) ≈ sθ(xt, t, ∅)
and ∇logpt(xt|z) ≈ sθ(xt, t, z), which would turn our conditional score function into Eq. (7) by
following the prior work of [8].

∇logpt(xt|z) ≈ (1 + λ) · sθ(xt, t, z)− λ · sθ(xt, t, ∅) (7)

Figure 3 shows the effects of scaling method. We observed that higher λ makes more reflection of
pseudo-label, but has less diversity.

Figure 3: Generation results on MNIST dataset using scaling method. The first row is not scaled, and the second
row is scaled using λ=3. Each cell shows random 100 samples, only fixing one dimension of z. Scaled samples
more reflect the condition z1= slope, z2 = thickness, but shows less diversity.

A.2 Additional latent traversals on CelebA dataset

Figure 4: Sample comparison of Factor-VAE and LCG-DM which share the same latent code. LCG-DM shows
superior sample quality and multi-modality from stochasticity of xT .
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A.3 Experiment details

LCG-DM
The disentangling structure in LCG-DM uses Factor-VAE with γ=20, and 10 latent dimensions.
The score network is pretrained in just the same setting as DDPM++ +ST [10], and fine-tuned with
conditional embedding. We take 150,000 iterations with 64 batch sizes for fine-tuning. We use a
probability flow ode sampler for a consistent sample from fixed xT [27].

Disentangling VAES
We measured FID, FVM, and MIG by experimenting 3 times for VAE, β-VAE, Factor-VAE, and
β-TCVAE. We use the same neural network architecture for encoder and decoder structures, which
consists of stacked CNN and MLP layers. The latent dimension was set to 10, and the disentangling
coefficient was set to 10.

Results from literature
We denote † on the table, which means the value from other literature. We refer to the results of GAN
variants from [13, 9], and Score-based diffusion model variants from [10, 27].

A.4 Metrics

FID
Fréchet Inception Distance (FID) indicates the distance between training data and generated data,
which is the most famous metric of sample quality. We use the clean-FID calculation module [17]
with the Inception V3 network. We measure on 50k random samples in all settings.

NLL
We measure the Negative Log Likelihood (NLL) of LCG-DM on CelebA test dataset, and we compare
it with non-disentangled diffusion models in Table 3. To measure it in LCG-DM, we calculate the
upper bound of NLL as a state in Eq. (8). We compute logpθ(x|z) using a probability flow ode [10].

−logpθ(x) = −log

∫
z

pθ(x|z)p(z)dz

= −log

∫
z

pθ(x|z)p(z)qϕ(z|x)
qϕ(z|x)

dz

≤ −qϕ(z|x)log
∫
z

pθ(x|z)p(z)qϕ(z|x)
qϕ(z|x)

dz

= −Eqϕ(z|x)logpθ(x|z) +DKL(qϕ(z|x)||p(z)) (8)

FVM
Factor VAE Metric (FVM) is a disentanglement metric that has a scale of 0 to 1, and the larger the
better [11]. Let (x(1), ...,x(L)) the random subset of training data with one ground-truth factor vk
is fixed. qϕ maps from (x(1), ...,x(L)) to (z(1), ..., z(L)), then let d is the dimension of z that has
minimum variance. FVM indicates the accuracy of a majority-vote classifier that trains (d, k).

MIG
Mutual Information Gap (MIG) is a disentanglement metric that has a scale of 0 to 1, and the larger
the better [2]. For the given ground-truth factor vk, let zi(k) and zj(k) be the top two latent variables
that have the highest mutual information with vk. MIG is the average of mutual information gap,
where K indicates the number of ground-truth factors.

MIG =
1

K

K∑
k=1

1

H(vk)
(In(zi(k) ; vk)− In(zj(k) ; vk)) (9)
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A.5 Derivation of conditional denoising score matching

The score network sθ(xt, t, z) : Rn+1+d → Rn estimates score of conditional density function.
Eq. (10) shows L2 loss of conditional score matching, but it is hard to train since ∇logpt(xt|z) is
intractable. This proof shows that optimize Lcdsm equals to optimize Eq. (10), since Eq. (12) shows
the same form of Lcdsm. Here, Eq. (11) is derived from Eq. (13).

Et
[
λ(t)Ep(x0)[∥sθ(xt, t, z)−∇logpt(xt|z)∥22]

]
(10)

= Et
[
λ(t)Ep(x0),p(xt|x0),qϕ(z|x0)[∥sθ(xt, t, z)−∇logpt(xt|z)∥22]

]
= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)−∇logpt(xt|z)∥22]]
= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)−∇logpt(xt, z) +∇logp(z)∥22]]
= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)−∇logpt(xt, z)∥22]]
= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)∥

2
2 − 2 · sθ(xt, t, z) · ∇logpt(xt, z) + c1]

= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)∥
2
2 − 2 · sθ(xt, t, z) · ∇logp0t(xt|x0)] + c1 (11)

= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)−∇logp0t(xt|x0)∥22 − ∥∇logp0t(xt|x0)∥22] + c1

= Et,x0,xt,z[λ(t) ∥sθ(xt, t, z)−∇logp0t(xt|x0)∥22]− c2 + c1

= Et
[
λ(t)Ep(x0),p0t(xt|x0),qϕ(z|x0)[∥sθ(xt, t, z)−∇logp0t(xt|x0)∥22]

]
− c2 + c1 (12)

Ext,z[sθ(xt, t, z) · ∇logpt(xt, z)] (13)

=

∫
pt(xt, z) · sθ(xt, t, z) · ∇logpt(xt, z)dxtdz

=

∫
sθ(xt, t, z) · ∇pt(xt, z)dxtdz

=

∫
sθ(xt, t, z) ·

∫
∇pt(xt, z,x0)dx0dxtdz

=

∫
sθ(xt, t, z) ·

∫
∇pt(xt, z|x0)p(x0)dx0dxtdz

=

∫
sθ(xt, t, z) · pt(xt, z|x0) ·

∫
∇logpt(xt, z|x0)p(x0)dx0dxtdz

=

∫
sθ(xt, t, z) · pt(xt, z|x0) · p(x0) ·

∫
∇logpt(xt, z|x0)dx0dxtdz

= Ex0,xt,z[sθ(xt, t, z) · ∇logpt(xt, z|x0)]

= Ex0,xt,z

[
sθ(xt, t, z) · [∇logp0t(xt|x0) +∇logp(z|x0)]

]
= Ex0,xt,z[sθ(xt, t, z) · ∇logp0t(xt|x0)]

9


	Introduction
	Preliminary
	Score-based diffusion models
	Disentangling Variational Autoencoders

	Method
	Results
	dSprites dataset
	CelebA dataset

	Conclusion
	Acknowledgements
	Appendix
	Scaling method
	Additional latent traversals on CelebA dataset
	Experiment details
	Metrics
	Derivation of conditional denoising score matching


