
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNVEILING THE BACKBONE-OPTIMIZER COUPLING
BIAS IN VISUAL REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper delves into the interplay between vision backbones and optimizers,
unveiling an inter-dependent phenomenon termed backbone-optimizer coupling
bias (BOCB). We observe that canonical CNNs, such as VGG and ResNet, exhibit
a marked co-dependency with SGD families, while recent architectures like ViTs
and ConvNeXt share a tight coupling with the adaptive learning rate ones. We
further show that BOCB can be introduced by both optimizers and certain backbone
designs and may significantly impact the pre-training and downstream fine-tuning
of vision models. Through in-depth empirical analysis, we summarize takeaways
on recommended optimizers and insights into robust vision backbone architectures.
We hope this work can inspire the community to question long-held assumptions on
backbones and optimizers, stimulate further explorations, and thereby contribute to
more robust vision systems. The source code and models are publicly available.

1 INTRODUCTION

The past decade has witnessed rapid progress in computer vision, marked by significant strides in
network architectures (He et al., 2016; Dosovitskiy et al., 2021; Yu et al., 2024) and optimizers (Sinha
& Griscik, 1971; Kingma & Ba, 2015). From AlexNet (Krizhevsky et al., 2012a) to ConvNeXt (Liu
et al., 2022a), the vision community has pushed the boundaries of pre-trained backbones in terms
of task-specific accuracy, efficiency (e.g., model parameters and inference speed), and other metrics
through heuristic architecture designs. Amidst the buzz, however, the impact of optimizers has been
largely overlooked - practitioners often default to established ones without systematic justification.
For instance, while AdamW (Loshchilov & Hutter, 2019) has emerged as the de facto choice for
training Vision Transformers (ViTs), the generality of such optimizer preferences across backbones
remains under-explored. This inquiry becomes particularly important as vision models nowadays
are deployed in various real-world applications, where the choice of optimizer can significantly
impact model generalization (Woo et al., 2023; Oquab et al., 2023), robustness to distribution
shifts (Vishniakov et al., 2023), and adaptability in transfer learning (He et al., 2017; Kirillov et al.,
2023). Recent studies have explored adapting Adafactor for efficient training scaling in ViTs (Zhai
et al., 2022), comparing SGD and AdamW for vision model fine-tuning (Kumar et al., 2022), and
investigating general optimizer designs for transformers (Xiong et al., 2020). Thus, understanding
the backbone-optimizer interplay may provide critical insights for enhancing model reliability and
facilitating vision backbone design and deployment across diverse practical scenarios.

In this paper, we explore the relationship between vision backbones and optimizers. Our primary
focus is threefold: (i) Does any identifiable dependency exist between existing vision backbones and
widely-used optimizers? (ii) If such backbone-optimizer dependencies exist, (how) do they affect the
training dynamics and performance of vision models? (iii) Can we identify direct connections between
these inter-dependencies and specific designs of vision backbone architectures and optimizers?

To answer these questions, we first revisit different categories of existing vision backbones and
optimizers as shown in Figures 1, A1, and Section 2. We then conduct extensive experiments where 20
representative backbones are evaluated against 20 optimizers on mainstream vision datasets, including
CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Krizhevsky et al., 2012b), and COCO (Lin et al.,
2014). As such, we provide the backbone-optimizer benchmark and thereby observe an interesting
inter-dependent phenomenon, which we term backbone-optimizer coupling bias (BOCB). Table 1
conveys this evidence: classical Convolutional Neural Networks (CNNs) like VGG (Simonyan &
Zisserman, 2015) and ResNet (Zhang et al., 2022) exhibit a marked co-dependency with SGD (Sinha
& Griscik, 1971). In contrast, modern backbones, such as Vision Transformers (ViTs) (Dosovitskiy
et al., 2021) and ConvNeXt (Liu et al., 2022a), perform better when paired with adaptive learning rate

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

optimizers (Loshchilov & Hutter, 2019) (see blue and gray results in Table 1). While most backbones
and optimizers are assumed to be unbiased and well-generalized, our findings appear to question it.

To dig deep into such interplay, thorough empirical analyses are conducted from both backbone and
optimizer perspectives. We first examine the performance stability of each backbone with vioplinplots
as shown in Figure 3, which offers intuitive insights into their robustness across different optimizers.
We then analyze the hyper-parameter robustness of all benchmarked backbone-optimizer pairs in
Figure 4,5, as the well-designed ones are expected to have robust hyper-parameter settings. To further
elucidate the rationale behind BOCB, we visualize the layer-wise patterns and PL exponent alpha
metrics (Martin et al., 2021) of learned parameters to examine how different network architectures
influence the parameter space and optimization complexity, hence potentially inducing the BOCB
phenomenon. As illustrated in Figures 1, 6, and Appendix D, certain stage-wise (hierarchical or
isotropic) and block-wise (heterogeneous or not) designs can significantly affect parameter space
and hyper-parameters robustness. Interestingly, we further observe that optimizers also introduce
bias back to backbones (see Section 4). For example, fine-tuning the AdamW pre-trained backbones
with the other ones often leads to significant performance degradation, while this is not present when
pre-training the model with SGD variants. Moreover, different pre-training optimizers may even
alter the parameter patterns of identical backbones. Overall, our findings suggest that BOCB can
be introduced by optimizers and backbones and may significantly impact both the pre-training and
downstream fine-tuning of vision models, thus limiting their flexibility and practical applications.

In the following sections, we first provide an overview of vision backbones and optimizers in Section 2.
We then present the backbone-optimizer benchmark details and our empirical findings in Section 3.
Section 4 offers an in-depth analysis of the rationale behind BOCB and takeaways for recommended
optimizers and summarized backbone designs. Our main contributions can be summarized as follows:

• We explore the crucial yet poorly studied backbone-optimizer interplay in visual representation
learning, revealing the phenomenon of backbone-optimizer coupling bias (BOCB).

• We provide the backbone-optimizer benchmark that encompasses 20 popular vision backbones,
from classical CNNs to recent transformer-based architectures, and evaluate their performance
against 20 mainstream optimizers on CIFAR-100, ImageNet-1K, and COCO, unveiling the
practical limitations introduced by BOCB in both pre-training and transfer learning scenarios.

• From the BOCB perspective, we summarize recommendations of optimizers and insights on more
robust vision backbone design. The benchmark results also serve as takeaways for user-friendly
deployment. We open-source the code and models for further explorations in the community.

2 ROADMAPS OF VISION BACKBONES AND OPTIMIZERS

This section provides an overview of most existing vision backbones and optimizers. We first revisit
different networks based on their stage-wise macro design (hierarchical or isotropic), building block
structures (heterogeneous or not), and core operators (convolution, self-attention, etc.). We then dive
into mainstream optimizers, emphasizing their distinctive approaches to learning rate adjustment and
gradient handling. This serves two purposes: first, it offers an organized framework for understanding
the current landscape; second, it facilitates our subsequent analyses, allowing us to draw connections
between experimental results and specific techniques, thereby yielding clear observations and insights.

2.1 TAXONOMY OF VISION BACKBONE ARCHITECTURES

Stage-wise Macro Design. As shown in Figure 1 and Table A1, the overall framework of existing
vision backbones can be categorized into two groups: (i) Hierarchical architectures: These models
(e.g., VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), MobileNet.V2 (Sandler
et al., 2018), and EfficientNet (Tan & Le, 2019)) divide the network into multiple downsizing
stages, where each stage consists of stacked building blocks with specific designs (e.g., bottleneck,
MetaFormer (Yu et al., 2024) or ConvNeXt (Liu et al., 2022a)) for feature extraction. (ii) Isotropic
architectures: In contrast, backbones like Vision Transformers (ViTs) (Dosovitskiy et al., 2021)
and MLP-Mixers (Tolstikhin et al., 2021) employ an isotropic building block stacking, where stand-
alone token and channel mixers (e.g., self-attention and MLP) are proposed to capture long-range
dependencies with attention-like operators while enabling token prompting for broader applications.
Intra-block Micro Design. The building block structures can also be classified into two paradigms:
(i) Homogeneous structures: Early CNNs like AlexNet (Krizhevsky et al., 2012a) employed a
straightforward approach of interleaving convolutions and pooling layers for feature extraction. A

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

K×K Conv

Pool /2

Inverted BottleNeck

Stage 1

D
ow

nS
am

pl
in

g
/4

D
ow

nS
am

pl
in

g
/2

D
ow

nS
am

pl
in

g
/2

D
ow

nS
am

pl
in

g
/2

Block

Block

Block

Norm

Token Mixer

Norm

Channel Mixer

7×7 DWConv

Norm

BottleNeck MetaFormer ConvNextPrimary Block

× N

Channel Mixer

Primary Hierarchical

B
lock D

esign
Stage D

esign

Primary CNN Classical CNN Modern Backbone

Norm

Attention

Stage 2
Stage 3 Stage 4

Stage 1

Pa
tc

hf
y

/4

D
ow

nS
am

pl
in

g
/2

D
ow

nS
am

pl
in

g
/2

D
ow

nS
am

pl
in

g
/2

Stage 2
Stage 3 Stage 4

1×1 Conv

3×3 DWConv

1×1 Conv Channel Mixer

AlexNet

Transformer

Norm

MobileNet.V2 EfficientNet ViT Swin MLPMixer MetaFormer ConvNext

Patchfy /16

1×1 Conv

3×3 Conv

1×1 Conv

BN, ReLU

Isotropic Hierarchical

BN, ReLU

BN, ReLU

BN, ReLU

BN

ResNet

k×k Conv

K×K Conv

Pool /2

k×k Conv

× N

2014 2016 2018 2019 2020 2021 20232022 20242012

VGG MogaNet

Figure 1: Vision backbones with representative macro and micro designs since 2012. (a) Primary
CNNs like VGG laid the foundation for vision backbone design, i.e., multi-layer networks built by
plainly stacking building blocks. (b) Classical CNNs like ResNet identified the overall framework of
vision backbones as hierarchical stages, each comprising stacked bottlenecks connected by overlapped
downsampling layers. (c) Modern DNNs introduced different intra-block structures while presenting
two main groups of stage-wise design: hierarchical and isotropic stages with downsampling and
patchifying. We summarize all the technical details of these typical vision backbones in Table A1.

significant breakthrough came with the bottleneck structure of ResNet (He et al., 2016), which set
a new paradigm for subsequent architectures. Following this, research has focused on enhancing
bottlenecks through the integration of specialized operators, such as separable convolutions (Sandler
et al., 2018) and CBAM (Woo et al., 2018). (ii) Heterogeneous structures: ViTs (Dosovitskiy et al.,
2021; Liu et al., 2021) marked a paradigm shift by introducing heterogeneous building blocks, in
which token-mixers (e.g., self-attention, sliding windows) and channel-mixers (typically feed-forward
networks) are exploited for disentangled feature processing. Built upon this, subsequent works mainly
focus on crafting more efficient (Yu et al., 2024) and expressive (Ding et al., 2024) token-mixers.
Notably, most existing studies change network architectures heuristically to improve certain metrics,
such as task accuracy, speed, and parameter efficiency. However, the impact of these architectural
choices on their optimization has been largely overlooked, which is exactly what we are interested in.

2.2 MAINSTREAM GRADIENT-BASED OPTIMIZERS

Algorithm 1 General Gradient-based Optimizer for DNNs
Require: DNN parameters θ = {θl}Ll=1, an initial learning rate lr,

weight decays ω = {ωl}Ll=1, a loss function L, and a dataset D.
1: Initialize parameters {θ0l }Ll=1 and learning rates {α0

i }Ll=1 ← lr.
2: for each iteration i = 1, 2, . . . , L do ▷ Loop over iterations
3: for each layer l = 1, 2, . . . , L do ▷ Loop over layers
4: Compute gradients∇θi−1

l = ∂L(θ,D)
∂θl

. ▷ Step 1

5: Estimate gradients gil with∇θi−1
l and {gjl }

i−1
j=1. ▷ Step 2

6: Caculate αi−1
l with {αj

l }
i−1
j=1 and {gjl }

i
j=1. ▷ Step 3

7: Update: θil ← θi−1
l − αi

l ·
(
gi−1
l + ωl · θi−1

l

)
. ▷ Step 4

8: end for
9: end for

The optimization of DNNs is an in-
tricate process requiring iterative
parameter updates. Algorithm 1
offers a general framework for
this refinement, encapsulating the
essence of gradient-based optimiz-
ers. The entire pipeline includes
four key steps:

Step 1: Gradient Computation.
The initial phase involves calculat-
ing partial derivatives of the loss
function L with respect to each
layer’s parameters θl through back-
propagation. This determines the
update direction for each model parameter that can minimize the learning objectives. Step 2: Gra-
dient Estimation. To further improve the optimization stability and convergence, gradients can be
refined by incorporating both current and historical information. Techniques like momentum are thus
employed to smooth gradient estimates, thereby providing more robust and reliable updates. Step 3:
Learning Rate Calculation. At this stage, the critical hyper-parameter, learning rate, is calculated
according to the past statistics and estimated gradients through adaptive optimizers (e.g., AdaGrad,
RMSProp, and Adam) for better convergence. Step 4: Parameter Update. The final step updates

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

AlexNet EfficientNet ViT MetaFormerResNet

Transformer

VGG

2014 2016 2018 2019 2020 2021 20232022 20242012 2017

ConvNext

Swin MogaNet

MLPMixer

2018

2015

2012

1971

SGD
RMSProp

Adam
AdaF

actor

LARS
MobileNet.V2

ConvNext.V2

2020
2021

2022
2023

2024

Mamba

VMamba

SGDP

Adan

Adam
W

AdaB
elief

LAMB

RAda
m

SGD Dominating

Adam Dominating

Timeline of Network Design
Timeline of Optimizer

Figure 2: Overview of developing timelines for networks and optimizers. Before the emergence
of Transformers, network architectures like ResNet (He et al., 2016) were primarily designed with
SGD as the default optimizer. Following the introduction of Transformer (Vaswani et al., 2017) and
ViT (Dosovitskiy et al., 2021), AdamW became the standard, accompanied by more sophisticated
training strategies, reflecting the increasing complexity of modern architectures.

the network parameters θl with refined gradients gl, learning rates αl, and a weight decay term ωl

while incorporating additional regularization policies to mitigate overfitting.

As such, mainstream optimizers can be divided into four principal classes as depicted in Figure A1. (a)
Fixed Learning Rate with Momentum: This category employs static learning rates while modulated
by momentum (Sinha & Griscik, 1971; Heo et al., 2021). Its key principle is the accumulation of past
gradients to determine the current update, which aids in accelerating convergence in consistent direc-
tions while dampening oscillations in high-curvature dimensions. (d) Adaptive Learning Rate without
Momentum: Optimizers in this class (e.g., AdaGrad (Duchi et al., 2011) and RMSProp (Hinton,
2012)) adapt learning rates for each parameter based on the historical statistics. While this approach
may introduce extra cost, it allows for larger updates for infrequent parameters and smaller updates for
frequent ones, providing better adaptability to varying feature scales and data sparsity. (b) Adaptive
Learning Rate with Momentum: This type combines the benefits of momentum with parameter-wise
learning rate adaptation (Kingma & Ba, 2015; Reddi et al., 2018), making it well-suited for large
datasets or complex neural networks. (c) Estimated Learning Rate with Momentum: These optimizers
aim to mitigate the convergence issues of Category (b) through additional constraints or estimations,
such as factored moments (Shazeer & Stern, 2018) and bounded learning rates (Luo et al., 2019).

3 BACKBONE-OPTIMIZER COUPLING BIAS (BOCB)

3.1 COMBINED EVALUATION OF BACKBONE AND OPTIMIZER

It is commonly assumed that both backbones and optimizers should be broadly applicable and can be
combined freely without significant inter-dependence. To investigate the potential backbone-optimizer
interplay between a set of vision backbones {Fi(·; θ)}Nb

i=1 and widely used optimizers {Oj(·)}No
j=1, we

consider three different aspects of evaluation, from task-specific accuracy to optimization dynamics,
to identify and then explain the BOCB phenomena (if it exists) with a standard benchmark.
(A) Performance Metrics. We assess each backbone-optimizer combination with the top-1 accuracy
on the validation set to study whether a backbone relies on (or fails with) the certain optimizer.
Given a backbone Fi and a set of its results Ri = {rj(Fi)}No

j=1, we detect the failure case that is
dynamically lower than others with quantiles and a threshold γ > 0,

rj(Fi) < max(Ri)−min
(
Q0.75(Ri)−Q0.25(Ri), γ

)
. (1)

Meanwhile, the severity of BOCB can also be reflected by the standard deviation (Std) and range.
Therefore, we report these statistics by removing the worst result min(Ri) and highlight the top-4
results in blue while marking the failed attempts in gray, which yields a heatmap-like table of bench-
marking results as a clear overview of the effectiveness of each backbone-optimizer combination.
(B) Hyper-parameter Robustness. While standard metrics offer basic insights, we delve deeper into
the adaptability of these backbone-optimizer pairs through the lens of hyper-parameter robustness. To
quantify this stability, we measure the variation of all optimal optimizer hyper-parameters from their
mode (most common) configurations. Assuming there are n optimal learning rates and m optimal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

weight decays for all backbone-optimizer pairs, we convert these values into discrete one-hot codes
{l̃ri}ni=1 and {ω̃i}mi=1, calculate mode statistics Mlr and Mω , and measure the variation by Manhattan
distance Σn

i=1|l̃ri−Mlr|+Σm
i=1|ω̃i−Mω|. Lower variation often denotes greater robustness of hyper-

parameter settings and thereby indicates desirable adaptability to new or poorly studied optimizers or
vision backbones and thus could be desirable for broader practical applications.
(C) Parameter Patterns and Convergence Quality. To gain intuitive insights into different network
architectures, we analyze the learned parameters with four key indicators, including PL exponent
alpha (Martin et al., 2021), entropy, L2-norm, and top-k PCA energy ratio. Please view Appendix B.3
for our detailed interpretations. This analysis reveals intrinsic topological patterns that reflect the
typical layer-wise properties of various backbones, as shown in Figure 6 and Appendix D. We
observe distinct entropy patterns in hierarchical versus isotropic macro designs, variations in L2-norm
across stages, and changes in PCA energy ratios for diverse layer types (e.g., convolutional vs.
attention-based). By analyzing these patterns, we gain valuable insights into how different network
architectures interact with various optimization algorithms, furthering our understanding of the BOCB
phenomenon and informing future design choices for both backbones and optimizers.

3.2 BENCHMARKS AND OBSERVATIONS

Benchmark Settings. We conduct the main benchmark of vision backbones and optimizers for
image classification on CIFAR-100 (Krizhevsky et al., 2009) for analysis efficiency, where models are
trained 200 epochs with optimal hyper-parameters for various optimizers. We select 20 representative
vision backbones from the three categories with similar parameters counts, as summarized in
Table A1: (a) Primary CNNs include AlexNet (Alex) (Krizhevsky et al., 2012a) and VGG-13-BN
(VGG) (Simonyan & Zisserman, 2015); (b) Classical CNNs include ResNet-50 (R) (He et al., 2016),
DenseNet-121 (DN) (Huang et al., 2017), MobileNet.V2 (MobV2) (Sandler et al., 2018), EfficientNet-
B0 (Eff) (Tan & Le, 2019), and RepVGG (Ding et al., 2021); (c) Modern DNNs include Transformers
(DeiT-S (Touvron et al., 2021a) and Swin-T (Liu et al., 2021)), MLPMixer-S (MLP) (Tolstikhin et al.,
2021), modern CNNs include ConvNeXt-T (CNX) (Liu et al., 2022a), ConvNeXt.V2 (CNXV2) (Woo
et al., 2023), MogaNet-S (Moga) (Li et al., 2024), and UniRepLKNet-T (URLK) (Ding et al.,
2024). We also evaluate MetaFormer baselines (Yu et al., 2024) with IdentityFormer-S12 (IF),
PoolFormerV2-S12 (PFV2), ConvFormer-S12 (CF), and AttentionFormer-S12 (AF), whose only
difference is their token-mixer designs. We also selected 20 popular optimizers from the four
categories as discussed in Figure A1: (a) Fixed Learning Rate with Momentum includes SGD-
M (Sinha & Griscik, 1971), SGDP (Heo et al., 2021), and LION (Chen et al., 2023); (b) Adaptive
Learning Rate with Momentum covers Adam (Kingma & Ba, 2015), AdaMax (Kingma & Ba,
2015), AdamP (Heo et al., 2021), AdamW (Loshchilov & Hutter, 2019), LAMB (You et al., 2020),
NAdam (Reddi et al., 2018), RAdam (Liu et al., 2020), and Adan (Xie et al., 2023). (c) Estimated
Learning Rate with Momentum involves AdaBelief (Zhuang et al., 2020), AdaBound (Luo et al.,
2019), AdaFactor (Shazeer & Stern, 2018), LARS (Ginsburg et al., 2018), NovoGrad (Ginsburg et al.,
2020), and Sophia (Liu et al., 2023); (d) Adaptive Learning Rate without Momentum comprises
AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), and RMSProp (Hinton, 2012). We consider
two training recipes: (1) PyTorch-style training (Szegedy et al., 2016) with basic augmentations, (2)
DeiT-style training (Touvron et al., 2021a) with advanced augmentations (Cubuk et al., 2020; Zhang
et al., 2018) and techniques (Huang et al., 2016). As for optimizer hyper-parameters, we first search
the two commonly-employed ones (learning rate and weight decay) with NNI toolbox (Microsoft,
2021), i.e., determining the NNI search range manually. Subsequently, we tune other optimizer-
specific hyper-parameters (e.g., momentum in SGD and β2 in Adam). The average top-1 accuracy
over three trials is reported. Please refer to Appendix B.1 for further implementation specifics.

Observations. As shown in Table 1, we observed an interesting phenomenon that some popular
models (e.g., DeiT-S and ConvNeXt-T) yield bad results with some optimizers (i.e., SGD and LARS).
Therefore, we summarize this phenomenon as BOCB, where the performance of a certain visual
architecture is strongly coupled with the choice of the optimizer, deviating from the expected indepen-
dence between network designs and optimization algorithms. In particular, we notice that classical
CNNs (e.g., VGG, ResNets, and RepVGG) exhibit a slight coupling with Category (a) optimizers but
have not encountered evident BOCB. In contrast, modern architectures like ViTs (Dosovitskiy et al.,
2021) and ConvNeXt (Liu et al., 2022a) strongly matched with adaptive optimizers in Category (b).

As observed in Figure 3, we assume that such a coupling bias may stem from the increasing com-
plexity of optimization as network architectures evolve. Concretely, modern backbones incorporate
complex designs such as advanced token-mixers (e.g., MogaNet and UniRepLKNet) and block-wise
heterogeneous structures (e.g., ConvNeXt variants and CAFormer), which shape a more intricate and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Top-1 accuracy (%) of representative vision backbones with 20 mainstream optimizers on
CIFAR-100. The torch-style training settings are used for AlexNet, VGG-13, R-50 (ResNet-50), DN-
121 (DenseNet-121), MobV2 (MobileNet.V2), and RVGG-A1 (RepVGG-A1), while other backbones
adopt modern recipes, including Eff-B0 (EfficientNet-B0), ViTs, ConvNeXt variants (CNX-T and
CNXV2-T), Moga-S (MogaNet-S), URLK-T (UniRepLKNet-T), and TNX-T (TransNeXt-T). We list
MetaFormer S12 variants apart from other modern DNNs as IF-12, PFV2-12, CF-12, AF-12, and
CAF-12. The blue and gray features denote the top-4 and trivial results, while others are inliers. Two
bottom lines report mean, std, and range on statistics that removed the worst result for each model.

Optimizer A
le

xN
et

V
G

G
-1

3

R
-5

0

D
N

-1
21

M
ob

V
2

Ef
f-

B
0

RV
G

G
-A

1
D

ei
T-

S
M

LP
-S

Sw
in

-T
C

N
X

-T
C

N
X

V
2-

T
M

og
a-

S
U

R
LK

-T
TN

X
-T

IF
-1

2
PF

V
2-

12
C

F-
12

A
F-

12
C

A
F-

12

SGD-M 66.76 77.08 78.76 78.01 77.16 79.41 75.85 63.20 72.64 78.95 60.09 82.25 75.93 82.75 86.21 77.40 77.70 83.46 83.02 81.21
SGDP 66.54 77.56 79.25 78.93 77.32 79.55 75.26 63.53 69.24 80.56 61.25 82.43 80.86 82.18 86.12 77.55 77.53 83.54 82.88 81.56
LION 62.11 73.87 75.28 75.42 74.62 76.97 73.55 74.57 74.19 81.84 82.29 82.53 85.03 83.43 86.96 78.65 79.66 84.62 82.41 79.59
Adam 65.29 73.41 74.55 76.78 74.56 76.48 75.06 71.04 72.84 80.71 82.03 82.66 84.92 84.73 86.23 78.39 79.18 84.81 81.54 82.18
Adamax 67.30 73.80 75.21 73.52 74.60 78.37 74.33 73.31 73.07 81.28 80.25 81.90 84.51 83.81 86.34 78.02 79.55 84.31 81.83 82.50
NAdam 60.49 73.96 74.82 76.10 75.08 77.06 74.86 72.75 73.77 81.80 82.26 82.72 85.23 82.07 86.44 78.37 80.32 84.81 81.82 82.83
AdamW 62.71 73.90 75.56 78.14 76.88 78.77 75.35 72.15 73.59 81.30 83.52 83.59 86.19 86.30 87.51 79.39 80.55 85.46 82.24 83.60
LAMB 66.90 75.55 77.19 78.81 77.59 78.77 77.04 75.39 74.98 83.47 84.13 84.93 86.04 84.99 87.37 80.21 80.01 85.40 83.16 83.74
RAdam 61.69 74.64 75.19 76.40 75.94 77.08 74.83 72.41 72.11 79.84 82.18 82.69 84.95 84.26 86.49 78.46 79.71 84.93 81.44 82.35
AdamP 60.27 75.56 78.17 78.89 77.79 78.65 77.67 71.55 73.66 80.91 84.47 84.40 86.45 86.19 87.16 79.20 81.70 85.15 82.12 83.40
Adan 63.98 74.90 77.08 79.33 77.73 78.43 76.99 76.33 74.94 83.35 84.65 84.77 86.46 86.75 87.47 80.59 83.23 85.58 83.51 84.89
AdaBound 66.59 77.00 78.11 75.26 78.76 79.88 74.14 68.59 70.31 80.67 71.96 83.90 78.48 83.03 86.07 77.99 77.81 82.73 83.08 82.38
LARS 64.35 75.71 78.25 77.25 76.23 72.43 75.50 71.36 72.64 81.29 61.40 82.22 33.26 41.03 85.16 77.66 78.78 82.98 81.00 82.05
AdaFactor 63.91 74.49 75.41 77.03 75.38 77.83 75.03 74.02 71.16 80.36 82.82 83.06 85.17 85.99 86.57 78.78 78.81 84.90 81.94 82.36
AdaBelief 62.98 75.09 80.53 79.26 75.78 78.48 76.90 70.66 73.30 80.98 83.31 84.47 84.80 84.54 86.64 78.55 81.01 85.03 83.21 83.56
NovoGrad 64.24 76.09 79.36 77.25 71.26 74.23 75.16 73.13 67.03 81.82 79.99 82.01 82.96 80.77 85.85 77.16 78.92 83.51 81.28 82.98
Sophia 64.30 74.18 75.19 77.91 76.60 78.95 75.85 71.47 72.74 80.61 83.76 83.94 85.39 84.20 86.60 77.67 78.90 84.58 81.67 82.96
AdaGrad 45.79 71.29 73.30 51.70 33.87 77.93 46.06 67.24 67.50 75.83 75.63 50.34 83.03 82.57 66.83 44.34 44.40 79.67 78.71 38.09
AdaDelta 66.87 74.14 75.07 76.82 75.32 77.88 74.58 65.44 71.32 80.25 74.25 82.74 81.06 84.17 85.31 75.91 76.40 84.05 82.62 82.08
RMSProp 59.33 73.30 74.25 75.45 73.94 76.83 74.92 70.71 71.63 77.52 82.29 82.11 85.17 61.14 86.21 77.40 77.14 84.01 79.72 81.83

Mean 63.67 74.68 76.31 76.94 75.65 77.77 75.19 70.82 72.10 80.63 78.13 82.92 83.51 82.40 86.34 78.03 78.94 84.28 81.99 82.32
Std/Range 1.1/8 1.0/4 1.6/6 1.4/6 1.6/8 1.2/6 0.9/4 2.9/13 1.7/8 1.1/6 8.0/25 0.8/3 2.8/11 5.5/26 0.6/2 0.8/5 1.2/7 0.8/3 0.9/4 0.9/5

Ale
xN

et
VG

G13
-BN

Re
sN

et-
50

Re
sN

et-
10

1
Den

se
Net-

12
1

Mob
ile

NetV
2

Eff
icie

ntN
et-

B0
Re

pV
GG-A1
DeiT

-S
MLP

Mixe
r-S

Sw
in-

T
Co

nv
NeX

t-T
Co

nv
NeX

tV2
-T

Mog
aN

et-
S

Un
iRe

pL
KN

et-
T

Tra
ns

NeX
t-T

IdF
orm

er-
S1

2
Po

olF
orm

er-
S1

2
Co

nv
Fo

rm
er-

S1
2

Att
nF

orm
er-

S1
2

CA
Fo

rm
er-

S1
2

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Figure 3: Violinplot of the performance stability for different backbones. We visualize the
results in Table 1 as violin plots to show the performance stability of different vision backbones. In
particular, favorable backbones should not only achieve great performance (high mean accuracy)
with few optimizers but yield a small performance variance (a flat distribution without outliers). Note
that grey dots denote the outliers (backbone-optimizer combination with poor results), revealing
the phenomenon of BOCB. We suggest that well-designed (vision) backbones should exhibit both
superior performance and great performance stability across optimizers to mitigate the risk of BOCB.

challenging optimization landscape, necessitating adaptive learning rate strategies. Thus, modern
backbones exhibit stronger couplings with optimizers that can navigate these complex landscapes.
As we meet real-world challenges, it becomes critical to explore network architectures beyond
traditional metrics. Optimizers provide an entry point for this investigation. Intuitively, different
network architectures might seemingly affect the optimization landscape, thereby influencing the
optimization process. We assume that this interplay between backbones and optimizers may have
substantial implications for both pre-training and fine-tuning in practical applications. By examining
this relationship, we aim to provide insights that can guide the development of more effective and
efficient models for computer vision tasks. The BOCB phenomenon also has several implications for
vision backbones in terms of user-friendly deployment and more robust architecture design:

(A) Deployment. Vision backbones with weaker BOCB offer greater flexibility and are more user-
friendly, especially for practitioners with limited resources for extensive hyper-parameter tuning.
However, modern architectures like ViTs and ConvNeXt, which exhibit strong coupling with adaptive
optimizers, require careful optimizer selection and hyper-parameter tuning for optimal performance.

(B) Performance and Generalization: While classical CNNs with weaker coupling offer more
user-friendliness, modern DNNs with stronger coupling potentially leads to better performance and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Ale
xN

et

VG
G13

-BN

Re
sN

et-
50

Re
sN

et-
10

1
Den

se
Net-

12
1

Mob
ile

NetV
2

Eff
icie

ntN
et-

B0
Re

pV
GG-A1

DeiT
-S

MLP
Mixe

r-S

Sw
in-

T

Co
nv

NeX
t-T

Co
nv

NeX
tV2

-T
Mog

aN
et-

S
Un

iRe
pL

KN
et-

T
Tra

ns
NeX

t-T
IdF

orm
er-

S1
2

Po
olF

orm
er-

S1
2

Co
nv

Fo
rm

er-
S1

2
Att

nF
orm

er-
S1

2
CA

Fo
rm

er-
S1

2

0

1

2

3

4

5

6

Di
st

an
ce

Figure 4: Boxplot visualization of hyper-parameter robustness (learning rate and weight decay)
for various backbones on CIFAR-100. The vertical axis denotes variation (measured by Manhattan
distances) of all optimal hyper-parameters for certain backbones across different optimizers to the
default (mode) values. Holistically, backbones with larger mean and variance of variations (e.g.,
AlexNet, EfficientNet-B0, ConvNeXt-T, and ConvFomer-S12) require more tuning efforts in practice
and may be tough to adapt to new or poorly-studied optimizers and tasks. In contrast, models with low
variation maximum while the small medians (e.g., ResNet-50, RepVGG-A1, and CAFormer-S12) are
regarded as more robust and with more favorable optimization behavior from the view of optimizers.

SG
D

SG
DP

LIO
N

Ad
am

Ad
am

ax

NAd
am

Ad
am

W
LA

MB
RA

da
m

Ad
am

P
Ad

an

Ad
aB

ou
nd

LA
RS

Ad
aFa

cto
r

Ad
aB

elie
f

Nov
oG

rad
So

ph
ia

Ad
aG

rad

Ad
aD

elt
a

RMSP
rop

0

1

2

3

4

5

Di
st

an
ce

Figure 5: Boxplot of optimizers generality across different backbones on CIFAR-100. Symmetrical
to Figure 4, the analysis scope here is switched from backbones to optimizers so as to showcase
the optimizer’s generality from the perspectives of hyper-parameter robustness. Some optimizers in
Category (b) show favorable robustness (e.g., AdamW and LAMB). Contrastively, several optimizers
in the other three types show poor generality (e.g., SGDP, AdaBound, and LARS), which are excluded
from our further discussion on the connection between BOCB and diverse vision backbone designs.

generalization. Tailoring the optimization process to certain architectural characteristics of modern
backbones, such as hierarchical structures for stage-wise design and depth-wise convolutions for
intra-block design for more inductive bias, can effectively navigate complex optimization landscapes,
unlocking superior performance and generalization capabilities.

(C) Backbone Design Insights: The observed BOCB phenomenon highlights the need to consider
the coupling between backbone designs and optimizer choices. When designing new backbone
architectures, it is crucial to account for both the inductive bias (e.g., hierarchical structures and local
operations) and some optimizing auxiliary modules (Touvron et al., 2021b; Shleifer et al., 2021)
introduced by the macro design principles. A balanced approach that harmonizes the backbone design
with the appropriate optimizer choice can lead to optimal performance and efficient optimization,
enabling the full potential of the proposed architecture to be realized.

4 WHERE DOES BOCB COME FROM?

To investigate the essence behind the BOCB phenomenon, we first consider what matters the most:
optimizers or backbones. As shown in Figure 5 and Table 1, four groups of optimizers show different
extents of BOCB with vision backbones. Categories (b) and (c) exhibit a robust, hyperparameter-
insensitive performance peak, adept at navigating the complex optimization landscapes of early-stage
CNNs and recent backbones. Category (a) necessitates meticulous hyper-parameter tuning for
classical CNNs while demonstrating less adaptability to the high optimization demands of modern
backbones with complex designs. Category (d) shows the worst performances with heavy BOCB.

4.1 ORIGINS OF BOCB: BACKBONE MACRO DESIGN AND TOKEN MIXERS

As discussed in Figure 1 and Section 2, the trajectory of vision backbones has significantly sculpted
the optimization landscape, progressing through distinct phases that reflect the intricate relationship
between network complexity and training challenges. This section delves into the evolution of vision
backbone macro design and its profound implications for the BOCB phenomenon.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

SGDP

SGD

AdaBound

LARS

AdamP

LAMB

AdaBelief

Adan

RAdam

AdaFactor

Sophia

AdaDelta

NAdam

AdamW

LION

Adamax

Adam

RMSProp

AdaGrad

NovoGrad

0 2 4 6 8 10
Entropy(VGG-13)

Random init

(a) VGG-13

AdaBelief

NovoGrad

SGDP

SGD

LARS

AdamP

AdaBound

LAMB

Adan

AdamW

AdaFactor

LION

Adamax

RAdam

Sophia

AdaDelta

NAdam

RMSProp

Adam

AdaGrad

0 10 20 30 40 50
Entropy(ResNet50)

Random init

(b) ResNet-50

Adan

LAMB

LION

Adamax

NovoGrad

AdaFactor

NAdam

RAdam

AdamW

AdamP

Sophia

LARS

Adam

RMSProp

AdaBelief

AdaGrad

AdaBound

AdaDelta

SGDP

SGD

0 10 20 30 40
Entropy(Deit-Small)

Random init

(c) DeiT-S

LAMB

Adan

LION

NovoGrad

NAdam

AdamW

LARS

Adamax

AdaBelief

AdamP

Adam

Sophia

SGDP

AdaFactor

AdaDelta

RAdam

AdaBound

SGD

RMSProp

AdaGrad

0 10 20 30 40 50
Entropy(Swin-T)

Random init

(d) Swin-T
FFN

(e) MLP-Mixer

FFN

(f) ConvNeXt-T

FFN

(g) MogaNet-T
Figure 6: Layer-wise backbone parameter patterns. We visualize the ridge plot of the entropy
patterns of learned parameters of specific vision backbones on CIFAR-100. For each subfigure, the X
and Y axes indicate the layer indexes and the entropy of weights, respectively. Specifically, subfigures
(a)-(d) represent the ridge plot of the entropy patterns, while subfigures (e)-(g) focus on the ridge
plot of the L2-norm patterns for vision backbones with significant BOCB, including MLP-Mixer,
ConvNeXt, and MogaNet, i.e., whether the zoomed-in areas of FFN modules are in trivial patterns.

(i) Early-stage CNNs: These architectures featured a straightforward design of plainly stacked convo-
lutional and pooling layers, culminated by fully connected layers. Such a paradigm was effective but
set the stage for further optimization of landscape alterations. (ii) Classical CNNs: The introduction
of ResNet marked a pivotal shift towards stage-wise hierarchical designs, significantly enhancing
feature extraction and representation learning ability. ResNet-50, in particular, demonstrated a
well-balanced approach to BOCB, which exhibited strong compatibility with SGD optimizers and a
relatively lower BOCB compared to its contemporaries. (iii) Modern Architectures: The transition
to modern backbones introduced simplified block-wise designs (e.g., MetaNeXt (Yu et al., 2023)
and ConvNeXt variants (Liu et al., 2022a; Woo et al., 2023), or complex block-wise heterogeneous
structures (e.g., MogaNet (Li et al., 2024) and UniRepLKNet (Ding et al., 2024)), increasing the
optimization challenge and the degree of BOCB due to their complex feature extraction. Representing
a pinnacle in evolution, the MetaFormer architecture incorporates both stage-wise and block-wise
heterogeneity into its design. This innovative macro design refines the optimization landscape by
harmonizing with optimizers, leading to reduced BOCB and enhanced performance.

The above backbone evolution underscores the pivotal role of macro design in shaping the optimization
landscape and the necessity for continued innovation in backbone architectures. It highlights the
delicate balance that must be struck between advancing representational capabilities and maintaining
optimization efficiency. Please view Appendix D for implementation details. Next, we illustrate three
cases that elucidate how the overall framework and token mixer designs impact the BOCB phenomena
with the parameter quality metric alpha (Martin et al., 2021), demonstrating the representational
capacity versus the BOCB effect trade-off.
Case 1: Transformers. The lack of inductive biases in ViTs, such as local connectivity and shift-
invariance in CNNs, stems from their self-attention mechanism and stage-wise isotropic design.
As shown in Figure 7(a), this necessitates careful refinements to ensure effective generalization
and reduce BOCB in vision tasks. MLP-Mixer streamlines the model by replacing attention-based
token mixers with MLPs, simplifying token interactions and thus inducing a more stable training
process. However, it sacrifices the model’s capacity to capture long-range dependencies, which is
also essential for specific vision tasks, thus representing a trade-off between model simplicity and
representation capacity. AttenFormer effectively mitigates BOCB due to its MetaFormer framework,
which incorporates balanced designs and residual scaling across stages. Swin-T, akin to DeiT-S, is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

DeiT-S MLPMixer-S Swin-T AttenFormer-S12
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Al
ph

a

1.8

4.1

2.3

3.4

2.7

2.1

3.5

2.6

3.6

2.7

2.3
2.6

2.7

2.4

2.1

3.9 3.9 3.8

2.5

2.1

Threshold
SGD

AdamW
AdaBound

LARS
RMSProp

(a) Case 1: Transformers
ConvNeXt-T ConvNeXt.V2-T RepVGG-A1 ConvFormer-S12

2

4

6

8

10

Al
ph

a

10.2

3.4

2.3

9.1

2.4
2.9

3.5

4.3

2.8
3.2 2.9 3.1 3.2

3.8

3.1
2.4

3.0
3.6

2.5 2.6

Threshold
SGD

AdamW
AdaBound

LARS
RMSProp

(b) Case 2: Modern CNNs
IdentityFormer-S12 PoolFormerV2-S12 ConvFormer-S12 AttentionFormer-S12 CAFormer-S12

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Al
ph

a

2.1

3.5

2.1
1.9

2.3 2.3

3.8

2.4

2.0

2.5 2.4

3.0

2.5
2.6 2.6

3.9 3.9

2.5

3.2

2.1

2.5

4.1

2.4
2.5 2.6

Threshold
SGD

AdamW
LARS

AdaDelta
RMSProp

(c) Case 3: MetaFormer variants
Figure 7: BOCB case studies with PL exponent alpha metrics (Martin et al., 2021) of learned
model parameters with diverse optimizers on CIFAR-100. The alpha metric measures the fitting
quality of models to a certain task, and a smaller alpha value indicates better fitting. Empirically,
values less than 2 or greater than 6 have the risk of overfitting or underfitting. The diagonal bars denote
the BOCB occurring. View discussions in Section 4 and details on the alpha metric in Appendix B.3.

based on the Vallina Transformer but introduces hierarchical stages and local attention blocks. These
designs enhance the model’s ability to capture fine-grained features, leading to better performance
and weaker BOCB compared to DeiT-S. Takeaway: Block-wise macro designs aimed at reducing
heterogeneity or enhancing homogeneity, combined with hierarchical stages and the integration of
inductive biases within token mixers, are crucial for ViTs to mitigate BOCB in computer vision tasks.
Case 2: Modern CNNs. ConvNeXt, inspired by the macro design of ViTs, introduces a homoge-
neous block design that integrates two types of operators within a residual connection, potentially
enhancing capacities across various tasks and data scales. The effectiveness of this architecture
underscores the need to evaluate network designs beyond standard metrics, especially in the context
of real-world optimization challenges. The interaction between backbones and optimizers is crucial
for both pre-training and fine-tuning, with different architectures influencing optimization landscapes.
BOCB in CNNs is often associated with the FFN designs, which are pivotal in models. These blocks,
implemented as point-wise convolutions or inverted bottleneck layers, are susceptible to overfit-
ting without proper regularization. To eliminate this, ConvNeXt.V2 introduces Global Response
Normalization (GRN) between FFN blocks, similar to RMSNorm, to stabilize training and prevent
model collapse, thereby reducing BOCB. ConvFormer, based on the MetaFormer framework, uses
homogeneous blocks with depth-wise and point-wise convolutions, improving training robustness
and reducing BOCB risk. Similarly, with the VGG series’ simple and homogeneous architecture,
RepVGG’s introduction of training-phase residual connections enhances performance while main-
taining stability and weak BOCB (see Figure 7(b)), exhibiting well-behaved training dynamics. In
contrast, ConvNeXt and MogaNet, featuring complex operations and heterogeneous blocks, are more
susceptible to BOCB. UniRepLKNet, however, sidesteps this issue with a more homogeneous design,
highlighting the importance of architectural uniformity in reducing BOCB. Takeaway: For modern
CNNs, designs that foster a homogeneous building block structure and incorporate crafted strategies
to mitigate model failures are more likely to achieve stable FFN training and reduce the risk of BOCB.

Case 3: MetaFormer. MetaFormer architecture is distinguished by its hierarchical stage-wise
and block-wise design, featuring ResScale, facilitating the flexible integration of various token
mixers. This macro design is crucial for achieving competitive performance while minimizing the
risk of BOCB. IdentityFormer, without any token mixers, sets a robust baseline for MetaFormer
but may fall short in complex tasks requiring advanced token-wise representations, potentially
increasing BOCB risk, as shown in Figure 7(c). PoolFormerV2 (pooling as token mixers) outperforms
IdentityFormer but may overlook critical details due to the absence of token-wise aggregation,
leading to higher BOCB susceptibility. To achieve high performance while mitigating these risks,
selecting an appropriate token mixer is essential. ConvFormer integrates CNN layers to balance local
inductive bias in data-limited scenarios, ensuring better convergence and less BOCB. AttenFormer
and CAFormer further explore attention mechanisms, aiming to enhance the representation capacity
with global receptiveness through improved token interactions. Takeaway: Overall, MetaFormer
architecture’s success hinges on a judicious balance between its hierarchical design and the selection
of token mixers, ensuring robust performance across diverse tasks while mitigating the risk of BOCB.

4.2 PRE-TRAINING AND TRANSFER LEARNING WITH DIFFERENT OPTIMIZERS

Extending to ImageNet-1K classification. ImageNet-1K (Krizhevsky et al., 2012b) is a funda-
mental benchmark that gauges the classification prowess of vision models, and we further investigate
whether our observations still hold on ImageNet-1K. ViewAppendix B.1 for experimental details and
Appendix C.2 for extended results. As shown in Table 2, DeiT-S shows stronger BOCB than ResNet-
50, while optimizers of Category (b) in Figure A1 (e.g., AdamW) have shown a reliable performance
peak across diverse backbones during pre-training. Their consistent efficacy is well-aligned with the
extensive feature learning required by the ImageNet-1K, making them optimal choices for the initial

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Top-1 accuracy
(%) of DeiT-S and R-50
training 300 epochs by
popular optimizers with
DeiT and RSB A2 set-
tings on ImageNet-1K.

Backbone DeiT-S R-50
(DeiT) (A2)

SGD-M 75.35 78.82
SGDP 76.34 78.02
LION 78.78 78.92
Adam 78.44 78.16
Adamax 77.71 78.05
NAdam 78.26 78.97
AdamW 80.38 79.88
LAMB 80.23 79.84
RAdam 78.54 78.75
AdamP 79.26 79.28
Adan 80.81 79.91
AdaBound 72.96 75.37
LARS 73.18 79.66
AdaFactor 79.98 79.36
AdaBelief 75.32 78.25
NovoGrad 71.26 76.83
Sophia 79.65 79.13
AdaGrad 54.96 74.92
AdaDelta 74.14 77.40
RMSProp 78.03 78.04

Table 3: Transfer learning to object detection (Det.) with RetinaNet and 2D
pose estimation (Pose.) with TopDown on COCO, evaluated by mAP (%)
and AP50 (%). We employ pre-trained VGG, ResNet-50 (R-50), Swin-T,
and ConvNeXt-T (CNX-T) as backbones with different pre-training settings,
including 100-epoch (SGD, LARS, or RSB A3), 300-epoch (RSB A2 and
Adan), and 600-epoch pre-training (RSB A1).

2D Pose Estimation Object Detection
Pre-training VGG R-50 Swin-T R-50 R-50 R-50 R-50 R-50 R-50 Swin-T CNX-T

(SGD) (SGD) (AdamW) (SGD) (LARS) (A3) (A2) (A1) (Adan) (AdamW) (AdamW)

SGD-M 47.5 71.6 38.4 36.6 27.5 28.7 23.7 34.6 27.5 37.2 38.5
SGDP 47.3 41.2 38.9 36.6 17.6 18.5 26.8 26.7 27.4 37.2 22.5
LION 69.5 71.5 71.3 32.1 35.8 35.4 37.6 34.6 38.8 41.9 42.8
Adam 69.8 71.6 72.7 36.2 36.2 35.8 38.3 38.4 38.6 41.9 43.1
Adamax 69.0 71.2 72.4 36.8 36.8 36.4 38.3 38.4 38.3 41.5 42.0
NAdam 69.7 71.8 71.9 36.0 36.6 36.1 38.2 38.4 38.7 41.9 43.4
AdamW 70.0 72.0 72.8 37.1 37.1 36.7 38.4 39.5 36.8 41.8 43.4
LAMB 68.5 71.5 71.7 36.7 37.5 37.7 38.6 38.9 38.6 41.8 42.6
RAdam 69.8 71.8 72.6 36.6 36.5 36.0 38.2 38.4 38.6 41.6 43.3
AdamP 69.7 71.5 72.8 36.5 37.2 36.5 38.5 38.9 38.8 41.7 43.3
Adan 69.7 72.1 72.8 37.7 37.0 36.0 38.6 39.0 39.4 42.0 43.2
AdaBound 34.0 44.9 28.4 35.9 34.2 31.9 37.0 35.0 36.7 38.8 41.2
LARS 54.4 63.4 47.6 35.8 28.9 28.8 34.7 36.9 37.3 34.6 40.5
AdaFactor 72.8 71.7 72.7 35.6 37.0 36.4 38.5 37.8 38.7 40.5 43.1
AdaBelief 69.6 67.0 61.8 36.2 34.4 33.1 36.4 38.2 38.5 40.0 41.4
NovoGrad 64.2 70.7 69.8 35.6 27.2 26.3 35.2 28.6 38.5 40.4 39.0
Sophia 69.7 71.6 72.3 36.4 35.8 35.3 38.0 38.7 37.0 40.4 42.5
AdaGrad 66.0 61.2 48.4 26.4 21.9 28.3 32.7 27.1 33.7 32.9 23.7
AdaDelta 44.3 49.3 52.0 34.9 32.7 32.7 35.9 33.9 36.6 40.0 41.5
RMSProp 68.8 71.6 72.5 35.3 36.2 35.6 37.8 38.3 38.7 41.5 43.1

model training phase. Meanwhile, the efficacy of these backbones and optimizers in the pre-training
phase cascades to the transfer learning process, as we discussed in the following two paragraphs.

Transfer Learning on COCO. As for transfer learning with ImageNet-1K pre-trained models, we
have identified two critical findings regarding the performance of COCO object detection (Lin et al.,
2017) and 2D pose estimation (Xiao et al., 2018) tasks. Table 3 and Figure A3 provide clear evidence
of how various backbones and optimizers perform following transfer from pre-trained models to
COCO detection (Lin et al., 2017), indicating the choice of backbones and optimizers both vital.
From the backbone aspects, the backbone with a pronounced BOCB (ConvNeXt-T) continues to
exhibit BOCB characteristics in transfer learning scenarios. This suggests that the inherent structural
attributes of such models may not be easily mitigated through transfer learning alone. Takeaway: The
BOCB property is still kept when transferring to dense prediction tasks for pre-trained backbones.

Case 4: Optimizer Properties. We also comprehensively evaluate optimization properties from the
view of performance, hyper-parameter robustness, BOCB property, and computational efficiency in
Table A5. With transferring experiments shown in Table 3 and Figure 3(b), when we controlled for the
BOCB effect in the backbone by using ResNet-50 (less susceptible to BOCB), we observed that opti-
mizers of Category (b) and (c) may introduce significant BOCB effects during the pre-training stage
despite their effectiveness in pre-training, indicating that the choice of pre-training optimizer could
profoundly influence the generalization and transferring abilities, thereby affecting its transferability
and performance on new tasks. Moreover, unlike Category (a), which do not restrict the fine-tuning
phase to a specific optimizer, the optimizers in Category (b) and (c) necessitate their use in both
pre-training and fine-tuning stages. Takeaway: Optimizer selection in pre-training can significantly
impact models’ transferability, with Categories (b) and (c) optimizers potentially introducing BOCB
to pre-trained backbones while yielding superior performance. We recommended three superior
optimizers and five BOCB indicator optimizers with property evaluation in Appendix D.5.

5 CONCLUSION

This paper explores the interplay of backbone designs and optimizer selections in computer vision.
We unveil the phenomenon of backbone-optimizer coupling bias (BOCB) and the potential limitations
it poses to vision backbones, for example, the extra fine-tuning time and efforts in downstream tasks.
We also discover the underlying rationale behind different network designs and BOCB and thereby
provide guidelines for future vision backbone design. Meanwhile, the benchmarking results and
released code serve as takeaways for user-friendly deployment and evaluation. Overall, we aim to
inspire the computer vision community to rethink the relationship between backbones and optimizers,
consider BOCB in future studies, and thus contribute to more systematic future advancements.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie
Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open mmlab detection toolbox and benchmark.
https://github.com/open-mmlab/mmdetection, 2019. 17, 19

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
algorithms. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. 5, 17

MMPose Contributors. Openmmlab pose estimation toolbox and benchmark. https://github
.com/open-mmlab/mmpose, 2020. 19

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 702–703, 2020. 5, 18

Ekin Dogus Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le. Autoaug-
ment: Learning augmentation strategies from data. Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 113–123, 2019. 18

Xiaohan Ding, X. Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg:
Making vgg-style convnets great again. In Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 13728–13737, 2021. 5

Xiaohan Ding, Yiyuan Zhang, Yixiao Ge, Sijie Zhao, Lin Song, Xiangyu Yue, and Ying Shan.
Unireplknet: A universal perception large-kernel convnet for audio, video, point cloud, time-series
and image recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
3, 5, 8

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. 1, 2, 3, 4, 5, 18

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011. 4, 5, 17

Boris Ginsburg, Igor Gitman, and Yang You. Large batch training of convolutional networks with
layer-wise adaptive rate scaling. In International Conference on Learning Representations (ICLR),
2018. 5, 17, 27

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M. Cohen. Stochastic gradient methods
with layer-wise adaptive moments for training of deep networks, 2020. 5, 17

Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou,
and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster inference. In
International Conference on Computer Vision (ICCV), pp. 12259–12269, 2021. 18

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016. 1, 2, 3, 4, 5, 16, 18

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In International
Conference on Computer Vision (ICCV), 2017. 1

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim,
Youngjung Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimizers
on scale-invariant weights. In International Conference on Learning Representations, 2021. 4, 5,
17

Geoffrey E. Hinton. Adadelta: An adaptive learning rate method. ArXiv, 2012. URL https:
//www.cs.toronto.edu/˜hinton/coursera_slides.html. 4, 5, 17, 27

11

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose
https://www.cs.toronto.edu/~hinton/coursera_slides.html
https://www.cs.toronto.edu/~hinton/coursera_slides.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7132–7141, 2018. 16

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with
stochastic depth. In European Conference on Computer Vision (ECCV), 2016. 5, 18

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, 2017. 5, 16

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015. 1, 4, 5, 17

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
Segment anything. In International Conference on Computer Vision (ICCV), pp. 3992–4003, 2023.
1

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
1, 5, 17, 18

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2012a. 1, 2, 5

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60:84 – 90, 2012b. 1, 9, 17

Ananya Kumar, Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. How to fine-tune vision
models with sgd. arXiv preprint arXiv:2211.09359, 2022. 1

Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, and Stan Z. Li. Openmixup: Open mixup toolbox
and benchmark for visual representation learning. https://github.com/Westlake-AI/
openmixup, 2022. 17

Siyuan Li, Zedong Wang, Zicheng Liu, Cheng Tan, Haitao Lin, Di Wu, Zhiyuan Chen, Jiangbin
Zheng, and Stan Z. Li. Moganet: Multi-order gated aggregation network. In International
Conference on Learning Representations (ICLR), 2024. 5, 8, 19

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision (ECCV), pp. 740–755. Springer, 2014. 1, 17, 19

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In International Conference on Computer Vision (ICCV), 2017. 10, 19

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training, 2023. 5, 17

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2020. 5, 17

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In International
Conference on Computer Vision (ICCV), pp. 9992–10002, 2021. 3, 5, 18, 19

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Conference on Computer Vision and Pattern Recognition (CVPR),
2022a. 1, 2, 5, 8, 18

Zicheng Liu, Siyuan Li, Di Wu, Zhiyuan Chen, Lirong Wu, Jianzhu Guo, and Stan Z. Li. Automix:
Unveiling the power of mixup for stronger classifiers. In European Conference on Computer Vision
(ECCV), 2022b. 18

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016. 18

12

https://github.com/Westlake-AI/openmixup
https://github.com/Westlake-AI/openmixup

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019. 1, 2, 5, 17, 27

Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
learning rate. In International Conference on Learning Representations, 2019. 4, 5, 17, 27

Charles H. Martin and Michael W. Mahoney. Implicit self-regularization in deep neural networks:
Evidence from random matrix theory and implications for learning. Journal of Machine Learning
Research, 22(165):1–73, 2021. 20

Charles H Martin, Tongsu Peng, and Michael W Mahoney. Predicting trends in the quality of
state-of-the-art neural networks without access to training or testing data. Nature Communications,
12(1):4122, 2021. 2, 5, 8, 9, 20, 22

Microsoft. Neural Network Intelligence, 1 2021. URL https://github.com/microsoft/n
ni. 5, 19

Maxime Oquab, Timoth’ee Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas
Ballas, Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li, Ishan Misra,
Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou, Julien Mairal,
Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features
without supervision. ArXiv, abs/2304.07193, 2023. 1

Boris Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging. Siam
Journal on Control and Optimization, 30:838–855, 1992. 18

Sashank J. Reddi, Satyen Kale, and Surinder Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018. 4, 5, 16, 17

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 39:1137–1149, 2015. 17

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4510–4520, 2018. 2, 3, 5

Noam M. Shazeer. Glu variants improve transformer. ArXiv, abs/2002.05202, 2020. 16

Noam M. Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. ArXiv, abs/1804.04235, 2018. 4, 5, 17

Sam Shleifer, Jason Weston, and Myle Ott. Normformer: Improved transformer pretraining with
extra normalization. ArXiv, 2021. 7, 16

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015. 1, 2, 5, 16

Naresh K. Sinha and Michael P. Griscik. A stochastic approximation method. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-1(4):338–344, Oct 1971. 1, 4, 5, 17, 27

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015. 18

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826, 2016. 5, 17, 18

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning (ICML), pp. 6105–6114. PMLR, 2019. 2, 5

Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy.
Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural Information Processing
Systems (NeurIPS), 2021. 2, 5

13

https://github.com/microsoft/nni
https://github.com/microsoft/nni

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning (ICML), pp. 10347–10357, 2021a. 5, 16, 18

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Herv’e J’egou. Going
deeper with image transformers. In International Conference on Computer Vision (ICCV), pp.
32–42, 2021b. 7, 16

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems (NeurIPS), 30, 2017. 4

Kirill Vishniakov, Zhiqiang Shen, and Zhuang Liu. Convnet vs transformer, supervised vs clip:
Beyond imagenet accuracy. ArXiv, abs/2311.09215, 2023. 1

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation. In Annual Meeting of the Association
for Computational Linguistics, 2019. 16

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm, 2021. 16, 18

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In-So Kweon. Cbam: Convolutional block
attention module. In European Conference on Computer Vision (ECCV), 2018. 3

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In-So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2023. 1, 5, 8, 21

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking.
In European Conference on Computer Vision (ECCV), 2018. 10, 19

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng YAN. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023. 5, 16, 17, 27

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020. 1

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. In International Conference on Learning Representations
(ICLR), 2020. 5, 17, 27

Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang. Inceptionnext: When inception meets
convnext. ArXiv, abs/2303.16900, 2023. 8

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xinchao
Wang. Metaformer baselines for vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46:896–912, 2024. 1, 2, 3, 5

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In International
Conference on Computer Vision (ICCV), pp. 6023–6032, 2019. 18

Matthew D. Zeiler. Neural networks for machine learning. ArXiv, abs/1212.5701, 2012. 5, 17, 27

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022. 1

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He,
Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. In Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2736–2746, 2022. 1

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018. 5, 18

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In AAAI Conference on Artificial Intelligence (AAAI), pp. 13001–13008, 2020. 18

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 18795–18806. Curran Associates, Inc.,
2020. 5, 17

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

SUPPLEMENT MATERIAL

The appendix sections are structured as follows:

• In Appendix A, we provide the full description of techniques and categories of the popular vision
backbones and optimizers.

• In Appendix B, we provide experimental setups for benchmarks, including information on back-
bones and optimizers, training recipes, and hyperparameter settings.

• In Appendix C, we provide full experimental results and analysis of the proposed benchmarks.
• In Appendix D, we visualize the learned parameters and explain the BOCB effects.

A DETAILS OF POPULAR BACKBONES AND OPTIMIZERS

Popular Vision Backbones. As shown in Table A1, we provide detailed information for 16 typical
vision networks with three categories as summarized in Sec. 2.1. The stage-wise and block-wise
designs with the optimization techniques of residual branches are regarded as the macro design
of DNNs, and the various operators are designed in different networks, which are usually called
feature extractors in classical CNNs. The primary and classical CNNs are proposed to use simple
training setups (i.e., PyTorch-style setting proposed in Simonyan & Zisserman (2015)) while the
modern DNNs have to adopt the complex training recipes like DeiT (Touvron et al., 2021a) and
RSB (Wightman et al., 2021) as shown in Table A3.

Table A1: Three categories of typical vision backbones proposed in the past decade. For operators
in different network blocks, Conv, SepConv, and DWConv denote normal convolutions, separable
convolution, and depth-wise convolution, Gating denotes GLU-like modules (Shazeer, 2020), and
SE denotes Squeeze-and-excitation block (Hu et al., 2018). As for the design of residual connection
and normalization, the vanilla residual branch use addition (He et al., 2016) or concatenation (Huang
et al., 2017), PreNorm denotes the pre-act normalization (Wang et al., 2019) with residual connection,
LayerScale (Touvron et al., 2021b) and ResScale (Shleifer et al., 2021) are layer-wise initialization
tricks for stabilize training of deep models.
Backbone Date Stage-wise Block-wise Operator Residual Input Training

design design (feature extractor) branch size setting
AlexNet NeurIPS’2012 - Plain Conv - 224 PyTorch
VGG ICLR’2015 - Plain Conv - 224 PyTorch
ResNet CVPR’2016 Hierarchical Bottleneck Conv Addition 32 PyTorch
DenseNet CVPR’2017 Hierarchical Bottleneck Conv Concatenation 32 PyTorch
MobileNet.V2 CVPR’2018 Hierarchical Inv-bottleneck SepConv Addition 224 PyTorch
EfficientNet ICML’2019 Hierarchical Inv-bottleneck Conv & SE Addition 224 RSB A2
RepVGG CVPR’2021 Hierarchical Inv-bottleneck Conv Addition 224 PyTorch
DeiT-S (ViT) ICML’2021 Patchfy & Isotropic Metaformer Attention PreNorm 224 DeiT
MLP-Mixer NeurIPS’2021 Patchfy & Isotropic Metaformer MLP PreNorm 224 DeiT
Swin Transformer ICCV’2021 Patchfy & Hierarchical Metaformer Local Attention PreNorm 224 ConvNeXt
ConvNeXt CVPR’2022 Patchfy & Hierarchical MetaNeXt DWConv PreNorm & LayerScale 32 ConvNeXt
ConvNeXt.V2 CVPR’2023 Patchfy & Hierarchical MetaNeXt DWConv PreNorm & LayerScale 32 ConvNeXt
MogaNet ICLR’2024 Patchfy & Hierarchical Metaformer DWConv & Gating PreNorm & LayerScale 32 ConvNeXt
UniRepLKNet CVPR’2024 Patchfy & Hierarchical Metaformer DWConv & SE PreNorm & LayerScale 224 ConvNeXt
TransNeXt CVPR’2024 Patchfy & Hierarchical Metaformer Attention & Gating PreNorm & LayerScale 224 DeiT
IdentityFormer TPAMI’2024 Patchfy & Hierarchical Metaformer Identity PreNorm & ResScale 224 RSB A2
PoolFormerV2 TPAMI’2024 Patchfy & Hierarchical Metaformer Pooling PreNorm & ResScale 224 RSB A2
ConvFormer TPAMI’2024 Patchfy & Hierarchical Metaformer SepConv PreNorm & ResScale 224 RSB A2
AttentionFormer TPAMI’2024 Patchfy & Hierarchical Metaformer Attention PreNorm & ResScale 224 RSB A2
CAFormer TPAMI’2024 Patchfy & Hierarchical Metaformer SepConv & Attention PreNorm & ResScale 224 RSB A2

Popular Optimizers. We also summarize popular optimizers with four categories in Figure A1 and
Table A2 provide four essential technical designs of 20 widely adopted optimizers, as described in
Algorithm 1. We classify these optimizers based on their strategies of the learning rate adjustment
(step 2) and the gradient estimation (step 3). Specially, we consider five types of statistics during
training: (i) First(-order) moment (gradient): The gradient itself, the first-order partial derivative of the
objective function concerning the parameters. (ii) Estimated first-moment gradient (momentum): An
exponentially decaying average of past gradients, serving as an estimate of the first-order moment. (iii)
Second(-order) moment (gradient): The second-order partial derivative of the objective function for
the parameters, also known as the Hessian matrix, which can be approximated by Nesterov gradient
descenting (Reddi et al., 2018; Xie et al., 2023). (iv) Estimated second moment: An exponential
moving average (EMA) of the squared gradients, providing an estimate of the second-order moment.
(v) Second-order gradient: The Hessian matrix, the second-order partial derivative of the objective
function to the parameters.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Optimizer

Fixed Learning Rate
Momentum Gradient

Adaptive Learning Rate
Momentum Gradient

Estimated Learning Rate
Momentum Gradient

Adaptive Learning Rate
Gradient

LION (2023)

SGDP (2021)

SGD (1971)
Adam (2015)

Adamax (2015)

Nadam (2018)

AdamW (2019)

LAMB (2020)

RAdam (2020)

AdamP (2021)

Adan (2023)

LARS (2018)

AdaFactor (2018)

AdaBound (2019)

AdaBelief (2019)

NovoGrad (2020)

Sophia (2023)

AdaGrad (2011)

AdaDelta (2012)

RMSProp (2012)

(a) (b) (c) (d)
Figure A1: Overview of mainstream gradient-based optimizers, which are categorized by the tech-
niques of learning rate adjustment (step 2) and gradient estimation (step 3) in Algorithm 1. (a) and
(d) only optionally employs step 2 (momentum gradients) or step 3 (adaptive learning rates), while
(b) and (c) consider both of them. (b) employs adaptive learning rates by estimating second moments;
(c) estimates the dynamic learning rate by other gradient components except for the second moments.

Table A2: Four categories of typical optimizers with their components. From top to bottom are (a)
fixed learning rate with momentum gradient, (b) adaptive learning rate with momentum gradient, (c)
estimated learning rate with momentum gradient, and (d) adaptive learning rate with current gradient.
Optimizer Date Learning rate Gradient Weight decay
SGD-M (Sinha & Griscik, 1971) TSMC’1971 Fixed lr Momentum ✓
SGDP (Heo et al., 2021) ICLR’2021 Fixed lr Momentum Decoupled
LION (Chen et al., 2023) NIPS’2023 Fixed lr Sign Momentum Decoupled
Adam (Kingma & Ba, 2015) ICLR’2015 Estimated second moment Momentum ✓
Adamax (Kingma & Ba, 2015) ICLR’2015 Estimated second moment Momentum ✓
AdamW (Loshchilov & Hutter, 2019) ICLR’2019 Estimated second moment Momentum Decoupled
AdamP (Heo et al., 2021) ICLR’2021 Estimated second moment Momentum Decoupled
LAMB (You et al., 2020) ICLR’2020 Estimated second moment Momentum Decoupled
NAdam (Reddi et al., 2018) ICLR’2018 Estimated second moment Nesterov Momentum ✓
RAdam (Liu et al., 2020) ICLR’2020 Estimated second moment Momentum Decoupled
Adan (Xie et al., 2023) TPAMI’2023 Estimated second moment Nesterov Momentum Decoupled
AdaBelief (Zhuang et al., 2020) NIPS’2019 Estimated second moment variance Momentum Decoupled
AdaBound (Luo et al., 2019) ICLR’2019 Estimated second moment Momentum Decoupled
AdaFactor (Shazeer & Stern, 2018) ICML’2018 Estimated second moment (decomposition) Momentum Decoupled
LARS (Ginsburg et al., 2018) ICLR’2018 L2-norm of Gradient Momentum Decoupled
Novograd (Ginsburg et al., 2020) arXiv’2020 Sum of estimated second momentum Momentum Decoupled
Sophia (Liu et al., 2023) arXiv’2023 Parameter-based estimator Sign Momentum Decoupled
AdaGrad (Duchi et al., 2011) JMLR’2011 Second moment Gradient ✓
AdaDelta (Zeiler, 2012) arXiv’2012 Estimated second moment param moment Gradient ✓
RMSProp (Hinton, 2012) arXiv’2012 Estimated second moment Gradient ✓

B IMPLEMENTATION DETAILS

This section provides experimental settings of benchmarks and dataset information for Sec 3. We
benchmarked 16 typical vision networks as discussed in Sec. 2.1 with the image classification task
with the following benchmark settings. We apply consistent setups for image classification tasks
on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Krizhevsky et al., 2012b) based on
OpenMixup (Li et al., 2022) codebase with 1 or 8 Nvidia A100 GPUs. As for transfer learning
with pre-trained models, we employ object detection and pose estimation tasks (Ren et al., 2015) on
COCO (Lin et al., 2014) with MMLab codebases (Chen et al., 2019).

B.1 IMAGE CLASSIFICATION

ImageNet-1K. Following the widely used modern training recipes, we consider three regular
training settings for ImageNet-1K (Krizhevsky et al., 2012b) classification experiments for various
backbones and optimizers, which could be transplanted to the proposed CIFAR-100 benchmarks. As
shown in Table A3, these training schemes include data preprocessing and augmentations, optimizing
setups, regularization tricks, and loss functions: (1) Classical PyTorch-style setting (Szegedy

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

et al., 2016) applies basic data augmentations, RandomResizeCrop (or RandomCrop for 322
resolutions), HorizontalFlip, and CenterCrop (Szegedy et al., 2015), basic SGD training
setups with cosine learning rate scheduler (Loshchilov & Hutter, 2016), and the cross-entropy (CE)
loss. (2) DeiT and ConvNeXt settings (Touvron et al., 2021a; Liu et al., 2021) are designed for
Transformer and modern CNN architectures like ViTs (Dosovitskiy et al., 2021; Graham et al., 2021),
which utilizes several advanced augmentations (Cubuk et al., 2019) (like RandAugment (Cubuk
et al., 2020), Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019; Liu et al., 2022b), Random
Erasing (Zhong et al., 2020), ColorJitter (He et al., 2016)), and regulization techniques (Stochastic
Depth (Huang et al., 2016), Label Smoothing (Szegedy et al., 2016), and EMA (Polyak & Juditsky,
1992). (3) RSB A2/A3 settings (Wightman et al., 2021) are designed for CNNs to boost their
performance and convergence speeds as ViTs, which reduces the augmentation strengths and replaces
the CE loss with Binary Cross Entropy (BCE) loss compared to the DeiT setting. The optimizing
hyper-parameters marked in gray, like initial learning rate, optimizer momentum, and weight decay,
will be tuned based on the optimizer. We use the threshold λ = 1 in Eq. (1) to discriminate BOCB
results on ImageNet-1K.

Table A3: Ingredients used for image classification training settings. Taking ImageNet-1K as the
template setup, the settings of PyTorch (Szegedy et al., 2016) and RSB A2/A3 (Wightman et al.,
2021) take ResNet-50 (He et al., 2016) for instances, the DeiT (Touvron et al., 2021a) setting takes
DeiT-S as the example, and the ConvNeXt (Liu et al., 2022a) setting is a variant of the DeiT setting
for ConvNeXt and Swin Transformer (Liu et al., 2021). Gray regions will be tuned for each optimizer.

Procedure PyTorch DeiT ConvNeXt RSB A2 RSB A3
Dataset IN-1K CIFAR IN-1K CIFAR CIFAR IN-1K CIFAR IN-1K
Train Resolution 224 224 224 224 32 224 224 160
Test Resolution 224 224 224 224 32 224 224 224
Test crop ratio 0.875 1.0 0.875 1.0 1.0 0.95 1.0 0.95
Epochs 100 200 300 200 200 300 200 100
Batch size 256 100 1024 100 100 2048 100 2048
Optimizer SGD AdamW AdamW LAMB LAMB
Learning rate 0.1 1× 10−3 1× 10−3 5× 10−3 8× 10−3

Optimizer Momentum 0.9 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Weight decay 10−4 0.05 0.05 0.02 0.02
LR decay Cosine Cosine Cosine Cosine Cosine
Warmup epochs ✗ 5 20 5 5
Label smoothing ϵ ✗ 0.1 0.1 ✗ ✗
Dropout ✗ ✗ ✗ ✗ ✗
Stochastic Depth ✗ 0.1 0.1 0.05 ✗
Repeated Augmentation ✗ ✓ ✓ ✓ ✗
Gradient Clip. ✗ 5.0 ✗ ✗ ✗
Horizontal flip ✓ ✓ ✓ ✓ ✓
RandomResizedCrop ✓ ✓ ✓ ✓ ✓
Rand Augment ✗ 9/0.5 9/0.5 7/0.5 6/0.5
Auto Augment ✗ ✗ ✗ ✗ ✗
Mixup α ✗ 0.8 0.8 0.1 0.1
Cutmix α ✗ 1.0 1.0 1.0 1.0
Erasing probability ✗ 0.25 0.25 ✗ ✗
ColorJitter ✗ ✗ ✗ ✗ ✗
EMA ✗ ✓ ✓ ✗ ✗
CE loss ✓ ✓ ✓ ✗ ✗
BCE loss ✗ ✗ ✗ ✓ ✓

CIFAR-100. Inheriting the training settings on ImageNet-1K, we modify the input resolutions
and batch size to build the corresponding settings for CIFAR-100 (Krizhevsky et al., 2009) bench-
marks. The original CIFAR-100 dataset contains 50k training images and 10k testing images in
322 resolutions, and we consider two input resolutions. As shown in Table A3, in the case of 322

resolutions, the downsampling ratio of the first stem in CNNs will be set to 1
2 ; in the case of 2242

resolutions (cubic upsampling to 2242), the backbone structure keep the same as on ImageNet-1K.
We use different training settings for a fair comparison of classical CNNs and modern Transformers
on CIFAR-100, which contains 50k training images and 10k testing images of 322 resolutions. As
for classical CNNs with bottleneck structures, we use 322 resolutions with the CIFAR version of
network architectures, i.e., downsampling the input size to 1

2 in the stem module instead of 1
8 on

ImageNet-1K. All the benchmarked backbones are trained for 200 epochs from the stretch. We set
λ = 3 in Eq. (1) to discriminate BOCB results on CIFAR-100.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Optimizing hyper-parameters search. For a fair comparison, we only search two common hyper-
parameters (the learning rate and weight decay) heuristically with NNI toolbox (Microsoft, 2021), i.e.,
determining the NNI search range of hyper-parameters manually. We regard each hyper-parameter
as a set of discrete values, choosing 5 consecutive values centered on the heuristically determined
initial value. As for the specific hyper-parameters of some optimizers, e.g., ϵ for AdaBelief and the
final lr for AdaBound, we further search for their optimal values separately. Table A1 shows the
training setting for each backbone The basis hyper-parameters of various optimizers for different
vision backbones on CIFAR-100 are provided in the supplementary material.

B.2 OBJECT DETECTION AND POSE ESTIMATION

Object Detection. Following Swin Transformers (Liu et al., 2021), we first evaluate objection
detection as the representative vision downstream task on COCO (Lin et al., 2014) for transfer
learning, which includes 118K training images (train2017) and 5K validation images (val2017).
Experiments of COCO detection and segmentations are implemented on MMDetection (Chen
et al., 2019) codebase and run on 4 Tesla V100 GPUs. Taking RetinaNet (Lin et al., 2017) as the
standard detector, the original fine-tuning setting for ResNet-50 employs the SGD optimizer with
1× (12 epochs) training with a batch size of 16 and a fixed step learning rate scheduler. As for
Swin-T, the official setting employs the AdamW optimizer with 1× scheduler and a batch size of
16. During training, the shorter side of training images is resized to 800 pixels, and the longer side
is resized to not more than 1333 pixels. For different pre-trained models (PyTorch, DeiT, and RSB
A2/A3 pre-training), we search basic hyper-parameters (the learning rate and the weight decay) for
every optimizer as described in Sec. B.1 to get relatively optimal results. We set λ = 3 in Eq. (1) to
discriminate BOCB results for objection detection.

2D Pose Estimation. We also evaluate transfer learning to 2D human key-points estimation task on
COCO based on Top-Down SimpleBaseline (Xiao et al., 2018) (adding a Top-Down estimation head
after the backbone) following MogaNet (Li et al., 2024). The original training setting is to fine-tune
the pre-trained backbone and the randomly initialized head for 210 epochs with Adam optimizer
with a multi-step learning rate scheduler decay at 170 and 200 epochs. We also search learning rates
and weight decays for all optimizers. The training and testing images are resized to 256 × 192 or
384× 288 resolutions, and these experiments are implemented with MMPose (Contributors, 2020)
codebase and run on 4 Tesla V100 GPUs. We set λ = 3 in Eq. (1) to discriminate BOCB results for
the pose estimation task.

B.3 EMPRICIAL ANALYSIS

To gain deeper insights into the observed backbone-optimizer coupling bias (BOCB) phenomenon, we
conducted a collection of empirical analysis focusing on two key aspects: hyper-parameter stability
and model parameter patterns. These analyses provide valuable information about the intrinsic
properties of different network architectures and their interactions with various optimizers.

Hyper-parameter stability. We developed an approach to quantify the hyper-parameter stability of
vision backbones and optimizers, which serves as a proxy for understanding the strength of backbone-
optimizer coupling. This analysis involves the following steps: (1) Optimal Settings Identification:
For each backbone-optimizer pair, we conducted extensive grid searches to identify the optimal hyper-
parameters (learning rate and weight decay). (2) One-hot Encoding: We converted these optimal
hyper-parameters into discrete one-hot encoded vectors. Assuming n possible learning rates and m
possible weight decays, we created vectors {l̃ri}ni=1 and {ω̃i}mi=1. (3) Mode Statistics: We computed
histogram-based mode (most common) statistics Mlr and Mω across all optimizers for each backbone.
(4) Variation Computation: We quantified the variation between each hyper-parameter and mode
statistics using the Manhattan distance, Σn

i=1|l̃ri −Mlr|+Σm
i=1|ω̃i −Mω|. (5) Visualization: We plot

the distribution of these variations for both backbones (Figure 4) and optimizers (Figure 5), which
offer intuitive insights into the relative stability and adaptability of different backbone-optimizer pairs.
As for backbones, lower variation indicates higher stability and potentially weaker coupling bias,
as the backbone performs well across a range of optimizers with similar hyper-parameters. For the
optimizers, lower variation suggests better generalizability across different network architectures.

Patterns of learned parameters. To investigate the layer-wise properties discussed in Section 2.1,
we employed a set of quantitative metrics to analyze the learned parameters of each layer. As shown in

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Section D, these metrics reveal intrinsic topological patterns that reflect the unique characteristics of
different network architectures, such as stage-wise macro designs, building block structures, and core
operators of token-mixers and channel-mixers. We focused on the three key indicators as follows:

• PL Exponent Alpha: In the context of WeightWatcher (Martin & Mahoney, 2021; Martin
et al., 2021), the Power Law (PL) exponent α quantifies the learned parameter quality of neural
network layers. It is extracted from the tail fit of the layer weight matrix’s Empirical Spectral
Density (ESD) to a truncated Power Law: ρ(λ) ∼ λ−α, ρ(λ) denotes the ESD, and λ represents
the eigenvalues of the weight matrix’s correlation matrix X = WTW . The exponent α reflects the
correlation structure, with lower values indicating enhanced generalization capabilities and higher
values suggesting potential overfitting or underfitting. This metric facilitates the assessment of
neural network models’ generalization tendencies without the need for training or testing datasets,
serving as an intrinsic measure of model quality.

• Entropy: The information entropy of the learned parameter tensor, H = −
∑

pi log(pi), where pi
is the probability of each value in the parameter tensor. It is used to measure the randomness of
the parameter distribution. Higher entropy indicates a more uniform or random distribution, while
lower entropy suggests a more patterned distribution. This provides insights into the complexity
and information of each layer, helping to identify layers with more structured weight distributions.

• L2-norm: Euclidean norm (magnitude) of the learned parameter vector ||w||2 = sqrt(
∑

w2
i),

where wi are individual parameters. This reflects the scale of the learned weight matrix and
identifies layers with potential dominant effects on the network’s behavior (more influence on the
layer output), which could be crucial for understanding the learning results of diverse network
architectures.

• Top-k PCA Energy Ratio: Cumulative energy ratio of the top-k principal components of the
parameter matrix Ek = (

∑k
i=1 λi)/(

∑n
i=1 λi), where λi are eigenvalues of the covariance matrix.

It measures the concentration of information in the learned parameter matrix. A larger top-k energy
indicates that the parameter matrix has more concentrated components. This analysis provides
insights into the dimensionality and compressibility of each layer’s parameters, which could be
helpful for model pruning and efficiency optimization.

These metrics, when analyzed across different layers and backbone-optimizer combinations, reveal
characteristic patterns that correspond to specific architecture designs. We provide ridge plots (as
shown in Section D) to visualize these metrics across different layers for various backbone-optimizer
combinations. For instance, we may observe distinct entropy patterns in hierarchical vs. isotropic
stage-wise architectures, variations in L2-norm across different stages of the network, or changes in
PCA energy ratios for different types of layers (e.g., convolutional vs. attention-based).

By analyzing these patterns, we can gain valuable insights into how different neural network architec-
tures interact with various optimizers, furthering our understanding of the BOCB phenomenon and
informing future design choices for both vision backbones and optimizers.

C FULL EXPERIMENTAL RESULTS

This appendix section provides a detailed expansion of the experimental findings from the main
manuscript, specifically aimed at validating the BOCB phenomenon. The results are structured
to facilitate a thorough evaluation across the CIFAR-100 and ImageNet-1K datasets, involving a
diverse range of both modern and classical vision backbones, each paired with various optimizers.
This comprehensive analysis is intended to clarify the complex interactions between neural network
architectures and optimization strategies, emphasizing their critical impact on model performance
and adaptability. Additionally, these insights are applied to practical tasks, such as object detection
and pose estimation on COCO, demonstrating the practical relevance of BOCB.

C.1 CIFAR-100 CLASSIFICATION EXPERIMENTS

Our in-depth exploration of the CIFAR-100 dataset was designed to scrutinize the interdependence
between network architectures and optimizers. Table 1 encapsulates the top-1 classification accuracy
for an extensive lineup of 15 vision backbones, categorized into primary CNNs, classical CNNs, and
modern DNNs. The results underscore a pronounced divergence in the optimal optimizer for different
architectural eras. Classic architectures such as AlexNet, VGG, and the ResNet family reveal an
affinity for SGD-M and SGDP, with these optimizers yielding the most accurate outcomes. This pref-
erence indicates a tight coupling between classical CNNs and SGD-based methods. In stark contrast,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

modern architectures like Vision Transformers, ConvNeXt, and MetaFormer variants thrive under the
adaptive learning rates afforded by optimizers such as AdamW, AdamP, and LAMB, showcasing a
more flexible coupling bias. To elucidate the nuances of BOCB, we present a hyperparameter sensi-
tivity analysis. This analysis visualizes the distribution of optimal learning rates and weight decays
for the evaluated optimizers, as depicted in Figures 3 and 4. Classical CNNs display a concentrated
distribution, pointing to a specific hyperparameter set for SGD optimizers. In contrast, modern DNNs
exhibit a broader distribution, suggesting a higher tolerance to hyperparameter variations and a more
adaptable coupling with a range of optimizers.

C.2 IMAGENET-1K CLASSIFICATION EXPERIMENTS

Table A4: Top-1 accuracy (%) of various vision
backbones training 300 epochs by three optimal
optimizers and five indicator optimizers with DeiT
or RSB A2 settings on ImageNet-1K.
Optimizer R-50 DeiT-S CNX-T CNXV2-T CF-12
AdamW 79.9 80.4 82.1 82.3 81.6
LAMB 79.8 80.2 82.2 82.3 81.5
Adan 79.9 80.8 82.6 82.8 81.8
SGD 78.8 75.4 71.3 76.8 79.7
AdaBound 75.4 73.0 72.4 77.1 79.6
LARS 79.7 73.2 75.9 79.6 79.9
RMSProp 78.0 78.0 79.6 80.2 80.4
AdaDelta 74.9 55.0 73.5 77.9 78.5
Std/Range 1.9/5.0 7.9/25.8 4.4/11.3 2.3/6.0 1.1/3.3

To ascertain the generalizability of our observa-
tions, we extended our evaluation on ImageNet-
1K. Table 2 details the Top-1 accuracy for a
curated selection of vision backbones under
various optimizers. The results are congruent
with those from CIFAR-100, reinforcing the
BOCB phenomenon. ResNets and Efficient-
Nets continue demonstrating their predilection
for SGD-M and SGDP, achieving peak perfor-
mance with these optimizers. On the other hand,
modern DNNs like Vision Transformers and
ConvNeXt once again manifest their superiority
when paired with AdamW, AdamP, and LAMB,
aligning with the adaptive learning rate optimiz-
ers’ capacity to navigate the complex optimization landscapes of contemporary architectures. We
also verify our findings in Sec. 4.2, as shown in Table A4, ResNet-50 and ConvFormer-S12 show
weak BOCB properties while DeiT-S and ConvNeXt-T have strong coupling bias with AdamW-like
optimizers. ConvNeXt.V2 improves the performance and BOCB property of ConvNeXt with the
certain design GRN (Woo et al., 2023) between the FFN modules.

C.3 COCO OBJECT DETECTION AND POSE ESTIMATION EXPERIMENTS

0.8 1.0 1.2
Swin-T (AdamW)

0.0

2.5

5.0

0.8 1.0 1.2
ResNet-50 (SGD)

0.8 1.0 1.2
ResNet-50 (A3, LAMB)

0

5

0.8 1.0 1.2
ResNet-50 (A3, LARS)

Figure A2: Violinplot of hyper-
parameters for the aspects of back-
bones or optimizers on COCO.

Expanding our analysis from CIFAR-100 and ImageNet-1K, we
investigated the BOCB in practical tasks using COCO for ob-
ject detection and pose estimation. These experiments aimed
to assess BOCB’s impact on model transferability and task
performance when pre-trained models are adapted to specific
tasks. In object detection, employing the RetinaNet frame-
work with ImageNet-1K pre-trained models, we observed in
Table 3 that backbones trained with adaptive optimizers like
AdamW, AdamP, and LAMB achieved higher top-1 accuracies
on ImageNet-1K and superior performance on COCO object
detection. This suggests that these optimizers enhance feature
learning and generalization in downstream tasks by effectively
navigating complex optimization landscapes during pre-training.

Similarly, for pose estimation using the TopDown approach,
models pre-trained with AdamW, AdamP, and LAMB showed improved performance on COCO, as
evidenced by higher AP50 scores in Table 3. This supports the significant influence of the optimizer
choice during pre-training on a model’s capacity to acquire and transfer knowledge. Our hyperpa-
rameter sensitivity analysis, extended to COCO experiments, provides further insights. Figure A2
illustrates the distribution of optimal learning rates and weight decays for various optimizers, reveal-
ing that while classical backbones have a narrow optimal range, modern architectures display broader
tolerance, reflecting their adaptability to different optimizer settings. This adaptability is crucial for
effective transfer learning and task-specific performance.

In summary, the comprehensive experimental results presented in this section provide compelling
evidence for the backbone-optimizer coupling bias phenomenon across multiple benchmark datasets
and vision tasks. These findings highlight the importance of considering the interplay between
network architectures and optimization algorithms when designing and deploying vision systems, as
overlooking BOCB can lead to suboptimal performance and potential inefficiencies.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

R50-Pretrain R50 A2 (LAMB) R50 A2 (LARS) R50 A2 (SGD) R50 Pytorch (SGD)

2

4

6

8

10

12

14

16

Al
ph

a

3.7
4.33.9

9.7

3.4
4.1

6.4

4.74.4
5.3

3.63.3

11.5

7.0

4.7

15.4

4.13.8

7.06.9

4.1 4.3
3.33.0

7.37.4

3.6

Threshold
SGD
AdamW
LAMB
LARS
AdaDelta
RMSProp

(a) Case 4: COCO Backbones
VGG Pose (SGD) R50 Pose (SGD) Swin-T Pose (AdamW) R50 Det (SGD) Swin-T Det (AdamW) ConvNeXt-T Det (AdamW)

2

4

6

8

10

Al
ph

a

4.5
3.8

3.4

5.2
6.0

3.2 3.43.3
3.8

4.5

6.1

4.1

5.5

3.84.0

6.1

2.9

4.5 4.3

3.3
3.0

7.37.4

3.6 3.9
3.5

3.0

9.7

8.2

4.0

5.9

3.23.5

5.0
4.6

3.5

Threshold
SGD
AdamW
LAMB
LARS
AdaDelta
RMSProp

(b) Case 4: COCO Optimizers
Figure A3: BOCB case studies: PL exponent alpha metrics of different backbones and pre-
training optimizers on COCO. The alpha metric (Martin et al., 2021) measures the fitting quality of
models to a certain task, and a smaller alpha value indicates better fitting. These diagonal bars denote
the BOCB occurring. Please refer to the details on the alpha metric in Appendix B.3.

D EMPRICIAL EXPERIMENTS

This section delineates a series of empirical experiments meticulously designed to validate the
theoretical insights into the BOCB and to elucidate the nuances of this phenomenon within the
context of network architecture and optimization strategies. The experiments are crafted to furnish a
comprehensive understanding of BOCB, its implications for vision backbones, and its interaction
with various optimization techniques.

D.1 MACRO DESIGN’S INFLUENCE ON OPTIMIZATION

Our empirical inquiry commenced with a profound analysis of the macro design’s impact on the
optimization landscape. We executed extensive experiments utilizing a diverse array of vision
backbones, ranging from Primary CNNs, which laid the groundwork for the CNN paradigm, through
classical CNNs such as ResNet, which introduced a stage-wise hierarchical design, to Modern DNNs
like ConvNeXt and MogaNet, which feature complex block-wise heterogeneous structures.

Our findings, as depicted in Figure 1, unveil a discernible trend: the escalation of macro design
complexity corresponds with an increase in optimization complexity. This is notably evident in the
juxtaposition between ResNet-50 and contemporary backbones such as MobileNetV2 and Efficient-
Net. While ResNet-50, with its stage-wise hierarchical architecture, exhibits a robust coupling with
SGD optimizers, the latter backbones manifest a predilection for adaptive learning rate optimizers
due to their intricate feature extraction mechanisms.

D.2 TOKEN MIXING AND OPTIMIZATION SYNERGIES

In our quest to unravel the effects of token-mixing operations on optimization, we scrutinized the
performance of various token-mixing operators within the MetaFormer architecture. As meticu-
lously detailed in Table 1, each token mixing operator—Identity, Pooling, Attention, and Convolu-
tion—presents unique challenges and sensitivities to optimizer hyperparameters.

The ConvFormer architecture, as a MetaFormer derivative, epitomizes a balanced approach to token
mixing and optimization. By adopting a streamlined block-wise design and alternating between
convolutional and token mixing blocks, ConvFormer mitigates BOCB and facilitates a more efficient
optimization process. This approach underscores the significance of harmonizing architectural design
with optimization strategies to minimize BOCB.

D.3 OPTIMIZER SELECTION AND THE BOCB NEXUS

To gauge the impact of optimizer selection on BOCB, we conducted experiments with a panoply of
optimizers across diverse backbones. The results, as illustrated in Figure 5, indicate that the choice
of optimizer significantly modulates the extent of BOCB. Optimizers adept at navigating complex
optimization landscapes, such as those in Categories (b) and (c), exhibit robust performance across a
spectrum of backbones. Conversely, Category (a) optimizers necessitate meticulous hyperparameter
tuning for classical CNNs, while Category (d) optimizers manifest the most pronounced BOCB and
suboptimal performance.

Our empirical analysis accentuates the critical interplay between network macro design, token mixing
operations, and optimizer selection in sculpting the optimization landscape of vision backbones. The

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Adamax

LAMB

SGD

AdaDelta

AdaBound

SGDP

Adam

LARS

Sophia

NovoGrad

Adan

AdaFactor

AdaBelief

AdamW

LION

RAdam

RMSProp

AdaGrad

1 0 1 2 3 4 5 6 7
Entropy(AlexNet)

Random init

(a) AlexNet

SGDP

SGD

AdaBound

LARS

AdamP

LAMB

AdaBelief

Adan

RAdam

AdaFactor

Sophia

AdaDelta

NAdam

AdamW

LION

Adamax

Adam

RMSProp

AdaGrad

NovoGrad

0 2 4 6 8 10
Entropy(VGG-13)

Random init

(b) VGG-13

AdaBelief

NovoGrad

SGDP

SGD

LARS

AdamP

AdaBound

LAMB

Adan

AdamW

AdaFactor

LION

Adamax

RAdam

Sophia

AdaDelta

NAdam

RMSProp

Adam

AdaGrad

0 10 20 30 40 50
Entropy(ResNet50)

Random init

(c) ResNet-50

AdaBelief

SGDP

LARS

NovoGrad

SGD

AdamP

AdaBound

Adan

LAMB

AdaFactor

RAdam

LION

AdamW

Sophia

AdaDelta

Adam

Adamax

NAdam

RMSProp

AdaGrad

0 20 40 60 80 100
Entropy(ResNet-101)

Random init

(d) ResNet-101
AdaBelief

SGDP

NovoGrad

LAMB

Adan

SGD

AdamP

LARS

AdaFactor

AdamW

AdaDelta

Adam

Adamax

LION

NAdam

AdaBound

Sophia

RAdam

AdaGrad

RMSProp

0 20 40 60 80 100
Entropy(ResNet-101 (Swin-T))

Random init

(e) ResNet-101 (DeiT)

AdaBound

SGDP

SGD

Sophia

AdamW

LAMB

AdamP

AdaBelief

Adan

Adamax

AdaGrad

AdaDelta

AdaFactor

RAdam

NAdam

LION

RMSProp

Adam

NovoGrad

LARS

0 20 40 60 80
Entropy(EfficientNet-B0)

Random init

(f) Eff-B0

Adan

LAMB

LION

Adamax

NovoGrad

AdaFactor

NAdam

RAdam

AdamW

AdamP

Sophia

LARS

Adam

RMSProp

AdaBelief

AdaGrad

AdaBound

AdaDelta

SGDP

SGD

0 10 20 30 40
Entropy(Deit-Small)

Random init

(g) DeiT-S

Adan

AdamW

LAMB

AdaFactor

Sophia

AdamP

LION

RAdam

Adam

NAdam

RMSProp

Adamax

SGDP

SGD

AdaBelief

AdaDelta

LARS

AdaBound

NovoGrad

AdaGrad

0 10 20 30 40
Entropy(Deit-Small_ImageNet)

Random init

(h) DeiT-S (IN-1K)
LAMB

Adan

LION

NovoGrad

NAdam

AdamW

LARS

Adamax

AdaBelief

AdamP

Adam

Sophia

SGDP

AdaFactor

AdaDelta

RAdam

AdaBound

SGD

RMSProp

AdaGrad

0 10 20 30 40 50
Entropy(Swin-T)

Random init

(i) Swin-T

Adan

LAMB

LION

NAdam

AdamP

AdamW

AdaBelief

Adamax

Adam

Sophia

LARS

SGD

RAdam

RMSProp

AdaDelta

AdaFactor

AdaBound

SGDP

AdaGrad

NovoGrad

0 5 10 15 20 25 30
Entropy(MLPMixer)

Random init

(j) MLP-Mixer-S

Adan

AdamP

LAMB

Sophia

AdamW

AdaBelief

AdaGrad

AdaFactor

LION

RMSProp

NAdam

RAdam

Adam

Adamax

NovoGrad

AdaDelta

AdaBound

LARS

SGDP

SGD

10 0 10 20 30 40 50 60
Entropy(ConvNext-T)

Random init

(k) ConvNeXt-T

Adan

AdamP

AdamW

LAMB

Sophia

NAdam

AdaFactor

RMSProp

RAdam

Adam

LION

AdaBelief

Adamax

AdaGrad

NovoGrad

AdaDelta

SGDP

SGD

AdaBound

LARS

0 50 100 150
Entropy(MogaNet-S)

Random init

(l) MogaNet-S
Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
Entropy(IdentityFormer-S12)

Random init

(m) IF-S12

Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
Entropy(IdentityFormer-S12)

Random init

(n) PF-S12

Adan

AdamW

LAMB

AdamP

AdaBelief

RAdam

AdaFactor

NAdam

Adam

LION

Sophia

Adamax

AdaDelta

RMSProp

SGDP

NovoGrad

SGD

LARS

AdaBound

AdaGrad

0 10 20 30 40 50 60
Entropy(ConvFormer)

Random init

(o) CF-S12

Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
Entropy(IdentityFormer-S12)

Random init

(p) AF-S12

Figure A4: Ridge plot of the entropy of learned parameters on CIFAR-100. For the sub-figure of
each optimizer, the X and Y axes indicate the layer indexes and the entropy of weights.

findings offer valuable insights for designing future vision backbones, emphasizing the imperative
for a balanced approach that aligns backbone design with selecting appropriate optimizers.

D.4 PRE-TRAINING AND TRANSFER LEARNING

Extending our investigation to practical applications, we examined the performance of various
optimizers in the context of pre-training on ImageNet-1K and subsequent transfer learning to tasks
such as object detection with RetinaNet and pose estimation on COCO. As demonstrated in Table 1,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Adamax

LAMB

AdaDelta

SGD

AdaBound

SGDP

LARS

Sophia

NovoGrad

Adan

AdaFactor

AdaBelief

AdamW

LION

RAdam

NAdam

AdamP

Adam

RMSProp

AdaGrad

1 0 1 2 3 4 5 6 7
L2 Norm(AlexNet)

Random init

(a) AlexNet

SGDP

SGD

AdaBound

LARS

AdamP

LAMB

AdaBelief

Adan

RAdam

AdaFactor

Sophia

AdaDelta

NAdam

AdamW

LION

Adamax

Adam

RMSProp

AdaGrad

NovoGrad

0 2 4 6 8 10
L2 Norm(VGG-13)

Random init

(b) VGG-13

AdaBelief

NovoGrad

SGDP

SGD

LARS

AdamP

AdaBound

LAMB

Adan

AdamW

AdaFactor

LION

Adamax

RAdam

Sophia

AdaDelta

NAdam

RMSProp

Adam

AdaGrad

0 10 20 30 40 50
L2 Norm(ResNet50)

Random init

(c) ResNet-50

AdaBelief

SGDP

LARS

NovoGrad

SGD

AdamP

AdaBound

Adan

LAMB

AdaFactor

RAdam

LION

AdamW

Sophia

AdaDelta

Adam

Adamax

NAdam

RMSProp

AdaGrad

0 20 40 60 80 100
L2 Norm(ResNet-101)

Random init

(d) ResNet-101
AdaBelief

SGDP

NovoGrad

LAMB

Adan

SGD

AdamP

LARS

AdaFactor

AdamW

AdaDelta

Adam

Adamax

LION

NAdam

AdaBound

Sophia

RAdam

AdaGrad

RMSProp

0 20 40 60 80 100
L2 Norm(ResNet-101 Swin)

Random init

(e) ResNet-101 (DeiT)

AdaBound

SGDP

SGD

Sophia

AdamW

LAMB

AdamP

AdaBelief

Adan

Adamax

AdaGrad

AdaDelta

AdaFactor

RAdam

NAdam

LION

RMSProp

Adam

NovoGrad

LARS

0 20 40 60 80
L2 Norm(EfficientNet-B0)

Random init

(f) Eff-B0

Adan

LAMB

LION

Adamax

NovoGrad

AdaFactor

NAdam

RAdam

AdamW

AdamP

Sophia

LARS

Adam

RMSProp

AdaBelief

AdaGrad

AdaBound

AdaDelta

SGDP

SGD

0 10 20 30 40
L2 Norm(Deit-Small)

Random init

(g) DeiT-S

Adan

AdamW

LAMB

AdaFactor

Sophia

AdamP

LION

RAdam

Adam

NAdam

RMSProp

Adamax

SGDP

SGD

AdaBelief

AdaDelta

LARS

AdaBound

NovoGrad

AdaGrad

0 10 20 30 40
L2 Norm(Deit-Small_ImageNet)

Random init

(h) DeiT-S (IN-1K)
LAMB

Adan

LION

NovoGrad

NAdam

AdamW

LARS

Adamax

AdaBelief

AdamP

Adam

Sophia

SGDP

AdaFactor

AdaDelta

RAdam

AdaBound

SGD

RMSProp

AdaGrad

0 10 20 30 40 50
L2 Norm(Swin-T)

Random init

(i) Swin-T

Adan

LAMB

LION

NAdam

AdamP

AdamW

AdaBelief

Adamax

Adam

Sophia

LARS

SGD

RAdam

RMSProp

AdaDelta

AdaFactor

AdaBound

SGDP

AdaGrad

NovoGrad

0 5 10 15 20 25 30
L2 Norm(MLPMixer)

Random init

(j) MLP-Mixer-S

Adan

AdamP

LAMB

Sophia

AdamW

AdaBelief

AdaFactor

LION

RMSProp

NAdam

RAdam

Adam

Adamax

NovoGrad

AdaGrad

AdaDelta

AdaBound

LARS

SGDP

SGD

0 10 20 30 40 50 60
L2 Norm(ConvNeXt-T)

Random init

(k) ConvNeXt-T

Adan

AdamP

AdamW

LAMB

Sophia

NAdam

AdaFactor

RMSProp

RAdam

Adam

LION

AdaBelief

Adamax

AdaGrad

NovoGrad

AdaDelta

SGDP

SGD

AdaBound

LARS

0 50 100 150
L2 Norm(MogaNet-S)

Random init

(l) MogaNet-S
Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
L2 Norm(IdentityFormer-S12)

Random init

(m) IF-S12

Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
L2 Norm(IdentityFormer-S12)

Random init

(n) PF-S12

Adan

AdamW

LAMB

AdamP

AdaBelief

RAdam

AdaFactor

NAdam

Adam

LION

Sophia

Adamax

AdaDelta

RMSProp

SGDP

NovoGrad

SGD

LARS

AdaBound

AdaGrad

0 10 20 30 40 50 60
L2 Norm(ConvFormer)

Random init

(o) CF-S12

Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
L2 Norm(IdentityFormer-S12)

Random init

(p) AF-S12

Figure A5: Ridge plot of the L2-norm of learned parameters on CIFAR-100. For the sub-figure of
each optimizer, the X and Y axes indicate the layer indexes and the L2-norm of weights.

optimizers like AdamW, which exhibited a reliable peak in performance during pre-training, sustained
their superiority in transfer learning scenarios. This suggests that the choice of optimizer during the
pre-training phase can significantly influence the transfer learning outcomes.

Our experiments also underscore the importance of a comprehensive pre-training phase that pairs
vision backbones with suitable optimizers to ensure robust transfer learning capabilities. Models
that underwent an extended pre-training period with optimizers like LAMB demonstrated enhanced
performance compared to those with shorter pre-training durations using SGD or other optimizers.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Adamax

LAMB

AdaDelta

SGD

AdaBound

SGDP

LARS

Sophia

NovoGrad

Adan

AdaFactor

AdaBelief

AdamW

LION

RAdam

NAdam

AdamP

Adam

RMSProp

AdaGrad

1 0 1 2 3 4 5 6 7
PCA Top-K Energy Ratio(AlexNet)

Random init

(a) AlexNet

SGDP

SGD

AdaBound

LARS

AdamP

LAMB

AdaBelief

Adan

RAdam

AdaFactor

Sophia

AdaDelta

NAdam

AdamW

LION

Adamax

Adam

RMSProp

AdaGrad

NovoGrad

0 2 4 6 8 10
PCA Top-K Energy Ratio(VGG-13)

Random init

(b) VGG-13

AdaBelief

NovoGrad

SGDP

SGD

LARS

AdamP

AdaBound

LAMB

Adan

AdamW

AdaFactor

LION

Adamax

RAdam

Sophia

AdaDelta

NAdam

RMSProp

Adam

AdaGrad

0 10 20 30 40 50
PCA Top-K Energy Ratio(ResNet50)

Random init

(c) ResNet-50

AdaBelief

SGDP

LARS

NovoGrad

SGD

AdamP

AdaBound

Adan

LAMB

AdaFactor

RAdam

LION

AdamW

Sophia

AdaDelta

Adam

Adamax

NAdam

RMSProp

AdaGrad

0 20 40 60 80 100
PCA Top-K Energy Ratio(ResNet-101)

Random init

(d) ResNet-101
AdaBelief

SGDP

NovoGrad

LAMB

Adan

SGD

AdamP

LARS

AdaFactor

AdamW

AdaDelta

Adam

Adamax

LION

NAdam

AdaBound

Sophia

RAdam

AdaGrad

RMSProp

0 20 40 60 80 100
PCA Top-K Energy Ratio(ResNet-101 (Swin-T))

Random init

(e) ResNet-101 (DeiT)

AdaBound

SGDP

SGD

Sophia

AdamW

LAMB

AdamP

AdaBelief

Adan

Adamax

AdaGrad

AdaDelta

AdaFactor

RAdam

NAdam

LION

RMSProp

Adam

NovoGrad

LARS

0 20 40 60 80
PCA Top-K Energy Ratio(EfficientNet-B0)

Random init

(f) Eff-B0

Adan

LAMB

LION

Adamax

NovoGrad

AdaFactor

NAdam

RAdam

AdamW

AdamP

Sophia

LARS

Adam

RMSProp

AdaBelief

AdaGrad

AdaBound

AdaDelta

SGDP

SGD

0 10 20 30 40
PCA Top-K Energy Ratio(Deit-Small)

Random init

(g) DeiT-S

Adan

AdamW

LAMB

AdaFactor

Sophia

AdamP

LION

RAdam

Adam

NAdam

RMSProp

Adamax

SGDP

SGD

AdaBelief

AdaDelta

LARS

AdaBound

NovoGrad

AdaGrad

0 10 20 30 40
PCA Top-K Energy Ratio(Deit-Small_ImageNet)

Random init

(h) DeiT-S (IN-1K)
LAMB

Adan

LION

NovoGrad

NAdam

AdamW

LARS

Adamax

AdaBelief

AdamP

Adam

Sophia

SGDP

AdaFactor

AdaDelta

RAdam

AdaBound

SGD

RMSProp

AdaGrad

0 10 20 30 40 50
PCA Top-K Energy Ratio(Swin-T)

Random init

(i) Swin-T

Adan

LAMB

LION

NAdam

AdamP

AdamW

AdaBelief

Adamax

Adam

Sophia

LARS

SGD

RAdam

RMSProp

AdaDelta

AdaFactor

AdaBound

SGDP

AdaGrad

NovoGrad

0 5 10 15 20 25 30
PCA Top-K Energy Ratio(MLPMixer)

Random init

(j) MLP-Mixer-S

Adan

AdamP

LAMB

Sophia

AdamW

AdaBelief

AdaFactor

LION

RMSProp

NAdam

RAdam

Adam

Adamax

NovoGrad

AdaGrad

AdaDelta

AdaBound

LARS

SGDP

SGD

0 10 20 30 40 50 60
PCA Top-K Energy Ratio(ConvNeXt-T)

Random init

(k) ConvNeXt-T

Adan

AdamP

AdamW

LAMB

Sophia

NAdam

AdaFactor

RMSProp

RAdam

Adam

LION

AdaBelief

Adamax

AdaGrad

NovoGrad

AdaDelta

SGDP

SGD

AdaBound

LARS

0 50 100 150
PCA Top-K Energy Ratio(MogaNet-S)

Random init

(l) MogaNet-S
Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
PCA Top-K Energy Ratio(IdentityFormer-S12)

Random init

(m) IF-S12

Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
PCA Top-K Energy Ratio(IdentityFormer-S12)

Random init

(n) PF-S12

Adan

AdamW

LAMB

AdamP

AdaBelief

RAdam

AdaFactor

NAdam

Adam

LION

Sophia

Adamax

AdaDelta

RMSProp

SGDP

NovoGrad

SGD

LARS

AdaBound

AdaGrad

0 10 20 30 40 50 60
PCA Top-K Energy Ratio(ConvFormer)

Random init

(o) CF-S12

Adan

LAMB

AdamW

AdamP

AdaFactor

LION

AdaBelief

RAdam

Adam

NAdam

Adamax

AdaBound

Sophia

LARS

SGDP

SGD

RMSProp

NovoGrad

AdaDelta

AdaGrad

0 5 10 15 20
PCA Top-K Energy Ratio(IdentityFormer-S12)

Random init

(p) AF-S12

Figure A6: Ridge plot of the top-K energy PCA ratio of learned parameters on CIFAR-100. For the
sub-figure of each optimizer, the X and Y axes indicate the layer indexes and the top-K PCA ratio of
weights. Weights with a larger top-k PCA ratio yield skewed eigenvalue distributions, making these
plots show opposite values as plots with entropy or L2-norm.

The empirical experiments presented in this section provide a robust validation of the BOCB phe-
nomenon and its implications for the design and optimization of vision backbones. By systematically
exploring the interplay between network macro design, token mixing operations, and optimizer
selection, we have identified key factors that contribute to BOCB and provided actionable guidelines
for mitigating its impact. Our findings underscore the need for a balanced approach to backbone

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Adan

NAdam

LION

Adam

LAMB

AdamW

AdamP

RAdam

RMSProp

Adamax

AdaFactor

Sophia

AdaBelief

AdaBound

NovoGrad

AdaDelta

SGDP

SGD

LARS

AdaGrad

10 0 10 20 30 40 50 60
L2 Norm(Swin-T COCO Detection)

Random init

(a) Swin-T (AdamW)

Adan

AdamW

Adamax

LAMB

RAdam

SGDP

SGD

AdamP

Sophia

AdaBelief

Adam

NAdam

LARS

NovoGrad

AdaFactor

AdaBound

RMSProp

AdaDelta

LION

AdaGrad

10 0 10 20 30 40 50 60 70
L2 Norm(ResNet50 COCO-Detection)

Random init

(b) ResNet-50 (SGD)

LAMB

AdamP

AdamW

Adan

AdaFactor

Adamax

NAdam

RAdam

Adam

RMSProp

Sophia

LION

AdaBelief

AdaBound

AdaDelta

LARS

SGD

NovoGrad

AdaGrad

SGDP

10 0 10 20 30 40 50 60 70
L2 Norm(ResNet50 LARS COCO-Detection)

Random init

(c) ResNet-50 (LARS)

LAMB

AdamW

Adamax

AdamP

AdaFactor

NAdam

Adan

RAdam

Adam

RMSProp

LION

Sophia

AdaBelief

AdaDelta

AdaBound

LARS

SGD

NovoGrad

SGDP

AdaGrad

10 0 10 20 30 40 50 60 70
L2 Norm(ResNet50 LAMB COCO Detection)

Random init

(d) ResNet-50 (LAMB)

Figure A7: Ridge plot of the L2-norm parameter patterns for transfer learning to object detection
(RetinaNet) based on Swin-T and ResNet-50 on COCO, where (a)-(d) are pre-trained by AdamW,
SGD, LARS, and LAMB optimizers on ImageNet-1K. Notably, the distributions of backbone
parameters are largely determined by pre-training, while the randomly initialized weights of FPN and
detection head (after the 53-th or 58-th layer in Swin-T and ResNet-50) distinguish the trial patterns.

design and optimizer selection to enhance training efficiency and performance in computer vision
applications.

Table A5: Rankings of optimizers with various aspects for practical usage. Benchmarked results
rank the properties of performance and hyper-parameter robustness, the BOCB property is marked
as 1 or 0, and the computational overhead is ranked by the average training hours. As described in
Appendix D.5, the overall ranking is estimated as the task-home message for selecting optimizers.

SG
D

SG
D

P
LI

O
N

A
da

m
A

da
m

ax
N

A
da

m
A

da
m

W
LA

M
B

R
A

da
m

A
da

m
P

A
da

n
A

da
B

ou
nd

LA
R

S
A

da
Fa

ct
or

A
da

B
el

ie
f

N
ov

oG
ra

d
So

ph
ia

A
da

G
ra

d
A

da
D

el
ta

R
M

SP
ro

p

Performance 17 15 11 9 12 8 5 2 10 3 1 14 19 6 4 13 7 20 16 18
Hyper-parameter 10 6 3 2 7 4 1 1 8 5 9 15 14 6 6 13 7 11 12 1
BOCB 1 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1
Computations 1 2 2 5 5 4 5 5 5 5 6 5 2 2 5 2 5 2 5 2
Overall 16 13 10 7 12 8 2 1 11 4 3 17 20 6 5 15 9 19 18 14

D.5 RULES FOR COUNTING THE OPTIMIZER RANKINGS

We have summarized and analyzed a great number of mixup benchmarking results to compare
and rank all the included mixup methods in terms of performance, applicability, and the overall
capacity. We have conducted a comprehensive meta-analysis of optimizer benchmarking results
to systematically evaluate and rank a diverse array of optimization algorithms across four critical
dimensions: Performance, Hyperparameter Robustness, Backbone Optimizer Coupling Bias (BOCB),
and Computational Efficiency. Our methodology employs a weighted scoring system to synthesize
these multifaceted evaluations:

• Performance (40% weight): This metric quantifies an optimizer’s efficacy across various
backbone architectures, reflecting its paramount importance in algorithm selection.

• Hyperparameter Robustness (20% weight): Quantified as the median Manhattan distance from
the optimal learning rate and weight decay configurations to the maximum average distance,
this metric assesses the optimizers’ robustness to hyperparameter perturbations.

• BOCB (20% weight): Represented as a binary indicator (1 or 0), this factor evaluates the
potential for coupling deviation between the optimizer and the backbone architecture.

• Computational Efficiency (20% weight): Measured by GPU memory allocation, this dimension
quantifies the computational resources required by each optimizer.

The aggregation of these standardized scores yields a comprehensive ranking that serves as a ro-
bust benchmark for optimizer selection in deep learning visual backbone scenarios. This mul-
tidimensional analysis not only elucidates the relative merits of established algorithms such as
AdamW—corroborating its long-standing prevalence in the community—but also highlights the
potential of emerging optimizers like Adan and LAMB, particularly in contexts where BOCB or

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

hyperparameter robustness are of paramount importance. Meanwhile, we also recognized some
optimizers could be sensitive and served as the indicator to show whether the given backbone has the
potential of BOCB. Hence, we summarize two groups of optimizers as follows:

• High-performance Optimizers: AdamW (Loshchilov & Hutter, 2019), LAMB (You et al.,
2020), and Adan (Xie et al., 2023) help the most networks perform well in various scenarios.

• BOCB Indicator Optimizers: Conducting benchmarks with SGD (Sinha & Griscik, 1971),
AdaBound (Luo et al., 2019), LARS (Ginsburg et al., 2018), RMSProp (Hinton, 2012), and
AdaDelta (Zeiler, 2012) could help users recognize whether a given backbone architecture has
the risk of BOCB on a new scenario.

E LIMITATIONS

This work has several limitations: (1) Although we conduct transfer learning experiments to ImageNet
and COCO, the benchmark is mainly focused on CIFAR-100, which may lead to questionable findings
for broader downstream tasks. However, all our transfer learning results are consistent with the
CIFAR-100 findings. Moreover, our released code can be easily extended to other tasks. Users can
thus easily conduct validations with it. (2) BOCB is more complex than current metrics such as
parameters and FLOPs, which may lead to inconvenience in practice. We suggest researchers use
our code, selecting representative optimizers, such as SGD, Adam, and AdamW, for the ridge plot
validation and CIFAR-100 benchmarks, which are practical and resource-efficient. We also call for
further explorations of BOCB in the community to advance vision systems together.

27

