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ABSTRACT

This paper delves into the interplay between vision backbones and optimizers,
unveiling an inter-dependent phenomenon termed backbone-optimizer coupling
bias (BOCB). We observe that canonical CNNs, such as VGG and ResNet, exhibit
a marked co-dependency with SGD families, while recent architectures like ViTs
and ConvNeXt share a tight coupling with the adaptive learning rate ones. We
further show that BOCB can be introduced by both optimizers and certain backbone
designs and may significantly impact the pre-training and downstream fine-tuning
of vision models. Through in-depth empirical analysis, we summarize takeaways
on recommended optimizers and insights into robust vision backbone architectures.
We hope this work can inspire the community to question long-held assumptions on
backbones and optimizers, stimulate further explorations, and thereby contribute to
more robust vision systems. The source code and models are publicly available.

1 INTRODUCTION

The past decade has witnessed rapid progress in computer vision, marked by significant strides in
network architectures (He et al., 2016; Dosovitskiy et al., 2021; Yu et al., 2024) and optimizers (Sinha
& Griscik, 1971; Kingma & Ba, 2015). From AlexNet (Krizhevsky et al., 2012a) to ConvNeXt (Liu
et al., 2022a), the vision community has pushed the boundaries of pre-trained backbones in terms
of task-specific accuracy, efficiency (e.g., model parameters and inference speed), and other metrics
through heuristic architecture designs. Amidst the buzz, however, the impact of optimizers has been
largely overlooked - practitioners often default to established ones without systematic justification.
For instance, while AdamW (Loshchilov & Hutter, 2019) has emerged as the de facto choice for
training Vision Transformers (ViTs), the generality of such optimizer preferences across backbones
remains under-explored. This inquiry becomes particularly important as vision models nowadays
are deployed in various real-world applications, where the choice of optimizer can significantly
impact model generalization (Woo et al., 2023; Oquab et al., 2023), robustness to distribution
shifts (Vishniakov et al., 2023), and adaptability in transfer learning (He et al., 2017; Kirillov et al.,
2023). Recent studies have explored adapting Adafactor for efficient training scaling in ViTs (Zhai
et al., 2022), comparing SGD and AdamW for vision model fine-tuning (Kumar et al., 2022), and
investigating general optimizer designs for transformers (Xiong et al., 2020). Thus, understanding
the backbone-optimizer interplay may provide critical insights for enhancing model reliability and
facilitating vision backbone design and deployment across diverse practical scenarios.

In this paper, we explore the relationship between vision backbones and optimizers. Our primary
focus is threefold: (i) Does any identifiable dependency exist between existing vision backbones and
widely-used optimizers? (ii) If such backbone-optimizer dependencies exist, (how) do they affect the
training dynamics and performance of vision models? (iii) Can we identify direct connections between
these inter-dependencies and specific designs of vision backbone architectures and optimizers?

To answer these questions, we first revisit different categories of existing vision backbones and
optimizers as shown in Figures 1, A1, and Section 2. We then conduct extensive experiments where 20
representative backbones are evaluated against 20 optimizers on mainstream vision datasets, including
CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Krizhevsky et al., 2012b), and COCO (Lin et al.,
2014). As such, we provide the backbone-optimizer benchmark and thereby observe an interesting
inter-dependent phenomenon, which we term backbone-optimizer coupling bias (BOCB). Table 1
conveys this evidence: classical Convolutional Neural Networks (CNNs) like VGG (Simonyan &
Zisserman, 2015) and ResNet (Zhang et al., 2022) exhibit a marked co-dependency with SGD (Sinha
& Griscik, 1971). In contrast, modern backbones, such as Vision Transformers (ViTs) (Dosovitskiy
et al., 2021) and ConvNeXt (Liu et al., 2022a), perform better when paired with adaptive learning rate
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optimizers (Loshchilov & Hutter, 2019) (see blue and gray results in Table 1). While most backbones
and optimizers are assumed to be unbiased and well-generalized, our findings appear to question it.

To dig deep into such interplay, thorough empirical analyses are conducted from both backbone and
optimizer perspectives. We first examine the performance stability of each backbone with vioplinplots
as shown in Figure 3, which offers intuitive insights into their robustness across different optimizers.
We then analyze the hyper-parameter robustness of all benchmarked backbone-optimizer pairs in
Figure 4,5, as the well-designed ones are expected to have robust hyper-parameter settings. To further
elucidate the rationale behind BOCB, we visualize the layer-wise patterns and PL exponent alpha
metrics (Martin et al., 2021) of learned parameters to examine how different network architectures
influence the parameter space and optimization complexity, hence potentially inducing the BOCB
phenomenon. As illustrated in Figures 1, 6, and Appendix D, certain stage-wise (hierarchical or
isotropic) and block-wise (heterogeneous or not) designs can significantly affect parameter space
and hyper-parameters robustness. Interestingly, we further observe that optimizers also introduce
bias back to backbones (see Section 4). For example, fine-tuning the AdamW pre-trained backbones
with the other ones often leads to significant performance degradation, while this is not present when
pre-training the model with SGD variants. Moreover, different pre-training optimizers may even
alter the parameter patterns of identical backbones. Overall, our findings suggest that BOCB can
be introduced by optimizers and backbones and may significantly impact both the pre-training and
downstream fine-tuning of vision models, thus limiting their flexibility and practical applications.

In the following sections, we first provide an overview of vision backbones and optimizers in Section 2.
We then present the backbone-optimizer benchmark details and our empirical findings in Section 3.
Section 4 offers an in-depth analysis of the rationale behind BOCB and takeaways for recommended
optimizers and summarized backbone designs. Our main contributions can be summarized as follows:

• We explore the crucial yet poorly studied backbone-optimizer interplay in visual representation
learning, revealing the phenomenon of backbone-optimizer coupling bias (BOCB).

• We provide the backbone-optimizer benchmark that encompasses 20 popular vision backbones,
from classical CNNs to recent transformer-based architectures, and evaluate their performance
against 20 mainstream optimizers on CIFAR-100, ImageNet-1K, and COCO, unveiling the
practical limitations introduced by BOCB in both pre-training and transfer learning scenarios.

• From the BOCB perspective, we summarize recommendations of optimizers and insights on more
robust vision backbone design. The benchmark results also serve as takeaways for user-friendly
deployment. We open-source the code and models for further explorations in the community.

2 ROADMAPS OF VISION BACKBONES AND OPTIMIZERS

This section provides an overview of most existing vision backbones and optimizers. We first revisit
different networks based on their stage-wise macro design (hierarchical or isotropic), building block
structures (heterogeneous or not), and core operators (convolution, self-attention, etc.). We then dive
into mainstream optimizers, emphasizing their distinctive approaches to learning rate adjustment and
gradient handling. This serves two purposes: first, it offers an organized framework for understanding
the current landscape; second, it facilitates our subsequent analyses, allowing us to draw connections
between experimental results and specific techniques, thereby yielding clear observations and insights.

2.1 TAXONOMY OF VISION BACKBONE ARCHITECTURES

Stage-wise Macro Design. As shown in Figure 1 and Table A1, the overall framework of existing
vision backbones can be categorized into two groups: (i) Hierarchical architectures: These models
(e.g., VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), MobileNet.V2 (Sandler
et al., 2018), and EfficientNet (Tan & Le, 2019)) divide the network into multiple downsizing
stages, where each stage consists of stacked building blocks with specific designs (e.g., bottleneck,
MetaFormer (Yu et al., 2024) or ConvNeXt (Liu et al., 2022a)) for feature extraction. (ii) Isotropic
architectures: In contrast, backbones like Vision Transformers (ViTs) (Dosovitskiy et al., 2021)
and MLP-Mixers (Tolstikhin et al., 2021) employ an isotropic building block stacking, where stand-
alone token and channel mixers (e.g., self-attention and MLP) are proposed to capture long-range
dependencies with attention-like operators while enabling token prompting for broader applications.
Intra-block Micro Design. The building block structures can also be classified into two paradigms:
(i) Homogeneous structures: Early CNNs like AlexNet (Krizhevsky et al., 2012a) employed a
straightforward approach of interleaving convolutions and pooling layers for feature extraction. A

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

K×K Conv

Pool /2

Inverted BottleNeck

Stage 1

D
ow

nS
am

pl
in

g 
/4

D
ow

nS
am

pl
in

g 
/2

D
ow

nS
am

pl
in

g 
/2

D
ow

nS
am

pl
in

g 
/2

Block

Block

Block

Norm

Token Mixer

Norm

Channel Mixer

7×7 DWConv

Norm

BottleNeck MetaFormer ConvNextPrimary Block

× N 

Channel Mixer

Primary Hierarchical

B
lock D

esign
Stage D

esign

Primary CNN Classical CNN Modern Backbone

Norm

Attention

Stage 2
Stage 3 Stage 4

Stage 1

Pa
tc

hf
y 

/4

D
ow

nS
am

pl
in

g 
/2

D
ow

nS
am

pl
in

g 
/2

D
ow

nS
am

pl
in

g 
/2

Stage 2
Stage 3 Stage 4

1×1  Conv

3×3  DWConv

1×1  Conv Channel Mixer

AlexNet

Transformer

Norm

MobileNet.V2  EfficientNet ViT     Swin MLPMixer  MetaFormer ConvNext

Patchfy /16

1×1  Conv

3×3  Conv

1×1  Conv

BN, ReLU

Isotropic Hierarchical

BN, ReLU

BN, ReLU

BN, ReLU

BN

ResNet

k×k  Conv

K×K Conv

Pool /2

k×k  Conv

× N 

2014 2016 2018 2019 2020 2021 20232022 20242012

VGG MogaNet

Figure 1: Vision backbones with representative macro and micro designs since 2012. (a) Primary
CNNs like VGG laid the foundation for vision backbone design, i.e., multi-layer networks built by
plainly stacking building blocks. (b) Classical CNNs like ResNet identified the overall framework of
vision backbones as hierarchical stages, each comprising stacked bottlenecks connected by overlapped
downsampling layers. (c) Modern DNNs introduced different intra-block structures while presenting
two main groups of stage-wise design: hierarchical and isotropic stages with downsampling and
patchifying. We summarize all the technical details of these typical vision backbones in Table A1.

significant breakthrough came with the bottleneck structure of ResNet (He et al., 2016), which set
a new paradigm for subsequent architectures. Following this, research has focused on enhancing
bottlenecks through the integration of specialized operators, such as separable convolutions (Sandler
et al., 2018) and CBAM (Woo et al., 2018). (ii) Heterogeneous structures: ViTs (Dosovitskiy et al.,
2021; Liu et al., 2021) marked a paradigm shift by introducing heterogeneous building blocks, in
which token-mixers (e.g., self-attention, sliding windows) and channel-mixers (typically feed-forward
networks) are exploited for disentangled feature processing. Built upon this, subsequent works mainly
focus on crafting more efficient (Yu et al., 2024) and expressive (Ding et al., 2024) token-mixers.
Notably, most existing studies change network architectures heuristically to improve certain metrics,
such as task accuracy, speed, and parameter efficiency. However, the impact of these architectural
choices on their optimization has been largely overlooked, which is exactly what we are interested in.

2.2 MAINSTREAM GRADIENT-BASED OPTIMIZERS

Algorithm 1 General Gradient-based Optimizer for DNNs
Require: DNN parameters θ = {θl}Ll=1, an initial learning rate lr,

weight decays ω = {ωl}Ll=1, a loss function L, and a dataset D.
1: Initialize parameters {θ0l }Ll=1 and learning rates {α0

i }Ll=1 ← lr.
2: for each iteration i = 1, 2, . . . , L do ▷ Loop over iterations
3: for each layer l = 1, 2, . . . , L do ▷ Loop over layers
4: Compute gradients∇θi−1

l = ∂L(θ,D)
∂θl

. ▷ Step 1

5: Estimate gradients gil with∇θi−1
l and {gjl }

i−1
j=1. ▷ Step 2

6: Caculate αi−1
l with {αj

l }
i−1
j=1 and {gjl }

i
j=1. ▷ Step 3

7: Update: θil ← θi−1
l − αi

l ·
(
gi−1
l + ωl · θi−1

l

)
. ▷ Step 4

8: end for
9: end for

The optimization of DNNs is an in-
tricate process requiring iterative
parameter updates. Algorithm 1
offers a general framework for
this refinement, encapsulating the
essence of gradient-based optimiz-
ers. The entire pipeline includes
four key steps:

Step 1: Gradient Computation.
The initial phase involves calculat-
ing partial derivatives of the loss
function L with respect to each
layer’s parameters θl through back-
propagation. This determines the
update direction for each model parameter that can minimize the learning objectives. Step 2: Gra-
dient Estimation. To further improve the optimization stability and convergence, gradients can be
refined by incorporating both current and historical information. Techniques like momentum are thus
employed to smooth gradient estimates, thereby providing more robust and reliable updates. Step 3:
Learning Rate Calculation. At this stage, the critical hyper-parameter, learning rate, is calculated
according to the past statistics and estimated gradients through adaptive optimizers (e.g., AdaGrad,
RMSProp, and Adam) for better convergence. Step 4: Parameter Update. The final step updates
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Figure 2: Overview of developing timelines for networks and optimizers. Before the emergence
of Transformers, network architectures like ResNet (He et al., 2016) were primarily designed with
SGD as the default optimizer. Following the introduction of Transformer (Vaswani et al., 2017) and
ViT (Dosovitskiy et al., 2021), AdamW became the standard, accompanied by more sophisticated
training strategies, reflecting the increasing complexity of modern architectures.

the network parameters θl with refined gradients gl, learning rates αl, and a weight decay term ωl

while incorporating additional regularization policies to mitigate overfitting.

As such, mainstream optimizers can be divided into four principal classes as depicted in Figure A1. (a)
Fixed Learning Rate with Momentum: This category employs static learning rates while modulated
by momentum (Sinha & Griscik, 1971; Heo et al., 2021). Its key principle is the accumulation of past
gradients to determine the current update, which aids in accelerating convergence in consistent direc-
tions while dampening oscillations in high-curvature dimensions. (d) Adaptive Learning Rate without
Momentum: Optimizers in this class (e.g., AdaGrad (Duchi et al., 2011) and RMSProp (Hinton,
2012)) adapt learning rates for each parameter based on the historical statistics. While this approach
may introduce extra cost, it allows for larger updates for infrequent parameters and smaller updates for
frequent ones, providing better adaptability to varying feature scales and data sparsity. (b) Adaptive
Learning Rate with Momentum: This type combines the benefits of momentum with parameter-wise
learning rate adaptation (Kingma & Ba, 2015; Reddi et al., 2018), making it well-suited for large
datasets or complex neural networks. (c) Estimated Learning Rate with Momentum: These optimizers
aim to mitigate the convergence issues of Category (b) through additional constraints or estimations,
such as factored moments (Shazeer & Stern, 2018) and bounded learning rates (Luo et al., 2019).

3 BACKBONE-OPTIMIZER COUPLING BIAS (BOCB)

3.1 COMBINED EVALUATION OF BACKBONE AND OPTIMIZER

It is commonly assumed that both backbones and optimizers should be broadly applicable and can be
combined freely without significant inter-dependence. To investigate the potential backbone-optimizer
interplay between a set of vision backbones {Fi(·; θ)}Nb

i=1 and widely used optimizers {Oj(·)}No
j=1, we

consider three different aspects of evaluation, from task-specific accuracy to optimization dynamics,
to identify and then explain the BOCB phenomena (if it exists) with a standard benchmark.
(A) Performance Metrics. We assess each backbone-optimizer combination with the top-1 accuracy
on the validation set to study whether a backbone relies on (or fails with) the certain optimizer.
Given a backbone Fi and a set of its results Ri = {rj(Fi)}No

j=1, we detect the failure case that is
dynamically lower than others with quantiles and a threshold γ > 0,

rj(Fi) < max(Ri)−min
(
Q0.75(Ri)−Q0.25(Ri), γ

)
. (1)

Meanwhile, the severity of BOCB can also be reflected by the standard deviation (Std) and range.
Therefore, we report these statistics by removing the worst result min(Ri) and highlight the top-4
results in blue while marking the failed attempts in gray, which yields a heatmap-like table of bench-
marking results as a clear overview of the effectiveness of each backbone-optimizer combination.
(B) Hyper-parameter Robustness. While standard metrics offer basic insights, we delve deeper into
the adaptability of these backbone-optimizer pairs through the lens of hyper-parameter robustness. To
quantify this stability, we measure the variation of all optimal optimizer hyper-parameters from their
mode (most common) configurations. Assuming there are n optimal learning rates and m optimal
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weight decays for all backbone-optimizer pairs, we convert these values into discrete one-hot codes
{l̃ri}ni=1 and {ω̃i}mi=1, calculate mode statistics Mlr and Mω , and measure the variation by Manhattan
distance Σn

i=1|l̃ri−Mlr|+Σm
i=1|ω̃i−Mω|. Lower variation often denotes greater robustness of hyper-

parameter settings and thereby indicates desirable adaptability to new or poorly studied optimizers or
vision backbones and thus could be desirable for broader practical applications.
(C) Parameter Patterns and Convergence Quality. To gain intuitive insights into different network
architectures, we analyze the learned parameters with four key indicators, including PL exponent
alpha (Martin et al., 2021), entropy, L2-norm, and top-k PCA energy ratio. Please view Appendix B.3
for our detailed interpretations. This analysis reveals intrinsic topological patterns that reflect the
typical layer-wise properties of various backbones, as shown in Figure 6 and Appendix D. We
observe distinct entropy patterns in hierarchical versus isotropic macro designs, variations in L2-norm
across stages, and changes in PCA energy ratios for diverse layer types (e.g., convolutional vs.
attention-based). By analyzing these patterns, we gain valuable insights into how different network
architectures interact with various optimization algorithms, furthering our understanding of the BOCB
phenomenon and informing future design choices for both backbones and optimizers.

3.2 BENCHMARKS AND OBSERVATIONS

Benchmark Settings. We conduct the main benchmark of vision backbones and optimizers for
image classification on CIFAR-100 (Krizhevsky et al., 2009) for analysis efficiency, where models are
trained 200 epochs with optimal hyper-parameters for various optimizers. We select 20 representative
vision backbones from the three categories with similar parameters counts, as summarized in
Table A1: (a) Primary CNNs include AlexNet (Alex) (Krizhevsky et al., 2012a) and VGG-13-BN
(VGG) (Simonyan & Zisserman, 2015); (b) Classical CNNs include ResNet-50 (R) (He et al., 2016),
DenseNet-121 (DN) (Huang et al., 2017), MobileNet.V2 (MobV2) (Sandler et al., 2018), EfficientNet-
B0 (Eff) (Tan & Le, 2019), and RepVGG (Ding et al., 2021); (c) Modern DNNs include Transformers
(DeiT-S (Touvron et al., 2021a) and Swin-T (Liu et al., 2021)), MLPMixer-S (MLP) (Tolstikhin et al.,
2021), modern CNNs include ConvNeXt-T (CNX) (Liu et al., 2022a), ConvNeXt.V2 (CNXV2) (Woo
et al., 2023), MogaNet-S (Moga) (Li et al., 2024), and UniRepLKNet-T (URLK) (Ding et al.,
2024). We also evaluate MetaFormer baselines (Yu et al., 2024) with IdentityFormer-S12 (IF),
PoolFormerV2-S12 (PFV2), ConvFormer-S12 (CF), and AttentionFormer-S12 (AF), whose only
difference is their token-mixer designs. We also selected 20 popular optimizers from the four
categories as discussed in Figure A1: (a) Fixed Learning Rate with Momentum includes SGD-
M (Sinha & Griscik, 1971), SGDP (Heo et al., 2021), and LION (Chen et al., 2023); (b) Adaptive
Learning Rate with Momentum covers Adam (Kingma & Ba, 2015), AdaMax (Kingma & Ba,
2015), AdamP (Heo et al., 2021), AdamW (Loshchilov & Hutter, 2019), LAMB (You et al., 2020),
NAdam (Reddi et al., 2018), RAdam (Liu et al., 2020), and Adan (Xie et al., 2023). (c) Estimated
Learning Rate with Momentum involves AdaBelief (Zhuang et al., 2020), AdaBound (Luo et al.,
2019), AdaFactor (Shazeer & Stern, 2018), LARS (Ginsburg et al., 2018), NovoGrad (Ginsburg et al.,
2020), and Sophia (Liu et al., 2023); (d) Adaptive Learning Rate without Momentum comprises
AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), and RMSProp (Hinton, 2012). We consider
two training recipes: (1) PyTorch-style training (Szegedy et al., 2016) with basic augmentations, (2)
DeiT-style training (Touvron et al., 2021a) with advanced augmentations (Cubuk et al., 2020; Zhang
et al., 2018) and techniques (Huang et al., 2016). As for optimizer hyper-parameters, we first search
the two commonly-employed ones (learning rate and weight decay) with NNI toolbox (Microsoft,
2021), i.e., determining the NNI search range manually. Subsequently, we tune other optimizer-
specific hyper-parameters (e.g., momentum in SGD and β2 in Adam). The average top-1 accuracy
over three trials is reported. Please refer to Appendix B.1 for further implementation specifics.

Observations. As shown in Table 1, we observed an interesting phenomenon that some popular
models (e.g., DeiT-S and ConvNeXt-T) yield bad results with some optimizers (i.e., SGD and LARS).
Therefore, we summarize this phenomenon as BOCB, where the performance of a certain visual
architecture is strongly coupled with the choice of the optimizer, deviating from the expected indepen-
dence between network designs and optimization algorithms. In particular, we notice that classical
CNNs (e.g., VGG, ResNets, and RepVGG) exhibit a slight coupling with Category (a) optimizers but
have not encountered evident BOCB. In contrast, modern architectures like ViTs (Dosovitskiy et al.,
2021) and ConvNeXt (Liu et al., 2022a) strongly matched with adaptive optimizers in Category (b).

As observed in Figure 3, we assume that such a coupling bias may stem from the increasing com-
plexity of optimization as network architectures evolve. Concretely, modern backbones incorporate
complex designs such as advanced token-mixers (e.g., MogaNet and UniRepLKNet) and block-wise
heterogeneous structures (e.g., ConvNeXt variants and CAFormer), which shape a more intricate and
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Table 1: Top-1 accuracy (%) of representative vision backbones with 20 mainstream optimizers on
CIFAR-100. The torch-style training settings are used for AlexNet, VGG-13, R-50 (ResNet-50), DN-
121 (DenseNet-121), MobV2 (MobileNet.V2), and RVGG-A1 (RepVGG-A1), while other backbones
adopt modern recipes, including Eff-B0 (EfficientNet-B0), ViTs, ConvNeXt variants (CNX-T and
CNXV2-T), Moga-S (MogaNet-S), URLK-T (UniRepLKNet-T), and TNX-T (TransNeXt-T). We list
MetaFormer S12 variants apart from other modern DNNs as IF-12, PFV2-12, CF-12, AF-12, and
CAF-12. The blue and gray features denote the top-4 and trivial results, while others are inliers. Two
bottom lines report mean, std, and range on statistics that removed the worst result for each model.
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AdamP 60.27 75.56 78.17 78.89 77.79 78.65 77.67 71.55 73.66 80.91 84.47 84.40 86.45 86.19 87.16 79.20 81.70 85.15 82.12 83.40
Adan 63.98 74.90 77.08 79.33 77.73 78.43 76.99 76.33 74.94 83.35 84.65 84.77 86.46 86.75 87.47 80.59 83.23 85.58 83.51 84.89
AdaBound 66.59 77.00 78.11 75.26 78.76 79.88 74.14 68.59 70.31 80.67 71.96 83.90 78.48 83.03 86.07 77.99 77.81 82.73 83.08 82.38
LARS 64.35 75.71 78.25 77.25 76.23 72.43 75.50 71.36 72.64 81.29 61.40 82.22 33.26 41.03 85.16 77.66 78.78 82.98 81.00 82.05
AdaFactor 63.91 74.49 75.41 77.03 75.38 77.83 75.03 74.02 71.16 80.36 82.82 83.06 85.17 85.99 86.57 78.78 78.81 84.90 81.94 82.36
AdaBelief 62.98 75.09 80.53 79.26 75.78 78.48 76.90 70.66 73.30 80.98 83.31 84.47 84.80 84.54 86.64 78.55 81.01 85.03 83.21 83.56
NovoGrad 64.24 76.09 79.36 77.25 71.26 74.23 75.16 73.13 67.03 81.82 79.99 82.01 82.96 80.77 85.85 77.16 78.92 83.51 81.28 82.98
Sophia 64.30 74.18 75.19 77.91 76.60 78.95 75.85 71.47 72.74 80.61 83.76 83.94 85.39 84.20 86.60 77.67 78.90 84.58 81.67 82.96
AdaGrad 45.79 71.29 73.30 51.70 33.87 77.93 46.06 67.24 67.50 75.83 75.63 50.34 83.03 82.57 66.83 44.34 44.40 79.67 78.71 38.09
AdaDelta 66.87 74.14 75.07 76.82 75.32 77.88 74.58 65.44 71.32 80.25 74.25 82.74 81.06 84.17 85.31 75.91 76.40 84.05 82.62 82.08
RMSProp 59.33 73.30 74.25 75.45 73.94 76.83 74.92 70.71 71.63 77.52 82.29 82.11 85.17 61.14 86.21 77.40 77.14 84.01 79.72 81.83

Mean 63.67 74.68 76.31 76.94 75.65 77.77 75.19 70.82 72.10 80.63 78.13 82.92 83.51 82.40 86.34 78.03 78.94 84.28 81.99 82.32
Std/Range 1.1/8 1.0/4 1.6/6 1.4/6 1.6/8 1.2/6 0.9/4 2.9/13 1.7/8 1.1/6 8.0/25 0.8/3 2.8/11 5.5/26 0.6/2 0.8/5 1.2/7 0.8/3 0.9/4 0.9/5
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Figure 3: Violinplot of the performance stability for different backbones. We visualize the
results in Table 1 as violin plots to show the performance stability of different vision backbones. In
particular, favorable backbones should not only achieve great performance (high mean accuracy)
with few optimizers but yield a small performance variance (a flat distribution without outliers). Note
that grey dots denote the outliers (backbone-optimizer combination with poor results), revealing
the phenomenon of BOCB. We suggest that well-designed (vision) backbones should exhibit both
superior performance and great performance stability across optimizers to mitigate the risk of BOCB.

challenging optimization landscape, necessitating adaptive learning rate strategies. Thus, modern
backbones exhibit stronger couplings with optimizers that can navigate these complex landscapes.
As we meet real-world challenges, it becomes critical to explore network architectures beyond
traditional metrics. Optimizers provide an entry point for this investigation. Intuitively, different
network architectures might seemingly affect the optimization landscape, thereby influencing the
optimization process. We assume that this interplay between backbones and optimizers may have
substantial implications for both pre-training and fine-tuning in practical applications. By examining
this relationship, we aim to provide insights that can guide the development of more effective and
efficient models for computer vision tasks. The BOCB phenomenon also has several implications for
vision backbones in terms of user-friendly deployment and more robust architecture design:

(A) Deployment. Vision backbones with weaker BOCB offer greater flexibility and are more user-
friendly, especially for practitioners with limited resources for extensive hyper-parameter tuning.
However, modern architectures like ViTs and ConvNeXt, which exhibit strong coupling with adaptive
optimizers, require careful optimizer selection and hyper-parameter tuning for optimal performance.

(B) Performance and Generalization: While classical CNNs with weaker coupling offer more
user-friendliness, modern DNNs with stronger coupling potentially leads to better performance and
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Figure 4: Boxplot visualization of hyper-parameter robustness (learning rate and weight decay)
for various backbones on CIFAR-100. The vertical axis denotes variation (measured by Manhattan
distances) of all optimal hyper-parameters for certain backbones across different optimizers to the
default (mode) values. Holistically, backbones with larger mean and variance of variations (e.g.,
AlexNet, EfficientNet-B0, ConvNeXt-T, and ConvFomer-S12) require more tuning efforts in practice
and may be tough to adapt to new or poorly-studied optimizers and tasks. In contrast, models with low
variation maximum while the small medians (e.g., ResNet-50, RepVGG-A1, and CAFormer-S12) are
regarded as more robust and with more favorable optimization behavior from the view of optimizers.
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Figure 5: Boxplot of optimizers generality across different backbones on CIFAR-100. Symmetrical
to Figure 4, the analysis scope here is switched from backbones to optimizers so as to showcase
the optimizer’s generality from the perspectives of hyper-parameter robustness. Some optimizers in
Category (b) show favorable robustness (e.g., AdamW and LAMB). Contrastively, several optimizers
in the other three types show poor generality (e.g., SGDP, AdaBound, and LARS), which are excluded
from our further discussion on the connection between BOCB and diverse vision backbone designs.

generalization. Tailoring the optimization process to certain architectural characteristics of modern
backbones, such as hierarchical structures for stage-wise design and depth-wise convolutions for
intra-block design for more inductive bias, can effectively navigate complex optimization landscapes,
unlocking superior performance and generalization capabilities.

(C) Backbone Design Insights: The observed BOCB phenomenon highlights the need to consider
the coupling between backbone designs and optimizer choices. When designing new backbone
architectures, it is crucial to account for both the inductive bias (e.g., hierarchical structures and local
operations) and some optimizing auxiliary modules (Touvron et al., 2021b; Shleifer et al., 2021)
introduced by the macro design principles. A balanced approach that harmonizes the backbone design
with the appropriate optimizer choice can lead to optimal performance and efficient optimization,
enabling the full potential of the proposed architecture to be realized.

4 WHERE DOES BOCB COME FROM?

To investigate the essence behind the BOCB phenomenon, we first consider what matters the most:
optimizers or backbones. As shown in Figure 5 and Table 1, four groups of optimizers show different
extents of BOCB with vision backbones. Categories (b) and (c) exhibit a robust, hyperparameter-
insensitive performance peak, adept at navigating the complex optimization landscapes of early-stage
CNNs and recent backbones. Category (a) necessitates meticulous hyper-parameter tuning for
classical CNNs while demonstrating less adaptability to the high optimization demands of modern
backbones with complex designs. Category (d) shows the worst performances with heavy BOCB.

4.1 ORIGINS OF BOCB: BACKBONE MACRO DESIGN AND TOKEN MIXERS

As discussed in Figure 1 and Section 2, the trajectory of vision backbones has significantly sculpted
the optimization landscape, progressing through distinct phases that reflect the intricate relationship
between network complexity and training challenges. This section delves into the evolution of vision
backbone macro design and its profound implications for the BOCB phenomenon.

7
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(b) ResNet-50
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(c) DeiT-S
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Figure 6: Layer-wise backbone parameter patterns. We visualize the ridge plot of the entropy
patterns of learned parameters of specific vision backbones on CIFAR-100. For each subfigure, the X
and Y axes indicate the layer indexes and the entropy of weights, respectively. Specifically, subfigures
(a)-(d) represent the ridge plot of the entropy patterns, while subfigures (e)-(g) focus on the ridge
plot of the L2-norm patterns for vision backbones with significant BOCB, including MLP-Mixer,
ConvNeXt, and MogaNet, i.e., whether the zoomed-in areas of FFN modules are in trivial patterns.

(i) Early-stage CNNs: These architectures featured a straightforward design of plainly stacked convo-
lutional and pooling layers, culminated by fully connected layers. Such a paradigm was effective but
set the stage for further optimization of landscape alterations. (ii) Classical CNNs: The introduction
of ResNet marked a pivotal shift towards stage-wise hierarchical designs, significantly enhancing
feature extraction and representation learning ability. ResNet-50, in particular, demonstrated a
well-balanced approach to BOCB, which exhibited strong compatibility with SGD optimizers and a
relatively lower BOCB compared to its contemporaries. (iii) Modern Architectures: The transition
to modern backbones introduced simplified block-wise designs (e.g., MetaNeXt (Yu et al., 2023)
and ConvNeXt variants (Liu et al., 2022a; Woo et al., 2023), or complex block-wise heterogeneous
structures (e.g., MogaNet (Li et al., 2024) and UniRepLKNet (Ding et al., 2024)), increasing the
optimization challenge and the degree of BOCB due to their complex feature extraction. Representing
a pinnacle in evolution, the MetaFormer architecture incorporates both stage-wise and block-wise
heterogeneity into its design. This innovative macro design refines the optimization landscape by
harmonizing with optimizers, leading to reduced BOCB and enhanced performance.

The above backbone evolution underscores the pivotal role of macro design in shaping the optimization
landscape and the necessity for continued innovation in backbone architectures. It highlights the
delicate balance that must be struck between advancing representational capabilities and maintaining
optimization efficiency. Please view Appendix D for implementation details. Next, we illustrate three
cases that elucidate how the overall framework and token mixer designs impact the BOCB phenomena
with the parameter quality metric alpha (Martin et al., 2021), demonstrating the representational
capacity versus the BOCB effect trade-off.
Case 1: Transformers. The lack of inductive biases in ViTs, such as local connectivity and shift-
invariance in CNNs, stems from their self-attention mechanism and stage-wise isotropic design.
As shown in Figure 7(a), this necessitates careful refinements to ensure effective generalization
and reduce BOCB in vision tasks. MLP-Mixer streamlines the model by replacing attention-based
token mixers with MLPs, simplifying token interactions and thus inducing a more stable training
process. However, it sacrifices the model’s capacity to capture long-range dependencies, which is
also essential for specific vision tasks, thus representing a trade-off between model simplicity and
representation capacity. AttenFormer effectively mitigates BOCB due to its MetaFormer framework,
which incorporates balanced designs and residual scaling across stages. Swin-T, akin to DeiT-S, is
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(a) Case 1: Transformers
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(b) Case 2: Modern CNNs
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(c) Case 3: MetaFormer variants
Figure 7: BOCB case studies with PL exponent alpha metrics (Martin et al., 2021) of learned
model parameters with diverse optimizers on CIFAR-100. The alpha metric measures the fitting
quality of models to a certain task, and a smaller alpha value indicates better fitting. Empirically,
values less than 2 or greater than 6 have the risk of overfitting or underfitting. The diagonal bars denote
the BOCB occurring. View discussions in Section 4 and details on the alpha metric in Appendix B.3.

based on the Vallina Transformer but introduces hierarchical stages and local attention blocks. These
designs enhance the model’s ability to capture fine-grained features, leading to better performance
and weaker BOCB compared to DeiT-S. Takeaway: Block-wise macro designs aimed at reducing
heterogeneity or enhancing homogeneity, combined with hierarchical stages and the integration of
inductive biases within token mixers, are crucial for ViTs to mitigate BOCB in computer vision tasks.
Case 2: Modern CNNs. ConvNeXt, inspired by the macro design of ViTs, introduces a homoge-
neous block design that integrates two types of operators within a residual connection, potentially
enhancing capacities across various tasks and data scales. The effectiveness of this architecture
underscores the need to evaluate network designs beyond standard metrics, especially in the context
of real-world optimization challenges. The interaction between backbones and optimizers is crucial
for both pre-training and fine-tuning, with different architectures influencing optimization landscapes.
BOCB in CNNs is often associated with the FFN designs, which are pivotal in models. These blocks,
implemented as point-wise convolutions or inverted bottleneck layers, are susceptible to overfit-
ting without proper regularization. To eliminate this, ConvNeXt.V2 introduces Global Response
Normalization (GRN) between FFN blocks, similar to RMSNorm, to stabilize training and prevent
model collapse, thereby reducing BOCB. ConvFormer, based on the MetaFormer framework, uses
homogeneous blocks with depth-wise and point-wise convolutions, improving training robustness
and reducing BOCB risk. Similarly, with the VGG series’ simple and homogeneous architecture,
RepVGG’s introduction of training-phase residual connections enhances performance while main-
taining stability and weak BOCB (see Figure 7(b)), exhibiting well-behaved training dynamics. In
contrast, ConvNeXt and MogaNet, featuring complex operations and heterogeneous blocks, are more
susceptible to BOCB. UniRepLKNet, however, sidesteps this issue with a more homogeneous design,
highlighting the importance of architectural uniformity in reducing BOCB. Takeaway: For modern
CNNs, designs that foster a homogeneous building block structure and incorporate crafted strategies
to mitigate model failures are more likely to achieve stable FFN training and reduce the risk of BOCB.

Case 3: MetaFormer. MetaFormer architecture is distinguished by its hierarchical stage-wise
and block-wise design, featuring ResScale, facilitating the flexible integration of various token
mixers. This macro design is crucial for achieving competitive performance while minimizing the
risk of BOCB. IdentityFormer, without any token mixers, sets a robust baseline for MetaFormer
but may fall short in complex tasks requiring advanced token-wise representations, potentially
increasing BOCB risk, as shown in Figure 7(c). PoolFormerV2 (pooling as token mixers) outperforms
IdentityFormer but may overlook critical details due to the absence of token-wise aggregation,
leading to higher BOCB susceptibility. To achieve high performance while mitigating these risks,
selecting an appropriate token mixer is essential. ConvFormer integrates CNN layers to balance local
inductive bias in data-limited scenarios, ensuring better convergence and less BOCB. AttenFormer
and CAFormer further explore attention mechanisms, aiming to enhance the representation capacity
with global receptiveness through improved token interactions. Takeaway: Overall, MetaFormer
architecture’s success hinges on a judicious balance between its hierarchical design and the selection
of token mixers, ensuring robust performance across diverse tasks while mitigating the risk of BOCB.

4.2 PRE-TRAINING AND TRANSFER LEARNING WITH DIFFERENT OPTIMIZERS

Extending to ImageNet-1K classification. ImageNet-1K (Krizhevsky et al., 2012b) is a funda-
mental benchmark that gauges the classification prowess of vision models, and we further investigate
whether our observations still hold on ImageNet-1K. ViewAppendix B.1 for experimental details and
Appendix C.2 for extended results. As shown in Table 2, DeiT-S shows stronger BOCB than ResNet-
50, while optimizers of Category (b) in Figure A1 (e.g., AdamW) have shown a reliable performance
peak across diverse backbones during pre-training. Their consistent efficacy is well-aligned with the
extensive feature learning required by the ImageNet-1K, making them optimal choices for the initial

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Top-1 accuracy
(%) of DeiT-S and R-50
training 300 epochs by
popular optimizers with
DeiT and RSB A2 set-
tings on ImageNet-1K.

Backbone DeiT-S R-50
(DeiT) (A2)

SGD-M 75.35 78.82
SGDP 76.34 78.02
LION 78.78 78.92
Adam 78.44 78.16
Adamax 77.71 78.05
NAdam 78.26 78.97
AdamW 80.38 79.88
LAMB 80.23 79.84
RAdam 78.54 78.75
AdamP 79.26 79.28
Adan 80.81 79.91
AdaBound 72.96 75.37
LARS 73.18 79.66
AdaFactor 79.98 79.36
AdaBelief 75.32 78.25
NovoGrad 71.26 76.83
Sophia 79.65 79.13
AdaGrad 54.96 74.92
AdaDelta 74.14 77.40
RMSProp 78.03 78.04

Table 3: Transfer learning to object detection (Det.) with RetinaNet and 2D
pose estimation (Pose.) with TopDown on COCO, evaluated by mAP (%)
and AP50 (%). We employ pre-trained VGG, ResNet-50 (R-50), Swin-T,
and ConvNeXt-T (CNX-T) as backbones with different pre-training settings,
including 100-epoch (SGD, LARS, or RSB A3), 300-epoch (RSB A2 and
Adan), and 600-epoch pre-training (RSB A1).

2D Pose Estimation Object Detection
Pre-training VGG R-50 Swin-T R-50 R-50 R-50 R-50 R-50 R-50 Swin-T CNX-T

(SGD) (SGD) (AdamW) (SGD) (LARS) (A3) (A2) (A1) (Adan) (AdamW) (AdamW)

SGD-M 47.5 71.6 38.4 36.6 27.5 28.7 23.7 34.6 27.5 37.2 38.5
SGDP 47.3 41.2 38.9 36.6 17.6 18.5 26.8 26.7 27.4 37.2 22.5
LION 69.5 71.5 71.3 32.1 35.8 35.4 37.6 34.6 38.8 41.9 42.8
Adam 69.8 71.6 72.7 36.2 36.2 35.8 38.3 38.4 38.6 41.9 43.1
Adamax 69.0 71.2 72.4 36.8 36.8 36.4 38.3 38.4 38.3 41.5 42.0
NAdam 69.7 71.8 71.9 36.0 36.6 36.1 38.2 38.4 38.7 41.9 43.4
AdamW 70.0 72.0 72.8 37.1 37.1 36.7 38.4 39.5 36.8 41.8 43.4
LAMB 68.5 71.5 71.7 36.7 37.5 37.7 38.6 38.9 38.6 41.8 42.6
RAdam 69.8 71.8 72.6 36.6 36.5 36.0 38.2 38.4 38.6 41.6 43.3
AdamP 69.7 71.5 72.8 36.5 37.2 36.5 38.5 38.9 38.8 41.7 43.3
Adan 69.7 72.1 72.8 37.7 37.0 36.0 38.6 39.0 39.4 42.0 43.2
AdaBound 34.0 44.9 28.4 35.9 34.2 31.9 37.0 35.0 36.7 38.8 41.2
LARS 54.4 63.4 47.6 35.8 28.9 28.8 34.7 36.9 37.3 34.6 40.5
AdaFactor 72.8 71.7 72.7 35.6 37.0 36.4 38.5 37.8 38.7 40.5 43.1
AdaBelief 69.6 67.0 61.8 36.2 34.4 33.1 36.4 38.2 38.5 40.0 41.4
NovoGrad 64.2 70.7 69.8 35.6 27.2 26.3 35.2 28.6 38.5 40.4 39.0
Sophia 69.7 71.6 72.3 36.4 35.8 35.3 38.0 38.7 37.0 40.4 42.5
AdaGrad 66.0 61.2 48.4 26.4 21.9 28.3 32.7 27.1 33.7 32.9 23.7
AdaDelta 44.3 49.3 52.0 34.9 32.7 32.7 35.9 33.9 36.6 40.0 41.5
RMSProp 68.8 71.6 72.5 35.3 36.2 35.6 37.8 38.3 38.7 41.5 43.1

model training phase. Meanwhile, the efficacy of these backbones and optimizers in the pre-training
phase cascades to the transfer learning process, as we discussed in the following two paragraphs.

Transfer Learning on COCO. As for transfer learning with ImageNet-1K pre-trained models, we
have identified two critical findings regarding the performance of COCO object detection (Lin et al.,
2017) and 2D pose estimation (Xiao et al., 2018) tasks. Table 3 and Figure A3 provide clear evidence
of how various backbones and optimizers perform following transfer from pre-trained models to
COCO detection (Lin et al., 2017), indicating the choice of backbones and optimizers both vital.
From the backbone aspects, the backbone with a pronounced BOCB (ConvNeXt-T) continues to
exhibit BOCB characteristics in transfer learning scenarios. This suggests that the inherent structural
attributes of such models may not be easily mitigated through transfer learning alone. Takeaway: The
BOCB property is still kept when transferring to dense prediction tasks for pre-trained backbones.

Case 4: Optimizer Properties. We also comprehensively evaluate optimization properties from the
view of performance, hyper-parameter robustness, BOCB property, and computational efficiency in
Table A5. With transferring experiments shown in Table 3 and Figure 3(b), when we controlled for the
BOCB effect in the backbone by using ResNet-50 (less susceptible to BOCB), we observed that opti-
mizers of Category (b) and (c) may introduce significant BOCB effects during the pre-training stage
despite their effectiveness in pre-training, indicating that the choice of pre-training optimizer could
profoundly influence the generalization and transferring abilities, thereby affecting its transferability
and performance on new tasks. Moreover, unlike Category (a), which do not restrict the fine-tuning
phase to a specific optimizer, the optimizers in Category (b) and (c) necessitate their use in both
pre-training and fine-tuning stages. Takeaway: Optimizer selection in pre-training can significantly
impact models’ transferability, with Categories (b) and (c) optimizers potentially introducing BOCB
to pre-trained backbones while yielding superior performance. We recommended three superior
optimizers and five BOCB indicator optimizers with property evaluation in Appendix D.5.

5 CONCLUSION

This paper explores the interplay of backbone designs and optimizer selections in computer vision.
We unveil the phenomenon of backbone-optimizer coupling bias (BOCB) and the potential limitations
it poses to vision backbones, for example, the extra fine-tuning time and efforts in downstream tasks.
We also discover the underlying rationale behind different network designs and BOCB and thereby
provide guidelines for future vision backbone design. Meanwhile, the benchmarking results and
released code serve as takeaways for user-friendly deployment and evaluation. Overall, we aim to
inspire the computer vision community to rethink the relationship between backbones and optimizers,
consider BOCB in future studies, and thus contribute to more systematic future advancements.
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Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm, 2021. 16, 18

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In-So Kweon. Cbam: Convolutional block
attention module. In European Conference on Computer Vision (ECCV), 2018. 3

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In-So Kweon, and
Saining Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2023. 1, 5, 8, 21

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking.
In European Conference on Computer Vision (ECCV), 2018. 10, 19

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng YAN. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023. 5, 16, 17, 27

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020. 1

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. In International Conference on Learning Representations
(ICLR), 2020. 5, 17, 27

Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang. Inceptionnext: When inception meets
convnext. ArXiv, abs/2303.16900, 2023. 8

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xinchao
Wang. Metaformer baselines for vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 46:896–912, 2024. 1, 2, 3, 5

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In International
Conference on Computer Vision (ICCV), pp. 6023–6032, 2019. 18

Matthew D. Zeiler. Neural networks for machine learning. ArXiv, abs/1212.5701, 2012. 5, 17, 27

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022. 1

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong He,
Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. In Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2736–2746, 2022. 1

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations (ICLR), 2018. 5, 18

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In AAAI Conference on Artificial Intelligence (AAAI), pp. 13001–13008, 2020. 18

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 18795–18806. Curran Associates, Inc.,
2020. 5, 17

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

SUPPLEMENT MATERIAL

The appendix sections are structured as follows:

• In Appendix A, we provide the full description of techniques and categories of the popular vision
backbones and optimizers.

• In Appendix B, we provide experimental setups for benchmarks, including information on back-
bones and optimizers, training recipes, and hyperparameter settings.

• In Appendix C, we provide full experimental results and analysis of the proposed benchmarks.
• In Appendix D, we visualize the learned parameters and explain the BOCB effects.

A DETAILS OF POPULAR BACKBONES AND OPTIMIZERS

Popular Vision Backbones. As shown in Table A1, we provide detailed information for 16 typical
vision networks with three categories as summarized in Sec. 2.1. The stage-wise and block-wise
designs with the optimization techniques of residual branches are regarded as the macro design
of DNNs, and the various operators are designed in different networks, which are usually called
feature extractors in classical CNNs. The primary and classical CNNs are proposed to use simple
training setups (i.e., PyTorch-style setting proposed in Simonyan & Zisserman (2015)) while the
modern DNNs have to adopt the complex training recipes like DeiT (Touvron et al., 2021a) and
RSB (Wightman et al., 2021) as shown in Table A3.

Table A1: Three categories of typical vision backbones proposed in the past decade. For operators
in different network blocks, Conv, SepConv, and DWConv denote normal convolutions, separable
convolution, and depth-wise convolution, Gating denotes GLU-like modules (Shazeer, 2020), and
SE denotes Squeeze-and-excitation block (Hu et al., 2018). As for the design of residual connection
and normalization, the vanilla residual branch use addition (He et al., 2016) or concatenation (Huang
et al., 2017), PreNorm denotes the pre-act normalization (Wang et al., 2019) with residual connection,
LayerScale (Touvron et al., 2021b) and ResScale (Shleifer et al., 2021) are layer-wise initialization
tricks for stabilize training of deep models.
Backbone Date Stage-wise Block-wise Operator Residual Input Training

design design (feature extractor) branch size setting
AlexNet NeurIPS’2012 - Plain Conv - 224 PyTorch
VGG ICLR’2015 - Plain Conv - 224 PyTorch
ResNet CVPR’2016 Hierarchical Bottleneck Conv Addition 32 PyTorch
DenseNet CVPR’2017 Hierarchical Bottleneck Conv Concatenation 32 PyTorch
MobileNet.V2 CVPR’2018 Hierarchical Inv-bottleneck SepConv Addition 224 PyTorch
EfficientNet ICML’2019 Hierarchical Inv-bottleneck Conv & SE Addition 224 RSB A2
RepVGG CVPR’2021 Hierarchical Inv-bottleneck Conv Addition 224 PyTorch
DeiT-S (ViT) ICML’2021 Patchfy & Isotropic Metaformer Attention PreNorm 224 DeiT
MLP-Mixer NeurIPS’2021 Patchfy & Isotropic Metaformer MLP PreNorm 224 DeiT
Swin Transformer ICCV’2021 Patchfy & Hierarchical Metaformer Local Attention PreNorm 224 ConvNeXt
ConvNeXt CVPR’2022 Patchfy & Hierarchical MetaNeXt DWConv PreNorm & LayerScale 32 ConvNeXt
ConvNeXt.V2 CVPR’2023 Patchfy & Hierarchical MetaNeXt DWConv PreNorm & LayerScale 32 ConvNeXt
MogaNet ICLR’2024 Patchfy & Hierarchical Metaformer DWConv & Gating PreNorm & LayerScale 32 ConvNeXt
UniRepLKNet CVPR’2024 Patchfy & Hierarchical Metaformer DWConv & SE PreNorm & LayerScale 224 ConvNeXt
TransNeXt CVPR’2024 Patchfy & Hierarchical Metaformer Attention & Gating PreNorm & LayerScale 224 DeiT
IdentityFormer TPAMI’2024 Patchfy & Hierarchical Metaformer Identity PreNorm & ResScale 224 RSB A2
PoolFormerV2 TPAMI’2024 Patchfy & Hierarchical Metaformer Pooling PreNorm & ResScale 224 RSB A2
ConvFormer TPAMI’2024 Patchfy & Hierarchical Metaformer SepConv PreNorm & ResScale 224 RSB A2
AttentionFormer TPAMI’2024 Patchfy & Hierarchical Metaformer Attention PreNorm & ResScale 224 RSB A2
CAFormer TPAMI’2024 Patchfy & Hierarchical Metaformer SepConv & Attention PreNorm & ResScale 224 RSB A2

Popular Optimizers. We also summarize popular optimizers with four categories in Figure A1 and
Table A2 provide four essential technical designs of 20 widely adopted optimizers, as described in
Algorithm 1. We classify these optimizers based on their strategies of the learning rate adjustment
(step 2) and the gradient estimation (step 3). Specially, we consider five types of statistics during
training: (i) First(-order) moment (gradient): The gradient itself, the first-order partial derivative of the
objective function concerning the parameters. (ii) Estimated first-moment gradient (momentum): An
exponentially decaying average of past gradients, serving as an estimate of the first-order moment. (iii)
Second(-order) moment (gradient): The second-order partial derivative of the objective function for
the parameters, also known as the Hessian matrix, which can be approximated by Nesterov gradient
descenting (Reddi et al., 2018; Xie et al., 2023). (iv) Estimated second moment: An exponential
moving average (EMA) of the squared gradients, providing an estimate of the second-order moment.
(v) Second-order gradient: The Hessian matrix, the second-order partial derivative of the objective
function to the parameters.
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Optimizer

Fixed Learning Rate
Momentum Gradient

Adaptive Learning Rate 
Momentum Gradient

Estimated Learning Rate
Momentum Gradient

Adaptive Learning Rate
Gradient

LION (2023)

SGDP (2021)
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Figure A1: Overview of mainstream gradient-based optimizers, which are categorized by the tech-
niques of learning rate adjustment (step 2) and gradient estimation (step 3) in Algorithm 1. (a) and
(d) only optionally employs step 2 (momentum gradients) or step 3 (adaptive learning rates), while
(b) and (c) consider both of them. (b) employs adaptive learning rates by estimating second moments;
(c) estimates the dynamic learning rate by other gradient components except for the second moments.

Table A2: Four categories of typical optimizers with their components. From top to bottom are (a)
fixed learning rate with momentum gradient, (b) adaptive learning rate with momentum gradient, (c)
estimated learning rate with momentum gradient, and (d) adaptive learning rate with current gradient.
Optimizer Date Learning rate Gradient Weight decay
SGD-M (Sinha & Griscik, 1971) TSMC’1971 Fixed lr Momentum ✓
SGDP (Heo et al., 2021) ICLR’2021 Fixed lr Momentum Decoupled
LION (Chen et al., 2023) NIPS’2023 Fixed lr Sign Momentum Decoupled
Adam (Kingma & Ba, 2015) ICLR’2015 Estimated second moment Momentum ✓
Adamax (Kingma & Ba, 2015) ICLR’2015 Estimated second moment Momentum ✓
AdamW (Loshchilov & Hutter, 2019) ICLR’2019 Estimated second moment Momentum Decoupled
AdamP (Heo et al., 2021) ICLR’2021 Estimated second moment Momentum Decoupled
LAMB (You et al., 2020) ICLR’2020 Estimated second moment Momentum Decoupled
NAdam (Reddi et al., 2018) ICLR’2018 Estimated second moment Nesterov Momentum ✓
RAdam (Liu et al., 2020) ICLR’2020 Estimated second moment Momentum Decoupled
Adan (Xie et al., 2023) TPAMI’2023 Estimated second moment Nesterov Momentum Decoupled
AdaBelief (Zhuang et al., 2020) NIPS’2019 Estimated second moment variance Momentum Decoupled
AdaBound (Luo et al., 2019) ICLR’2019 Estimated second moment Momentum Decoupled
AdaFactor (Shazeer & Stern, 2018) ICML’2018 Estimated second moment (decomposition) Momentum Decoupled
LARS (Ginsburg et al., 2018) ICLR’2018 L2-norm of Gradient Momentum Decoupled
Novograd (Ginsburg et al., 2020) arXiv’2020 Sum of estimated second momentum Momentum Decoupled
Sophia (Liu et al., 2023) arXiv’2023 Parameter-based estimator Sign Momentum Decoupled
AdaGrad (Duchi et al., 2011) JMLR’2011 Second moment Gradient ✓
AdaDelta (Zeiler, 2012) arXiv’2012 Estimated second moment param moment Gradient ✓
RMSProp (Hinton, 2012) arXiv’2012 Estimated second moment Gradient ✓

B IMPLEMENTATION DETAILS

This section provides experimental settings of benchmarks and dataset information for Sec 3. We
benchmarked 16 typical vision networks as discussed in Sec. 2.1 with the image classification task
with the following benchmark settings. We apply consistent setups for image classification tasks
on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Krizhevsky et al., 2012b) based on
OpenMixup (Li et al., 2022) codebase with 1 or 8 Nvidia A100 GPUs. As for transfer learning
with pre-trained models, we employ object detection and pose estimation tasks (Ren et al., 2015) on
COCO (Lin et al., 2014) with MMLab codebases (Chen et al., 2019).

B.1 IMAGE CLASSIFICATION

ImageNet-1K. Following the widely used modern training recipes, we consider three regular
training settings for ImageNet-1K (Krizhevsky et al., 2012b) classification experiments for various
backbones and optimizers, which could be transplanted to the proposed CIFAR-100 benchmarks. As
shown in Table A3, these training schemes include data preprocessing and augmentations, optimizing
setups, regularization tricks, and loss functions: (1) Classical PyTorch-style setting (Szegedy
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et al., 2016) applies basic data augmentations, RandomResizeCrop (or RandomCrop for 322
resolutions), HorizontalFlip, and CenterCrop (Szegedy et al., 2015), basic SGD training
setups with cosine learning rate scheduler (Loshchilov & Hutter, 2016), and the cross-entropy (CE)
loss. (2) DeiT and ConvNeXt settings (Touvron et al., 2021a; Liu et al., 2021) are designed for
Transformer and modern CNN architectures like ViTs (Dosovitskiy et al., 2021; Graham et al., 2021),
which utilizes several advanced augmentations (Cubuk et al., 2019) (like RandAugment (Cubuk
et al., 2020), Mixup (Zhang et al., 2018) and CutMix (Yun et al., 2019; Liu et al., 2022b), Random
Erasing (Zhong et al., 2020), ColorJitter (He et al., 2016)), and regulization techniques (Stochastic
Depth (Huang et al., 2016), Label Smoothing (Szegedy et al., 2016), and EMA (Polyak & Juditsky,
1992). (3) RSB A2/A3 settings (Wightman et al., 2021) are designed for CNNs to boost their
performance and convergence speeds as ViTs, which reduces the augmentation strengths and replaces
the CE loss with Binary Cross Entropy (BCE) loss compared to the DeiT setting. The optimizing
hyper-parameters marked in gray, like initial learning rate, optimizer momentum, and weight decay,
will be tuned based on the optimizer. We use the threshold λ = 1 in Eq. (1) to discriminate BOCB
results on ImageNet-1K.

Table A3: Ingredients used for image classification training settings. Taking ImageNet-1K as the
template setup, the settings of PyTorch (Szegedy et al., 2016) and RSB A2/A3 (Wightman et al.,
2021) take ResNet-50 (He et al., 2016) for instances, the DeiT (Touvron et al., 2021a) setting takes
DeiT-S as the example, and the ConvNeXt (Liu et al., 2022a) setting is a variant of the DeiT setting
for ConvNeXt and Swin Transformer (Liu et al., 2021). Gray regions will be tuned for each optimizer.

Procedure PyTorch DeiT ConvNeXt RSB A2 RSB A3
Dataset IN-1K CIFAR IN-1K CIFAR CIFAR IN-1K CIFAR IN-1K
Train Resolution 224 224 224 224 32 224 224 160
Test Resolution 224 224 224 224 32 224 224 224
Test crop ratio 0.875 1.0 0.875 1.0 1.0 0.95 1.0 0.95
Epochs 100 200 300 200 200 300 200 100
Batch size 256 100 1024 100 100 2048 100 2048
Optimizer SGD AdamW AdamW LAMB LAMB
Learning rate 0.1 1× 10−3 1× 10−3 5× 10−3 8× 10−3

Optimizer Momentum 0.9 0.9, 0.999 0.9, 0.999 0.9, 0.999 0.9, 0.999
Weight decay 10−4 0.05 0.05 0.02 0.02
LR decay Cosine Cosine Cosine Cosine Cosine
Warmup epochs ✗ 5 20 5 5
Label smoothing ϵ ✗ 0.1 0.1 ✗ ✗
Dropout ✗ ✗ ✗ ✗ ✗
Stochastic Depth ✗ 0.1 0.1 0.05 ✗
Repeated Augmentation ✗ ✓ ✓ ✓ ✗
Gradient Clip. ✗ 5.0 ✗ ✗ ✗
Horizontal flip ✓ ✓ ✓ ✓ ✓
RandomResizedCrop ✓ ✓ ✓ ✓ ✓
Rand Augment ✗ 9/0.5 9/0.5 7/0.5 6/0.5
Auto Augment ✗ ✗ ✗ ✗ ✗
Mixup α ✗ 0.8 0.8 0.1 0.1
Cutmix α ✗ 1.0 1.0 1.0 1.0
Erasing probability ✗ 0.25 0.25 ✗ ✗
ColorJitter ✗ ✗ ✗ ✗ ✗
EMA ✗ ✓ ✓ ✗ ✗
CE loss ✓ ✓ ✓ ✗ ✗
BCE loss ✗ ✗ ✗ ✓ ✓

CIFAR-100. Inheriting the training settings on ImageNet-1K, we modify the input resolutions
and batch size to build the corresponding settings for CIFAR-100 (Krizhevsky et al., 2009) bench-
marks. The original CIFAR-100 dataset contains 50k training images and 10k testing images in
322 resolutions, and we consider two input resolutions. As shown in Table A3, in the case of 322

resolutions, the downsampling ratio of the first stem in CNNs will be set to 1
2 ; in the case of 2242

resolutions (cubic upsampling to 2242), the backbone structure keep the same as on ImageNet-1K.
We use different training settings for a fair comparison of classical CNNs and modern Transformers
on CIFAR-100, which contains 50k training images and 10k testing images of 322 resolutions. As
for classical CNNs with bottleneck structures, we use 322 resolutions with the CIFAR version of
network architectures, i.e., downsampling the input size to 1

2 in the stem module instead of 1
8 on

ImageNet-1K. All the benchmarked backbones are trained for 200 epochs from the stretch. We set
λ = 3 in Eq. (1) to discriminate BOCB results on CIFAR-100.
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Optimizing hyper-parameters search. For a fair comparison, we only search two common hyper-
parameters (the learning rate and weight decay) heuristically with NNI toolbox (Microsoft, 2021), i.e.,
determining the NNI search range of hyper-parameters manually. We regard each hyper-parameter
as a set of discrete values, choosing 5 consecutive values centered on the heuristically determined
initial value. As for the specific hyper-parameters of some optimizers, e.g., ϵ for AdaBelief and the
final lr for AdaBound, we further search for their optimal values separately. Table A1 shows the
training setting for each backbone The basis hyper-parameters of various optimizers for different
vision backbones on CIFAR-100 are provided in the supplementary material.

B.2 OBJECT DETECTION AND POSE ESTIMATION

Object Detection. Following Swin Transformers (Liu et al., 2021), we first evaluate objection
detection as the representative vision downstream task on COCO (Lin et al., 2014) for transfer
learning, which includes 118K training images (train2017) and 5K validation images (val2017).
Experiments of COCO detection and segmentations are implemented on MMDetection (Chen
et al., 2019) codebase and run on 4 Tesla V100 GPUs. Taking RetinaNet (Lin et al., 2017) as the
standard detector, the original fine-tuning setting for ResNet-50 employs the SGD optimizer with
1× (12 epochs) training with a batch size of 16 and a fixed step learning rate scheduler. As for
Swin-T, the official setting employs the AdamW optimizer with 1× scheduler and a batch size of
16. During training, the shorter side of training images is resized to 800 pixels, and the longer side
is resized to not more than 1333 pixels. For different pre-trained models (PyTorch, DeiT, and RSB
A2/A3 pre-training), we search basic hyper-parameters (the learning rate and the weight decay) for
every optimizer as described in Sec. B.1 to get relatively optimal results. We set λ = 3 in Eq. (1) to
discriminate BOCB results for objection detection.

2D Pose Estimation. We also evaluate transfer learning to 2D human key-points estimation task on
COCO based on Top-Down SimpleBaseline (Xiao et al., 2018) (adding a Top-Down estimation head
after the backbone) following MogaNet (Li et al., 2024). The original training setting is to fine-tune
the pre-trained backbone and the randomly initialized head for 210 epochs with Adam optimizer
with a multi-step learning rate scheduler decay at 170 and 200 epochs. We also search learning rates
and weight decays for all optimizers. The training and testing images are resized to 256 × 192 or
384× 288 resolutions, and these experiments are implemented with MMPose (Contributors, 2020)
codebase and run on 4 Tesla V100 GPUs. We set λ = 3 in Eq. (1) to discriminate BOCB results for
the pose estimation task.

B.3 EMPRICIAL ANALYSIS

To gain deeper insights into the observed backbone-optimizer coupling bias (BOCB) phenomenon, we
conducted a collection of empirical analysis focusing on two key aspects: hyper-parameter stability
and model parameter patterns. These analyses provide valuable information about the intrinsic
properties of different network architectures and their interactions with various optimizers.

Hyper-parameter stability. We developed an approach to quantify the hyper-parameter stability of
vision backbones and optimizers, which serves as a proxy for understanding the strength of backbone-
optimizer coupling. This analysis involves the following steps: (1) Optimal Settings Identification:
For each backbone-optimizer pair, we conducted extensive grid searches to identify the optimal hyper-
parameters (learning rate and weight decay). (2) One-hot Encoding: We converted these optimal
hyper-parameters into discrete one-hot encoded vectors. Assuming n possible learning rates and m
possible weight decays, we created vectors {l̃ri}ni=1 and {ω̃i}mi=1. (3) Mode Statistics: We computed
histogram-based mode (most common) statistics Mlr and Mω across all optimizers for each backbone.
(4) Variation Computation: We quantified the variation between each hyper-parameter and mode
statistics using the Manhattan distance, Σn

i=1|l̃ri −Mlr|+Σm
i=1|ω̃i −Mω|. (5) Visualization: We plot

the distribution of these variations for both backbones (Figure 4) and optimizers (Figure 5), which
offer intuitive insights into the relative stability and adaptability of different backbone-optimizer pairs.
As for backbones, lower variation indicates higher stability and potentially weaker coupling bias,
as the backbone performs well across a range of optimizers with similar hyper-parameters. For the
optimizers, lower variation suggests better generalizability across different network architectures.

Patterns of learned parameters. To investigate the layer-wise properties discussed in Section 2.1,
we employed a set of quantitative metrics to analyze the learned parameters of each layer. As shown in
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Section D, these metrics reveal intrinsic topological patterns that reflect the unique characteristics of
different network architectures, such as stage-wise macro designs, building block structures, and core
operators of token-mixers and channel-mixers. We focused on the three key indicators as follows:

• PL Exponent Alpha: In the context of WeightWatcher (Martin & Mahoney, 2021; Martin
et al., 2021), the Power Law (PL) exponent α quantifies the learned parameter quality of neural
network layers. It is extracted from the tail fit of the layer weight matrix’s Empirical Spectral
Density (ESD) to a truncated Power Law: ρ(λ) ∼ λ−α, ρ(λ) denotes the ESD, and λ represents
the eigenvalues of the weight matrix’s correlation matrix X = WTW . The exponent α reflects the
correlation structure, with lower values indicating enhanced generalization capabilities and higher
values suggesting potential overfitting or underfitting. This metric facilitates the assessment of
neural network models’ generalization tendencies without the need for training or testing datasets,
serving as an intrinsic measure of model quality.

• Entropy: The information entropy of the learned parameter tensor, H = −
∑

pi log(pi), where pi
is the probability of each value in the parameter tensor. It is used to measure the randomness of
the parameter distribution. Higher entropy indicates a more uniform or random distribution, while
lower entropy suggests a more patterned distribution. This provides insights into the complexity
and information of each layer, helping to identify layers with more structured weight distributions.

• L2-norm: Euclidean norm (magnitude) of the learned parameter vector ||w||2 = sqrt(
∑

w2
i ),

where wi are individual parameters. This reflects the scale of the learned weight matrix and
identifies layers with potential dominant effects on the network’s behavior (more influence on the
layer output), which could be crucial for understanding the learning results of diverse network
architectures.

• Top-k PCA Energy Ratio: Cumulative energy ratio of the top-k principal components of the
parameter matrix Ek = (

∑k
i=1 λi)/(

∑n
i=1 λi), where λi are eigenvalues of the covariance matrix.

It measures the concentration of information in the learned parameter matrix. A larger top-k energy
indicates that the parameter matrix has more concentrated components. This analysis provides
insights into the dimensionality and compressibility of each layer’s parameters, which could be
helpful for model pruning and efficiency optimization.

These metrics, when analyzed across different layers and backbone-optimizer combinations, reveal
characteristic patterns that correspond to specific architecture designs. We provide ridge plots (as
shown in Section D) to visualize these metrics across different layers for various backbone-optimizer
combinations. For instance, we may observe distinct entropy patterns in hierarchical vs. isotropic
stage-wise architectures, variations in L2-norm across different stages of the network, or changes in
PCA energy ratios for different types of layers (e.g., convolutional vs. attention-based).

By analyzing these patterns, we can gain valuable insights into how different neural network architec-
tures interact with various optimizers, furthering our understanding of the BOCB phenomenon and
informing future design choices for both vision backbones and optimizers.

C FULL EXPERIMENTAL RESULTS

This appendix section provides a detailed expansion of the experimental findings from the main
manuscript, specifically aimed at validating the BOCB phenomenon. The results are structured
to facilitate a thorough evaluation across the CIFAR-100 and ImageNet-1K datasets, involving a
diverse range of both modern and classical vision backbones, each paired with various optimizers.
This comprehensive analysis is intended to clarify the complex interactions between neural network
architectures and optimization strategies, emphasizing their critical impact on model performance
and adaptability. Additionally, these insights are applied to practical tasks, such as object detection
and pose estimation on COCO, demonstrating the practical relevance of BOCB.

C.1 CIFAR-100 CLASSIFICATION EXPERIMENTS

Our in-depth exploration of the CIFAR-100 dataset was designed to scrutinize the interdependence
between network architectures and optimizers. Table 1 encapsulates the top-1 classification accuracy
for an extensive lineup of 15 vision backbones, categorized into primary CNNs, classical CNNs, and
modern DNNs. The results underscore a pronounced divergence in the optimal optimizer for different
architectural eras. Classic architectures such as AlexNet, VGG, and the ResNet family reveal an
affinity for SGD-M and SGDP, with these optimizers yielding the most accurate outcomes. This pref-
erence indicates a tight coupling between classical CNNs and SGD-based methods. In stark contrast,
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modern architectures like Vision Transformers, ConvNeXt, and MetaFormer variants thrive under the
adaptive learning rates afforded by optimizers such as AdamW, AdamP, and LAMB, showcasing a
more flexible coupling bias. To elucidate the nuances of BOCB, we present a hyperparameter sensi-
tivity analysis. This analysis visualizes the distribution of optimal learning rates and weight decays
for the evaluated optimizers, as depicted in Figures 3 and 4. Classical CNNs display a concentrated
distribution, pointing to a specific hyperparameter set for SGD optimizers. In contrast, modern DNNs
exhibit a broader distribution, suggesting a higher tolerance to hyperparameter variations and a more
adaptable coupling with a range of optimizers.

C.2 IMAGENET-1K CLASSIFICATION EXPERIMENTS

Table A4: Top-1 accuracy (%) of various vision
backbones training 300 epochs by three optimal
optimizers and five indicator optimizers with DeiT
or RSB A2 settings on ImageNet-1K.
Optimizer R-50 DeiT-S CNX-T CNXV2-T CF-12
AdamW 79.9 80.4 82.1 82.3 81.6
LAMB 79.8 80.2 82.2 82.3 81.5
Adan 79.9 80.8 82.6 82.8 81.8
SGD 78.8 75.4 71.3 76.8 79.7
AdaBound 75.4 73.0 72.4 77.1 79.6
LARS 79.7 73.2 75.9 79.6 79.9
RMSProp 78.0 78.0 79.6 80.2 80.4
AdaDelta 74.9 55.0 73.5 77.9 78.5
Std/Range 1.9/5.0 7.9/25.8 4.4/11.3 2.3/6.0 1.1/3.3

To ascertain the generalizability of our observa-
tions, we extended our evaluation on ImageNet-
1K. Table 2 details the Top-1 accuracy for a
curated selection of vision backbones under
various optimizers. The results are congruent
with those from CIFAR-100, reinforcing the
BOCB phenomenon. ResNets and Efficient-
Nets continue demonstrating their predilection
for SGD-M and SGDP, achieving peak perfor-
mance with these optimizers. On the other hand,
modern DNNs like Vision Transformers and
ConvNeXt once again manifest their superiority
when paired with AdamW, AdamP, and LAMB,
aligning with the adaptive learning rate optimiz-
ers’ capacity to navigate the complex optimization landscapes of contemporary architectures. We
also verify our findings in Sec. 4.2, as shown in Table A4, ResNet-50 and ConvFormer-S12 show
weak BOCB properties while DeiT-S and ConvNeXt-T have strong coupling bias with AdamW-like
optimizers. ConvNeXt.V2 improves the performance and BOCB property of ConvNeXt with the
certain design GRN (Woo et al., 2023) between the FFN modules.

C.3 COCO OBJECT DETECTION AND POSE ESTIMATION EXPERIMENTS

0.8 1.0 1.2
Swin-T (AdamW)

0.0

2.5

5.0

0.8 1.0 1.2
ResNet-50 (SGD)

0.8 1.0 1.2
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Figure A2: Violinplot of hyper-
parameters for the aspects of back-
bones or optimizers on COCO.

Expanding our analysis from CIFAR-100 and ImageNet-1K, we
investigated the BOCB in practical tasks using COCO for ob-
ject detection and pose estimation. These experiments aimed
to assess BOCB’s impact on model transferability and task
performance when pre-trained models are adapted to specific
tasks. In object detection, employing the RetinaNet frame-
work with ImageNet-1K pre-trained models, we observed in
Table 3 that backbones trained with adaptive optimizers like
AdamW, AdamP, and LAMB achieved higher top-1 accuracies
on ImageNet-1K and superior performance on COCO object
detection. This suggests that these optimizers enhance feature
learning and generalization in downstream tasks by effectively
navigating complex optimization landscapes during pre-training.

Similarly, for pose estimation using the TopDown approach,
models pre-trained with AdamW, AdamP, and LAMB showed improved performance on COCO, as
evidenced by higher AP50 scores in Table 3. This supports the significant influence of the optimizer
choice during pre-training on a model’s capacity to acquire and transfer knowledge. Our hyperpa-
rameter sensitivity analysis, extended to COCO experiments, provides further insights. Figure A2
illustrates the distribution of optimal learning rates and weight decays for various optimizers, reveal-
ing that while classical backbones have a narrow optimal range, modern architectures display broader
tolerance, reflecting their adaptability to different optimizer settings. This adaptability is crucial for
effective transfer learning and task-specific performance.

In summary, the comprehensive experimental results presented in this section provide compelling
evidence for the backbone-optimizer coupling bias phenomenon across multiple benchmark datasets
and vision tasks. These findings highlight the importance of considering the interplay between
network architectures and optimization algorithms when designing and deploying vision systems, as
overlooking BOCB can lead to suboptimal performance and potential inefficiencies.
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(b) Case 4: COCO Optimizers
Figure A3: BOCB case studies: PL exponent alpha metrics of different backbones and pre-
training optimizers on COCO. The alpha metric (Martin et al., 2021) measures the fitting quality of
models to a certain task, and a smaller alpha value indicates better fitting. These diagonal bars denote
the BOCB occurring. Please refer to the details on the alpha metric in Appendix B.3.

D EMPRICIAL EXPERIMENTS

This section delineates a series of empirical experiments meticulously designed to validate the
theoretical insights into the BOCB and to elucidate the nuances of this phenomenon within the
context of network architecture and optimization strategies. The experiments are crafted to furnish a
comprehensive understanding of BOCB, its implications for vision backbones, and its interaction
with various optimization techniques.

D.1 MACRO DESIGN’S INFLUENCE ON OPTIMIZATION

Our empirical inquiry commenced with a profound analysis of the macro design’s impact on the
optimization landscape. We executed extensive experiments utilizing a diverse array of vision
backbones, ranging from Primary CNNs, which laid the groundwork for the CNN paradigm, through
classical CNNs such as ResNet, which introduced a stage-wise hierarchical design, to Modern DNNs
like ConvNeXt and MogaNet, which feature complex block-wise heterogeneous structures.

Our findings, as depicted in Figure 1, unveil a discernible trend: the escalation of macro design
complexity corresponds with an increase in optimization complexity. This is notably evident in the
juxtaposition between ResNet-50 and contemporary backbones such as MobileNetV2 and Efficient-
Net. While ResNet-50, with its stage-wise hierarchical architecture, exhibits a robust coupling with
SGD optimizers, the latter backbones manifest a predilection for adaptive learning rate optimizers
due to their intricate feature extraction mechanisms.

D.2 TOKEN MIXING AND OPTIMIZATION SYNERGIES

In our quest to unravel the effects of token-mixing operations on optimization, we scrutinized the
performance of various token-mixing operators within the MetaFormer architecture. As meticu-
lously detailed in Table 1, each token mixing operator—Identity, Pooling, Attention, and Convolu-
tion—presents unique challenges and sensitivities to optimizer hyperparameters.

The ConvFormer architecture, as a MetaFormer derivative, epitomizes a balanced approach to token
mixing and optimization. By adopting a streamlined block-wise design and alternating between
convolutional and token mixing blocks, ConvFormer mitigates BOCB and facilitates a more efficient
optimization process. This approach underscores the significance of harmonizing architectural design
with optimization strategies to minimize BOCB.

D.3 OPTIMIZER SELECTION AND THE BOCB NEXUS

To gauge the impact of optimizer selection on BOCB, we conducted experiments with a panoply of
optimizers across diverse backbones. The results, as illustrated in Figure 5, indicate that the choice
of optimizer significantly modulates the extent of BOCB. Optimizers adept at navigating complex
optimization landscapes, such as those in Categories (b) and (c), exhibit robust performance across a
spectrum of backbones. Conversely, Category (a) optimizers necessitate meticulous hyperparameter
tuning for classical CNNs, while Category (d) optimizers manifest the most pronounced BOCB and
suboptimal performance.

Our empirical analysis accentuates the critical interplay between network macro design, token mixing
operations, and optimizer selection in sculpting the optimization landscape of vision backbones. The
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Figure A4: Ridge plot of the entropy of learned parameters on CIFAR-100. For the sub-figure of
each optimizer, the X and Y axes indicate the layer indexes and the entropy of weights.

findings offer valuable insights for designing future vision backbones, emphasizing the imperative
for a balanced approach that aligns backbone design with selecting appropriate optimizers.

D.4 PRE-TRAINING AND TRANSFER LEARNING

Extending our investigation to practical applications, we examined the performance of various
optimizers in the context of pre-training on ImageNet-1K and subsequent transfer learning to tasks
such as object detection with RetinaNet and pose estimation on COCO. As demonstrated in Table 1,
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Figure A5: Ridge plot of the L2-norm of learned parameters on CIFAR-100. For the sub-figure of
each optimizer, the X and Y axes indicate the layer indexes and the L2-norm of weights.

optimizers like AdamW, which exhibited a reliable peak in performance during pre-training, sustained
their superiority in transfer learning scenarios. This suggests that the choice of optimizer during the
pre-training phase can significantly influence the transfer learning outcomes.

Our experiments also underscore the importance of a comprehensive pre-training phase that pairs
vision backbones with suitable optimizers to ensure robust transfer learning capabilities. Models
that underwent an extended pre-training period with optimizers like LAMB demonstrated enhanced
performance compared to those with shorter pre-training durations using SGD or other optimizers.
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Figure A6: Ridge plot of the top-K energy PCA ratio of learned parameters on CIFAR-100. For the
sub-figure of each optimizer, the X and Y axes indicate the layer indexes and the top-K PCA ratio of
weights. Weights with a larger top-k PCA ratio yield skewed eigenvalue distributions, making these
plots show opposite values as plots with entropy or L2-norm.

The empirical experiments presented in this section provide a robust validation of the BOCB phe-
nomenon and its implications for the design and optimization of vision backbones. By systematically
exploring the interplay between network macro design, token mixing operations, and optimizer
selection, we have identified key factors that contribute to BOCB and provided actionable guidelines
for mitigating its impact. Our findings underscore the need for a balanced approach to backbone
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Figure A7: Ridge plot of the L2-norm parameter patterns for transfer learning to object detection
(RetinaNet) based on Swin-T and ResNet-50 on COCO, where (a)-(d) are pre-trained by AdamW,
SGD, LARS, and LAMB optimizers on ImageNet-1K. Notably, the distributions of backbone
parameters are largely determined by pre-training, while the randomly initialized weights of FPN and
detection head (after the 53-th or 58-th layer in Swin-T and ResNet-50) distinguish the trial patterns.

design and optimizer selection to enhance training efficiency and performance in computer vision
applications.

Table A5: Rankings of optimizers with various aspects for practical usage. Benchmarked results
rank the properties of performance and hyper-parameter robustness, the BOCB property is marked
as 1 or 0, and the computational overhead is ranked by the average training hours. As described in
Appendix D.5, the overall ranking is estimated as the task-home message for selecting optimizers.
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Performance 17 15 11 9 12 8 5 2 10 3 1 14 19 6 4 13 7 20 16 18
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Overall 16 13 10 7 12 8 2 1 11 4 3 17 20 6 5 15 9 19 18 14

D.5 RULES FOR COUNTING THE OPTIMIZER RANKINGS

We have summarized and analyzed a great number of mixup benchmarking results to compare
and rank all the included mixup methods in terms of performance, applicability, and the overall
capacity. We have conducted a comprehensive meta-analysis of optimizer benchmarking results
to systematically evaluate and rank a diverse array of optimization algorithms across four critical
dimensions: Performance, Hyperparameter Robustness, Backbone Optimizer Coupling Bias (BOCB),
and Computational Efficiency. Our methodology employs a weighted scoring system to synthesize
these multifaceted evaluations:

• Performance (40% weight): This metric quantifies an optimizer’s efficacy across various
backbone architectures, reflecting its paramount importance in algorithm selection.

• Hyperparameter Robustness (20% weight): Quantified as the median Manhattan distance from
the optimal learning rate and weight decay configurations to the maximum average distance,
this metric assesses the optimizers’ robustness to hyperparameter perturbations.

• BOCB (20% weight): Represented as a binary indicator (1 or 0), this factor evaluates the
potential for coupling deviation between the optimizer and the backbone architecture.

• Computational Efficiency (20% weight): Measured by GPU memory allocation, this dimension
quantifies the computational resources required by each optimizer.

The aggregation of these standardized scores yields a comprehensive ranking that serves as a ro-
bust benchmark for optimizer selection in deep learning visual backbone scenarios. This mul-
tidimensional analysis not only elucidates the relative merits of established algorithms such as
AdamW—corroborating its long-standing prevalence in the community—but also highlights the
potential of emerging optimizers like Adan and LAMB, particularly in contexts where BOCB or
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hyperparameter robustness are of paramount importance. Meanwhile, we also recognized some
optimizers could be sensitive and served as the indicator to show whether the given backbone has the
potential of BOCB. Hence, we summarize two groups of optimizers as follows:

• High-performance Optimizers: AdamW (Loshchilov & Hutter, 2019), LAMB (You et al.,
2020), and Adan (Xie et al., 2023) help the most networks perform well in various scenarios.

• BOCB Indicator Optimizers: Conducting benchmarks with SGD (Sinha & Griscik, 1971),
AdaBound (Luo et al., 2019), LARS (Ginsburg et al., 2018), RMSProp (Hinton, 2012), and
AdaDelta (Zeiler, 2012) could help users recognize whether a given backbone architecture has
the risk of BOCB on a new scenario.

E LIMITATIONS

This work has several limitations: (1) Although we conduct transfer learning experiments to ImageNet
and COCO, the benchmark is mainly focused on CIFAR-100, which may lead to questionable findings
for broader downstream tasks. However, all our transfer learning results are consistent with the
CIFAR-100 findings. Moreover, our released code can be easily extended to other tasks. Users can
thus easily conduct validations with it. (2) BOCB is more complex than current metrics such as
parameters and FLOPs, which may lead to inconvenience in practice. We suggest researchers use
our code, selecting representative optimizers, such as SGD, Adam, and AdamW, for the ridge plot
validation and CIFAR-100 benchmarks, which are practical and resource-efficient. We also call for
further explorations of BOCB in the community to advance vision systems together.
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