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Abstract
Multi-label text classification (MLTC) brings001
us new challenge in Natural Language Process-002
ing (NLP) which aims at assigning multiple la-003
bels for a given document. Many real-world004
tasks can be view as MLTC, such as tag rec-005
ommendation, information retrieval, etc. How-006
ever, several flinty problems are placed in the007
presence of researchers about how to establish008
connections between labels or distinguish sim-009
ilar sub-labels, which haven’t been solved thor-010
oughly by current endeavor. Therefore, we011
proposed a novel framework named BdLAN,012
BERTdoc Label Attention Networks in this013
paper, consist of the BERTdoc layer, the la-014
bel embeddings layer, the doc encoder layer,015
the doc-label attention layer and the prediction016
layer. We apply a powerful technique BERT017
to pretrain documents to capture their deep se-018
mantic features and encode them via Bi-LSTM019
to obtain a two-directional contextual represen-020
tation of uniform length. Then we create la-021
bel embeddings and feed them together with022
encoded-pretrained-documents to doc-label at-023
tention mechanism to obtain interactive infor-024
mation between documents and their corre-025
sponding labels, finally using MLP to make026
prediction.We carry out experiments on three027
real-world datasets, the empirical results in-028
dicating our proposed model outperforms all029
state-of-the-art MLTC benchmarks. Moreover,030
we conduct a case study, visualizing real appli-031
cation of our BdLAN model vividly.032

1 Introduction033

Text classification is a basic data mining task in Nat-034

ural Language Processing (NLP), including multi-035

class text classification and multi-label text clas-036

sification. Multi-class classification only assigns037

one label to a given document with over two la-038

bels in the whole documents, while multi-label text039

classification divides a document into different top-040

ics at the same time. For example, the sentence041

"Young boys are playing football" can be catego-042

rized as topic "Youth" and "Sports", while a news043

report such as "The cultural industry will become 044

the pillar industry of the national economy in 2020" 045

belong to either "Economy" or "Culture" as well as 046

the movie "Twilight City" is classified as a romance 047

movie and a fantastic magic movie. 048

MLTC aims at exploring multiple best-matched 049

document-label pairs according to a specific doc- 050

ument and its several corresponding labels, which 051

has many practical scenarios, such as tag recom- 052

mendation (I. et al., 2008), information retrieval (S. 053

and Y., 2010), etc. For example, it always appears 054

on the homepage of news websites, social plat- 055

forms such as Weibo and Twitter, introductions and 056

reviews of books or movies, and online shopping 057

malls such as Taobao and Jingdong. It principally 058

devotes itself to reducing hunting zone progres- 059

sively, facilitating humans to select their required 060

information precisely and improving the quality 061

of automatic recommendations in the background, 062

so as to provide a fast retrieval for users to effi- 063

ciently search for target information with filtering 064

out redundant and irrelevant counterparts. 065

However, tremendous difficulties impede our 066

progress to solve the MLTC task accurately. Sev- 067

eral tough problems of MLTC are summarized as 068

follows. Firstly, the number of labels of a given 069

text is uncertain with some samples may have only 070

one label but others may belong to dozens or even 071

hundreds of topics. Secondly, there is a mutual de- 072

pendence between labels so that a big difficulty hin- 073

ders researchers about how to solve the dependency 074

problem between labels. Thirdly, some low-level 075

labels are difficult to distinguish, such as "news" 076

and "broadcast", "economics" and "finance". Mean- 077

while, some documents may be very long, includ- 078

ing complex semantic hierarchical information hid- 079

den in the redundant content. In addition, most 080

documents belong to a few tags while a large num- 081

ber of "tail tags" contain only a few documents. 082

1



2 Related work083

Problem transformation methods convert the084

MLTC task into multiple single-label text classifi-085

cation tasks, such as BR (Boutell et al., 2004) ig-086

noring label dependencies and building a separate087

classifier for each label, LP (I. et al., 2008) creating088

a binary classifier for each label combination, and089

CC (Read et al., 2011) converting the MLTC task090

into a binary classification problem chain.091

Algorithm adaptive methods aim at modify-092

ing specific algorithms to solve MLTC, including093

local methods and global methods. Local meth-094

ods such as ML-DT (A. and R., 2001) which con-095

structs a decision tree, Rank-SVM (A. and J., 2002)096

which uses SVM similar to a learning system, ML-097

KNN (Zhang and Zhou, 2007) which applies the098

k-nearest neighbor algorithm and the maximum099

posterior probability to determine the label set of100

each sample, CBM (Li et al., 2016) which simpli-101

fies the task by transforming it into multiple bi-102

nary problems. Global methods such as Clus-HMC103

(Vens et al., 2008) that uses a single decision tree104

to process the entire hierarchical category struc-105

ture, HMC-LMLP (Cerri et al., 2016) that trains106

a set of neural networks with each neural network107

predicting a given level of categories, CML (Gham-108

rawi and McCallum, 2005) which aims at joint109

learning algorithm (Li et al., 2015) . However, the110

above-mentioned work mainly focuses on the lo-111

cal or global structure to capture low-order label112

correlation, ignoring the hierarchical dependencies113

between different levels of labels, facing thorn dif-114

ficulties when computing higher-order label corre-115

lation.116

Neural networks have made significant im-117

provement in MLTC recently. For example,118

BPMLL (Zhang and Zhou, 2006) applies a fully119

connected network and pairwise ranking loss to120

perform classification. Nam et al. (J. et al., 2014)121

further replaced pairwise ranking loss with a cross-122

entropy loss function. Kurata, Xiang and Zhou (Ku-123

rata et al., 2016) proposed an initialization method,124

using neurons to model label correlation. Chen et125

al. (Chen et al., 2017) proposed a joint approach126

combined with CNN and RNN to capture local and127

global semantic information. Bahdanau et al. (D.128

et al., 2017) proposed a method to train a neural net-129

work to generate sequences using the actor-critic130

method. Besides, SGM (Yang et al., 2018) and131

MDC (Lin et al., 2018) also apply LSTM-based132

Seq2Seq structure which one applies global em-133

bedding to propose a novel decoder, and the other 134

create information-enhanced representations with 135

additional semantic units based on mixed attention 136

mechanism. 137

3 Proposed Method 138

3.1 Task description 139

The MLTC task in this research can be summa- 140

rized as a tuple set S = {(di, li)}Ni=1 with di and 141

li represents the i-th document denoted as D = 142

{di|di = {d1, d2, · · · , dn} and its corresponding 143

label sets denoted as L = {li|li = {l1, l2, · · · , lm}. 144

N , n and m are the total number of documents, 145

the length of the i-th document and the number 146

of labels of the i-th document, respectively. Our 147

proposed BdLAN model aims at assigning all suit- 148

able labels to its corresponding documents based 149

on the conditional probability Pr(li|di) to solve 150

the MLTC task. 151

3.2 Overview of proposed model 152

Our proposed BdLAN model consists of five lay- 153

ers, i.e, the BERTdoc layer, the label embeddings 154

layer, the doc encoder layer, the doc-label attention 155

layer and the prediction layer shown in Figure 1. 156

The BERTdoc layer refers to pre-train documents 157

via BERT to extract their semantic features while 158

the label embeddings layer means map each label 159

to a high-dimensional space with GloVe (Penning- 160

ton et al., 2014). The doc encoder layer denotes 161

encoding each pre-trained word in documents via 162

Bi-LSTM to obtain text representation forward and 163

backward of uniform length. The doc-label atten- 164

tion layer means an interactive strategy capturing 165

mutual features of encoded pre-trained document 166

representation and label embeddings, which then 167

feed into prediction layer (MLP) to complete fi- 168

nal multi-label classification. The overall proposed 169

model is trained end-to-end. 170

3.3 BERTdoc layer 171

In this layer, we use base-BERT with 12 trans- 172

former blocks, 768 dimension of hidden state, 12 173

head per layer of multi-head attention and 110M 174

parameters to pre-train documents to capture their 175

deep information. We preprocess documents as 176

BERT input representation, which are the sum of 177

the token embeddings aiming at different words, 178

the segmentation embeddings distinguishing each 179

sentence in a paragraph and the position embed- 180

dings outputing position of words, then pass them 181
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Figure 1: Architecture of our proposed BdLAN model

to transformers mechanism in BERT. Each embed-182

ding of BERT input representation is differentiated183

via slicing which then fed into BERT model to184

output pre-trained contextual representation of doc-185

uments. The process of document pre-training can186

be elaborated as follows:187

D(B) = BERT (token, seg, pos) (1)188

3.4 Doc encoder layer189

To obtain forward and backward contextual rep-190

resentation of given documents, we adopt bidirec-191

tional LSTM (Bi-LSTM) to encode pre-trained doc-192

uments as 2H-dimensional vectors. Through the193

encoder layer, we also unify the length of docu-194

ments to get encoded pre-trained representation195

D(B) ∈ Rp×2H where p means maximum length196

of each input document of BERT. The hidden state197

ht ∈ RH is randomized. The specific equations198

are shown as follows:199

−−−→
D

(B)
t = LSTM(

−−−→
D

(B)
t−1, ht) (2)200

←−−−
D

(B)
t = LSTM(

←−−−
D

(B)
t−1, ht) (3)201

D
(B)
t = [

−−−→
D

(B)
t ;
←−−−
D

(B)
t ] (4)202

D(B) = {D(B)
t }Tt=1 (5)203

3.5 Label embeddings layer204

For the reason that each label contains latent se-205

mantic information besides documents, we convert206

labels L = {li|li = {l1, l2, · · · , lm} to embed-207

ding vectors L(G) ∈ RM×d via GloVe (Pennington208

et al., 2014) with M representing the total number 209

of labels , fully establishing contextual relationship 210

among labels. 211

L(G) = Embeddinglabel(L) ∈ RM×d (6) 212

3.6 Doc-label attention layer 213

In the MLTC task, a single document belongs to 214

several labels and vice versa, so it’s intuitive and 215

vital to capture interactive features between doc- 216

uments and their corresponding labels. Suppose 217

two sentences "The clock in the high church tower 218

struck and the sound made him remember his par- 219

ents’ early love for him." and "Dad was always 220

there to play the mandolin for his family, sacri- 221

ficing his time and efforts to see that his family 222

had enough in their life.", the former can be sum- 223

marized as "clock striking" and "family affection" 224

while the latter belongs to "instrument playing" and 225

"family affection", both belonging to two labels 226

and "family affection" being able to be distributed 227

to the above-mentioned two sentences. Therefore, 228

we adopt a doc-label attention mechanism to fuse 229

information between documents and labels. The 230

details can be described as follows: 231

Firstly, we apply self-attention mechanism on 232

documents to obtain an independent weight vector 233

λ which implies contribution of documents in doc- 234

label pairs: 235

AD = softmax(W
′
1tanh(W1D

(B)T )) (7) 236

λ = σ((ADD
(B))W

′′
1 ) (8) 237

Then we apply doc-label attention mechanism 238

to get attention label representation L(A) and its 239
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independent weight vector µ:240

AL = (W2L
(G))(W

′
2D

(B)T ) (9)241

L(A) = ALD
(B) (10)242

µ = σ(L(A)W
′′
2 ) (11)243

The final doc-label representation S(A) is calcu-244

lated by multiplying dependent label weight vector245

µdep via normalization:246

µdep =
µ

µ+ λ
(12)247

S(A) = µdepL
(A) (13)248

Here, W1, W
′
1, W

′′
1 , W2, W

′
2, W

′′
2 are trainable249

parameters. σ is sigmoid activation function (the250

same below).251

3.7 Prediction layer252

Finally, a MLP classifier in the prediction layer is253

used for the final doc-label representation S(A) to254

make multi-label text classification:255

ŷ = σ(W
′
ptanh(WpS

(A))) (14)256

where Wp, W
′
p are trainable parameters.257

We adopt cross-entropy loss as the loss function258

in our work which has been proved suitable for the259

MLTC task [30]:260

min
Θ

N∑
i=1

M∑
j=1

y(ij) log(σ(ŷ(ij)))

+(1− y(ij)) log(1− σ(ŷ(ij)))

(15)261

where y(ij) ∈ {0, 1} denotes the j-th ground truth262

label of the i-th document while ŷ(ij) ∈ [0, 1]263

indicates the predicted probability of the above-264

mentioned doc-label pairs.265

4 Experiments setup266

4.1 Datasets267

In this research, we utilize three multi-label text268

datasets with the detailed statistics shown in Ta-269

ble 1. Specifically,W ,Ntrain,Ntest andM denote270

the number of total words, training documents, test271

documents and total unique labels, respectively.272

RCV1-V2 (Lewis et al., 2004) contains 804,414273

newswire stories, including 643,531 training docu-274

ments and 160,883 test ones. Each story belongs to275

several topics with the total number of labels 103.276

Dataset W Ntrain Ntest M

RCV1-V2 47,236 23,149 781,265 103
AAPD 69,399 54,840 1,000 54
Reuters-
21578

18,637 8,630 2,158 90

Table 1: Statistics of three datasets

Reuters-21578 is a collection of 10,788 docu- 277

ments and 90 labels from Reuters News Wire in 278

1987 with 8,630 for training and 2,158 for testing. 279

AAPD (Yang et al., 2018) is a combination of 280

55,840 abstracts and their corresponding topics in 281

the field of computer science from Arxiv in 2018, 282

which consists of 54,840 abstracts as training data 283

and 1,000 ones as test data. 284

4.2 Baseline 285

We compare our proposed model with the follow- 286

ing nine benchmarks: 287

BR (Boutell et al., 2004) establishes multiple bi- 288

nary classifiers for each label, ignoring dependency 289

between labels. 290

CC (Read et al., 2011) converts the MLTC task 291

into a chain of binary classification problems with 292

consideration of high-order label correlation. 293

LP (Tsoumakas and Katakis, 2006) creats a 294

multi-class classifier for all unique label combi- 295

nations. 296

CNN (Kim, 2014) adopts multiple convolution 297

kernals to extract contextual information with acti- 298

vation function to ouput probability distribution. 299

CNN-RNN (Chen et al., 2017) utilizes a com- 300

bination of CNN and RNN to capture global and 301

local semantic features as well as label correlation. 302

S2S (Sutskever et al., 2014) is the pure sequence- 303

to-sequence model which can be used on the MLTC 304

task. 305

S2S+Attn (Bahdanau et al., 2015) adds attention 306

mechanism on the basis of RNN-oriented Seq2Seq 307

model. 308

SGM (Yang et al., 2018) is a label sequence gen- 309

eration model with attention mechanism to solve 310

the MLTC task based on LSTM-oriented Seq2Seq 311

model. 312

MDC (Lin et al., 2018) uses hybrid attention 313

based on LSTM-oriented Seq2Seq model to cap- 314

ture information-enhanced features. 315
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4.3 Evaluation metrics316

Inspired by the previous work (Zhang and Zhou,317

2007; Chen et al., 2017), we evaluate our proposed318

model and other nine benchmarks with Hamming319

Loss, micro-Precision, micro-Recall and micro-F1.320

Hamming loss (HL) calculates the percentage321

of mislabeled documents whose predicted labels322

are not adequate or irrelevant.323

micro-Precision (mP) interprets global preci-324

sion with True Positives and False Positives of the325

i-th given label, i.e., FP i and TP i.326

micro-Recall (mR) describes global recall with327

True Positives and False Negatives of the i-th given328

label, i.e., FP i and FN i.329

micro-F1 (mF1) weights the global precision330

and recall of the total categories which can be rep-331

resented as follows:332

4.4 Hyper parameters and training333

We carry out our experiments on NVIDIA TESLA334

V100 GPU with Pytorch. In the BERTdoc layer and335

the label embeddings layer, we set the maximum336

length of each document as 500 in the pre-training337

process with BERT and adjusted the embedding338

size of labels as 300. As for the doc encoder layer,339

the dimension of hidden state in BiLSTM is set340

to 300. When it comes to training process, we341

use Adam optimizer with β1 = 0.9 and β2 = 0.999.342

The batch size is adjusted to 128 and the learning343

rate is initialized to 0.0001. We evaluate model344

performance on test sets after 200 epochs with early345

stopping when the validation loss stops decreasing346

by 10 epochs.347

5 Experimental results348

5.1 Model comparison349

We compare our proposed HdLAN model with350

other nine benchmarks on three datasets evaluated351

with HL, mP , mR, mF1 shown in Table 2, Ta-352

ble 3 and Table 4. Due to unreported results of353

some models on Reuters-21578, we only use three354

benchmarks for comparison, i.e., BR, CC, CNN-355

RNN, whose results are complete in the above-356

mentioned four evaluation metrics. Moreover, (+)357

in Table 2, Table 3 and Table 4 means the higher358

the value is, the better performance of the model,359

such as mP , mR and mF1 while (−) indicates360

the opposite, such as HL.361

The nine benchmarks can be divided into three362

categories referred to as machine learning methods363

(i.e., BR, CC, LP), conventional deep learning mod- 364

els (i.e., CNN, CNN-RNN) and Seq2Seq-based 365

approaches (i.e., S2S, S2S+Attn, SGM, MDC). 366

For the reason that a good portion of model re- 367

sults of are missing on Reuters-21578, we promi- 368

nently make analysis on RV1-V2 and AAPD. As 369

shown in Table 2 and Table 3, we can see that 370

generally conventional deep learning methods out- 371

perform machine learning models, which strongly 372

demonstrates conventional deep learning model 373

are superior in extracting deep semantic informa- 374

tion than feature-engineering-driven traditional ma- 375

chine learning methods dependent on burdensome 376

handcrafts. Surprisingly, CNN performs best on 377

the above-mentioned two datasets with mP pos- 378

sibly due to the function of convolution kernels 379

which exactly manage to capture accurate features 380

but needing validation on more datasets. 381

A milestone of the MLTC task is sequence-to- 382

sequence (Seq2Seq) model, followed by a bundle 383

of Seq2Seq-based models like S2S+Attn, SGM, 384

MDC, etc. The average results of Seq2Seq-based 385

models show an advantage over that of conven- 386

tional deep learning models, undoubtedly indicat- 387

ing that Seq2Seq-based models are capable of ex- 388

ploring latent label orders with global embedding 389

which beat conventional deep learning solutions 390

overwhelmingly. Akin to the comparison between 391

conventional deep learning models and machine 392

learning methods, conventional deep learning mod- 393

els perform just plain better than Seq2Seq-based 394

models withmp on these two datasets, which needs 395

more corpora for interpretation. Moreover, MDC is 396

the state-out-of-art solution which applies attention 397

mechanism based on Seq2Seq model suitable for 398

creating information-enhanced contextual represen- 399

tations. 400

Most importantly, the experiment results show 401

that our model HdLAN has the best perfor- 402

mance on all three datasets, outperforming the cur- 403

rent state-of-the-art model MDC on RV1-V2 and 404

AAPD, meanwhile defeating all reported models 405

on Reuters-21578 (P < 0.05 on student t-test for 406

all above comparisons, the same below), which can 407

be attributed to the pre-training process on docu- 408

ments with BERT, encoding of documents, label 409

embeddings and doc-label attention mechanism. 410

5.2 Ablation study 411

To analyze the contributions of each component of 412

our proposed model, we carry out ablation study of 413
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Datasets RCV1-V2

Metrics HL(-) mP(+) mR(+) mF1(+)

BR 0.0086 0.904 0.816 0.858
CC 0.0087 0.887 0.828 0.857
LP 0.0087 0.896 0.824 0.858

CNN 0.0089 0.922 0.798 0.855
CNN-RNN 0.0085 0.889 0.825 0.856

S2S 0.0082 0.883 0.849 0.866
S2S+Attn 0.0081 0.889 0.848 0.868
SGM 0.0075 0.897 0.860 0.878
MDC 0.0072 0.891 0.873 0.882

HdLAN 0.0068 0.925 0.894 0.909

Table 2: Comparisons of ten models on RCV1-V2

Datasets AAPD

Metrics HL(-) mP(+) mR(+) mF1(+)

BR 0.0316 0.664 0.648 0.646
CC 0.0306 0.657 0.651 0.654
LP 0.0323 0.662 0.608 0.634

CNN 0.0256 0.849 0.545 0.664
CNN-RNN 0.0280 0.718 0.618 0.664

S2S 0.0255 0.743 0.646 0.691
S2S+Attn 0.0261 0.720 0.639 0.677
SGM 0.0245 0.748 0.675 0.710
MDC 0.0240 0.752 0.681 0.715

HdLAN 0.0236 0.822 0.674 0.741

Table 3: Comparisons of ten models on AAPD

Datasets Reuters-21578

Metrics HL(-) mP(+) mR(+) mF1(+)

BR 0.0032 0.940 0.823 0.878
CC 0.0031 0.937 0.828 0.879

CNN-RNN 0.0038 0.902 0.813 0.855

HdLAN 0.0025 0.974 0.877 0.923

Table 4: Comparisons of four models on Reuters-
21578

five derived models which remove or change any 414

layer on RV1-V2 shown in Table 5. Because of 415

similar tendency on the other two datasets, we only 416

take results on RV1-V2 as an example. 417

Specifically, w/o BERTdoc and BERTdoc to 418

EMBdoc represents derived models without pre- 419

training on documents with BERT and applying 420

traditional GloVe technique to establish document 421

embeddings instead of BERT, respectively, both 422

affecting the performance compared with proposed 423

HdLAN model by a wide margin, which indicate 424

the powerful capabilities of BERT in capturing 425

deep semantic information. With multiple embed- 426

dings such as token embeddings, segment embed- 427

dings and position embeddings as well as trans- 428

formers containing multi-head attention, the pre- 429

training model BERT manages to extract global 430

semantic information of documents undoubtedly. 431

When we remove the doc-label attention layer away 432

from the final model named w/o Doc-label atten- 433

tion, the results also decrease, demonstrating its 434

function of extracting interactive features between 435

documents and their corresponding labels via es- 436

tablishing contextual connection of the two parts, 437

which also clarifies attention mechanism is able to 438

model long sequences, fully finding semantic inter- 439

action of document-label pairs at any distance. W/o 440

Label embeddings means feeding only encoded 441

pre-trained documents to the doc-label attention 442

layer without label embeddings, which also has 443

a negative effect on model performance, because 444

label embeddings take all unique labels into con- 445

sideration, establishing relationship among labels 446

which aims at exploring latent combinations of la- 447

bels corresponding to given documents. For the 448

derived model without BiLSTM encoder for doc- 449

uments named w/o Doc encoder, we can see that 450

the performance has also a large distance with the 451

proposed HdLAN model, possibly because the doc 452

encoder layer further takes the contextual informa- 453

tion of documents into consideration, enhancing 454

the global semantic interaction. 455

Above all, each component of the proposed 456

model BdLAN has indispensable abilities sepa- 457

rately and the organic combination of these lay- 458

ers jointly make tremendous contributions to its 459

state-of-the-art performance. 460

5.3 Parameters sensitivity 461

To increase the robustness of our proposed BdLAN 462

model, we carry out a series of experiments to an- 463
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Datasets RCV1-V2

Metrics HL(-) mP(+) mR(+) mF1(+)

w/o BERTdoc 0.0083 0.8662 0.8247 0.8856
w/o Doc encoder 0.0091 0.8547 0.8365 0.8455
w/o Label embeddings 0.0088 0.8763 0.8572 0.8666
w/o Doc-label attention 0.0086 0.8985 0.8163 0.8554
BERTdoc to EMBdoc 0.0076 0.9175 0.8456 0.8801

HdLAN (ours) 0.0068 0.9248 0.8942 0.9092

Table 5: Ablation study of five derived models on RCV1-V2

alyze the impact of the length of input documents464

in the BERTdoc layer and the dimension of hid-465

den state in the doc encoder layer of our proposed466

BdLAN model on the RV1-V2 dataset with results467

shown in Figure 2. Due to the similar trend of pa-468

rameters on three above-mentioned datasets, we469

just take one as an example.470

Figure 2 shows the turning points of dimension471

of hidden state (Figure 2(a)) is 300 both on the472

training set and test set, the larger of the dimension473

in the doc encoder layer when less than 300, the bet-474

ter performance of the proposed model achieving.475

When it comes to the effect of document length on476

the proposed model (Figure 2(b)), there are two477

peaks at 250 and 500, respectively, indicating that478

BERT manages to capture more significant infor-479

mation when it learns from more input documents480

within acceptable limits.481

5.4 Case study482

Next, we make a case study to further interpret483

how to classify multi-label documents with our484

proposed model. Take a certain document from485

AAPD dataset labeled cs.sy and math.oc as an486

example with detailed content shown in Figure 3.487

Above all, we aim to explore different contri-488

butions of each word to the whole document dis-489

played in color according to its belonging labels490

cs.sy and math.oc, respectively. For the first la-491

bel cs.sy, it’s not difficult to find that words such492

as systems, engineers and their variants cov-493

ered with deep red facilitate the proposed model494

to predict the correct category while words like495

operation, dynamical and their different forms496

with less deep red also motivate multi-label text497

classification, catering for human perception. High498

contribution words to the second label math.oc499

such as dynamical, convex as well as less high500

correlation words like correct, engineers are also 501

conducive for predicting the target label from hu- 502

man perspective. 503

Next, we reveal different probabilities of all 504

unique labels calculated by our proposed BdLAN 505

through a heatmap shown in Figure 4 with the prob- 506

abilities of correct labels cs.sy andmath.oc obtain- 507

ing 0.85 and 0.88 which substantially exceed other 508

labels averaged by 0.2 to 0.7. Furthermore, some 509

less related labels prefixed by cs and math have 510

a probabilities between 0.4 and 0.7 while other al- 511

most irrelevant labels such as physics.soc − ph, 512

q − bio.nc only occupy 0.2 to 0.3. 513

From this concrete example, it’s intuitionistic 514

for researchers of Natural Language Processing to 515

clarify the mechanism within our propose BdLAN 516

model on how to classify multi-label documents 517

into multiple categories. 518

6 Conclusion 519

MLTC is a great challenge in text classification. 520

To automate the multi-label text classification 521

progress, we propose a novel solution named Bd- 522

LAN, BERTdoc Label Attention Networks. We 523

use BERT to pre-train documents and adopt BiL- 524

STM to explore the contextual information of doc- 525

uments forward and backward. Next, we ultilize 526

GloVe to construct label embeddings, applying doc- 527

label attention mechanism to obtain interactive in- 528

formation between documents and labels, followed 529

by a MLP classifier to make final prediction. We 530

carry out experiments on three datasets with four 531

common evaluation metrics, the results indicating 532

our proposed model outperforms all state-of-the-art 533

MLTC models with a case study further visualizing 534

its applications. In the future, we will generalize 535

our model with more datasets to increase its robust- 536

ness and enlarge its applications in more scenarios. 537
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Figure 2: Influence of dimension of hidden state and document length on the RV1-V2 dataset

Figure 3: Visual analysis of our proposed model on a MLTC task with label cs.sy (above) and math.oc (below)

Figure 4: Weights of all labels of the given document
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