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Abstract

Multi-label text classification (MLTC) brings
us new challenge in Natural Language Process-
ing (NLP) which aims at assigning multiple la-
bels for a given document. Many real-world
tasks can be view as MLTC, such as tag rec-
ommendation, information retrieval, etc. How-
ever, several flinty problems are placed in the
presence of researchers about how to establish
connections between labels or distinguish sim-
ilar sub-labels, which haven’t been solved thor-
oughly by current endeavor. Therefore, we
proposed a novel framework named BALAN,
BERTdoc Label Attention Networks in this
paper, consist of the BERTdoc layer, the la-
bel embeddings layer, the doc encoder layer,
the doc-label attention layer and the prediction
layer. We apply a powerful technique BERT
to pretrain documents to capture their deep se-
mantic features and encode them via Bi-LSTM
to obtain a two-directional contextual represen-
tation of uniform length. Then we create la-
bel embeddings and feed them together with
encoded-pretrained-documents to doc-label at-
tention mechanism to obtain interactive infor-
mation between documents and their corre-
sponding labels, finally using MLP to make
prediction.We carry out experiments on three
real-world datasets, the empirical results in-
dicating our proposed model outperforms all
state-of-the-art MLTC benchmarks. Moreover,
we conduct a case study, visualizing real appli-
cation of our BALAN model vividly.

1 Introduction

Text classification is a basic data mining task in Nat-
ural Language Processing (NLP), including multi-
class text classification and multi-label text clas-
sification. Multi-class classification only assigns
one label to a given document with over two la-
bels in the whole documents, while multi-label text
classification divides a document into different top-
ics at the same time. For example, the sentence
"Young boys are playing football" can be catego-
rized as topic "Youth" and "Sports", while a news

report such as "The cultural industry will become
the pillar industry of the national economy in 2020"
belong to either "Economy" or "Culture" as well as
the movie "Twilight City" is classified as a romance
movie and a fantastic magic movie.

MLTC aims at exploring multiple best-matched
document-label pairs according to a specific doc-
ument and its several corresponding labels, which
has many practical scenarios, such as tag recom-
mendation (I. et al., 2008), information retrieval (S.
and Y., 2010), etc. For example, it always appears
on the homepage of news websites, social plat-
forms such as Weibo and Twitter, introductions and
reviews of books or movies, and online shopping
malls such as Taobao and Jingdong. It principally
devotes itself to reducing hunting zone progres-
sively, facilitating humans to select their required
information precisely and improving the quality
of automatic recommendations in the background,
so as to provide a fast retrieval for users to effi-
ciently search for target information with filtering
out redundant and irrelevant counterparts.

However, tremendous difficulties impede our
progress to solve the MLTC task accurately. Sev-
eral tough problems of MLTC are summarized as
follows. Firstly, the number of labels of a given
text is uncertain with some samples may have only
one label but others may belong to dozens or even
hundreds of topics. Secondly, there is a mutual de-
pendence between labels so that a big difficulty hin-
ders researchers about how to solve the dependency
problem between labels. Thirdly, some low-level
labels are difficult to distinguish, such as "news"
and "broadcast”, "economics" and "finance". Mean-
while, some documents may be very long, includ-
ing complex semantic hierarchical information hid-
den in the redundant content. In addition, most
documents belong to a few tags while a large num-
ber of "tail tags" contain only a few documents.



2 Related work

Problem transformation methods convert the
MLTC task into multiple single-label text classifi-
cation tasks, such as BR (Boutell et al., 2004) ig-
noring label dependencies and building a separate
classifier for each label, LP (I. et al., 2008) creating
a binary classifier for each label combination, and
CC (Read et al., 2011) converting the MLTC task
into a binary classification problem chain.

Algorithm adaptive methods aim at modify-
ing specific algorithms to solve MLTC, including
local methods and global methods. Local meth-
ods such as ML-DT (A. and R., 2001) which con-
structs a decision tree, Rank-SVM (A. and J., 2002)
which uses SVM similar to a learning system, ML-
KNN (Zhang and Zhou, 2007) which applies the
k-nearest neighbor algorithm and the maximum
posterior probability to determine the label set of
each sample, CBM (Li et al., 2016) which simpli-
fies the task by transforming it into multiple bi-
nary problems. Global methods such as Clus-HMC
(Vens et al., 2008) that uses a single decision tree
to process the entire hierarchical category struc-
ture, HMC-LMLP (Cerri et al., 2016) that trains
a set of neural networks with each neural network
predicting a given level of categories, CML (Gham-
rawi and McCallum, 2005) which aims at joint
learning algorithm (Li et al., 2015) . However, the
above-mentioned work mainly focuses on the lo-
cal or global structure to capture low-order label
correlation, ignoring the hierarchical dependencies
between different levels of labels, facing thorn dif-
ficulties when computing higher-order label corre-
lation.

Neural networks have made significant im-
provement in MLTC recently. For example,
BPMLL (Zhang and Zhou, 2006) applies a fully
connected network and pairwise ranking loss to
perform classification. Nam et al. (J. et al., 2014)
further replaced pairwise ranking loss with a cross-
entropy loss function. Kurata, Xiang and Zhou (Ku-
rata et al., 2016) proposed an initialization method,
using neurons to model label correlation. Chen et
al. (Chen et al., 2017) proposed a joint approach
combined with CNN and RNN to capture local and
global semantic information. Bahdanau et al. (D.
etal., 2017) proposed a method to train a neural net-
work to generate sequences using the actor-critic
method. Besides, SGM (Yang et al., 2018) and
MDC (Lin et al., 2018) also apply LSTM-based
Seq2Seq structure which one applies global em-

bedding to propose a novel decoder, and the other
create information-enhanced representations with
additional semantic units based on mixed attention
mechanism.

3 Proposed Method

3.1 Task description

The MLTC task in this research can be summa-
rized as a tuple set S = {(d;,l;)}, with d; and
l; represents the i-th document denoted as D =
{d;|d; = {d*,d?,---,d"} and its corresponding
label sets denoted as L = {I;|I; = {I*,1?,--- ,I™}.
N, n and m are the total number of documents,
the length of the i-th document and the number
of labels of the i-th document, respectively. Our
proposed BALAN model aims at assigning all suit-
able labels to its corresponding documents based
on the conditional probability Pr(l;|d;) to solve
the MLTC task.

3.2 Overview of proposed model

Our proposed BALAN model consists of five lay-
ers, i.e, the BERTdoc layer, the label embeddings
layer, the doc encoder layer, the doc-label attention
layer and the prediction layer shown in Figure 1.
The BERTdoc layer refers to pre-train documents
via BERT to extract their semantic features while
the label embeddings layer means map each label
to a high-dimensional space with GloVe (Penning-
ton et al., 2014). The doc encoder layer denotes
encoding each pre-trained word in documents via
Bi-LSTM to obtain text representation forward and
backward of uniform length. The doc-label atten-
tion layer means an interactive strategy capturing
mutual features of encoded pre-trained document
representation and label embeddings, which then
feed into prediction layer (MLP) to complete fi-
nal multi-label classification. The overall proposed
model is trained end-to-end.

3.3 BERTdoc layer

In this layer, we use base-BERT with 12 trans-
former blocks, 768 dimension of hidden state, 12
head per layer of multi-head attention and 110M
parameters to pre-train documents to capture their
deep information. We preprocess documents as
BERT input representation, which are the sum of
the token embeddings aiming at different words,
the segmentation embeddings distinguishing each
sentence in a paragraph and the position embed-
dings outputing position of words, then pass them
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Figure 1: Architecture of our proposed BALAN model

to transformers mechanism in BERT. Each embed-
ding of BERT input representation is differentiated
via slicing which then fed into BERT model to
output pre-trained contextual representation of doc-
uments. The process of document pre-training can
be elaborated as follows:

DB) = BERT (token, seg, pos) (D

3.4 Doc encoder layer

To obtain forward and backward contextual rep-
resentation of given documents, we adopt bidirec-
tional LSTM (Bi-LSTM) to encode pre-trained doc-
uments as 2H-dimensional vectors. Through the
encoder layer, we also unify the length of docu-
ments to get encoded pre-trained representation
DB) ¢ RP*2H \where p means maximum length
of each input document of BERT. The hidden state
hs € R is randomized. The specific equations
are shown as follows:

Dt(B§ — LSTM(D§_313, hy) )
B B
D) = LsTM(DP), hy) 3)
%
D™ = (D D) @)
D) = {Di"YL, (5)

3.5 Label embeddings layer

For the reason that each label contains latent se-
mantic information besides documents, we convert
labels L = {l;|l; = {I},1%,--- 1™} to embed-
ding vectors L) e RMxd yia GloVe (Pennington

et al., 2014) with M representing the total number
of labels , fully establishing contextual relationship
among labels.

L&) = Embeddingiqper (L) € RM*  (6)

3.6 Doc-label attention layer

In the MLTC task, a single document belongs to
several labels and vice versa, so it’s intuitive and
vital to capture interactive features between doc-
uments and their corresponding labels. Suppose
two sentences "The clock in the high church tower
struck and the sound made him remember his par-
ents’ early love for him." and "Dad was always
there to play the mandolin for his family, sacri-
ficing his time and efforts to see that his family
had enough in their life.", the former can be sum-
marized as "clock striking" and "family affection”
while the latter belongs to "instrument playing" and
"family affection"”, both belonging to two labels
and "family affection" being able to be distributed
to the above-mentioned two sentences. Therefore,
we adopt a doc-label attention mechanism to fuse
information between documents and labels. The
details can be described as follows:

Firstly, we apply self-attention mechanism on
documents to obtain an independent weight vector
A which implies contribution of documents in doc-
label pairs:

Ap = softmax(Wlltanh(WlD(B)T)) (7
A= o((ApDP)YWy) 8)

Then we apply doc-label attention mechanism
to get attention label representation LA and its



independent weight vector p:

AL = (WL O)w,D®) ()
LA = A, pB) (10)
p=o(LWOWy) (1)

The final doc-label representation S(4) is calcu-
lated by multiplying dependent label weight vector
[dep Via normalization:

(12)
13)

P
dep o+ \
S — ey LY

Here, W7, Wll, Wln, W, WQI, WZH are trainable
parameters. o is sigmoid activation function (the
same below).

3.7 Prediction layer

Finally, a MLP classifier in the prediction layer is
used for the final doc-label representation S(4) to
make multi-label text classification:
§ = o(Wytanh(W,5™)) (14)
where W, W; are trainable parameters.
We adopt cross-entropy loss as the loss function

in our work which has been proved suitable for the
MLTC task [30]:

N M
: (i) 5(i7)
min y >y log(o(5))

i=1 j=1
~ ) log(1 — r(5))

(15)
+(1

where y(17) € {0, 1} denotes the j-th ground truth
label of the i-th document while () ¢ [0,1]
indicates the predicted probability of the above-
mentioned doc-label pairs.

4 Experiments setup

4.1 Datasets

In this research, we utilize three multi-label text
datasets with the detailed statistics shown in Ta-
ble 1. Specifically, W, Nirqin, Niest and M denote
the number of total words, training documents, test
documents and total unique labels, respectively.
RCV1-V2 (Lewis et al., 2004) contains 804,414
newswire stories, including 643,531 training docu-
ments and 160,883 test ones. Each story belongs to
several topics with the total number of labels 103.

Dataset %% Nirain  Niest M
RCV1-V2 | 47,236 23,149 781,265 103

AAPD 69,399 54,840 1,000 54
Reuters- 18,637 8,630 2,158 90
21578

Table 1: Statistics of three datasets

Reuters-21578 is a collection of 10,788 docu-
ments and 90 labels from Reuters News Wire in
1987 with 8,630 for training and 2,158 for testing.

AAPD (Yang et al., 2018) is a combination of
55,840 abstracts and their corresponding topics in
the field of computer science from Arxiv in 2018,
which consists of 54,840 abstracts as training data
and 1,000 ones as test data.

4.2 Baseline

We compare our proposed model with the follow-
ing nine benchmarks:

BR (Boutell et al., 2004) establishes multiple bi-
nary classifiers for each label, ignoring dependency
between labels.

CC (Read et al., 2011) converts the MLTC task
into a chain of binary classification problems with
consideration of high-order label correlation.

LP (Tsoumakas and Katakis, 2006) creats a
multi-class classifier for all unique label combi-
nations.

CNN (Kim, 2014) adopts multiple convolution
kernals to extract contextual information with acti-
vation function to ouput probability distribution.

CNN-RNN (Chen et al., 2017) utilizes a com-
bination of CNN and RNN to capture global and
local semantic features as well as label correlation.

S2S (Sutskever et al., 2014) is the pure sequence-
to-sequence model which can be used on the MLTC
task.

S2S+Attn (Bahdanau et al., 2015) adds attention
mechanism on the basis of RNN-oriented Seq2Seq
model.

SGM (Yang et al., 2018) is a label sequence gen-
eration model with attention mechanism to solve
the MLTC task based on LSTM-oriented Seq2Seq
model.

MDC (Lin et al., 2018) uses hybrid attention
based on LSTM-oriented Seq2Seq model to cap-
ture information-enhanced features.



4.3 Evaluation metrics

Inspired by the previous work (Zhang and Zhou,
2007; Chen et al., 2017), we evaluate our proposed
model and other nine benchmarks with Hamming
Loss, micro-Precision, micro-Recall and micro-F1.

Hamming loss (HL) calculates the percentage
of mislabeled documents whose predicted labels
are not adequate or irrelevant.

micro-Precision (mP) interprets global preci-
sion with True Positives and False Positives of the
i-th given label, i.e., F'P; and T'P;.

micro-Recall (mR) describes global recall with
True Positives and False Negatives of the ¢-th given
label, i.e., F'P; and F'N;.

micro-F1 (mF1) weights the global precision
and recall of the total categories which can be rep-
resented as follows:

4.4 Hyper parameters and training

We carry out our experiments on NVIDIA TESLA
V100 GPU with Pytorch. In the BERTdoc layer and
the label embeddings layer, we set the maximum
length of each document as 500 in the pre-training
process with BERT and adjusted the embedding
size of labels as 300. As for the doc encoder layer,
the dimension of hidden state in BILSTM is set
to 300. When it comes to training process, we
use Adam optimizer with 51 = 0.9 and 85 = 0.999.
The batch size is adjusted to 128 and the learning
rate is initialized to 0.0001. We evaluate model
performance on test sets after 200 epochs with early
stopping when the validation loss stops decreasing
by 10 epochs.

5 Experimental results

5.1 Model comparison

We compare our proposed HALAN model with
other nine benchmarks on three datasets evaluated
with HL, mP, mR, mF'1 shown in Table 2, Ta-
ble 3 and Table 4. Due to unreported results of
some models on Reuters-21578, we only use three
benchmarks for comparison, i.e., BR, CC, CNN-
RNN, whose results are complete in the above-
mentioned four evaluation metrics. Moreover, (+)
in Table 2, Table 3 and Table 4 means the higher
the value is, the better performance of the model,
such as mP, mR and mF'1 while (—) indicates
the opposite, such as H L.

The nine benchmarks can be divided into three
categories referred to as machine learning methods

(i.e., BR, CC, LP), conventional deep learning mod-
els (i.e., CNN, CNN-RNN) and Seq2Seq-based
approaches (i.e., S2S, S2S+Attn, SGM, MDC).
For the reason that a good portion of model re-
sults of are missing on Reuters-21578, we promi-
nently make analysis on RV1-V2 and AAPD. As
shown in Table 2 and Table 3, we can see that
generally conventional deep learning methods out-
perform machine learning models, which strongly
demonstrates conventional deep learning model
are superior in extracting deep semantic informa-
tion than feature-engineering-driven traditional ma-
chine learning methods dependent on burdensome
handcrafts. Surprisingly, CNN performs best on
the above-mentioned two datasets with m P pos-
sibly due to the function of convolution kernels
which exactly manage to capture accurate features
but needing validation on more datasets.

A milestone of the MLTC task is sequence-to-
sequence (Seq2Seq) model, followed by a bundle
of Seq2Seq-based models like S2S+Attn, SGM,
MDC, etc. The average results of Seq2Seq-based
models show an advantage over that of conven-
tional deep learning models, undoubtedly indicat-
ing that Seq2Seq-based models are capable of ex-
ploring latent label orders with global embedding
which beat conventional deep learning solutions
overwhelmingly. Akin to the comparison between
conventional deep learning models and machine
learning methods, conventional deep learning mod-
els perform just plain better than Seq2Seq-based
models with mp on these two datasets, which needs
more corpora for interpretation. Moreover, MDC is
the state-out-of-art solution which applies attention
mechanism based on Seq2Seq model suitable for
creating information-enhanced contextual represen-
tations.

Most importantly, the experiment results show
that our model HALAN has the best perfor-
mance on all three datasets, outperforming the cur-
rent state-of-the-art model MDC on RV1-V2 and
AAPD, meanwhile defeating all reported models
on Reuters-21578 (P < 0.05 on student t-test for
all above comparisons, the same below), which can
be attributed to the pre-training process on docu-
ments with BERT, encoding of documents, label
embeddings and doc-label attention mechanism.

5.2 Ablation study

To analyze the contributions of each component of
our proposed model, we carry out ablation study of



Datasets ‘ RCV1-V2

Metrics | HL(-) mP(+) mR(+) mFI1(+)
BR 0.0086 0.904 0.816 0.858
CC 0.0087 0.887 0.828 0.857
LP 0.0087 0.896 0.824  0.858
CNN 0.0089 0.922 0.798  0.855
CNN-RNN | 0.0085 0.889 0.825 0.856
S28 0.0082 0.883 0.849  0.866
S2S+Attn | 0.0081 0.889  0.848  0.868
SGM 0.0075 0.897 0.860 0.878
MDC 0.0072 0.891 0.873  0.882
HALAN | 0.0068 0.925 0.894 0.909

Table 2: Comparisons of ten models on RCV1-V2

Datasets ‘ AAPD

Metrics | HL(-) mP(+) mR(+) mF1(+)
BR 0.0316 0.664 0.648 0.646
CcC 0.0306 0.657 0.651 0.654
LP 0.0323 0.662 0.608 0.634
CNN 0.0256 0.849 0.545 0.664
CNN-RNN | 0.0280 0.718 0.618 0.664
S2S 0.0255 0.743 0.646 0.691
S2S+Attn | 0.0261 0.720 0.639  0.677
SGM 0.0245 0.748 0.675 0.710
MDC 0.0240 0.752 0.681 0.715
HALAN |0.0236 0.822 0.674 0.741

Table 3: Comparisons of ten models on AAPD

Datasets | Reuters-21578

Metrics ‘ HL(-) mP(+) mR(+) mF1(+)
BR 0.0032 0940 0.823 0.878
CC 0.0031 0937 0.828 0.879
CNN-RNN ‘ 0.0038 0902 0.813 0.855
HdLAN ‘ 0.0025 0974 0.877 0.923

Table 4: Comparisons of four models on Reuters-
21578

five derived models which remove or change any
layer on RV1-V2 shown in Table 5. Because of
similar tendency on the other two datasets, we only
take results on RV1-V2 as an example.

Specifically, w/o BERTdoc and BERTdoc to
EMBdoc represents derived models without pre-
training on documents with BERT and applying
traditional GloVe technique to establish document
embeddings instead of BERT, respectively, both
affecting the performance compared with proposed
HALAN model by a wide margin, which indicate
the powerful capabilities of BERT in capturing
deep semantic information. With multiple embed-
dings such as token embeddings, segment embed-
dings and position embeddings as well as trans-
formers containing multi-head attention, the pre-
training model BERT manages to extract global
semantic information of documents undoubtedly.
When we remove the doc-label attention layer away
from the final model named w/o Doc-label atten-
tion, the results also decrease, demonstrating its
function of extracting interactive features between
documents and their corresponding labels via es-
tablishing contextual connection of the two parts,
which also clarifies attention mechanism is able to
model long sequences, fully finding semantic inter-
action of document-label pairs at any distance. W/o
Label embeddings means feeding only encoded
pre-trained documents to the doc-label attention
layer without label embeddings, which also has
a negative effect on model performance, because
label embeddings take all unique labels into con-
sideration, establishing relationship among labels
which aims at exploring latent combinations of la-
bels corresponding to given documents. For the
derived model without BiLSTM encoder for doc-
uments named w/o Doc encoder, we can see that
the performance has also a large distance with the
proposed HALAN model, possibly because the doc
encoder layer further takes the contextual informa-
tion of documents into consideration, enhancing
the global semantic interaction.

Above all, each component of the proposed
model BALAN has indispensable abilities sepa-
rately and the organic combination of these lay-
ers jointly make tremendous contributions to its
state-of-the-art performance.

5.3 Parameters sensitivity

To increase the robustness of our proposed BALAN
model, we carry out a series of experiments to an-



Datasets ‘ RCV1-V2

Metrics ‘ HL(-) mP(+) mR(+) mF1(+)
w/o BERTdoc 0.0083 0.8662 0.8247 0.8856
w/o Doc encoder 0.0091 0.8547 0.8365 0.8455
w/o Label embeddings 0.0088 0.8763 0.8572 0.8666
w/o Doc-label attention 0.0086 0.8985 0.8163 0.8554
BERTdoc to EMBdoc 0.0076 0.9175 0.8456 0.8801
HdLAN (ours) 0.0068 0.9248 0.8942 0.9092

Table 5: Ablation study of five derived models on RCV1-V2

alyze the impact of the length of input documents
in the BERTdoc layer and the dimension of hid-
den state in the doc encoder layer of our proposed
BdLAN model on the RV1-V2 dataset with results
shown in Figure 2. Due to the similar trend of pa-
rameters on three above-mentioned datasets, we
just take one as an example.

Figure 2 shows the turning points of dimension
of hidden state (Figure 2(a)) is 300 both on the
training set and test set, the larger of the dimension
in the doc encoder layer when less than 300, the bet-
ter performance of the proposed model achieving.
When it comes to the effect of document length on
the proposed model (Figure 2(b)), there are two
peaks at 250 and 500, respectively, indicating that
BERT manages to capture more significant infor-
mation when it learns from more input documents
within acceptable limits.

5.4 Case study

Next, we make a case study to further interpret
how to classify multi-label documents with our
proposed model. Take a certain document from
AAPD dataset labeled cs.sy and math.oc as an
example with detailed content shown in Figure 3.
Above all, we aim to explore different contri-
butions of each word to the whole document dis-
played in color according to its belonging labels
cs.sy and math.oc, respectively. For the first la-
bel cs.sy, it’s not difficult to find that words such
as systems, engineers and their variants cov-
ered with deep red facilitate the proposed model
to predict the correct category while words like
operation, dynamical and their different forms
with less deep red also motivate multi-label text
classification, catering for human perception. High
contribution words to the second label math.oc
such as dynamical, convex as well as less high

correlation words like correct, engineers are also
conducive for predicting the target label from hu-
man perspective.

Next, we reveal different probabilities of all
unique labels calculated by our proposed BALAN
through a heatmap shown in Figure 4 with the prob-
abilities of correct labels cs.sy and math.oc obtain-
ing 0.85 and 0.88 which substantially exceed other
labels averaged by 0.2 to 0.7. Furthermore, some
less related labels prefixed by cs and math have
a probabilities between 0.4 and 0.7 while other al-
most irrelevant labels such as physics.soc — ph,
q — bto.nc only occupy 0.2 to 0.3.

From this concrete example, it’s intuitionistic
for researchers of Natural Language Processing to
clarify the mechanism within our propose BALAN
model on how to classify multi-label documents
into multiple categories.

6 Conclusion

MLTC is a great challenge in text classification.
To automate the multi-label text classification
progress, we propose a novel solution named Bd-
LAN, BERTdoc Label Attention Networks. We
use BERT to pre-train documents and adopt BiL-
STM to explore the contextual information of doc-
uments forward and backward. Next, we ultilize
GloVe to construct label embeddings, applying doc-
label attention mechanism to obtain interactive in-
formation between documents and labels, followed
by a MLP classifier to make final prediction. We
carry out experiments on three datasets with four
common evaluation metrics, the results indicating
our proposed model outperforms all state-of-the-art
MLTC models with a case study further visualizing
its applications. In the future, we will generalize
our model with more datasets to increase its robust-
ness and enlarge its applications in more scenarios.
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Figure 2: Influence of dimension of hidden state and document length on the RV1-V2 dataset
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Figure 3: Visual analysis of our proposed model on a MLTC task with label cs.sy (above) and math.oc (below)

math.it cs.lg cs.ai
0.5 0.53 0.43

cs.si
0.69

math.oc cs.cv cs.cl 0.7
0.88 8 0.55 ’
_ 55
0.25 0.6
cs.se math.pr cs.db
0.67 0.40 0.53

math.na cs.ce cs.ma 0.5
0.59 0.45 0.56
stat.th cs.dl cmp-lg [¢ ech _04
0.27 0.55 0.22 b :
math.lo stat.ap cs.ms stat.me cs.sc
0.41 0.23 0.65 0.29 0.49
-03
0.30

g-bio.nc physics.data-an nlin.ao g-bio.gm
0.25 0.22 X 0.27 0.

Figure 4: Weights of all labels of the given document




References

Clare A. and King R. 2001. Knowledge discovery in
multi-label phenotype data. In European Confer-
ence on Principles of Data Mining and Knowledge
Discovery, page 42-53. Springer.

Elisseeff A. and Weston J. 2002. A kernel method for
multi-labelled classification. In Advances in neural
information processing systems, page 681-687.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In Proc. Int. Conf. Learn. Represent.

M. R. Boutell, J. Luo, X. Shen, and C. M Brown. 2004.
Learning multi-label scene classification.

R. Cerri, R. C. Barros, A. C. de Carvalho, and Y. Jin.
2016. Reduction strategies for hierarchical multi-
label classification in protein function prediction.

Guibin Chen, Deheng Ye, Zhenchang Xing, Jieshan
Chen, and Erik Cambria. 2017. Ensemble appli-
cation of convolutional and recurrent neural net-
works for multi-label text categorization. In Interna-
tional Joint Conference on Neural Networks, page
2377-2383, Anchorage, AK, USA. IJCNN.

Bahdanau D., Brakel P., Xu K., Goyal A., Lowe R.,
Pineau J., Courville A., and Bengio Y. 2017. An ac-
torcritic algorithm for sequence prediction. In ICLR.

Nadia Ghamrawi and Andrew McCallum. 2005. Col-
lective multi-label classification. In Proceedings of
the 14th ACM international conference on Informa-

tion and knowledge management, pages 195-200.
ACM.

Katakis I., Tsoumakas G., and Vlahavas I. 2008. Multi-
label text classification for automated tag suggestion.
In Proceedings of the ECML/PKDD.

Nam J., Kim J., Gurevych 1., and Furnkranz J. 2014.
Large-scale multi-label text classification — revisit-
ing neural networks. In Proceedings of the 2014th
European Conference on Machine Learning and
Knowledge Discovery in Databases, Volume Part I,
page 437-452.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing. EMNLP.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multilabel classifi-
cation with better initialization leveraging label co-
occurrence. In Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, page
521-526, San Diego California, USA. NAACL HLT.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcvl: A new benchmark collection for
text categorization research.

C. Li, B. Wang, V. Pavlu, and J. A. Aslam. 2016.
Conditional bernoulli mixturesfor multi-label clas-
sification. In Proc. Int. Conf. Mach. Learn., page
2482-2491.

Li Li, Houfeng Wang, Xu Sun, Baobao Chang, Shi
Zhao, and Lei Sha. 2015. Multi-label text catego-
rization with joint learning predictions-as-features
method. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
page 835-839.

J. Lin, X. Su, P. Yang, S. Ma, and Q. Su. 2018.
Semantic-unit-based dilated convolution for multi-
label text classification. In Proc. Empirical Methods
Natural Lang. Process., page 4554-4564. IICNN.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), page 1532-1543.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification.

Gopal S. and Yang Y. 2010. Multilabel classifica-
tion with meta-level features. In Proceedings of
the 33rdinternational ACM SIGIR conference on
Research and development in information retrieval,
page 315-322. ACM.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
Neural Inf. Process. Syst., page 3104-3112.

G. Tsoumakas and I Katakis. 2006. Multi-label classi-
fication: An overview.

C. Vens, J. Struyf, L. Schietgat, S. DzZeroski, and
H. Blockeel. 2008. Decision trees for hierarchical
multi-label classification.

P. Yang, X. Su, W. Li, S. Ma, W. Wu, and H. Wang.
2018. Sgm: Sequence generation model for multi-
label classification. In Proc. Int. Conf. Com-
put.Linguistics, page 3915-3926.

Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel
neural networks with applications to functional ge-
nomics and text categorization.

Min-Ling Zhang and Zhi-Hua Zhou. 2007. Ml-knn: A
lazy learning approach to multilabel learning.



