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ABSTRACT

Self-supervised learning of visual representations has been focusing on learning
content features, which do not capture object motion or location, and focus on
identifying and differentiating objects in images and videos. On the other hand,
optical flow estimation is a task that does not involve understanding the content
of the images on which it is estimated. We unify the two approaches and in-
troduce MC-JEPA, a joint-embedding predictive architecture and self-supervised
learning approach to jointly learn optical flow and content features within a shared
encoder, demonstrating that the two associated objectives; the optical flow estima-
tion objective and the self-supervised learning objective; benefit from each other
and thus learn content features that incorporate motion information. The pro-
posed approach achieves performance on-par with existing unsupervised optical
flow benchmarks, as well as with common self-supervised learning approaches on
downstream tasks such as semantic segmentation of images and videos.

1 INTRODUCTION

Self-supervised learning in vision has been dominated lately by approaches that aim at learning
content features; i.e. features containing information that allows to identify and differentiate objects;
in images (Chen et al., 2020a; Grill et al., 2020; Chen & He, 2020; Zbontar et al., 2021; Bardes et al.,
2022a; Caron et al., 2020; 2021; Zhou et al., 2022; Assran et al., 2022; 2023), or videos (Qian et al.,
2021; Recasens et al., 2021; Feichtenhofer et al., 2021; Tong et al., 2022). Most methods focus on
learning global features that achieve strong results in tasks such as object classification or action
recognition in videos. A more recent trend aims at learning localized features, that perform well on
local tasks such as detection and segmentation (Xiao et al., 2021; Wang et al., 2021; Hénaff et al.,
2021; 2022; Bardes et al., 2022b). However, these methods focus on understanding the content
of images and videos and are not able to learn information at the pixel level, such as motion in
videos or details in textures. In this paper, we focus on jointly learning motion features by using
self-supervised optical flow estimation (Horn & Schunck., 1981) from videos as a pretext task, and
content features with general self-supervised learning.

The Optical flow captures the motion, or dense-pixel correspondence, that occurs between two im-
ages, for instance consecutive frames in a video, or images from a stereo pair. Estimating it is a
fundamental problem in computer vision, whose solution is key to tasks such as visual odometry,
depth estimation, or object tracking. Classical approaches cast optical flow estimation as an op-
timization problem (Horn & Schunck., 1981; Brox et al., 2004), where the objective is to match
pixels with a smoothness constraint. Approaches based on neural networks and supervised learn-
ing (Yu et al., 2016; Ilg et al., 2017; Hui et al., 2018; Sun et al., 2018; Yang & Ramanan, 2019; Zhao
et al., 2020; Teed & Deng, 2020; Jiang et al., 2021; Bai et al., 2022), are limited by the difficulty
of labelling data in the real world, compared to using synthetic data. Self-supervised methods allow
learning from large collections of real-world video data (Ren et al., 2017; Liu et al., 2019b;a; Zhong
et al., 2019; Im et al., 2020; Liu et al., 2020; Luo et al., 2021; Jonschkowski et al., 2020; Stone
et al., 2021) and offer an alternative that is now competitive with supervised approaches. However,
most current methods only focus on motion without relying on the (semantic) content of the video,
a problem that we solve by learning motion and content features in images at the same time with a
multi-task approach.
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Figure 1: Multi-task self-supervised learning of content and motion features. MC-JEPA com-
bines a self-supervised features learning and optical flow estimation approach in a multi-task setup
where with a single shared encoder. The self-supervised learning of content features objective
is trained on ImageNet and the self-supervised flow estimation task is trained on various videos
datasets. Our final encoder produces features that have motion and content information, and that can
be used to estimate optical flow in videos or for content understanding downstream tasks.

Recent techniques learn spatial correspondences between video frames (Jabri et al., 2020; Bian et al.,
2022; Xu & Wang, 2021; Tokmakov et al., 2022). The goal is to track the location of objects and
therefore capture content information that optical flow estimation does not. These approaches can
be seen as object-level motion estimation. They learn features that are very specific to the tracking
task, with very poor generalization to other visual downstream tasks. Very often, they are trained on
small video datasets that are not as diverse as large image datasets such as ImageNet (Deng et al.,
2009), which reinforces the poor quality of the visual features learned. A more reliable way to build
visual representations is to learn multiple tasks at the same time (Zhang et al., 2021; Girdhar et al.,
2022). We thus propose MC-JEPA (Motion-Content Joint-Embedding Predictive Architecture), a
method that learns optical flow estimation and content features, in a multi-task setting with a shared
encoder, with a joint-embedding-predictive architecture (LeCun, 2022). Our contributions can be
summarized as follows:

• We propose a method for learning self-supervised optical flow from synthetic and real
video data, based on PWC-Net (Sun et al., 2018), and improved with several additional
components such as a backward consistency loss and a variance-covariance regularization
term. We call this first method M-JEPA.

• We combine M-JEPA in a multi-task setup with VICReg (Bardes et al., 2022a), a self-
supervised learning method trained on ImageNet, in order to improve our estimated flow,
and produce content features that transfer well on many downstream tasks. Our final
method is called MC-JEPA.

• We evaluated MC-JEPA on a range of optical flow benchmarks such as KITTI 2015 (Menze
& Geiger, 2015) and Sintel (Butler et al., 2012), image and video segmentation tasks on
Cityscapes (Cordts et al., 2016) or DAVIS (Pont-Tuset et al., 2017), and demonstrate strong
performance on all these tasks with a single encoder.

We hope that MC-JEPA will be a first step towards self-supervised learning approaches that are based
on multi-task learning and joint-embedding architectures, and that can be trained on any visual data,
images or video, and that generalizes well on a wide range of tasks, from motion prediction tasks to
content understanding tasks.

2 RELATED WORK

Self-supervised learning. The recent advances in self-supervised learning have been mainly driven
by the general approach of learning invariances to hand-crafted data augmentations, using a joint-
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Figure 2: MC-JEPA architecture. Our method learns motion through optical flow estimation on
videos and content through joint-embedding of views of images, in a multi-task way with a shared
encoder. Our optical flow estimation architecture is based on PWC-Net (Sun et al., 2018) and works
as follows. Given a pair of consecutive frames It, It+1 in a video, an encoder produces a set of
pyramidal features {X(l)

t } and {X(l)
t+1}. The flow is estimated in a coarse-to-fine manner, starting at

the lowest resolution features X(1). A first flow f2
t,t+1 is estimated by the flow estimator network,

then used to warp the features X
(2)
t , which is compared to X

(2)
t+1 with a regression loss. The flow

is then iteratively refined at every layer by predicting the residual flow and adding it to the previous
layer flow. The final flow is used to warp It and compare the warped image with It+1 using a
reconstruction loss. Forward-backward flow consistency is encouraged with the cycle consistency
losses, which minimizes the distance between X

(l)
t and f

(l)
t,t+1(f

(l)
t+1,t(X

(l)
t )) at every layer. When

the encoder is trained in the multi-task setup with a standard self-supervised learning criterion, the
training is very unstable, which is prevented by the variance-covariance regularization term on every
feature layer.

embedding architecture (LeCun, 2022). Among self-supervised learning methods learning from im-
ages, contrastive methods push together concepts that are visually close and push away concepts that
are different in the embedding space (Hjelm et al., 2019; Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b; Mitrovic et al., 2021; Dwibedi et al., 2021; Chen et al., 2021; Tomasev et al., 2022; Li
et al., 2022), clustering methods categorized embeddings into a balanced set of clusters (Caron et al.,
2018; 2020; 2021), non-contrastive methods either prevent collapsing solutions with architectural
tricks (Grill et al., 2020; Lee et al., 2021; Chen & He, 2020), or with covariance-based regulariza-
tion (Ermolov et al., 2021; Zbontar et al., 2021; Bardes et al., 2022a; Garrido et al., 2023b), which
is equivalent under some assumptions to contrastive methods (Garrido et al., 2023a). Finally, some
methods are based on masking and patch-reconstruction (Bao et al., 2022; He et al., 2022; Zhou
et al., 2022; Assran et al., 2022; 2023). These methods focus on learning a global representation of
the input, which is best suited for classification tasks. Dense self-supervised learning rather focuses
on learning local features (Xie et al., 2021; Wang et al., 2021; Xiao et al., 2021; Yang et al., 2021;
Wang et al., 2022; Yang et al., 2022; Hénaff et al., 2021; 2022; Chen et al., 2022; Caron et al., 2023),
which is best suited for detection and segmentation downstream tasks. The loss functions and meth-
ods developed with images have led to the application of similar approaches to videos (Qian et al.,
2021; Recasens et al., 2021; Feichtenhofer et al., 2021; Tong et al., 2022; Parthasarathy et al., 2022),
with the objective of learning a representation that transfers well on action recognition benchmarks.

Optical flow estimation. Classical techniques for optical flow estimation are based on the opti-
mization of a matching term and a smoothness term for a given pair of images, without any kind
of learning (Horn & Schunck., 1981; Brox et al., 2004; Sun et al., 2010). Later, methods based
on supervised learning and convolutional neural networks came, first without any prior knowledge
in architecture (Yu et al., 2016; Ilg et al., 2017), then specifically designed to tackle flow estima-
tion (Ranjan & Black, 2017; Sun et al., 2018; Yang & Ramanan, 2019; Teed & Deng, 2020). Su-
pervised flow estimation is limited to learning with synthetic data, and unsupervised flow estimation
is a promising direction towards learning on any video data. Photometric consistency was intro-
duced by (Ren et al., 2017) and is at the basis of every unsupervised optical flow estimation method.
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Additional self-supervision signals can be found with distillation of reliable matches (Liu et al.,
2019b;a), global geometric constraint (Zhong et al., 2019), or data augmentation consistency (Liu
et al., 2020; Stone et al., 2021). Fusing multi-layer similarities (Im et al., 2020) and carefully design-
ing the interpolation for upsampling (Luo et al., 2021) further improve the estimated flow quality.
Finally, a comprehensive set of additional tricks that help unsupervised optical flow is presented
in (Jonschkowski et al., 2020).

Learning correspondences. Learning from videos has been focusing on learning a global rep-
resentation for a video, but another interesting task is learning spatial correspondences between
consecutive frames. A promising direction for learning these correspondences is contrastive random
walks (Jabri et al., 2020), which can also be done at the pixel level (Bian et al., 2022). Correspon-
dences can also be learned at the object level (Xu & Wang, 2021; Patrick et al., 2021), or combined
with a memory (Tokmakov et al., 2022), in order to deal with occluded objects. Learning optical
flow can be seen as learning correspondences at the pixel-level, which is not captured by popular
self-supervised learning methods.

Multi-task Learning. Multi-task learning is commonly used to train an encoder on multiple tasks,
when the different tasks benefit from each other. Several works use it to learn a shared representation
between images and videos (Zhang et al., 2021; Girdhar et al., 2022). However, very few works use
multi-task learning for self-supervised learning, the idea was introduced in (Doersch & Zisserman,
2017) and used for anomaly detection tasks in (Georgescu et al., 2021), without many follow-up
work. We simply use multi-task learning for learning self-supervised content features and optical
flow at the same time with a single shared encoder.

3 PROPOSED APPROACH

In this section we describe our architecture and improvements for self-supervised optical flow es-
timation with a hierarchical coarse-to-fine approach, the loss functions of our method, our self-
supervised general objective and multi-task setup, our data sampling strategy, and a set of tricks
for stabilizing training. Section 3.1 introduces our M-JEPA method for optical flow estimation, and
Section 3.2 presents how we combine M-JEPA with multi-task learning into our final MC-JEPA
method.

3.1 OPTICAL FLOW

Given a pair of RGB images, It, It+1 ∈ R3,H,W , the corresponding optical flow is defined by
the correspondence map f ∈ R2,H,W , that for a given position in It, denotes the position of the
corresponding pixel in It+1. The goal is to learn a flow estimator function Fθ with parameters
θ, which outputs the flow for a pair of images f = Fθ(It, It+1), by training it on a set of image
sequences D = {{It}Tt=1}Ni=1. Unsupervised flow estimation usually works with a regression loss,
or photometric consistency loss, which ensures that the image It warped by the predicted flow f is
consistent with It+1, and a regularizer that encourages f to be smooth. Most methods differ in the
way these terms are implemented, in the details of the encoder and flow estimator architecture, and
in additional self-supervisory signals.

Regression and smoothness. We use the coarse-to-fine hierarchical flow estimator PWC-Net (Sun
et al., 2018), which we adapt to work with our custom encoder architecture described in Appendix C.
Given a set of features X(l)

t , X
(l)
t+1 ∈ Rd(l)×h(l)×w(l)

, corresponding to level l of pyramids for images
It and It+1 with l ∈ {1, ..., L}, we first estimate a flow f

(2)
t,t+1 = Fθ(X

(1)
t , X

(1)
t+1, 0), then recursively

refine this flow at higher and higher resolutions by predicting the residual flow at every layer:

f
(l+1)
t,t+1 = Fθ(X

(l)
t , X

(l)
t+1, f

(l)
t,t+1). (1)

Our estimator Fθ(Xt, Xt+1, f) works as follows. First the feature Xt is warped as X̂t+1 = f(Xt),
then a 4D correlation volume V = X̂t+1X

T
t+1 is calculated and is fed to a small convolutional

network gϕ(V,Xt, X̂t+1, f) which predicts the residual flow. We then use a multi-scale loss on the
intermediate feature layers of the encoder, defined as follows:

Lreg =

L∑
l=1

∥X(l)
t+1 − X̂

(l)
t+1∥22, (2)
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Table 1: Quantitative results. Comparison of the performance of our model on: (1) Sintel (But-
ler et al., 2012) clean and final, and KITTI 2015 (Menze & Geiger, 2015) optical flow estima-
tion benchmarks; (2) Pascal VOC (Everingham et al., 2010), Cityscapes (Cordts et al., 2016)
and ADE20k (Zhou et al., 2019), both frozen and fine-tune linear segmentation benchmarks; (3)
DAVIS-2017 (Pont-Tuset et al., 2017) and video object segmentation benchmark, against several
self-supervised methods optimized for a single task specifically. EPE is the average end-point-
error (↓ Lower is better). F1 is the average-f1 error in (%) (↑ Lower is better). mIoU is the mean
intersection-over-union (↑ Higher is better). (J&F)m is the average between mean region simi-
larity and mean contour-based accuracy (↑ Higher is better). MC-JEPA is our full model trained in
multi-task way on ImageNet and flow estimation. M-JEPA is our model without content learning,
trained only on flow estimation. The best and second best result for each benchmark are bold and
underlined.

Optical Flow Estimation Image Segmentation Video Seg.

Sintel Clean Sintel Final KITTI 2015 Pascal VOC CityScapes ADE20k Davis 2017

Method Backbone train test train test train test Frozen FT Frozen FT Frozen FT
EPE EPE EPE EPE EPE F1 mIoU mIoU mIoU mIoU mIoU mIoU (J&F)m

Rand. weights CNX-T 23.71 - 24.02 - 24.88 - 0.5 - - - - - -

flow methods
UFlow (Jonschkowski et al., 2020) PWC 2.50 5.21 3.39 6.50 2.71 11.13 7.8 - - - - - 42.0
ARFLow (Liu et al., 2020) PWC 2.79 4.78 3.73 5.89 2.85 11.80 7.9 - - - - - -
UPFlow (Luo et al., 2021) PWC 2.33 4.68 2.67 5.32 2.45 9.38 8.8 - - - - - -
SMURF (Stone et al., 2021) RAFT 1.71 3.15 2.58 4.18 2.00 6.83 10.4 - - - - - -

correspondence methods
VFS (Xu & Wang, 2021) R50 - - - - - - 51.2 - - - - - 68.9
MCRW (Bian et al., 2022) PWC 2.84 5.68 3.82 6.72 2.81 11.67 39.8 - - - - - 57.9

content methods
VICReg (Bardes et al., 2022a) CNX-T - - - - 13.5 - 60.1 77.8 59.8 76.3 28.6 41.1 58.1
VICRegL (Bardes et al., 2022b) CNX-T - - - - 11.4 - 66.8 79.7 64.9 78.3 30.6 44.1 66.7
MoCo v3 (Chen et al., 2021) ViT-S - - - - 12.9 - 57.1 75.9 56.5 74.0 23.7 39.8 -
DINO (Caron et al., 2021) ViT-S - - - - 11.8 - 65.2 79.5 64.8 78.1 30.5 43.5 69.9

ours
M-JEPA CNX-T 2.98 - 3.82 - 3.01 - 9.4 - - - - - -
MC-JEPA CNX-T 2.81 5.01 3.51 6.12 2.67 11.33 67.1 79.9 65.5 78.4 30.8 44.2 70.5

and a reconstruction loss on the last layer that is at the image level:

Lrec = d(It+1, Ît+1), (3)

where d is a loss function that is a linear combination of an l2, l1, and SSIM losses. In addition, we
use the smoothness regularizer of (Jonschkowski et al., 2020) that constrains the produced flow to
be smooth, and allows us to deal with repetitive or textureless paterns:

Lsmooth =
∑

d∈{x,y}

∑
p

exp(−λ∇dI)∥∇dft,t+1∥1, (4)

where x and y are directions in which the predicted flow is constrained to remain stable if the image
gradient does not significantly change.

Cycle consistency. Flow estimation is a non-symmetric operation, as not all pixels of It have a
correspondence in It+1 and vice versa. For a given pair of images, we estimate both the forward
and backward flows. We introduce a cycle-consistency loss that constraint the features Xt warped
by ft,t+1 then by ft+1,t to match with Xt, the loss is defined as follows:

Lcycle =

L∑
l=1

∥X(l)
t − ft+1,t(ft,t+1(X

(l)
t ))∥22, (5)

where f(X) is the warping operation of X by flow f . We symmetrize the loss and do the same
for Xt+1. In order to deal with occlusion, we follow (Liu et al., 2019a) and use forward-backward
compatibility, only applying Lreg on the pixels that have a correspondence in both the forward and
the backward flows.

Variance-covariance regularization. Finally, in order to regularize the features produced by our
encoder, we introduce a variance-covariance regularization loss function (Bardes et al., 2022a), de-
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Figure 3: Qualitative visualization: optical flow. We compare our results of our complete model
(MC-JEPA) and our model only pretrained on flow (M-JEPA) with ARFlow. Top 2 rows are from
KITTI-15, bottom 2 rows are from Sintel clean and Sintel final.

fined as follows:

Lvc =

L∑
l=1

1

d

d∑
j=1

max(0, γ −
√
Var(X

(l)
t,j ) + ϵ)

+
1

d

∑
i̸=j

[C(X
(l)
t )]2i,j .

(6)

where Var is the empirical variance and C is the empirical covariance matrix after centering the
features. This loss helps stabilizing the training with the multi-task setup described in Section 3.2,
and also improves the performance of the method as shown by Table 11.

3.2 MULTI-TASK SELF-SUPERVISED LEARNING

This section describes how we combine M-JEPA with content learning into our final MC-JEPA
method.

Learning content features. We follow the literature (Chen et al., 2020a; Grill et al., 2020; Caron
et al., 2020; Bardes et al., 2022a) and learn content features by simply pre-training our encoder
to jointly-embed two views of an image. We generate the views using image transformation such
as random cropping and color jittering. In particular, we use the VICReg objective (Bardes et al.,
2022a) and follow its protocol. From a seed image sampled in an unlabelled training dataset D, two
views are generated using common data augmentation such as random croppring and color jittering,
the views are then rescaled to a fixed size and fed to an encoder, then mapped to an expander network
on which the VICReg loss is applied. The VICReg loss Lssl is similar to Eq. (6), with in addition
an invariance term (l2 loss) that makes the embedding of the two views closer to each other and is
minimized over D.

Multi-task learning. At a given iteration of training, we sample a batch of sequences from our video
dataset and compute the flow loss, then sample a batch of images from ImageNet and compute our
self-supervised learning loss, and then add the two losses and back-propagate the gradients into our
encoder, expander, and flow estimator network. The encoder architecture and weights are shared
between the two tasks. We illustrate our approach in Figure 1 for the general idea and Figure 2 for
the detailed architecture. The final loss function that MC-JEPA optimizes is as defined follows:∑

D1

Lrec + Lreg + Lsmooth + Lcycle + Lvc +
∑
D2

Lssl, (7)

where D1 is our video sequences dataset and D2 is our image dataset. The losses are balanced with
additional coefficients that we tune carefully. Additional details are given in Appendix B, including
the values we use for these coefficients.

6



Under review as a conference paper at ICLR 2024

t=1 t=10 t=25 t=50

Figure 4: Qualitative visualization: video segmentation. We visualize the segmentation maps
obtained by the frozen features learnt with MC-JEPA on the video instance tracking task on DAVIS
2017, for several video sequences, at frames t=1,10,25,50. Frame 1 is given as ground truth, and the
others are predicted by our model.

4 EXPERIMENTS

4.1 DATASETS

Our model is pretrained in a single phase on a set of datasets commonly used for optical flow
estimation, as well as on ImageNet-1k (Deng et al., 2009). Our video and flow datasets are KITTI
(raw (A. et al., 2013), 2012 multiview (Geiger et al., 2012) and 2015 multiview (Menze & Geiger,
2015)), MPI Sintel (Butler et al., 2012) (clean, final and raw movie), FlyingChairs (Yu et al., 2016),
FlyingThings (N. et al., 2016), and HD1K (D. et al., 2016). We evaluate the quality of our estimated
flow on Sintel clean and final and KITTI 2015 and compare our model with state-of-the-art methods
in self-supervised flow estimation. We evaluate the quality of our features on instance segmentation
on Pascal VOC (Everingham et al., 2010), CityScapes (Cordts et al., 2016) and ADE20k (Zhou
et al., 2019), both in linear frozen and fine-tuning evaluation. Finally, we evaluate our model on
the DAVIS 2017 (Pont-Tuset et al., 2017) video segmentation and instance tracking benchmark
popularized by (Caron et al., 2021).

4.2 MAIN RESULTS

Optical flow. We compare the flow estimated by our model with several state-of-the-art methods op-
timized for flow estimation, as well as with MCRW, which discovers the flow by learning contrastive
random walks between pixels. Table 1 presents our results, which are on par with UFLow (Jon-
schkowski et al., 2020), ARFlow (Liu et al., 2020) and UPFLow (Luo et al., 2021), which are all
optimized for flow estimation. SMURF (Stone et al., 2021) is better on all the benchmarks, but our
goal is not to learn the best flow possible but rather to use it as a pretext task to learning general fea-
tures and motion. However, we outperform MCRW which shares the same goal. Figure 3 presents
our optical flow qualitative results.

Instance Segmentation. Table 1 presents the performance of MC-JEPA in various frozen and fine-
tuned linear segmentation tasks, which are commonly used to evaluate the quality of the features
learned by self-supervised learning models (Zhou et al., 2022; Bardes et al., 2022b). We outperform
MoCo v3 (Chen et al., 2021) and VICReg (Bardes et al., 2022a), which is the method we use for
our content features learning, by a large margin, which indicates that our flow estimation pretext
task significantly helps the localization. Our results are on-par with VICRegL (Bardes et al., 2022b)
which is specialized for segmentation and DINO (Caron et al., 2021) which has among the best
self-supervised features available.

Video Segmentation. Finally, we compare the performance of MC-JEPA on a video segmen-
tation instance tracking task on the DAVIS 2017 dataset, against VFS (Xu & Wang, 2021) and
MCRW (Bian et al., 2022) which are correspondence learning methods and DINO. We outperform
all these methods, which shows that learning motion through flow estimation is a good way of im-
proving the learning of content features for tasks that requires motion information. Figure 4 shows
qualitative results on DAVIS 2017. Overall, our method allows us to train a single model that per-
forms very well on all the above-mentioned tasks, whereas all the concurrent works are specialized
for either content feature learning or motion and optical flow estimation learning.
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Table 2: Ablation: flow datasets. Impact on
performance when varying the set of pretraining
datasets. KITTI means pretraining on KITTI
raw, 2012 and 2015. Sintel means pretraining
Sintel raw, clean and final. FT/FC are FlyingTh-
ings and FlyingChairs. The metric for K15
(KITTI 2015), clean and final is the EPE. ISeg
is the linear frozen evaluation on Pascal VOC, in
mIoU, VSeg is the evaluation on DAVIS 2017,
in (J&F)m.

KITTI Sintel FT/FC HD1k K15 clean final ISeg VSeg

✓ 2.93 3.23 3.96 66.8 70.0
✓ 3.78 2.95 3.61 66.4 69.9

✓ ✓ 2.91 2.99 3.70 67.2 70.4
✓ ✓ ✓ 2.88 2.93 3.66 67.1 70.3
✓ ✓ ✓ ✓ 2.67 2.81 3.51 67.1 70.5

Table 3: Ablation: estimator architecture.
Comparison between different flow estimator
size form of normalization. The factor size in-
fluences the number of filters in each convo-
lution of the estimator. LN means layer norm
means usage of layer norm after every layer of
the estimator, except the last one. l2 means l2-
normalization before the last layer of the esti-
mator.

Factor size #Params LN l2 K15 clean final ISeg VSeg

1 2M crashed
1 2M ✓ 2.68 2.88 3.57 67.0 70.2
1 2M ✓ 6.21 6.04 6.99 53.2 47.9
1 2M ✓ ✓ 4.55 4.47 5.66 62.3 63.6
2 8M ✓ 2.67 2.81 3.51 67.1 70.5

4.3 ABLATIONS

We perform many ablations on the components and training procedure of MC-JEPA , and evaluate
our models on KITTI 2015 train (K15 in tables, metric is EPE), Sintel clean and final (clean and
final in tables, metric is EPE), Pascal VOC linear frozen evaluation (ISeg in tables, metric is mIoU),
and DAVIS 2017 video segmentation (VSeg in tables, metric is (J&F)m, which are all relatively
fast to perform.

Flow datasets. We start by evaluating the effect of varying the set of data used flow estimation.
Table 2 presents our results when incorporating or not various datasets. As expected, training on
only KITTI or Sintel offers great performance in their respective evaluation set. Progressively adding
FlyingChairs and Things, and HD1k, improves the flow results, but has very little influence on the
segmentation tasks. The benefit on segmentation from doing flow estimation is independent from
the domain on which the flow estimator is trained.

Flow estimator architecture. When pretraining in our multi-task setup with ImageNet we observed
many instabilities related to the gradient and the exploding norm of the estimator, and that we de-
scribe in Section A. We tried several changes to the flow estimator architecture to overcome these
issues, namely using LayerNorm and l2-normalization. Table 3 presents our results when incor-
porating these elements, as well as when increasing the size of the estimator. Not regularizing the
estimator led to crashing runs. l2-normalization is very inefficient, as it constrains the last layer to
directly produce flows in the correct range of values. Using LayerNorm is the best solution and
effectively prevents the estimator from exploding norms and gradients. Increasing the size of the
estimator marginally improves the results.

Backbone. Our backbone is a ConvNeXt-T (Liu et al., 2022), we study the impact of pretraining
models with other backbones, in particular ResNet-50, and the backbone of PWC-Net (Sun et al.,
2018) commonly used by concurrent flow estimation methods. Table 4 presents our results. The
original PWC backbone is not adapted to learn good content features, and Resnet-50 results are not
as good as ConvNeXt-T results.

Data sampling. We experiment with different strategies for sampling the data. For a simple base-
line, we use a pretrained self-supervised model in ImageNet and train the flow estimator on top of
the frozen features, or by fine-tuning the model. We demonstrate the usefulness of multi-task learn-
ing by playing with various other strategies; either we alternate between one epoch of ImageNet
learning and one epoch of flow estimation, or we alternate between one batch of each, or we finally
sample a batch from each, and back-propagate through the addition of the losses. Table 5 presents
our results for each strategy. Training the flow estimator on top of frozen features is too hard of
a constraint, but even when fine-tuning is done, optimizing the flow estimation task degrades the
performance on segmentation too much. Alternating between epochs is not optimal, and the best
solution is to alternate between batches and even combine the losses for optimal flow estimation
results.
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Table 4: Ablation: backbone. Comparison of
the performance of MC-JEPA when using dif-
ferent backbones.

Backbone #Params K15 clean final ISeg VSeg

PWC-Net 8M 2.66 2.80 3.47 14.8 10.1
ResNet-50 21M 2.71 2.85 3.59 55.8 60.1
ConvNeXt-T 23M 2.67 2.81 3.51 67.1 70.5

Table 5: Ablation: data sampling. Compar-
ison between different training order and data
sampling strategies.
Strategy K15 clean final ISeg VSeg

Flow estimator training 13.52 13.82 14.81 60.1 65.2
Flow estimator fine-tuning 2.71 2.82 3.77 61.3 62.3
Epoch alternation 4.54 4.91 5.57 63.5 66.9
Batch alternation 2.78 2.95 3.62 67.1 70.5
Combined loss 2.67 2.81 3.51 67.1 70.5
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Figure 5: (1) Ablation: flow start epoch. Flow estimation performance as a function of the Ima-
geNet training epoch from which flow estimation starts. There are 100 pretraining epochs in total.
(2) Ablation: cycle consistency coefficient. Flow estimation performance as a function of the co-
efficient used to balance the cycle consistency loss of Eq (5). (3) Ablation: multi-task balancing
coefficient. Flow estimation and segmentation performance as a function of the balancing coeffi-
cient between flow losses and SSL loss in Eq (7).

Flow start epoch. We found that starting multi-task learning of flow and content features at the
beginning of training was not necessary, as the features are changing very fast, and we only start
with ImageNet pretraining and introduce flow estimation after a given number of epochs. Figure 5
(1) shows that starting after 10 epochs of ImageNet pretraining is the best among several values,
when the total number of epochs is fixed to 100. Starting later and doing fewer flow estimation
epochs saves a lot of computation time while giving similar results.

Cycle consistency. Figure 5 (2) shows an ablation on the cycle consistency coefficient that controls
the importance of the cycle consistency loss of Eq (5). Introducing the loss significantly improves
the flow estimation, which is explained by the fact that it adds an additional constraint on the em-
beddings to be predictable from each other. The coefficient needs to be carefully tuned, as the
performance is very sensitive to it.

Multi-task balancing coefficient. Figure 5 (3) shows an ablation on the multi-task coefficient that
balances our flow estimation loss and our content features loss. We already observe a significant
improvement when introducing flow estimation, even with a very small coefficient. As we increase
the coefficient, both the flow estimation and segmentation improve until we reach a threshold (0.1),
after which the segmentation results degrade a lot. This shows that even if flow estimation improves
the segmentation performance, there is a trade-off between learning motion and content features,
and tuning the multi-task coefficient is crucial to maintain a strong level of performance for both.

5 CONCLUSION

We have introduced MC-JEPA, a multi-task approach to learning of motion and content features
with self-supervised learning and optical flow estimation. MC-JEPA performs well in a wide variety
of tasks, ranging from optical flow estimation to segmentation of images and videos. We hope that
our approach will foster the use of multi-task learning in self-supervised learning, which might be
a path towards learning features that generalize to any downstream task. Future work will learn
motion and content from larger collections of natural videos and train the two objectives in a shared
data domain, capturing short- and long-range interactions in a hierarchical way.
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learning via redundancy reduction. arXiv preprint arxiv:2103.03230, 2021. 1, 3

Bowen Zhang, Jiahui Yu, Christopher Fifty, and Wei Han. Co-training transformer with videos and
images improves action recognition. arXiv preprint arXiv:2112.07175, 2021. 2, 4

Shengyu Zhao, Yilun Sheng, Yue Dong, Eric I-Chao, and Chang Yan Xu. Maskflownet: Asymmetric
feature matching with learnable occlusion mask. In CVPR, 2020. 1

Yiran Zhong, Pan Ji, Jianyuan Wang, Yuchao Dai, and Hongdong Li. Unsupervised deep epipolar
flow for stationary or dynamic scenes. In CVPR, 2019. 1, 4

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. IJCV, 2019. 5, 7

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. In ICLR, 2022. 1, 3, 7

14


