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ABSTRACT

Large-scale image-text datasets, such as LAION-5B, are foundational to modern
AI systems, yet their vast scale and uncurated nature raise significant concerns
about demographic and stereotypical biases. This study presents a comprehen-
sive analysis of the demographic composition and representational, stereotypical,
and intersectional biases in LAION-2B-en and LAION-2B-multi, the two main
components of the LAION-5B dataset. Using state-of-the-art models—FairFace,
DeepFace, and Emo-AffectNet—we analyze faces detected in the dataset to iden-
tify biases across age, gender, race, and expressed emotion. Our findings re-
veal substantial overrepresentation of young adults (20–39), White individuals,
and males, alongside consistent underrepresentation of minority racial groups and
middle-aged or older women across both dataset components. We also observe
stereotypical associations between demographic attributes and emotions, such as
“Anger” being predominantly linked to males and “Happiness” to females, point-
ing to systemic imbalances in the data. The consistency of these patterns across
two demographic models and both components of LAION-5B demonstrates that
these biases are deeply embedded in one of the most widely-used training datasets.
Given the scale at which LAION-5B is used to train generative models, these de-
mographic imbalances could shape the behavior and outputs of numerous down-
stream AI systems.

1 INTRODUCTION

The accelerated widespread of Artificial Intelligence (AI) in recent years has brought critical ethical
considerations to the forefront, with fairness and the mitigation of discrimination as key concerns
(Dwivedi et al., 2021). While biases in classical AI systems and Large Language Models (LLMs)
have been extensively documented, leading to the discovery of discriminatory models in sensitive
domains (Berk et al., 2018; Motoki et al., 2023; Bender et al., 2021), the newer frontier of generative
AI, particularly text-to-image models, presents its own profound set of challenges regarding bias
(Bommasani et al., 2022; Wan et al., 2024).

The LAION-5B dataset (Schuhmann et al., 2022), with its billions of image-text pairs, has become
essential for training state-of-the-art generative models. The sheer scale of such datasets, often
compiled through web-scraping, influences both the capabilities and biases of the models trained
upon them (Birhane & Prabhu, 2021; Birhane et al., 2021). Prior research has primarily focused
on LAION-5B’s harmful content or its role in producing stereotypical outputs in trained models
(Birhane et al., 2023; Luccioni et al., 2023), leading to the dataset’s temporary withdrawal and 2024
rerelease (LAION e.V., 2024). However, the underlying demographic composition and biases of the
dataset itself remain less thoroughly explored, despite being a key bias source (Suresh & Guttag,
2021; Ntoutsi et al., 2020).

There are significant fairness implications of using vast, often uncurated, datasets like LAION-5B
for training generative AI. These datasets act as a primary source for bias, codifying societal prej-
udices which are then learned and potentially amplified by the models (Suresh & Guttag, 2021;
Ntoutsi et al., 2020; Nicoletti & Bass, 2023). Imbalances in demographic group prevalence (repre-
sentational bias), unwarranted associations between demographic attributes and other characteristics
(stereotypical bias, e.g., between gender and emotion) or unwarranted associations between multiple
demographic attributes (intersectional bias, e.g., between gender and age) in the training data can
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cause generative models to produce visual content that reinforces harmful societal biases (Nicoletti
& Bass, 2023; Abbasi et al., 2019; Lloyd, 2018; Dominguez-Catena et al., 2024c).

This paper addresses the challenge of analyzing demographic bias within the LAION-5B dataset.
Given LAION-5B’s size and the absence of explicit demographic information, an exhaustive man-
ual annotation is infeasible. Therefore, our methodology analyzes LAION-5B (LAION e.V., 2024)
through automatic inference of demographic attributes from faces detected in the dataset. We
employ multiple models to detect faces and estimate age, race, gender, and emotion, using Fair-
Face (Karkkainen & Joo, 2021) and DeepFace (Serengil & Ozpinar, 2024; 2020) for demographic
attributes and Emo-AffectNet (Ryumina et al., 2022) for facial expressions. The inclusion of emo-
tions alongside the more traditional demographic attributes is motivated by prior studies that have
identified biases in internet-sourced datasets used for Facial Expression Recognition (Dominguez-
Catena et al., 2024a). This analysis is carried out separately for the two main LAION-5B compo-
nents to analyze whether the multilingual nature of LAION-2B-multi provides greater demographic
diversity compared to the English-only LAION-2B-en.

By focusing on the foundational demographic composition of LAION-5B, this work aims to provide
insights into the biases that generative models may inherit, complementing existing research that
focuses on downstream model outputs or harmful content (Birhane et al., 2021; LAION e.V., 2024;
Birhane et al., 2023; 2024; Luccioni et al., 2023).

Our analysis revealed several key demographic and emotional biases in the LAION-5B dataset,
summarized as follows:

• Significant overrepresentation of young adults (20–39), White individuals, and males in
both LAION-2B-en and LAION-2B-multi datasets.

• Strong stereotypical biases in facial expressions, with emotions like “Anger” and “Disgust”
disproportionately associated with males and “Happiness” with females.

• Alignment of these biases in both LAION-2B-en and LAION-2B-multi and across two
demographic models, FairFace and DeepFace, reinforcing their systemic nature.

• High similarity between the demographic compositions of LAION-2B-en and LAION-2B-
multi datasets. Some minor differences in LAION-2B-multi are the greater representation
of older individuals, increased disparity in gender representation, and greater racial diver-
sity.

In summary, the main contributions of this work are:

• A detailed demographic analysis of a substantial sample (1,000,000 image URLs) of the
LAION-2B-en and LAION-2B-multi datasets, focusing on age, gender, race, and emotion
using FairFace, DeepFace and Emo-AffectNet.

• An intersectional and stereotypical bias analysis leveraging Ducher’s Z metric to uncover
co-occurrence patterns across demographic attributes and associations between demo-
graphic and emotion categories.

2 BACKGROUND

2.1 FAIRNESS AND DISCRIMINATION IN GENERATIVE AI

The increasing integration of Artificial Intelligence (AI) into societal structures has raised signif-
icant ethical concerns, particularly regarding fairness and bias mitigation (Dwivedi et al., 2021;
Christoforaki & Beyan, 2022). Bias in “classical” AI systems for classification and risk assessment
has been extensively documented (Mehrabi et al., 2021; Pessach & Shmueli, 2020), demonstrating
discriminatory outcomes in critical domains including criminal justice (Berk et al., 2018; Avella,
2020) and employment hiring (Dastin, 2018). Large Language Models (LLMs) have similarly been
shown to harbor and propagate significant biases, including political leanings (Motoki et al., 2023;
Buyl et al., 2024), gender stereotypes (Garrido-Muñoz et al., 2023), and cultural misrepresentations
(Naous et al., 2024). Such biases often originate from the vast, frequently uncurated datasets on
which these models are trained (Bender et al., 2021; Chang et al., 2023).
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Generative AI, particularly text-to-image models, represents a newer frontier where bias implica-
tions are profound and actively investigated (Bommasani et al., 2022; Wan et al., 2024), as these
models can perpetuate and amplify societal stereotypes by generating images that reinforce tradi-
tional gender roles or racial caricatures (Nicoletti & Bass, 2023; Luccioni et al., 2023; Cheong et al.,
2024). The rapid development of influential models like DALL-E (Ramesh et al., 2021) and Stable
Diffusion (Rombach et al., 2022) underscores the critical need to address these embedded biases.

2.2 DATASET BIAS

Training data is widely recognized as a primary source of AI bias, acting as a bottleneck where biases
from collection, sampling, and annotation converge and are codified (Suresh & Guttag, 2021; Ntoutsi
et al., 2020). These biases often reflect historical and societal prejudices rather than mere statistical
anomalies (Fabris et al., 2022; Dominguez-Catena et al., 2024b). Understanding and quantifying
dataset bias is therefore critical for building fairer AI systems (Dominguez-Catena et al., 2024a).

Three common types of dataset bias are representational, stereotypical, and intersectional
bias (Dominguez-Catena et al., 2024a; Buolamwini & Gebru, 2018; Kang et al., 2021). Repre-
sentational bias refers to unbalanced representation of demographic groups, degrading model per-
formance for under-represented populations (Mehrabi et al., 2021). Stereotypical bias arises when
specific attributes are systematically associated with certain demographic groups, reflecting and re-
inforcing societal stereotypes (Abbasi et al., 2019; Bordalo et al., 2016; Dominguez-Catena et al.,
2024c). Intersectional bias emerges at the intersection of multiple demographic attributes in ways
that differ from biases affecting each attribute independently (Buolamwini & Gebru, 2018; Kang
et al., 2021). Training models on such data leads to learning these correlations, resulting in unfair
predictions and amplifying existing societal inequalities (Lloyd, 2018), making data curation quality
crucial (Shome et al., 2022).

2.3 BIAS IN LARGE IMAGE DATASETS

Large-scale image datasets foundational to modern computer vision and generative AI commonly
inherit and concentrate online biases due to their web-scraping origins (Birhane & Prabhu, 2021;
Fabbrizzi et al., 2022). The popular ImageNet (Deng et al., 2009) dataset shows problematic catego-
rizations in its “person” subtree and demographic imbalances (Yang et al., 2020; Denton et al., 2021;
Dulhanty & Wong, 2019), while MSCOCO (Lin et al., 2015) shows biases in depicting people and
activities that propagate to downstream tasks such as image captioning (Zhao et al., 2021). These
analyses typically focus on label quality, harmful content, or performance disparities of trained mod-
els.

The popular LAION-5B dataset (Schuhmann et al., 2022) has been scrutinized for biases, with pre-
vious research highlighting harmful content, misogyny, and malignant stereotypes (Birhane et al.,
2021; LAION e.V., 2024), as well as the tendency of models trained on it to amplify societal bi-
ases and generate stereotypical imagery (Birhane et al., 2023; 2024; Luccioni et al., 2023). Some
of these findings led to public removal of the dataset in 2023, followed by release of a clean ver-
sion in 2024 (LAION e.V., 2024), which we use in this work. While these studies provide crit-
ical insights into LAION-5B’s content and downstream effects, this paper focuses specifically on
the demographic composition and balance within the dataset, building on previous methodology
(Dominguez-Catena et al., 2024a) for facial expression recognition (FER) datasets. This focus on
inherent demographic balance is distinct yet complementary to prior analyses of harmful content or
model output bias. Understanding demographic imbalances at the dataset level is crucial, as they
can fundamentally skew the “worldview” learned by generative models, directly impacting fairness
and representativeness of generated content (Nicoletti & Bass, 2023; Wan et al., 2024).
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3 METHODOLOGY

3.1 SOURCE DATASET

Our study utilizes data from the LAION-5B project, specifically the LAION-2B-en (English) and
LAION-2B-multi (multilingual) components1 (LAION e.V., 2024). We initially sampled 501,147
URLs from LAION-2B-en and 503,130 from LAION-2B-multi, for a total of 1,004,277 URLs.

From the original ∼1 million URL sample we successfully retrieved 227,748 images from the En-
glish partition and 236,413 from the multilingual partition, for a total of 464,161 images. The
content of each image was hashed and verified against the information in the LAION-5B dataset to
ensure data integrity. We then employed the RetinaFace face detection system (Deng et al., 2020;
Serengil & Ozpinar, 2020) to identify human faces. To ensure sufficient quality for demographic
analysis, faces with a resolution below 48× 48 pixels were discarded. This filtering process yielded
a final sample of 37,331 faces from the English partition and 42,571 from the multilingual partition,
totaling 79,902 faces for our analysis.

While our sample of ∼1 million URLs represents a small fraction of the full dataset (∼0.02%), it
was chosen to be sufficiently large for a representative analysis while remaining computationally
feasible. To establish the statistical reliability of our findings, we calculated the margin of error
(MOE) for the final image sample. Considering membership in any demographic group as a bi-
nary attribute, the worst-case MOE for any reported proportion can be estimated. For our smallest
subsample (n = 37, 331 faces from LAION-2B-en), the formula MOEγ = zγ ×

√
p(1− p)/n

yields a margin of error of ±0.51% at a 95% confidence level (γ = 0.95) for the worst-case scenario
(p = 0.5). This level of precision supports the validity of the demographic proportions reported in
our results.

Table 1: Dataset subsample sizes
Attempted Downloaded Faces

relaion2B-en-research 501,147 227,748 37,331
relaion2B-multi-research 503,130 236,413 42,571
Total 1,004,277 464,161 79,902

3.2 DEMOGRAPHY AND EMOTION RECOGNITION

For each detected face, we extract demographic attributes using two complementary models to en-
sure robustness: FairFace (Karkkainen & Joo, 2021), designed for robust multi-demographic clas-
sification, and DeepFace (Serengil & Ozpinar, 2024; 2020), a widely used framework for facial
attribute analysis. Both models predict age, race, and gender. To enable consistent comparison, we
align their output categories by merging FairFace’s Southeast Asian and East Asian categories into
a single “Asian” category matching DeepFace’s classification, and segmenting DeepFace’s integer
age predictions into FairFace’s age ranges (0–2, 3–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69,
and 70+). We also analyze facial expressions using Emo-AffectNet (Ryumina et al., 2022), a model
trained on a large combination of datasets.

While these tools are not perfect, they are generally robust: DeepFace reports an age MAE of ±4.65
years and gender accuracy of 97.44% on IMDB-WIKI (Rothe et al., 2015), and 68% race accuracy
on FairFace (Karkkainen & Joo, 2021); FairFace reports stronger performance on its benchmark,
with race accuracy of 93.7% for White and 75.4% for non-White groups, gender accuracy of 94%,
and age-group accuracy of 60% (Karkkainen & Joo, 2021). For facial expressions, Emo-AffectNet
obtains 66.4% accuracy on the AffectNet test set (Mollahosseini et al., 2019).

1In this paper we use the 2024 rerelease, in particular the relaion2B-en-research (https:
//huggingface.co/datasets/laion/relaion2B-en-research) and relaion2B-multi-research
(https://huggingface.co/datasets/laion/relaion2B-multi-research) partitions.
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3.3 BIAS ANALYSIS

Using demographic predictions from FairFace and DeepFace, alongside expression data from Emo-
AffectNet, we analyze proportions of each demographic group and expression category to assess
representational bias. We also conduct intersectional bias analysis of demographic attributes us-
ing Ducher’s Z metric (Ducher et al., 1994), following recommendations in (Dominguez-Catena
et al., 2024a), and stereotypical bias analysis between demographic attributes and recognized emo-
tion using the same metric. Z compares observed co-occurrence of group g ∈ G and class y ∈ Y to
expected co-occurrence if independent, defined as:

Z(X, g, y) =


pg∧y−pgpy

min[pg,py ]−pgpy
if pg∧y − pgpy > 0

pg∧y−pgpy

pgpy−max[0,pg+py−1] if pg∧y − pgpy < 0

0 otherwise,
(1)

where pg , py and pg∧y are the proportions of samples in population X belonging to group g, class
y or both, respectively. For intersectional bias, class y can be replaced by a second demographic
group g′ ∈ G′. The values of Z range from −1 (maximum underrepresentation) to 1 (maximum
overrepresentation), with 0 indicating no correlation.

4 RESULTS

4.1 REPRESENTATIONAL BIAS. DEMOGRAPHIC DISTRIBUTION

Fig. 1 shows the demographic composition of LAION-2B-en (blue) and LAION-2B-multi (orange)
according to both FairFace and DeepFace.
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(a) Demographic profile according to FairFace.
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(b) Demographic profile according to DeepFace.

Figure 1: Distribution of demographic attributes (age, gender, race) in LAION-5B.

Age. Both models indicate strong overrepresentation of 20–39-year-olds. FairFace places more data
in 20–29, while DeepFace shifts toward 30–39. According to both models, LAION-2B-en skews
slightly younger than LAION-2B-multi, with higher representation of individuals under 40.

Gender. Both models agree on male predominance in the dataset. FairFace estimates 57 to 61%
male, while DeepFace exceeds 70%. Despite scale differences, the direction is consistent, and both
models agree on a higher discrepancy in favor of males in LAION-2B-multi.

Race. Both models identify White as the largest group (50 to 60%), far above a balanced 16%
baseline. Differences appear in minority categories: FairFace reports more Middle Eastern and
fewer Asian individuals; DeepFace reports the opposite. Both agree in the underrepresentation of
Black, Indian, and Latino Hispanic groups.

Overall. While there are some minor differences between demographic estimations from FairFace
and DeepFace, LAION-2B-en and LAION-2B-multi exhibit similar profiles: concentration in ages
20–39, male overrepresentation, and a White majority. These patterns indicate substantial represen-
tational imbalances across all components.
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4.2 REPRESENTATIONAL BIAS. EMOTION DISTRIBUTION

Fig. 2 shows the facial expression distribution identified by Emo-AffectNet, dominated by “Hap-
piness” and “Neutral,” with “Fear,” “Disgust,” and “Surprise” comparatively rare. This mirrors
common internet-sourced FER datasets, such as AffectNet (Mollahosseini et al., 2019; Dominguez-
Catena et al., 2024a), suggesting that LAION-5B follows broader online trends. There are minor
differences between LAION-2B-en and LAION-2B-multi, with the English variant including more
“Happy” examples, while the multilingual variant favors “Neutral” and “Sadness”.
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Figure 2: Distribution of facial expressions in LAION-5B, according to Emo-AffectNet.

4.3 INTERSECTIONAL BIAS

We quantify intersectional bias using Duchers Z (Ducher et al., 1994) across age, gender, and race
(Fig. 3). Groups below 1% prevalence are excluded, as Z scores for these edge cases become unre-
liable. As Sections 4.1 and 4.2 showed near-identical component profiles, we report results on the
aggregated dataset.
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(a) Age–Race

00
-02

03
-09

10
-19

20
-29

30
-39

40
-49

50
-59

60
-69

70
+

Ag
e

-0.18 0.18
0.11 -0.11
0.19 -0.19
0.35 -0.35
-0.42 0.42
-0.51 0.51
-0.56 0.56
-0.61 0.61
-0.03 0.03

FairFace

Fem
ale Male

Gender

00
-02

03
-09

10
-19

20
-29

30
-39

40
-49

50
-59

60
-69

70
+

Ag
e

-0.04 0.03
0.19 -0.20
-0.54 0.54
-0.58 0.57

DeepFace

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Gender–Age
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(c) Gender–Race

Figure 3: Intersectional bias (Duchers Z) across demographic attribute pairs.

Age–Race. FairFace indicates underrepresentation of the oldest groups (60+) across most races, and
of very young Asian, Indian, Latino Hispanic, and Middle Eastern children; while White infants are
relatively overrepresented. DeepFace shows sparser age coverage and weaker biases, but echoes the
underrepresentation of older Black individuals, aligning with FairFace on this pattern.
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Gender–Age. The gender-age analysis reveals strong and consistent biases across both FairFace and
DeepFace. FairFace shows female overrepresentation below 30 and male overrepresentation above
30. DeepFace exhibits the same pattern with the threshold shifted to the age of 40, consistent with
its older age estimates overall.

Gender–Race. Biases are less consistent in the gender–race analysis, with only the underrepre-
sentation of Middle Eastern females shared by both models. DeepFace also indicates the under-
representation of Black females, but FairFace instead indicates a slight overrepresentation of this
group.

Overall. Gender–age pairings exhibit the strongest consistent biases, with younger females and
older males overrepresented across models; age–race and gender–race biases are present but gener-
ally smaller and with less consistency between models.

4.4 FACIAL EXPRESSION STEREOTYPICAL BIAS

We examine stereotypical biase between emotion and demographic attributes via Duchers Z (Fig. 4).
Groups with a representation of less than 1% of the dataset are excluded to ensure the stability of
Z score measures. Results are given for the aggregated dataset, composed of LAION-2B-en and
LAION-2B-multi.
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Figure 4: Emotion bias (Duchers Z) across demographic pairs.

Emotion–Age. Stereotypical biases between emotion and age show some consistent patterns, de-
spite being weak overall. The strongest biases are the underrepresentation of age groups under 30
years in “Anger” and “Disgust”; and the underrepresentation of older groups in “Fear”, “Sadness”
and “Surprise”.

Emotion–Race. Effects on emotion–race are subtle and model-dependent. Recurring patterns in-
clude lower representation in “Fear” and “Surprise” for Indian individuals, lower representation in
“Anger” and “Sadness” for Latino Hispanic individuals and lower representation in “Surprise” for
Middle Eastern individuals.

Emotion–Gender. Emotion–gender shows stronger stereotypical biases compared to the other two
demographic attributes. Both models indicate overrepresentation of males in “Anger” and “Disgust,”
while females are overrepresented in “Happiness.”
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Overall Conclusions. Emotion–demographic associations are weaker but reveal consistent stereo-
typical biases: males are linked to “Anger” while females are linked to “Happiness”, younger in-
dividuals are linked to negative emotions (e.g., “Anger,” “Disgust”) and certain racial groups are
disproportionately associated with certain emotions (e.g., Indian with “Fear” and “Surprise”). These
patterns persist across FairFace and DeepFace, indicating biases strongly embedded in the dataset.

5 STATISTICAL ROBUSTNESS OF BIAS ANALYSIS

To validate the statistical robustness of our associational bias analysis, we focus here on the Ducher’s
Z findings for intersectional and stereotypical bias. The stability of the representational bias anal-
ysis is already supported by the large sample size and its corresponding low margin of error, as
established in Section 3.1.

To validate the Ducher’s Z scores, we employed a bootstrap resampling technique over 1, 000 repeti-
tions to construct 95% confidence intervals (CIs). An observed association is considered statistically
significant if its 95% CI is narrow and does not cross zero. For brevity, CIs in this section are re-
ported for FairFace only, and only for the key results.

Our analysis confirms the stability of our most salient conclusions. For instance, the “angry-
man-happy-woman” stereotype is strongly supported: the Z-score for the over-representation of
males with “Anger” (0.42) yielded a 95% CI of [0.4, 0.43], while the female-“Happiness” asso-
ciation (0.19) had a CI of [0.18, 0.2]. Intersectional biases also proved highly stable. The over-
representation of females in the 20–29 age group (0.35) was confirmed with a CI of [0.34, 0.35], and
the significant under-representation of Middle Eastern females (−0.32) was validated with a CI of
[−0.34,−0.3]. The narrowness and consistent sign of these intervals provide strong evidence that
the reported biases are significant features of the dataset.

6 DISCUSSION

Our analysis reveals significant demographic and stereotypical biases in LAION-2B-en and LAION-
2B-multi, mirroring patterns found in other large-scale, Internet-sourced datasets, such as those in-
tended for FER (Dominguez-Catena et al., 2024a). Both components exhibit strong representational
biases toward young adults (20–39 age range), White individuals (50–60%), and males (57–70%),
with some variations between FairFace and DeepFace predictions. These biases align with those
previously identified in image generation models trained on LAION-5B (Nicoletti & Bass, 2023),
while the pronounced male overrepresentation contrasts with the generally balanced gender distri-
bution observed in FER datasets (Dominguez-Catena et al., 2024a). This imbalance raises concerns
regarding potential reinforcement of gender disparities in downstream applications.

The intersectional analysis highlights critical disparities, with particularly strong and consistent bi-
ases observed in the gender-age pairing. Younger females (under 30 in FairFace and under 40 in
DeepFace) and older males are consistently overrepresented, while middle-aged and older women
are significantly underrepresented. These gender-age biases are compounded by age-race dispari-
ties, where younger and older individuals across all minority racial groups—all except White—are
often underrepresented. White infants, in particular, are disproportionately overrepresented com-
pared to infants from other racial groups. These patterns reflect entrenched societal stereotypes and
imbalances that could adversely affect fairness in AI applications (Dominguez-Catena et al., 2024b).

The analysis of stereotypical biases between facial expressions and demographic attributes reveals
weaker but consistent patterns, especially regarding gender. Males are more strongly associated
with “Anger” and “Disgust,” while females are linked to “Happiness,” echoing familiar gendered
stereotypes such as “angry-man-happy-woman” (Becker et al., 2007). Racial biases are subtler but
suggest disproportionate underrepresentation of certain emotions, such as “Fear” and “Sadness,”
among Latino Hispanic and Indian individuals. These findings emphasize the need for caution when
using LAION-5B datasets in both FER tasks and general image generation, as they risk perpetuating
harmful stereotypes.

The consequences of these dataset biases on trained models are highly context-dependent and can
vary markedly across applications. Prior work shows that for some tasks—such as facial-expression
recognition—demographic imbalances have only modest effects, whereas stereotypical biases can
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strongly influence model predictions (Dominguez-Catena et al., 2025). In generative AI systems,
however, such biases may have far greater impact (Nicoletti & Bass, 2023). Given the widespread
usage of LAION-5B, if these biases propagate to downstream models they could further amplify
societal biases in the content they produce.

6.1 LIMITATIONS

Our analysis has several limitations. First, it relies on auxiliary models—FairFace, DeepFace, and
Emo-AffectNet—for face detection and demographic and emotion classification, which can intro-
duce their own biases into our measurements. To improve reliability, we use two independent models
(FairFace and DeepFace) for demographic attributes and compare their outputs; however, these mod-
els may share systematic biases that could leak into our estimates. Disentangling dataset-intrinsic
bias from tool-induced bias will require validation against self-reported demographics or human-
labeled annotations in future works.

Second, our demographic categories are constrained by the models’ predefined labels. These labels
ignore some aspects of human diversity, especially nuanced gender identities and complex racial
and ethnic categories beyond conventional taxonomies.

Third, we intrinsically treat balanced composition as desirable, yet fairness is context-dependent and
admits multiple definitions (Mitchell et al., 2021). No single dataset mix is universally optimal, and
perfect demographic parity may not always yield the fairest models.

Finally, dataset imbalances do not map straightforwardly to model bias (Dominguez-Catena et al.,
2025). Demographic representation offers only a proxy and support tool for understanding down-
stream fairness, not a precise prediction.

7 CONCLUSIONS

This study provides a comprehensive analysis of the demographic and stereotypical biases present
in the LAION-2B-en and LAION-2B-multi datasets. Our findings reveal biases such as strong
overrepresentation of young adults, White individuals, and males, alongside consistent underrepre-
sentation of minority racial groups and middle-aged or older women. These biases appear in both
dataset components, with the multilanguage component being only slightly more diverse regarding
race and age, at the cost of decreased gender diversity. Furthermore, stereotypical biases in facial
expressions were observed when analyzing the full dataset, with males frequently associated with
negative emotions such as “Anger” and “Disgust” and females with positive emotions like “Happi-
ness.” While most of these biases mirror patterns seen in other datasets (Dominguez-Catena et al.,
2024a), LAION-5B’s pronounced gender bias raises unique concerns.

These results uncover pervasive biases in LAION-5B’s composition, affecting multiple demographic
and non-demographic attributes through both general group representation and inter-group associa-
tions. Addressing these issues requires careful training dataset curation and development of more in-
clusive demographic analysis tools. Future work should validate these findings with human-labeled
data and investigate downstream impacts on image generators such as Stable Diffusion and FLUX,
as well as emerging multimodal models. Additionally, future studies could replicate this analy-
sis on alternative datasets like COYO-700M or RedCaps and enhance robustness by incorporating
diverse demographic-prediction models. Other characteristics could be studied, such as socioeco-
nomic status, androgyny, body size, religious attire presence or capture country. Finally, given video
production’s substantially higher costs than image production, video datasets and generation models
may exhibit even stronger demographic biases.
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