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Abstract

Recently there is an increasing interest in learning to simulate the dynamics of
physic systems via machine learning. However, existing approaches fail to gener-
alize to physical substances not in the training set, such as liquids with different
viscosities or elastomers with different elasticities. Here we present a machine
learning method embedded with physical priors and material parameters, which
we term as “Graph-based Physics Engine” (GPE), to efficiently model the physical
dynamics of different substances in a wide variety of challenging scenarios. We
demonstrate that GPE can generalize to different material properties not seen in
the training set by simply modifying the physical parameters, and also performs
well from single-step predictions to multi-step roll-out simulations. GPE provides
new insights into the construction of learnable simulators and is a key step toward
predicting unknown physics problems in the real world.

1 Introduction

Simulation of the dynamic of unknown physics systems is crucial in many scientific and engineering
areas Belytschko et al. [1994], Sulsky et al. [1995], Jiang et al. [2016], Sifakis and Barbic [2012], Han
et al. [2017], Holl et al. [2020]. Building high precision physics simulators requires extensive domain
knowledge and substantial engineering effort. Also the approximation techniques used to ensure
perceptual realism make the simulations deviate from the laws of reality in the long term. Recently,
several neural network based simulators were proposed to learn physical dynamics from large-scale
training data Battaglia et al. [2016], Chang et al. [2016], Li et al. [2018], Mrowca et al. [2018],
Sanchez-Gonzalez et al. [2018], Li et al. [2019], Ummenhofer et al. [2019], Sanchez-Gonzalez et al.
[2020]. Their success prove the feasibility of using machine learning to improve physics simulation.

One common drawback of the aforementioned methods is the lack of generalization for unseen
physical processes and substances. For example, if the training dataset consist dynamics of softer
elastomers and harder elastomers, it is expected that the model can generalize to elastomers with other
levels of elasticity. However, most ML-based simulators fail to do so since they can only simulate the
physic systems in the training dataset.

To this end, we introduce a new machine learning approach to model physical interaction dynamics
with graphs, which we term “Graph-based Physics Engine” (GPE). Our network represents discrete
physical systems by a graph structure which models force interactions using a message passing neural
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Figure 1: Graph topology for unstructured and structured physical systems. (a) Nearest neighbor
graph for unstructured systems. (b) Multi-scale grid graph for structured systems.

network (MPNN) Gilmer et al. [2017]. The contribution of GPE is multifaceted. First, the physical
parameters such as elasticity of elastomers are introduced to enable the model to generalize across
different systems. Second, a unified model architecture is used to learn different types of physical
dynamics, from viscous fluid simulations to finite element mechanics (FEM) analysis. Additionally,
we introduce the law of momentum conservation in MPNN to increase stability of learning. Various
experiment results show that GPE has good long-term roll-out stability even if it is learned over
single-step loss.

1.1 Related Work

Learning physical dynamics from data is one of the most important research areas in physics
Grzeszczuk et al. [1998]. A variety of neural network architectures, such as RNN Kadupitiya et al.
[2020], CNN Ummenhofer et al. [2019] and GNN Sanchez-Gonzalez et al. [2018], Battaglia et al.
[2016], Li et al. [2018, 2019], have been adopted to simulate dynamics of physical systems. In
particular, Ummenhofer et al. Ummenhofer et al. [2019] developed a novel CNN based on smoothed-
particle hydrodynamics (SPH) theory to simulate the motion of a Lagrangian fluid. Battaglia et
al. Battaglia et al. [2016, 2018] and Sanchez-Gonzalez et al. Sanchez-Gonzalez et al. [2020, 2018,
2019] demonstrated the effectiveness and generality to model the dynamics by message passing.
On the other hand, Mrowca et al. Mrowca et al. [2018] and Li et al. Li et al. [2018, 2019] used
hierarchical graph neural networks to simulate non-rigid deformation and collision deformation of
structured physical systems such as elastomers. However, all the aforementioned work can only
simulate the systems seen in the training set, which inspires us to allow the learned model to simulate
unseen materials.

2 Model Framework

Assume (G0, G1, ..., GT ) is the evolutionary trajectory of a physical system over time, where the
directed graph Gt =< Ot, Rt >∈ G represents the state of the system at time t. Vertices O = {oi}
represent the collection of discrete units of objects, and edges R = {(oi, oj)} represent the (directed)
interaction relationship between the particles.

A learnable graph-based physics engine (GPE) sθ : G → G models physical dynamics by mapping
the graph representation Gt to the graph representation at the next time step Gt+1. Similar to Sanchez-
Gonzalez et al. [2020], we use message passing neural networks (MPNN) Gilmer et al. [2017] to
model the evolutionary dynamics of physical systems as follows.

Encoder : h0
i = Encv(features(oi)), ∀oi ∈ O (1)

h0
i,j = Ence(features(oi, oj)), ∀(oi, oj) ∈ R (2)

For l = 1, ..., L : ml
i,j = Proce,l(h

l−1
i , hl−1j , hl−1i,j ), ∀(oi, oj) ∈ R (3)

ml
j,i = −ml

i,j , ∀(oi, oj) ∈ R (4)

hli = hl−1i + Procv,l(
∑
j∈Ni

ml
i,j) ∀oi ∈ O (5)

hlij = hl−1i,j +ml
i,j ∀(oi, oj) ∈ R (6)

Decoder : xi = Decv(h
L
i ), ∀oi ∈ O (7)
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The encoders map the raw features of the nodes and the edges into hidden vectors. The processors
iteratively compute messages on the edges, aggregate messages on nodes and update node hidden
vectors. Finally, the decoder predicts the position of the nodes at the next step. The model is trained
by minimizing the mean-squared-error (MSE) between predicted positions and the ground truth.

2.1 Graph Representation of a Physical System

The topology of the graph depends on how the physical system is being discretized. For unstructured
systems such as liquids, snow or sand, a nearest neighbor graph is used to model the connectivity
between particles, where two particles oi and oj are connected if their distance is within some
threshold r. The nearest neighbor topology reflects the fact that the strength of interaction between
two particles vanishes as their distance increases. For structured systems such as elastomers, we use a
mesh to discretize the system. In order to take consideration of the long-range interaction during the
deformation of solids, we use a multi-scale grid graph topology similar to Mrowca et al. [2018], Li
et al. [2018]. We merge four neighboring nodes into one "macro-mesh" described as a virtual node,
which is connected to all the four lower-layer nodes and other virtual nodes. The merging process
continues until all the nodes are merged into one super node. These virtual nodes and edges serve
to describe the macro structure and build a high-speed path for force transmission. Notice that the
connectivity of nearest neighbor graph needs to be updated during every roll-out step whereas the
multi-scale grid graph does not.

Input feature. The input features on GPE nodes contain the material properties of each unit (such
as the viscosity of water, the friction angle of sand, the hardening coefficient of snow, the Young’s
modulus of an elastomer), the velocity of the unit, and the external forces applied such as gravity.
Position information is not included in the input feature, which makes GPE naturally satisfy the
translation and permutation invariance.

Momentum conservation. Either the nearest neighbor graph or multi-scale grid graph contains
bi-directional edges between connected nodes. We only calculate the message mi,j on one of the
edges, and introduce the law of momentum conservation by simply requiring the message on the
opposite edge to be mj,i = −mi,j .

3 Experiments

3.1 Physical Domains and Datasets

We evaluate the performance of GPE in several different physical domains containing different
types of materials and dynamics. The SAND, SNOW and ELASTOMER domains generated by Taichi-
MPM engine Hu et al. [2020, 2019] contain dynamics of sand, snow and elstomers with different
physical parameters hitting a wall then deforming. The VISCOUS FLUID domain generated by
FLIPViscosity3D engine Batty et al. [2007], Batty and Bridson [2008] contains dynamics of fluids
with different levels of viscousity. The FINITE ELEMENT MECHANICAL (FEM) domain contains
dynamics of elastomers with different Young’s modulus hitting an uneven obstacle. The domains
represent a wide variety of physical systems but can be simulated by a unified model. The details of
data generation processes, model architectures and hyperparameters are relegated to Appendix A.

3.2 Results

In Figure 2, we visualize the SAND and FEM dynamics predicted by GPE. We observe that the
roll-out trajectories predicted by GPE are very similar to ground truths, even if the models are trained
only by single-step error. Moreover, it can be seen that GPE can simulate physical systems with
unseen parameters. Visualizations of other domains are relegated to Appendix B.

To quantify the performance of the simulation on unseen materials, we compare GPE with three
baselines, DPI-Net with hierarchy Li et al. [2018], GNS Sanchez-Gonzalez et al. [2020] and Con-
vNet Ummenhofer et al. [2019]. We calculate the average MSE of each time step in roll-out for the
aforementioned domains on unseen physical parameters. For GPE and DPI-Net, nearest neighbor
graph are used for the SAND, SNOW and VISCOUS FLUID, while multi-scale grid graphs are used for
the ELATOMER and FEM. For GNS and ConvNet, the graph topology are consistent with original
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Figure 2: The dynamics of SAND and FEM predicted by GPE. (a) The motion of a sand pile with
low, medium and high friction angles. (b) FEM results of collision deformation of an elastomer with
different Young’s modulus on an irregular obstacle.

Methods Sand Snow Elastomer FEM Viscous Fluid

DPI-NetLi et al. [2018] 5.15 4.91 2.07 1.76 3.31
GNSSanchez-Gonzalez et al. [2020] 3.80 5.49 3.58 5.03 3.78
ConvNetUmmenhofer et al. [2019] 3.51 5.24 2.82 4.96 2.75
GPE 2.37 3.94 1.35 1.27 3.22

Table 1: The average MSE (×10−3) for roll-out simulations on unseen materials.

papers. As shown in Table 1, GPE outperforms the baseline methods in most domains, demonstrating
its better ability to generalize to unseen systems.

Finally, we demonstrate the effect of momentum conservation on VISCOUS FLUID domain. By
introducing momentum conservation, only half of the messages on the edges are computed, leading
to a 37% reduction of forward computation time. As shown in Figure 3, GPE with momentum
conservation is more stable at the beginning of training, converges faster, and performs better on the
test set, compared to GPE without such a constraint.

Figure 3: Validation losses of GPE with and without momentum conservation. (a): First 100,000
training iterations. (b): 200,000-700,000 training iterations.
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4 Conclusion

In this paper, we proposed GPE, a graph-based learnable physical engine that simulates the dynamics
of complex systems by learning the message passing between nodes. Our experiments show that GPE
can simulate complex evolutionary trajectories in a variety of domains, and has good generalization
ability to unseen materials. We also introduce momentum conservation in the model to reduce
computational cost and stabilize the training process. Thanks to the universality, expressiveness
and generalization of modeling, graph-based learnable physics engines show great potential for
applications in high precision simulation of complex systems and inverse problem solving. Our study
helps shed light on using machine learning for physical reasoning.
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A Implementation Details

Here we illustrate the details of the implementation of GPE which are omitted in Section 3.1.

Data generation. The SAND, SNOW and ELASTOMER dataset are generated by Taichi-MPM
engine Hu et al. [2020, 2019]. The VISCOUS FLUID dataset are generated by FLIPViscosity3D
engine Batty et al. [2007], Batty and Bridson [2008]. We independently sample 2000 trajectories
with 10 different physical parameters as training set, 300 trajectories as test set and 300 trajectories as
validation set with physical parameters that did not appear in the training set, where each trajectories
contain 1000 frames. Most systems contain approximately 2500 particles, while the viscous liquid
system contain about 5000 particles. The FEM dataset is obtained from standard simulation formulas.
We independently sample 2000 trajectories as training set, 300 trajectories as test set and 300
trajectories as validation set, where each trajectories contain 800 frames and the system approximately
1000 meshes. We train the model on FEM data with Young’s modulus from 1 MPa to 4 MPa, and
test the model on data with Young’s modulus from 0.5 MPa to 10 MPa.

Implementation Details. The encoders Encv and Ence are MLPs with 2 layers and 128 neurons
per layer. The processors Procv and Proce are MLPS with 2 layers and 128 neurons per layer.
In Processor, the number of steps for message passing is 12. The decoder Decv is an MLP with
2 layers and 128 neurons per layer. All activation functions are PReLU. For SAND and SNOW
domains, the cutoff radius for nearest neighbor graph is 0.4. The model is trained 1000 epochs, using
the Adam optimizer and decaying the learning rate from 5 × 10−5to1 × 10−6. We compare the
performance of GPE with baselines GNS Sanchez-Gonzalez et al. [2020], DPI-Net Li et al. [2018],
and ConvNet Ummenhofer et al. [2019].

Boundary nodes. In GPE, the boundaries and obstacles are modeled as a special type of nodes,
which allow the learned model to generalize to scenarios with more complex boundaries.

B Visualization Results

In Figure 4, the enlarged image of the mechanical finite element analysis shows the distribution of
stresses in deformation in more detail.

Figure 4: The stress distribution during the deformation of the meshed elastic body is shown in red.

In Figure 5, we present the visualization results of SNOW, ELASTOMER and VISCOUS FLUID
predicted by GPE.
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Figure 5: The dynamics of (a) SNOW, (b) VISCOUS LIQUID and (c) PARTICLEIZED ELASTOMER
predicted by GPE.
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