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ABSTRACT

Previous works on stochastic gradient descent (SGD) often focus on its success.
In this work, we construct worst-case optimization problems illustrating that,
when not in the regimes that the previous works often assume, SGD can exhibit
many strange and potentially undesirable behaviors. Specifically, we construct
landscapes and data distributions such that (1) SGD converges to local maxima, (2)
SGD escapes saddle points arbitrarily slowly, (3) SGD prefers sharp minima over
flat ones, and (4) AMSGrad converges to local maxima. We also realize results in
a minimal neural network-like example. Our results highlight the importance of
simultaneously analyzing the minibatch sampling, discrete-time updates rules, and
realistic landscapes to understand the role of SGD in deep learning.

1 INTRODUCTION

SGD is the main optimization algorithm for training deep neural networks, and understanding SGD
is widely regarded as a key step on the path to understanding deep learning (Bottou, 2012; Zhang
et al., 2018; Xing et al., 2018; Mori et al., 2021; Du et al., 2018; Allen-Zhu et al., 2018; Wojtowytsch,
2021a;b; Gower et al., 2021; Ziyin et al., 2022b; Gurbuzbalaban et al., 2021; Zou et al., 2021; Li et al.,
2021; Feng and Tu, 2021). Despite its algorithmic simplicity (could be described by only two lines of
equations), SGD is hard to understand. The difficulty is threefold: (1) SGD is discrete-time in nature,
and discrete-time dynamics are typically much more complicated to solve than their continuous-time
counterparts (May, 1976); (2) SGD noise is state-dependent (Ziyin et al., 2022b; Hodgkinson and
Mahoney, 2020); and (3) the loss landscape can be nonlinear and non-convex, involving many local
minima, saddle points, and degeneracies (the Hessian is not full-rank) in the landscape (Xing et al.,
2018; Wu et al., 2017). Each of these difficulties is so challenging that very few works attempt to
deal with all of them simultaneously. Most previous works on SGD are limited to the cases when the
loss landscape is strongly convex (Ziyin et al., 2022b; Liu et al., 2021; Hoffer et al., 2017; Mandt
et al., 2017), or when the noise is assumed to be Gaussian and time-independent (Zhu et al., 2019;
Jastrzebski et al., 2017; Xie et al., 2021); for the works that tackle SGD in a non-convex setting, often
strong conditions are assumed. The reliance on strong assumptions regarding each of the challenges
means that our present understanding of SGD for deep learning could be speculative. This work
aims to examine some commonly held presuppositions about SGD and show that when all the three
challenging factors are taken together, many counter-intuitive phenomena may arise. Since most of
these phenomena are potentially undesired, this work can also be seen as a worst-case analysis of
SGD.

In this work, we study the behavior of SGD in toy landscapes with non-convex loss and multi-minima.
We approach the problem of SGD convergence from a different angle from many of the related works:
instead of studying when SGD will converge, our result helps answer the question of when SGD might
fail. In particular, the problem setting considers discrete-time SGD close to saddle points, where the
noise is due to minibatch sampling, and the learning rate is held constant throughout training. In the
next section, we define the SGD algorithm and the necessary notations. In Sec. 3, we discuss the
related works. A warmup example is provided in Sec. 4. Sec. 5 introduces the main results. Sec. 6
presents the numerical simulations, including a minimal example involving a neural network. We
also encourage the readers to examine the appendix. Sec. A presents additional experiments. Sec. B
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Figure 1: SGD converges to a local maximum for the example studied in Sec. 5.1. Left: Distribution of w on
the quadratic potential, L̂ = xw2

/2; the histograms in different colors show the distribution of model parameters
at different time steps. Middle: Distribution on the fourth-order potential, L̂ = xw2

/2 +w4
/4. Right: Escape

probability as a function of a and λ. The parameters space is divided into an absorbing phase where w is
attracted to the local maximum (in dark blue) and an active phase where w successfully escapes the two central
bins (in white).

presents a continuous-time analysis of the problems in the main text and is relevant for discussing the
unique discrete-time features of SGD. Sec. C presents all the proofs.

2 BACKGROUND

Notation and Terminology. We use λ to denote the learning rate. w is the model parameter. L̂(w;x),
with the caret symbol ⋅̂, denotes the sampled loss function, which is a function of the data point, and
L ∶= Ex[L̂] is the loss landscape averaged over the data distribution; for notational conciseness, we
often hide the dependence of L̂ on x when the context is clear. The lowercase t denotes the time step
of optimization. The phrases loss, objective, and potential are also used interchangeably.

Now, we introduce the minibatch SGD algorithm. The objective of SGD can be defined as a pair
(L̂, p(x)) such that L̂ is a differentiable function and p(x) is a probability density. We aim at finding
the minimizer of the following differentiable objective:

L(w) = Ex∼p(x)[L̂(w;x)], (1)

where x is a data point drawn from distribution p(x) and w ∈ RD is the model parameter. The
gradient descent (GD) algorithm for L is defined as the update rule wt = wt−1 − λ∇wL(w,x) for
some randomly initialized w0, where λ is the learning rate. The following definition defines SGD.
Definition 1. The minibatch SGD algorithm computes the update to the parameter w with the
following equation: wt = wt−1 − λĝt, where ĝt = ∇wt−1L̂(wt−1;xt), and xt is drawn from p(x) such
that xi is independent of xj for i ≠ j.

3 RELATED WORKS

Escaping Saddle Points. Because neural networks are highly nonlinear, the landscape of neural
networks is believed to have many local minima and saddle points (Du et al., 2017; Kleinberg et al.,
2018; Reddi et al., 2018b). It is thus crucial for the optimization algorithm to be able to overcome
saddle points efficiently and escape a suboptimal minimum. However, the majority of works on
escaping saddle points assume no stochasticity or only artificially injected noise (Li et al., 2017;
Du et al., 2017; Jin et al., 2017; Ge et al., 2015; Reddi et al., 2018b; Lee et al., 2016; Pemantle,
1990). Some physics-inspired approaches take the stochasticity into account but often rely on
continuous-time approximation and nontrivial assumptions regarding the stationary distribution of the
parameter (Mori et al., 2021; Xie et al., 2021; Liu et al., 2021). In the context of stochastic non-convex
optimization, one setting that SGD is known to escape saddles and converge well is when the learning
rate decreases to zero in the training (Pemantle, 1990; Vlaski and Sayed, 2019; Mertikopoulos et al.,
2020). In contrast, we only consider the case when the learning rate is held fixed. We stress that
our result does not contradict these previous results. On the opposite, our result reinforces the idea
that the learning rate needs to be carefully chosen and scheduled when convergence is an essential
concern.

Role of Minibatch Noise. One indispensable aspect of SGD is its stochasticity originated from
minibatch sampling (Wu et al., 2020; Ziyin et al., 2022b; Zhu et al., 2019; Hodgkinson and Mahoney,
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2020), whose strength and structure are determined by the model architecture and the data distribution.
Moreover, it has been observed that the models trained with SGD significantly outperform the models
directly trained with GD (Hoffer et al., 2017). Therefore, understanding the role of minibatch noise is
of both fundamental and practical value. However, in the previous works, the focus is on analyzing
the behavior of SGD on the landscape specified by L; the unique structures due to the noise in SGD
are often treated in an oversimplified manner without referring to the actual models in deep learning
or the actual data distributions. For example, Daneshmand et al. (2018) assumes that the noisy
gradient is negatively correlated with the least-eigenvalue direction of the Hessian, an assumption
that its validity is unclear when the Hessian is not full rank. Kleinberg et al. (2018) assumes that the
noise in SGD makes the landscape one-point strongly convex, which implies that the loss landscape
before the convolution is already close to a strongly convex landscape. Another commonly assumed
condition is that the loss-landscape satisfies the Lojasiewicz condition, which is non-convex but
implies the unrealistic condition that there is no local minimum except the global minimum (Karimi
et al., 2020; Wojtowytsch, 2021a; Vaswani et al., 2019), which is not sufficient to understand the
complicated dynamics that often happen in a setting with many minima (for example, a deep linear
net (Ziyin et al., 2022a)). In Sec. 6.3, we show that these assumptions are violated for a minimal
nonlinear neural network with two layers and one hidden neuron. While our example may or may
not be directly relevant for realistic settings in the deep learning practice, our work highlights the
importance of analyzing the actual noise structure imposed by a deep neural network in future works.

Large Learning Rate Regime. Recently, it has been realized that networks trained at a large learning
rate have a better performance than networks trained with a vanishing learning rate (lazy training)
(Chizat and Bach, 2018). Lewkowycz et al. (2020) shows that there is a qualitative difference between
the lazy training regime and the large learning rate regime; the performance features two plateaus
in testing accuracy in the two regimes, with the large learning rate regime performing much better.
However, almost no previous theory exists for understanding SGD at a large learning rate. Our work
is also relevant for understanding what happens at a large learning rate.

4 A WARM-UP EXAMPLE

This section studies a special example of the main results of our work. While the setting of this
example is restricted, it captures the essential features and mechanisms of SGD that we will utilize to
prove the main results. Consider the following loss function:

L̂(w) = x
2
w2, (2)

where x,w ∈ R and x is drawn from an underlying distribution p(x) at every time-step. We let
E[x] = a/2 and assume that Var[x] = σ2 is finite. This gives rise to a true, sample-averaged loss
of L(w) = a

4
w2. The stationary point of this loss function is w = 0. When a > 0, the underlying

(deterministic) landscape is a minimum; the a > 0 case is now well understood in the discrete-time
limit and when the underlying noise is state-dependent (Liu et al., 2021). When a < 0, the point w = 0
is a local maximum; one hopes that the underlying dynamics escape to infinity, and our goal is to
understand the behavior of SGD in this case.

The following proposition and proof show that for the zero-mean and bounded distribution p(x),
SGD cannot escape from the local maximum when the learning rate is set to be 1.
Proposition 1. Let λ = 1 and a < 0 and p(x) be the distribution such that x = 1 and x = −1 + a
with equal probability. Then, w converges to w = 0 with probability 1 with the SGD algorithm,
independent of the initialization.

Proof. By the definition of the SGD algorithm, we have

wt+1 = {0 with probability 0.5;

(2 − a)wt otherwise.
(3)

Therefore, after t time steps, wt has at most 2−t probability of being non-zero. For infinite t, wt = 0
with probability 1. ◻
This simple toy example illustrates a few important points. First of all, it suggests that one cannot use
the expected value of w to study the escape problem of SGD. The expectation value of wt is

Ex[wt] = (1 − a/2)Ex[wt−1] = (1 − a/2)tw0 = w0e
ln(1−a/2)t, (4)
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which is an exponentially fast escape from any initialization w0 for a < 0. In fact, ln(1− a) is exactly
the escape time scale of the GD algorithm. This is counter-intuitive: SGD will converge to the local
maximum with probability 1, even if its expected value escapes the local maximum exponentially
fast.

Alternatively, one might also hope to use the expected loss or the norm Ewt[L(wt)] ∼ ∣∣wt∣∣22 as the
metric of escape, but it is not hard to see that they suffer the same problem. At time t, because wt = 0

with probability 1− 2−t and wt = (2− a)tw0 with probability 2−t, we have E[L(wt)] ∝ w2
0e

2t ln 2−a√
2 ,

which also predicts an exponentially fast escape. Again, this fails to reflect the fact that SGD has only
a vanishingly small probability of escaping the constructed local maximum. Statistically speaking,
the norms of wt fail to be good metrics to measure the escape rate because these metrics are not robust
against outliers. In our example, there is only 2−t probability for SGD to escape the local minimum,
yet the speed at which this outlier escapes the maximum outweighs the decay in its probability
through time, thus contributing more to the expected norm than any other events. This example also
shows the difficulty and subtlety of dealing with the escape problem. This example (together with
Sec. 5.1) also emphasizes the importance of showing convergence in probability for future works in
non-convex optimization because convergence in expectation is not sufficient to guarantee a good
empirical performance. The results in the rest of this work can be seen as extensions of this special
case to less restrictive settings.

5 MAIN RESULTS

In this section, we present our four main theoretical results: (1) SGD may converge to a local
maximum; (2) SGD may escape a saddle point arbitrarily slowly; (3) SGD may prefer sharp minima
over flat ones; and (4) AMSGrad may converge to a local maximum.

5.1 SGD MAY CONVERGE TO A LOCAL MAXIMUM

We show that there are cases where SGD may fail to escape saddle points, while GD can successfully
escape; this contradicts the suggestions in Kleinberg et al. (2018) that SGD always escapes a local
minimum faster than GD. It is appropriate to begin with the definition of a saddle point.
Definition 2. w is said to be a stationary point of L(w) if ∇wL(w) = 0. w is a minimum of L if, for
all w′ in a sufficiently small neighborhood of w, L(w′) ≥ L(w). w is said to be a saddle point if w is
a stationary point but not a local minimum.

This definition of saddle points, which includes local maxima, agrees with the common definition in
the literature (Daneshmand et al., 2018). The following proposition generalizes our warmup example
to a family of 1D problems in which SGD converges to a local maximum.
Proposition 2. Let Eq. 2 be the loss function. Let λ > 0, and p(x) be such that µ ∶= E[ln ∣1 − λx∣]
and s2 ∶= Var[ln ∣1 − λx∣]; then SGD converges to the local maximum in probability if µ < 0.

Proof Sketch. We first show that 1
√
t

ln ∣wt/w0∣ obeys a normal distribution as t→∞. This allows us
to deduce the cumulative distribution function (c.d.f.) of w as t→∞. The c.d.f. has an bifurcative
dependence on the sign of µ ∶= E[ln ∣1 − λx∣]. When µ < 0, the distribution of wt converges to 0 in
probability. See Sec. C.2 for the detailed proof. ◻
Corollary 1. Let Eq. 2 be the loss function and p(x) = 1

2
δ(x−1)+ 1

2
δ(x+1−a); then SGD converges

to the local maximum in probability if

a

a − 1
< λ < a −

√
a2 − 8a + 8

2(a − 1) . (5)

One special feature of this example is that the state-dependent noise vanishes at the saddle point.
In this particular example, this is achieved by having an SGD noise proportional to the gradient
thus vanishing at the saddle point. This type of structure may be relevant for deep learning because
vanishing noise at a stationary point and state-dependent noise can appear at the origin of a deep
net, where weights of all layers are zero. Note that the convergence is independent of the actual
shape of the distribution p(x), and so may apply to many kinds of distributions besides the Bernoulli
distribution we considered. There are three different regimes/phases for this simple escaping problem
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(also see Fig. 1-Right). The escape regime λ > a−
√
a2−8a+8

2(a−1)
is also present when a > 0; it means that

in this regime, SGD will also escape w0 even if it is a local minimum. This regime is not present if we
perform a continuous-time analysis (Sec. B), showing that this region is due to the instability of the
discrete-time SGD algorithm. This kind of escaping is undesirable because, in this regime, the local
gradient cannot provide any guidance for minimizing the loss. The region a

a−1
< λ < a−

√
a2−8a+8

2(a−1)
is

the trapped regime. This is due to the special structure of the minibatch noise – a comparison with the
continuous-time analysis suggests that SGD will not be trapped if the noise is not position dependent
(Sec. B.1). The small learning rate regime λ < a

a−1
is the successful escape regime because the SGD

noise is of order λ2 and becomes negligible at a small λ (Liu et al., 2021). This regime corresponds
to the lazy learning regime of training: with negligible noise and vanishing gradient, SGD is known
to optimize neural networks well (Du et al., 2018). This discussion also justifies our later choice for
placing an upper bound to λ and focusing only on the second and third regime in Sec. 5.3 and 5.4.

It is important to understand why the previous works that show that the previous guarantees of
convergence do not apply to this particular example, for example, Ge et al. (2015). In comparison,
the SGD algorithm is not guaranteed to escape the saddle point in this example because two crucial
assumptions of Ge et al. (2015) is violated: (1) the gradient does not have a bounded fluctuation
around its mean (and so even parameters very far away from the saddle can be brought back close
to the saddle point due to the noise), and (2) we do not inject additive noise to the gradient and the
actual noise decreases as we approach the saddle point (and so the closer we are to the saddle point,
the less likely one can escape). The standard theoretical guarantee of convergence in Ge et al. (2015)
thus does not apply to this example. This example shows that the minibatch noise of SGD is very
special and can strongly influence convergence. A continuous-time analysis in Section B of this
example shows that the convergence to local maxima occurs when the minibatch noise dominates the
gradient, namely, when the signal to noise ratio becomes smaller than 1. This suggests the importance
of minibatch noise in influencing the dynamics of SGD. This suggests that the signal-to-noise ratio
can be an important parameter in SGD dynamics and may deserve more future research.

5.2 SGD MAY ESCAPE SADDLE POINTS ARBITRARILY SLOWLY

In the previous section, we have shown that one can adversarially construct a loss function for a
fixed learning rate such that the SGD algorithm converges to a local maximum. This section shows
that, even if one can tune the learning rate at will, there is a loss landscape where SGD can take an
arbitrarily long time to escape, no matter how one chooses the learning rate. We begin by defining
the escape rate.
Definition 3. The asymptotic average escape rate of w at learning rate λ, γ(λ), is defined as
γ ∶= limt→∞

1
t
Ewt[ln ∣wt∣]. The optimal escape rate is defined as γ∗ ∶= supλγ(λ).

Remark. This definition can be seen as a generalization of the Lyapunov exponent to a probabilistic
setting. We note that this definition of escape rate differentiates this work from the standard literature
on escaping saddles, where the focus is on the time scale for reaching a local minimum when saddle
points exist (Ge et al., 2015; Daneshmand et al., 2018; Jin et al., 2017), while our definition focuses
on the time scale of escaping a specified saddle point. These two time scales can be vastly different.

As discussed in the previous section, the undesired escape can be achieved by setting the learning
rate to be arbitrarily large; however, this is not possible in practice because the learning rate of SGD
is inherently associated with the stability of learning, and λ usually has to be much smaller than 1.
Proposition 3. Let the loss function be Eq. (2), a < 0 and p(x) ∼ 1

2
δ(x − 1) + 1

2
δ(x − a + 1), where

δ is the Dirac delta function, and λ ≤ 1. Then, for any ε > 0, there exists a such that supλ γ(λ) < ε.
Specifically, γ∗ = ln 2−a

2
√
1−a

, and, for any ε > 0, γ∗ < ε if ∣a∣ ≤ 2 ∣−eε
√
e2ε − 1 − e2ε + 1∣.

Namely, the SGD algorithm can escape the saddle point of Eq. (2) arbitrarily slowly. Intuitively, one
expects escaping to be easier as we increase the learning rate (Kleinberg et al., 2018), and that the
escape rate should monotonically increase as we increase the learning rate. This example conveys
a novel message that the escaping efficiency is not monotonically increasing as the learning rate
increases. For this example, the escape rate first decreases and starts to increase only when λ is quite
large. This example also shows the subtlety in the escaping problem. On the one hand, one needs to
avoid a too large learning rate to avoid training instability. On the other hand, one cannot use a too
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small learning rate because a small learning rate also makes optimization slow. Thus, there should
be a tradeoff between learning speed and learning stability, and we may construct a general theory
for finding the best learning rate that achieves the best tradeoff; however, this tradeoff problem is a
sufficiently complex problem on its own and is beyond the scope of the present work.

5.3 SGD MAY PREFER SHARPER MINIMA

Modern deep neural networks are often overparametrized and can easily memorize all the training
data points. This means that the traditional metrics such as Rademacher complexity cannot be
used to guarantee the generalization capability of SGD (Zhang et al., 2017). Nevertheless, neural
networks are found to generalize very well. This inspired the hypothesis that SGD, the main training
algorithm of neural networks, contains some implicit regularization effect such that it biases the neural
network towards simpler solutions (Neyshabur et al., 2017; Soudry et al., 2018). One hypothesized
mechanism of this regularization is that SGD selects flat minima over the sharp ones (Hochreiter and
Schmidhuber, 1997; Meng et al., 2020; Xie et al., 2021; Liu et al., 2021; Mori et al., 2021; Smith
and Le, 2018; Wojtowytsch, 2021b). In this work, we show that this may not be the case because
the dynamics and convergence of SGD crucially depend on the underlying mini-batch noise, while
the sharpness of the landscape is independent of the noise. Before introducing the results, let us first
define the sharpness of a local minimum.
Definition 4. Let w = w∗ be a local minimum of the loss function L(w); the sharpness s(w∗) of
a local minimum w∗ is defined as s(w∗) ∶= Tr[∇2

wL(w∗)]. We say that a minimum w∗
1 is sharper

than w∗
2 if and only if s(w∗

1) > s(w∗
2).

In this definition, the sharpness is the trace of the Hessian of the quadratic approximation to the local
minimum. Other existing definitions, such as the determinant of the Hessian, are essentially similar
to this definition (Dinh et al., 2017).

For an explicit construction, consider the following objective on a 2-dimensional landscape:

L̂(w1,w2) =
1

2
[−(w1 −w2)2 − (w1 +w2)2 + (w1 −w2)4 + (w1 +w2)4 − 2aw2

2 + xbw2
1] . (6)

for a, b > 0 and p(x) = 1
2
δ(x− 1)+ 1

2
δ(x+ 1). The diagonal terms of the Hessian of the loss function

is given by
⎧⎪⎪⎨⎪⎪⎩

∂2

∂w2
1
L̂(w1,w2) = −2 + 12w2

1 + 12w2
2;

∂2

∂w2
2
L̂(w1,w2) = −2 − 2a + 12w2

1 + 12w2
2.

(7)

There are four local minima in total for this loss function. These minima and their sharpnesses are

⎧⎪⎪⎨⎪⎪⎩

(w1,w2) = (± 1
√
2
,0) with s = 4;

(w1,w2) = (0,±
√

1+a
2

) with s = 4 + 4a.
(8)

We see that for positive a, the minima at (0,±
√

1+a
2

) are sharper than the other two minima. We
show that SGD will converge to these sharper minima. For this example, we assume that w1 and w2

are bounded because, if initialized sufficiently far from the origin, the fourth-order term will cause
divergence.
Proposition 4. Let the loss function be Eq. (6), ∣w1∣ ≤ 1 and ∣w2∣ ≤ 1. For any λ < c for some
constant c = O(1), there exists some b such that if SGD converges in probability, it will converge to

the sharper minimum at (w1,w2) = (0,±
√

1+a
2

).

Remark. In this example, the noise is not full-rank, which is often the case in a deep learning setting
for overparametrized networks (Wojtowytsch, 2021a). For example, when weight decay is used, the
Hessian of the loss function should be full rank, while the rank of the noise covariance should be
proportional to the inherent dimension of the data points, which is in general much smaller than the
dimension of the Hessian in deep learning (Ansuini et al., 2019).

The proof is technical and given in the appendix Sec. C.5. In fact, it has been controversial whether
finding a flat minimum can help generalization. For example, Dinh et al. (2017) shows that, for every
flat minimum of a ReLU-based net, there exists a minimum that is arbitrarily sharper and generalizes
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as well. However, this work does not rule out the possibility that conditioning by using gradient-based
optimization, the performance of the sharper minima that gradient descent finds is worse than the
performance of the flatter minima. If this assumption is valid, then biasing gradient descent towards
flatter minima can indeed help, and the stochasticity of SGD has been hypothesized to help in this
regard. However, our construction shows that SGD, on its own, may be incapable of helping SGD
converge to a flatter minimum. At least some other assumptions need to be invoked to show that
SGD may help. For example, the definition of the neural networks may endow these models with a
special kind of Hessian and noise structure that, when combined with SGD, results in a miraculous
generalization behavior. However, no previous work has pursued this direction in sufficient depth to
our knowledge, and future studies in this direction may be fruitful.

5.4 NON-CONVERGENCE OF ADAPTIVE GRADIENTS

mt = β1mt−1 + (1 − β1)ĝt; (9)

vt = β2vt−1 + (1 − β2)ĝ2t ; (10)
v̂t = max(v̂t−1, vt); (11)

wt = wt−1 −
λ√
v̂t
mt. (12)

Adam (Kingma and Ba, 2014) and its closely related variants
such as RMSProp (Tieleman and Hinton, 2012) have been
shown to converge to a local maximum even for some simple
convex loss landscapes (Reddi et al., 2018a). The proposed
fix, named AMSGrad, takes the maximum of all the previous
preconditioners in Adam. This section shows that AMSGrad
may also converge to a local maximum even in simple non-
convex settings. Let xt ∼ p(x) and ĝt = ∇L̂(xt,wt−1), the Adam algorithm is given by Eq. (9)-(12),
where v0 = m0 = 0. We have removed the numerical smoothing constant ε from the denominator,
which causes no problem if w0 is initialized away from 0. Here, β1 is the momentum hyperparameter.
vt is called the preconditioner, and β2 is the associated hyperparameter. The standard value for β1 is
0.9 and β2 is 0.999. In our theory, we only consider the case when β1 = 0. The experiment section
shows that a similar problem exists when β1 > 0 (with additional interesting findings). Intuitively,
this is easy to understand because AMSGrad behaves like SGD asymptotically, so we only have
to wait for long enough, and the results in previous sections would apply. The construction below
follows this intuition.
Proposition 5. Let wt ∈ [−1,1], and w0 ≠ 0. For fixed λ < 1 and the loss function in Eq. (2) there
exists a < 0 such that the AMSGrad algorithm converges in probability to a local maximum.

Remark. The proof is given in Sec. C.6. Note that the example we construct is similar to the original
construction in Reddi et al. (2018a) that shows that Adam converges to a maximum while AMSGrad
succeeds in reaching the global minimum. In their example (with some rescaling), the gradient is a
random variable

ĝt = {1 with probability q ≈ 1;
c0 < 0 with probability 1 − q ≪ 1;

(13)

such that the expected gradient is negative, and Adam is shown to converge to the direction opposite
to the gradient descent (therefore to a maximum). In our example, the gradient is (roughly)

ĝt = {wt−1 with probability 1/2;
−(1 + a)wt−1 with probability 1/2.

(14)

Therefore, our example can be seen as a minimal generalization of the Reddi et al. (2018a) example
to a non-convex setting.

6 EXPERIMENTAL DEMONSTRATIONS

We perform experiments to illustrate the examples studied in this work. Due to space limitations, we
illustrate the escape rate and the convergence to sharper minima example in Appendix Sec. A.

6.1 SGD CONVERGES TO A LOCAL MAXIMUM

Numerical results are obtained for the setting described in section 5.1. See Fig. 1-Left. The loss
landscape is defined by L(w) = 1

4
aw2. In this numerical example, we set λ = 0.8 and a = −1, and

the histogram is plotted with 2000 independent runs. We see that the distribution converges to the
local maximum at w = 0 as the theory predicts. For better qualitative understanding, we also plot
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Figure 2: AMSGrad diverges to the local maximum with or without momentum in the example we studied in
Sec 5.4. Our result shows that AMSGrad is always attracted to the local maximum, while Adam has the potential
of escaping the local maximum with momentum. Left: without momentum. Right: with momentum.

the empirical phase diagram of this setting in Fig. 1-Right. We perform numerical evaluations for
different combinations of a and λ on a a − λ plane, and for each combination, we plot the percentage
of w that escapes the central bin (white is 100% and dark blue is 0%). For completeness, we also
plot the case when a > 0, i.e., when the critical point at w = 0 is a local minimum. The orange line
shows where the phase transition is expected to happen according to Eq. (5). The fact that the orange
line agrees exactly with the empirical phase transition line confirms our theory.

We also numerically study a closely related fourth-order loss landscape, defined as L̂(w) = 1
2
xw2 +

1
4
w4, where the distribution p(x) is the same as before. The expected loss L(w) has two local

minima located as w = ±
√
−2a. We are interested in whether SGD can converge to these two points

successfully; note that, without the fourth-order term, this loss is the same as the quadratic loss we
studied. See Fig. 1-Middle. As before, a = −1 and λ = 0.8. We see that the distribution of w also
concentrates towards the local maximum after training, and no w is found to converge to the two
local minimum even if a significant proportion of w is initialized close to these two minima. A phase
diagram analysis is given in the Sec. A.1.

6.2 NON-CONVERGENCE OF AMSGRAD

In this section, we illustrate the example of the convergence behavior of AMSGrad described in
Sec. 5.4; for reference, we also plot the behavior of Adam and gradient descent for this example. See
Fig. 2. The experiment is the average over 2000 runs, each with 5 × 104 steps. The uncertainty is
reflected by the shaded region (almost invisibly small). The loss function is the same as discussed
in Sec. 5.4 with a = −0.1. For illustration purposes, we set λ = 0.2 and β2 = 0.999 for both Adam
and AMSGrad. When momentum is used, we set β1 = 0.9. GD is run with a learning rate of 0.01.
Without momentum, both Adam and AMSGrad converge to the local maximum with almost the same
speed. When momentum is added, AMSGrad still converges to the local maximum. Curiously, Adam
is no longer attracted to the local maximum but also remains away from the local minimum. This
suggests that Adam, with momentum, might have a better capability of escaping saddle points than
AMSGrad and might be preferable to AMSGrad in a non-convex setting.

6.3 A TOY NEURAL NETWORK EXAMPLE

We have now illustrated several SGD phenomena we studied in artificial settings, inspiring the
natural question of whether they occur for an actual neural network. Here we construct a neural-
net-like optimization problem to show that the problems with convergence might indeed arise for a
neural network. The toy neural network function is given by f(x) = w2σ(w1x), where w1,w2 ∈ R.
σ is the nonlinearity, and we let σ(x) = x2 as a minimal example. This is the simplest kind
of nonlinear feedforward network one can construct (2 layer with a single hidden neuron). We
also pick a minimal dataset with a single data point: x = 1 with probability 1 and y ∈ {−1,2},
each with probability 0.5, i.e., the label has a degree of inherent uncertainty, which is often the
case in real problems. We use mean squared error (MSE) as the loss function. Therefore, the
expected loss is L(w1,w2) = 1

2
(w2w

2
1 + 1)2 + 1

2
(w2w

2
1 − 2)2. The global minimum L∗ = 2.25 is

degenerate, and is achieved when w1 = 1/
√

2w2. There is also a manifold of saddle points given by
{(w1,w2)∣w1 = 0,w2 ≥ 0}, all with L = 2.5. Despite the simplicity of this example, it contains a few
realistic features in a realistic problem, including (1) inherent uncertainty in the data, (2) a nonlinear
hidden layer, and (3) a degenerate minimum with zero eigenvalues in the Hessian.

8



Published as a conference paper at ICLR 2022

1.5 1.0 0.5 0.0 0.5 1.0 1.5
w2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

w
1

Saddle points

Global minima

0

100

200

300

400

500

600

1.5 1.0 0.5 0.0 0.5 1.0 1.5
w2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

w
1

0

1000

2000

3000

4000

5000

6000

7000

8000

0.000 0.025 0.050 0.075 0.100 0.125 0.150
learning rate

2.25

2.30

2.35

2.40

2.45

2.50

lo
ss Diverge

Figure 3: Convergence of a two-layer one-neuron neural network to a saddle point. The blue region shows
the empirical density of converged parameter distribution. Left: λ = 0.001 at step 10000 converges to global
minima. Mid: λ = 0.1 at step 10000 converges to a saddle point. Right: Average loss in equilibrium as a
function of learning rate. The loss function diverges for learning rates larger than 0.108.

More importantly, most previous works on the convergence or escaping behavior of SGD are
inapplicable to this example. One dominant assumption is the ρ-Hessian Lipschitz property (Jin
et al., 2017; Ge et al., 2015), which does not hold for this example in particular. Another common
assumption is the PL condition (Karimi et al., 2020; Wojtowytsch, 2021a; Vaswani et al., 2019),
which does not apply due to the existence of the saddle point. One recent assumption is that the loss
function is 1-point convex for all points (Kleinberg et al., 2018), which is also ruled out because
(0,0) is not 1-point strongly convex. Another relevant assumption is the correlated negative curvature
assumption, which also does not hold for (0,0). We explain in Sec. A.5 in detail why these conditions
are violated.

See Fig. 3 for the experimental results with this example. Here, w1 is initialized uniformly in [−1,1];
w2 is initialized uniformly in [0,1] to be closer to the global minimum and away from the saddle point
(standard initialization such as initializing in [−1,1] does not change the conclusion). The left figure
shows the stationary distribution of the model parameter at a small learning rate (λ = 0.001). All the
parameters are located in the global-minimum valley as expected. In contrast, when the learning rate
is large (λ = 0.1), the central figure shows that all models (1000 independent runs) converge to the
saddle point at (0,0). The right figure investigates this change more systematically and shows the
change in the average stationary training loss of the models as we increase the learning rate from
0.001 to 0.15. We see that for a small learning rate, the training loss is close to that of the global
minima (L = 2.25), and for a significant range of large learning rates, the model invariably converges
to a saddle point (L = 2.5). One additional interesting observation is that the model diverges at
λ ≈ 0.11, and there is almost no sign of such divergence (such as increased fluctuation) when the
learning rate is close to the divergent threshold. This example shows the relevance of our results to
the study of neural networks. In fact, it has often been noticed that at convergence, many large-scale
neural networks in real tasks exhibit negative eigenvalues in the Hessian (Alain et al., 2019; Granziol
et al., 2019). The existence of negative eigenvalues at a late time suggests either the possibility that
the algorithm has yet to escape or that it has indeed been attracted to such saddle points; if the latter
is true, then our work offers an explanation. The emergence of negative eigenvalues at the end of
training serves as indirect evidence that our result may be relevant for larger neural networks. It
thus remains an important open question to prove (and identify the condition of) or disprove the
convergence of larger and deeper neural networks to a local maximum.

7 DISCUSSION

We have shown that when the learning rate is not carefully chosen or scheduled, SGD can exhibit
many undesirable behaviors, such as convergence to local maxima or saddle points. The limitation of
our work is clear. At best, all the constructions we made are minimal and simplistic toy examples
that are far from practice, and investigating whether the discovered messages are relevant for deep
learning or not is the one important immediate future step. Other relevant questions include: (1) Does
convergence to saddle points help or hurt generalization? (2) If it hurts, how can we modify SGD
to avoid saddle points better? We suspect changing learning rates, changing batch size, or injecting
noise may help, but a convincing theoretical guarantee in a realistic setting is yet lacking. (3) If
saddle points do not have worse generalization, our results motivate for understanding why. This is
especially relevant because we showed that using a large learning rate is more likely to converge
to saddle points, while previous works have shown that using a large learning rate can improve
generalization; combined, this may imply that certain saddle points may have intriguing but unknown
regularization effects.
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A ADDITIONAL EXPERIMENTS

A.1 PHASE DIAGRAM OF THE FOURTH-ORDER LOSS FUNCTION

With two proper local minima, the fourth-order loss function is a more realistic loss function than
the one we considered in Sec. 5.1. We also performed one experiment in the main text (See Fig. 1).
Here, we plot its empirical phase diagram in Figure 4. We see that for this loss landscape also, there
is some region such that for all λ, SGD converges to the local maximum. This loss landscape is very
difficult to study in discrete time as it is known to lead to chaotic behavior at large learning rate (May,
1976). Therefore, we alternatively try to understand this landscape using continuous approximation.
See Sec. B.
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Figure 4: Escape probability from the local maximum as a function of a and λ with fourth-order
loss landscape. The parameters space is divided into an absorbing phase where w is attracted to the
local maximum and an active phase where w escapes to infinity successfully. The orange line is the
theoretical phase transition line for the quadratic loss function. We see that when λ is small, the line
based on quadratic loss also gives good agreement with the fourth-order loss. This suggests that part
of this result is universal and independent of the details of the loss function.

A.2 ESTIMATING THE ESCAPE RATE

In the escape rate experiments, the empirical results are obtained from the proposed approximation.
Here, we show that it is valid. See Fig. 5, where we plot the estimated γ as a function of the training
step. We see that the estimated value converges within about 20 steps. We, therefore, estimate the
escape rates at time step 100 in the main text.
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Figure 5: Escape rate γ as a function of time step t obtained when a = −1, showing that γ, defined in
Equation (73), is indeed a well-defined quantity when t is large. γ becomes stable after roughly 40
steps.

A.3 ESCAPE RATE EXPERIMENTS

This section illustrates the slow escape problem studied in Sec. 5.2. See Fig. 6. γ is calculated by
averaging the first 50 time steps across 2000 independent runs. We see that, as our theory predicts,
as ∣a∣ gets closer to 0, the optimal escape rate decreases towards 0. This implies that there exists
a landscape such that SGD is arbitrarily slow at learning, independent of parameter tuning. One
additional observation is that the optimal learning rate is neither too large nor too small, i.e., there
seems to be a tradeoff between the escape speed and escape probability (and between the speed and
stability). See also the discussion at the end of Sec. 5.2.
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Figure 6: Escape rate γ as a function of learning rate λ with quadratic loss landscape, obtained by simulations.
We note that the escape-rate analysis yields results which are compatible with the phase diagram.
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Figure 7: Evolution of the distribution of w in a landscape where two flat minima and two sharp minima exist.
As Proposition 4 shows, the model parameters converge to the sharper minima even if initialized in the flat
minimum. Left: Initialization. Mid: step 2. Right: step 10000.

A.4 CONVERGENCE TO THE SHARPER MINIMUM

We use the same 2-dimensional loss landscape defined in Sec. 5.3. The experiment is run with 2000
independent simulations and learning rate λ = 0.05. See Fig. 7, where we overlap the underlying
landscape with the empirical distribution (the heat map). We see that, even though the initialization
overlaps significantly with the local flatter minimum, all points converge to the sharper minimum, as
the theorem predicts.

A.5 INADEQUACY OF STANDARD ASSUMPTIONS FOR THE NEURAL NETWORK EXAMPLE

In this section, we show that the standard assumptions in the previous literature do not hold for the
example studied in Sec. 6.3. One common assumption is that the loss function is ρ-Hessian Lifschitz.

Definition 5. A loss function L is said to be ρ-Hessian Lifschitz if, for some ρ > 0,

∀w,w′, ∣∣∇2L(w) − ∇2L(w)∣∣ ≤ ρ∣∣w −w′∣∣. (15)

This certainly does not hold for the example we considered. Explicitly, let w2 = 0, the Hessian H(w)
of the loss function is

Hw1,w1 =Hw1,w2 =Hw2,w1 = 0, (16)

and
Hw2,w2 = −w2

1. (17)

Let w1 →∞ violates the ρ-Hessian Lifschitz property.

Another common assumption for the non-convex setting is the PL condition.

Definition 6. Let L∗ be the value of L at the global minimum. A loss function L is said to satisfy
the PL (Lojasiewitz) condition if

∀w, ∣∣∇L(w)∣∣2 ≥ µ(L(w) −L∗), (18)

for some µ > 0.

This also does not hold due to the existence of the saddle point. Let (w1,w2) = (0,0). The gradient
is zero, but the right-hand side is greater than 0.

Recently, the correlated negative curvature assumption has been proposed to study the escaping
behavior of SGD.
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Definition 7. Let vw be the eigenvector of the minimum eigenvalue of the HessianH(w). L satisfies
the correlated negative curvature assumption if, for some γ > 0,

∀w,Ex[⟨vw,∇L(x,w)⟩2] > γ (19)

where x is the data point.

This also does not hold. The point (0,0) violates this condition because ∇L(x,w) = 0 for all x at
(w1,w2) = (0,0). In fact, it is exactly this point that violates this condition that the SGD converges
to in this example.

Recently, the one point strongly convex assumption has been proposed to study the escaping behavior
of SGD.
Definition 8. A loss function is said to satisfy the c-one point strongly convex condition with respect
to w∗ for all gradient noise ε, c > 0, define v =w − λ∇L(w), we have

⟨−∇EεL(v − λw,w∗ − y) ≥ c∣∣w∗ − v∣∣22, (20)

where ε is the random noise caused by minibatch sampling.

This assumption is equivalent to that the loss landscape is strongly convex after convoluting with the
noise. This condition implies that there is only a single stationary point. However, this is not the case,
consider any point with w1 = 0 and w2 ≤ 0. These points have zero gradient for w1 ≤ 0 and so ε = 0
with probability 1. Then, these points all have the same loss after the convolution:

E[L(v − λε)] = L(v), (21)

which either imply that the landscape is not convex or that there is more than 1 stationary point, and
so the system is not one point strongly convex 1.

1One notices that the origin, where all the parameters are zero, is a special point in the problem. In fact, the
origin may be a very special point in the landscape of deep neural networks in general. For example, see Ziyin
et al. (2022a).
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B CONTINUOUS-TIME APPROXIMATION WITH FOKKER-PLANCK EQUATION

In this section, we study the examples we studied in the main text in a continuous-time approximation,
in order to understand the unique aspects of discrete-time SGD. Compared with the discrete-time
analysis, continuous-time analysis is usually more powerful in terms of calculation: it is able to deal
with more complicated potentials.

B.1 FOKKER-PLANCK EQUATION AND ITS STATIONARY DISTRIBUTION

Recall that the SGD update takes the form (see Sec. 2)

∆wt = −λ∇L + λ
√
Cηt, (22)

when λ < 1, the above equation may be approximated by a continuous-time Ornstein-Uhlenbeck
process (Mandt et al., 2017)

dw(t) = −λ∇Ldt + λ√
S

√
C(w)dW (t), (23)

where λ is the learning rate; we have also introduced S as the batch size. dW (t) is a stochastic
process satisfying

{dW (t) ∼ N(0, dtI),
E[dW (t)dW (t′)] ∝ δ(t − t′). (24)

By the definition of the underlying discrete-time process, the term dw(t) depends only on w(t) and
has no dependence on w(t + dt). Thus, the stochastic integration should be interpreted as Ito.

For simplicity, we only consider one-dimensional version of the Fokker-Planck, which is

∂P [w, t∣w(0),0]
∂t

= − ∂

∂w
J(w, t∣w(0),0), (25)

where J[w, t∣w(0),0] is the probability flow. The current J[w, t∣w(0),0] is:

J[w, t∣w(0),0] = λ∂L
∂w

P [w, t∣w(0),0] + λ2

2S

∂

∂w
{C(w)P [w, t∣w(0),0]}. (26)

Assuming that the SGD dynamics is ergodic, there is a unique stationary distribution for w when
t→∞ that can be found to be

P (w) ∝ 1

C(w) exp [−2S

λ
∫ dw

1

C(w)
∂L

∂w
] . (27)

We will apply this equation to study the relevant problems in this work.

B.2 A GENERAL CASE

In this section, we consider (a slightly more general version of) the fourth-order potential we studied
in the main text. The average loss landscape in this model is

L(w) = 1

4
aw2 + 1

4
bw4, (28)

where b > 0, guarantees that the w is bounded regardless the value of a. In the limit of b → 0, this
function reduces to saddle point problem we studied in Sec. 5.1. Besides the SGD noise, additive
noise is also present in the dynamics. The variance of the additive noise has no dependence on w.
When the additive noise is present, the update rule (equation of motion) is

dw(t) = −[λ(a/2)w(t) + bw3(t)]dt + ληm(t) + ληa(t), (29)

where both ηm(t) and ηa(t) are both Ornstein-Uhlenbeck process, denoting multiplicative noise
and additive noise respectively. The w-dependent covariance of w is C(w) = w2. The SGD noise is
thus a multiplicative noise. ηm(t) and has a variance w(t)2

S
dt, while the additive noise ηa(t) has a

variance of σ2dt, where σ is a positive constant denoting the strength of the additive noise. If the
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multiplicative noise is seen as a part of the loss landscape, (2) coincides with the 2nd-order term
in the loss landscape. There is no correlation between the additive noise and the SGD noise, i.e.
E[ηm(t)ηa(t′)] = 0. The additive noise can be seen as the artificially injected noise, a technique
sometimes used for aiding the escape or for Bayesian learning purposes (Jin et al., 2017; Welling and
Teh, 2011).

The additive noise vanishes in the limit of σ → 0, and the model becomes a normal SGD with
4th-order loss function. It is always possible to define a noise η′(t), whose contribution is equivalent
to the contribution of both the SGD and the additive noise, and the equation of motion becomes

dw(t) = −[λ(a/2)w(t) + bw3(t)]dt + λη′(t). (30)

This transformed noise η′(t) thus has 0 mean and a variance of (w(t)
2

S
+ σ2)dt. Define η(t) =

η′(t)/
√

w(t)2

S
+ σ2, the equation of motion becomes

dw(t) = −λ[(a/2)w(t) + bw3(t)]dt + λ
√

w(t)2
S

+ σ2η(t). (31)

Comparing with (23), one finds
C(w) = w2 + Sσ2. (32)

The solution of the corresponding Fokker-Planck equation is

P (w) ∝ 1

w2 + Sσ2
exp [−2S

λ
∫

(a/2)w + bw3

w2 + Sσ2
dw]

= (w2 + Sσ2)−1 exp
⎡⎢⎢⎢⎣
−2Sb

λ
∫

( a
2b
− Sσ2)w +w3 + Sσ2w

w2 + Sσ2
dw

⎤⎥⎥⎥⎦
= (w2 + Sσ2)−1 exp [−2Sb

λ
∫ wdw − 2Sb

λ
( a

2b
− Sσ2)∫

w

w2 + Sσ2
dw]

= (w2 + Sσ2)−1 exp [−Sb
λ
w2 − (Sa

2λ
− S

2σ2b

λ
) ln (w2 + Sσ2)].

Further simplification yields

P (w) ∝ (w2 + Sσ2)−1−Sa2λ +S
2bσ2

λ exp [−Sb
λ
w2]. (33)

The function P (w) is finite everywhere and decays exponentially to 0 when w →∞, regardless of the

values of the parameters a, b, σ, S. This indicates that ∫
∞

−∞
dw(w2 + Sσ2)−1−Sa2λ +S

2bσ2

λ exp [−Sb
λ
w2]

has a well-defined value. As a consequence, there is no concentration of measure. Thus, w(t) can be
fall into any interval with finite probability after big enough t, indicating that w(t) can be arbitrarily
far away from 0. In practice, this means that w(t) escapes from the saddle point at w = 0 regardless
of the value of the parameters.

1.0 0.5 0.0 0.5 1.0
w

0.5

0.0

0.5

1.0

1.5

2.0

Loss landscape
Initial distribution
Step 10
Final distribution

Figure 8: Stationary distribution of w with additive noise of σ = 0.1 with quadratic loss landscape.
All the other parameters are identical to those in Fig.1. This distribution has finite width.

The effect of additive noise is better understood when b = 0. In this case, which corresponds to the
case shown in Fig.1, w neither concentrates at 0, nor escapes to ±∞. Instead, it stays near 0 without
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converging to it. The stationary distribution of w when b = 0, obtained by numerical simulation, is
shown in Fig.8. The other settings are identical to the ones in Fig.1. The stationary distribution exists,
but w does not concentrate at w = 0 in the stationary distribution. First of all, this figure shows that
the additive noise helps SGD to escape saddle point. If the designed landscape is a part of a realistic
landscape, having a broader distribution means having more chance of being attracted by another
minimum. However, this figure also shows that w would stay in the neighborhood of w = 0 until the
noise is big enough. Thus, having additive noise and long enough training time does not guarantee
the efficiency of escape.

In the language of Bayesian inference, ln [P (w)] is the likelihood of w. ŵ, the most probable value
of w, is defined by the relation

d ln [P (w)]
dw

∣
w=ŵ

= 0. (34)

which reads

0 = { d

dw
[(−1 − Sa

2λ
+ S

2bσ2

λ
) ln [(w2 + Sσ2)] − Sb

λ
w2]}∣

w=ŵ

=
⎧⎪⎪⎨⎪⎪⎩

2w
−1 − Sa

2λ
+ S2bσ2

λ

w2 + Sσ2
− 2Sb

λ
w

⎫⎪⎪⎬⎪⎪⎭

RRRRRRRRRRRRw=ŵ

= {w [−1 − Sa
2λ

+ S
2bσ2

λ
− Sb
λ

(w2 + Sσ2)]}∣
w=ŵ

= ŵ ( λ
Sb

+ a

2b
+ ŵ2) .

The likelihood maximizer is

ŵ =
⎧⎪⎪⎨⎪⎪⎩

0, a > − 2λ
S

;

±
√
− λ
Sb
− a

2b
, a < − 2λ

S
.

(35)

When a > − 2λ
S

, the maximum likelihood parameter is w = 0. When a < − 2λ
S

, w = ±
√
− λ
Sb
− a

2b

equally likely. This resembles the phase transition in statistical physics and we call − 2λ
S

the critical
value of a, or, the “critical a". For the energy landscape, when a > 0 there is only one global minimum
at w = 0, and when a < 0 there are two global minima at w = ±

√
− a

2b
. Comparing with the maximum

likelihood solutions, we see that the likelihood maximizer given by SGD is in fact a biased estimator
of the underlying minima.

There is a bias term introduced by the SGD noise in both the critical a and the value of the most
probable w. This term vanishes when S →∞, i.e. when the SGD noise vanishes. This indicates that,
when the noise is state-dependent, there is no reason to expect SGD to be an unbiased or consistent
estimator of the minimizer, as some works assume.

B.3 4-TH ORDER POTENTIAL WITH MULTIPLICATIVE NOISE

In this subsection, we study a 4-th order loss landscape in SGD dynamics without additive noise. The
average loss function with 4th-order term is

L(w) = aw
2

4
+ bw

4

4
; (36)

the SGD update rule (i.e., the equation of motion) in this case is

dw(t) = −λ[(a/2)w(t) + bw3(t)]dt + λ 1√
S
η(t)w(t), (37)

where the definition of η is identical to the previous example. The solution of corresponding stationary
Fokker-Planck equation is

P (w) ∝ w−2−Saλ exp [−Sb
λ
w2]. (38)
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When
− Sa

2λ
< 1, (39)

P (w) diverges at w = 0. The normalization factor, i.e. integral ∫
+∞

−∞
dww−2−Saλ exp [−Sb

λ
w2], also

diverges due to the divergence at w = 0. This solution could be seen as a limit of (33) when the
additive noise vanishes. As the strength of the additive noise σ → 0, the normalization factor keep
growing while the distribution remains normalized. For w ≠ 0, the function w−2−Saλ exp [−Sb

λ
w2]

is always finite. Thus, in the limit σ → 0, P (w) approaches 0 everywhere except for at w = 0. It
is straight forward to check that the normalization factor diverges slower that P (0) as σ → 0. As a
consequence, when σ = 0, P (w) diverges at w = 0 and P (w) becomes a Dirac delta function. This
corroborates with the result in Sec. 5.3 that a small a leads to a concentration of measure towards the
local maximum.

Compared with (33), one finds that the additive noise prevents the concentration of measure. Thus,
in practice, the additive noise helps SGD escape the local minimum or saddle point. However, the
existence of additive noise does not change the critical a and the position of the peaks.

B.4 QUADRATIC POTENTIAL

At last, we consider the continuous approximation of the model treated in the Sec. 5.1. Let the loss
function be

L̂ = x
2
w2, (40)

and we have

{Ex[ĝt] =
a
2
wt

C(wt) = 1
S
E [∇`∇`T] − 1

S
∇; L(wt)∇L(wt)T = 1

S
E[x2]w2

t .
(41)

The SGD update rule (i.e., the equation of motion) in 1d is

∆w(t) = −λ ∂

∂w
L̂ (42)

= −λxw(t). (43)

With the continuous approximation, the equation of motion becomes

dw(t) = −λ(a/2)w(t)dt + λ 1√
S
w(t)η(t), (44)

where η(t) ∼ N(0,
√
dt). By comparing with the 1d Fokker-Planck equation,

{L(w) = a
4
w2;

B(w) = w. (45)

The stationary distribution of w is

P (w) ∝ 1

w2
exp [−S

λ
∫ dw

a

w
] ∝ w−2−Saλ . (46)

The only difference between the solution in this case and the one in the 4th-order-loss case is the
exponential factor, showing that the 4th-order potential does nothing but keeping w(t) bounded.
The function w−2−Saλ diverges at w = 0 or w = ±∞ depending on the value of a. However, the
stationary distribution, being a limit of (33), is well defined. In the case that it diverges at w = 0,
P (w) becomes a delta function. On the contrary, there are two peaks infinitely far away from 0 when
w−2−Saλ diverges at w = ±∞. Being able to escape requires that the probability measure of w does
not concentrate at 0, corresponding to

− Sa
2λ

> 1. (47)

This straight line agrees approximately with the boundary of the lower branch of the phase diagram
in Fig. 9. This condition of escaping is worth interpretation. Note that a is the local curvature and
reflects the strength of the gradient signal. In contrast, the strength of the SGD noise is proportional
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to λ/S.2 The term Sa/2λ is thus the signal to noise ratio of this learning problem, and the escaping
condition is exactly when the signal becomes larger than the noise. This analysis, therefore, pinpoints
the cause of the convergence to saddle points to be the dominance of the SGD noise over the gradient.

Also, this example raises an interesting question regarding the mechanism of SGD that causes a
convergence to the local maximum. From the perspective of the types of convergence, the SGD
mechanism behind proposition 1 may be different from that of proposition 2. However, from the
perspective of continuous-time analysis, there is really the same mechanism that is governing the SGD
dynamics behind proposition 1 and 2 (namely, the fact that the noise has dominated the gradient).

1.0 0.5 0.0 0.5 1.0
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0.0
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λ
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Figure 9: Escape probability as a function of a and λ. The parameters space is divided into an
absorbing phase where w is attracted to the local maximum (in dark blue) and an active phase
where w successfully escapes the two central bins (in white). The orange line denotes the analytical
convergence bound on λ as a function of a obtained in the discrete-time calculation, while the red
dashed line denotes the same bound obtained by the continuous-time calculation. Here the batch
size S is set to 1. The result given by the continuous-time process agrees well with the discrete-time
process in the small λ small a limit.

2See Ziyin et al. (2022b), for example.
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C DELAYED PROOFS

C.1 TWO FREQUENTLY USED LEMMAS

We first prove the following lemma regarding the limiting distribution of ln ∣wt∣.
Lemma 1. Let the loss function be L̂(w) = 1

2
xw2, x ∼ p(x) such that Var[x] = σ2 and Ex[x] = a <

0 and that p(x) is continuous in a δ-neighborhood of x = 1, and w0 ≠ 0. Then, for wt generated by
SGD after t time steps,

1√
t
(ln ∣wt/w0∣ − µ) →d N(0, s2) (48)

where µ = Ex[ln ∣1 − λx∣] and s2 = Var[ln ∣1 − λx∣], where λ > 0 is the learning rate.

Proof. After t steps of SGD, we have

wt =
t

∏
i=1

[1 − λxi]w0. (49)

This leads to

ln ∣wt
w0

∣ =
t

∑
i=1

ln ∣1 − λxi∣. (50)

Now, since p(1−x) is continuous in the neighborhood of 1 by assumption, we can apply Proposition 6
(appendix) to show that the first and second moment of ln ∣1 − λx∣ exists, whereby we can apply the
central limit theorem to obtain

1√
t
(ln ∣wt

w0
∣ − tE[ln ∣1 − λx∣]) →d N(0, s2), (51)

where s2 = Var[ln ∣1 − λx∣]. This proves the lemma. ◻
Proposition 6. Ex∼p(x)[ln2 ∣x∣] is finite if the second moment of p(x) exists and if p(x) is continuous
in the neighborhood of x = 0.

Proof. Since p(x) is continuous in the neighborhood of x = 0, then there exists δ > 0 such that for all
∣ε∣ < δ, ∣p(δ) − p(x)∣ ≤ c for some c > 0. This means that we can divide the integral over p(x) into
three regions:

Ex∼p(x)[ln ∣x∣2] = ∫
∞

−∞
dxp(x) ln2 ∣x∣ (52)

= ∫
−δ

−∞
dxp(x) ln2 ∣x∣ + ∫

δ

−δ
dxp(x) ln2 ∣x∣ + ∫

∞

δ
dxp(x) ln2 ∣x∣. (53)

The second term can be bounded as

∫
δ

−δ
dxp(x) ln2 ∣x∣ ≤ [p(0) + c]∫

δ

−δ
dx ln2 ∣x∣ (54)

= 2[p(0) + c]∫
δ

0
dx ln2 x (55)

= 2[p(0) + c]x(ln2 x − 2 lnx + 2)∣
δ

0

(56)

= 2[p(0) + c]δ(ln2 δ − 2 ln δ + 2) < ∞. (57)

The first and the third term can also be bounded. Since ln ∣x∣ is a convex function in the regions x ≥ δ
and x ≤ δ respectively. We can find linear functions ax+ b of x such that ax+ b ≥ lnx for x ≥ δ. This
leads to

∫
∞

δ
dx p(x) ln2 ∣x∣ ≤ ∫

∞

δ
dx p(x)(ax + b)2 (58)

≤ ∫
∞

−∞
dx p(x)(ax + b)2 (59)

= ∫
∞

−∞
dxp(x)(a2x2 + 2abx + b2) (60)

= a2µ2 + 2abµ1 + b2, (61)
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where we have used the notation E[x2] = µ2 and E[x1] = µ, which by assumption is finite. The case
for x ≤ −δ is completely symmetric and can also be bounded by a2µ2 + 2abµ1 + b2. Therefore, we
have shown that

Ex∼p(x)[ln ∣x∣2] ≤ 2(a2µ2 + 2abµ1 + b2) + 2(p(0) + c)δ(ln2 δ − 2 ln δ + 2) ≤ ∞. (62)

This proves the proposition. ◻
Remark. Note that, the continuity in the neighborhood of 0 is not a necessary condition. For example,
one can also prove that Ex[ln2 ∣x∣] is finite if p(x) is bounded and its second moment exists.

C.2 PROOF OF PROPOSITION 2

Proof. The case when w0 = 0 is trivially true, we therefore consider the case w0 ≠ 0. By Lemma 1,
we have

1√
t
zt →d N(0, s2) (63)

where we have defined zt = 1
√
t
(ln ∣wt

w0
∣ − tµ), µ = E[ln ∣1 − λx∣] and s2 = Var[ln ∣1 − λx∣]. This

means that

lim
t→∞

p( 1√
t

ln ∣wt
w0

∣) = lim
t→∞

1√
2πs2

exp [− 1

2ts2
(ln ∣wt

w0
∣ − tµ)] . (64)

By definition, ∣wt∣ = ∣w0∣e
√
tz+tµ. Therefore, we have

lim
t→∞

P (∣wt∣ > ε) = lim
t→∞

P (∣w0∣e
√
tz+tµ > ε) = {0 if µ < 0;

1 if µ > 0,
(65)

for all ε > 0. In other words, since µ and σ are t-independent, in the infinite t limit, the sign of
µ becomes crucial. When µ > 0, the limiting distribution diverges to infinity; when µ < 0, ∣wt∣
converges to 0 in probability. This finishes the proof. ◻

C.3 PROOF OF COROLLARY 1

Proof. By the definition of p(x),

µ = E[ln ∣1 − λx∣] (66)

= 1

2
ln ∣1 − λ∣ + 1

2
ln ∣1 − λ(a − 1)∣ (67)

= 1

2
ln ∣(1 − λ)(1 − λ(a − 1))∣, (68)

while s2 is indeed constant in time. Therefore, the asymptotic distribution of wt is solely dependent
on the sign of µ. The above equation implies that µ ≥ 0 when

∣(1 − λ)[1 − λ(a − 1)]∣ > 1. (69)

When λ ≤ 1, the above equation is solved by

λ < a

a − 1
. (70)

When λ > 1, the above equation solves to

λ ≥ a −
√
a2 − 8a + 8

2(a − 1) , (71)

only when the learning rate satisfies the above two conditions can it escape from the local maximum.
Conversely, SGD cannot escape the local minimum when

a

a − 1
≤ λ ≤ a −

√
a2 − 8a + 8

2(a − 1) . (72)

We are done. ◻
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C.4 PROOF OF PROPOSITION 3

Proof. By Lemma 1, we have that
1

t
E [ln ∣wt

w0
∣] = µ = 1

2
ln{(1 − λ)[1 − λ(a − 1)]}, (73)

where the second equality follows from the assumption that λ < 1. We differentiate with respect to λ
to find the critical escape rate:

λ∗ = a

2(a − 1) . (74)

Since µ is convex in λ, it follows that this critical escape rate is the maximum escape rate. Plugging
this into µ, we obtain that

γ∗ = µ(λ∗) = 1

2
ln

(2 − a)2
4(1 − a) = ln

2 − a
2
√

1 − a
≤ ε, (75)

i.e., the optimal escape rate can be made smaller than any ε if we set

∣a∣ ≤ 2 ∣−eε
√
e2ε − 1 − e2ε + 1∣ . (76)

This finishes the proof. ◻

C.5 PROOF OF PROPOSITION 4

Proof. It suffices to show that w1 converges to 0 with probability 1 because, if this is the case, the

only possible local minimum to converge to is (w1,w2) = (0,±
√

1+a
2

).

The SGD dynamics is

{∆w1,t = −λ(−2w1,t + 4w3
1,t + 12w2

2,tw1,t + xtbw1,t);
∆w2,t = −λ(−2w2,t + 4w3

2,t + 12w2
1,tw2,t − 2aw2,t).

(77)

We focus on the dynamics of w1. By the definition of the noise x, we have that

w1,t+1 = {w1,t[1 + λ(2 − b) − 4λw2
1,t − 12λw2

2,t] with probability 1/2;
w1,t[1 + λ(2 + b) − 4λw2

1,t − 12λw2
2,t] with probability 1/2.

(78)

Equivalently,

∣w1,t+1

w1,t
∣ = {∣1 + λ(2 − b) − 4λw2

1,t − 12λw2
2,t∣ with probability 1/2;

∣1 + λ(2 + b) − 4λw2
1,t − 12λw2

2,t∣ with probability 1/2.
(79)

Since 0 ≤ 4λw2
1,t + 12λw2

2,t ≤ 16λ, we can define a new random variable rt:

rt ∶= r(xt) ∶= {max(∣1 + λ(2 − b)∣ , ∣1 + λ(2 − b) − 16λ∣) if xt ≥ 0;
max(∣1 + λ(2 + b)∣ , ∣1 + λ(2 + b) − 16λ∣) if xt ≤ 0.

(80)

By construction, rt ≥ ∣w1,t+1/w1,t∣ for all values of xt. This implies that ∣w1,t/w1,0∣ ≤ ∏ti=1 rt, and
so,

P (∣w1,t/w1,0∣ > ε) ≤ P (∣
t

∏
i=1

rt∣ > ε) , (81)

i.e., if∏ti=1 rt converges to 0 with probability 1, w1,t must also converge to zero with probability 1.

We let b = 1
λ
− 6 (note that this is the value of b such that rt is minimized for both cases), and we

obtain that

rt = {8λ if xt ≥ 0;
2 max(∣1 − 2λ∣ , ∣1 − 10λ∣) if xt ≤ 0.

(82)

The rest of the proof follows from applying the central limit theorem to 1
√
t
∑ti=1 ln rt as in Lemma 1.

The result is that∏ti=1 ri converges to 0 with probabiliy 1 if

µ ∶= E[ln rt] =
1

2
ln[8λmax(∣1 − 2λ∣ , ∣1 − 10λ∣)] < 0. (83)

The above inequality solves to

λ ≤ 1

20
(1 +

√
6) (84)

which is of order O(1) as stated in the theorem statement. This proves the proposition. ◻
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C.6 PROOF OF PROPOSITION 5

Proof. First we note that, since ∣wt∣ ≤ 1

∣ĝt∣ = ∣xtwt∣ ≤ 1 + a. (85)

By the definition of the AMSGrad algorithm, we have that

vt = β2vt−1 + (1 − β2)ĝ2t ; (86)
v̂t = max(v̂t−1, vt). (87)

Since v0 = 0 and ∣ĝt∣ = ∣xtwt∣ ≤ 1 + a, we have that

vt ≤ 1 + a (88)

for all t, and so
v̂t ≤ max

t
v̂t = max

t
vt ≤ 1 + a. (89)

Meanwhile, since v̂t is a monotonically increasing series and is upper bounded by 1 + a, it must
converge to a constant 0 < c ≤ 1 + a.

Now, as before, we want to upper bound the random variable

1√
t
(ln ∣wt+1

wt
∣ − µ) = 1√

t

t

∑
i=1

(ln ∣1 − λ√
v̂t
xt∣ − µ) , (90)

where µ = E[ln ∣wt+1
wt

∣]. Since v̂t converges to c, there must exists a positive integer N(ε) such that
for any ε > 0, v̂N ≤ c − ε. This allows us to divide the sum to two terms:

1√
t
(ln ∣wt+1

wt
∣ − µ) = 1√

t

t

∑
i=1

(ln ∣1 − λ√
v̂t
xt∣ − µ) (91)

= 1√
t

N

∑
i=1

(ln ∣1 − λ√
v̂t
xt∣ − µ) +

1√
t

t

∑
i=N+1

(ln ∣1 − λ√
c − kt

xt∣ − µ) , (92)

where we introduced 0 ≤ kt ≤ ε. But the first term is of order O(1/
√
t) and converges to 0, and so for

sufficiently large t, the first term is also smaller than arbitrary ε. This means that

1√
t
(ln ∣wt+1

wt
∣ − µ) ≤ 1√

t

t

∑
i=1

(ln ∣1 − λ√
c − kt

xt∣ − µ) + ε, (93)

We can now consider the random variable

∣1 − λ√
c − kt

xt∣ =
⎧⎪⎪⎨⎪⎪⎩

∣1 − λ
√
v̂t

∣ with probability 1
2

;
1 + λ

√
v̂t

(1 − a) with probability 1
2
.

(94)

We now define a new random variable

rt(xt) ∶= {
m if xt = 1;
1 + λ

√
c−ε

(1 − a) if xt = −1 + a. (95)

where we defined the constant m ∶= max(∣1 − λ/√c∣, ∣1 − λ/
√
c − ε∣). One can easily check that

rt ≥ ∣1 − λ
√
c−kt

xt∣. This means that

P (∣wt+1
w0

∣ > α) ≤ P (
t

∏
i=0

ri > α +O(1/
√
t)) , (96)

i.e., if rt converges to 0 in probability, ∣wt+1
w0

∣ must also converge to 0 in probability. Proceeding as in
the proof of Proposition 2. One finds that the condition for rt to converge in probability to 0 is

ln ∣m [1 + λ√
c − ε

(1 − a)]∣ < 0, (97)
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which is equivalent to

∣m [1 + λ√
c
(1 − a)]∣ < 1. (98)

Since ε is arbitrary, we let ε→ 0 and obtain

∣(1 − λ√
c
)[1 + λ√

c
(1 − a)]∣ ≤ 1. (99)

Denote λ/√c as λ′, this condition solves to

a

a − 1
≤ λ′ ≤ a −

√
a2 − 8a + 8

2(a − 1) . (100)

Setting a such that the above condition is met, AMSGrad will converge to 0 in probability. For λ < 1,

This completes the proof. ◻
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