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Abstract

Prompt-based continual learning leverages pre-trained knowledge for downstream
continual learning, and has almost reached the performance pinnacle under super-
vised pre-training. However, our empirical study reveals that the current strategies
fall short of their full potential under the more realistic self-supervised pre-training,
which is essential for handling vast quantities of unlabeled data in practice. This
is largely due to the difficulty of task-specific knowledge being incorporated into
instructed representations via prompt parameters and predicted by uninstructed
representations at test time. To overcome such sub-optimality, we conduct a theoret-
ical analysis of the continual learning objective in the context of pre-training, and
decompose it into hierarchical components: within-task prediction, task-identity
inference, and task-adaptive prediction. Based on these empirical and theoretical
insights, we propose Hierarchical Decomposition (HiDe-)Prompt, an innovative
approach that explicitly optimizes the hierarchical components with an ensemble
of task-specific prompts and statistics of both uninstructed and instructed represen-
tations, further with the coordination of a contrastive regularization strategy. Our
extensive experiments demonstrate the superior performance of HiDe-Prompt and
its robustness to pre-training paradigms in continual learning (e.g., up to 15.01%
and 9.61% lead on Split CIFAR-100 and Split ImageNet-R, respectively). Our
code is available at https://github.com/thu-ml/HiDe-Prompt.

1 Introduction

In the realm of artificial intelligence, continual learning has become an area of significant interest.
One of the pivotal techniques that greatly facilitate this domain is pre-training, which not only delivers
positive knowledge transfer but also enhances resilience to catastrophic forgetting [27, 23, 37, 26, 43].
A recent innovation is the implementation of prompt-based methodologies, which freeze a pre-
trained transformer backbone and employ a few prompt parameters to steer representation learning.
Such approaches typically involve construction of adaptive prompts for each task and inference
of appropriate prompts during the test phase. By exploring prompt architectures to accommodate
task-sharing and task-specific knowledge, this emerging direction demonstrates distinct superiority,
almost reaching the upper bound of continual learning performance under supervised pre-training.

Nonetheless, given that robust pre-trained models typically necessitate the learning of substantial
amounts of unlabeled data in a self-supervised manner, the influence of pre-training paradigms
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on the effectiveness of prompt-based continual learning represents a significant and unresolved
query. To answer this question, we first perform an extensive empirical investigation, and it clearly
demonstrates the sub-optimality of recent prompt-based approaches under the more realistic self-
supervised pre-training. Since self-supervised representations tend to be more general, task-specific
knowledge is difficult to incorporate into instructed representations via prompt parameters, as well as
predicted by uninstructed representations at test time. Consequently, the performance of many recent
approaches, such as L2P [41], DualPrompt [40], S-Prompt [39] and CODA-Prompt [30], is seriously
compromised. We further disclose the importance of adaptive prediction for all tasks together, which
can potentially mitigate the aforementioned shortcomings to some extent.

Motivated by these observations, we provide an in-depth theoretical analysis of the continual learning
objective in the context of pre-training, which can be decomposed into hierarchical components
such as within-task prediction, task-identity inference and task-adaptive prediction. Thanks to the
well-distributed representations resulting from adequate pre-training, the hierarchical components
can be optimized explicitly by constructing an ensemble of task-specific prompts and exploiting the
preserved statistics of uninstructed and instructed representations. A novel contrastive regularization is
further devised to coordinate these hierarchical components. We refer to this approach as Hierarchical
Decomposition (HiDe-)Prompt and demonstrate its superiority through extensive continual learning
experiments, especially under the more realistic self-supervised pre-training.

Our contributions include: (1) We provide an extensive empirical study under self-supervised pre-
training to demonstrate the sub-optimality of current progress in prompt-based continual learning; (2)
To overcome such sub-optimality, we theoretically analyze the objective of continual learning with
pre-training, and decompose it into hierarchical components for model design; (3) With task-specific
prompts and representation statistics, we propose an innovative approach to optimize the hierarchical
components explicitly; (4) Across various continual learning benchmarks and pre-training paradigms,
our approach achieves clearly state-of-the-art performance in a rehearsal-free manner.

2 Related Work

Continual Learning: The ability of continual learning is critical for artificial neural networks to
accommodate real-world changes [37, 35]. Numerous efforts in this direction have been devoted to
overcoming catastrophic forgetting [22, 34, 33]. According to a recent survey [37], representative
strategies include selective stabilization of network parameters, replay of a few old training samples,
explicit manipulation of optimization programs, exploitation of well-distributed representations,
construction of task-specific parameters, etc. The performance of such strategies varies with particular
settings of continual learning. As one of the most challenging and representative settings, class-
incremental learning (CIL) [31, 37] requires a continual learning model to perform all old tasks (or
classes) without the oracle of task identity. Strong CIL methods generally depend on storage and
rehearsal of old training samples [28, 8, 38], which result in efficiency and privacy issues.

Self-Supervised Learning and Pre-Training: The exploitation of well-distributed representations,
especially from the success of large-scale pre-training, brings significant benefits for downstream
continual learning [37, 27, 23]. Due to the scarcity and expense of explicit labeling in many real-world
applications, self-supervised learning is typically involved in the pre-training stage to cope with huge
amounts of unlabeled data. In particular, instance discrimination [4, 7] with contrastive learning
[25] has become the dominant strategy, which aims to maximize representation similarity of the
same instance and minimize representation similarity of different instances. Besides, self-supervised
paradigms have been shown less sensitive to catastrophic forgetting in upstream continual learning
[9], providing a practical way to enrich pre-trained knowledge from in-the-wild data.

Prompt-Based Approach: Inspired by parameter-efficient fine-tuning techniques in NLP [11, 10],
recent prompt-based approaches [3, 41, 40, 39, 30] are developed to leverage pre-trained knowledge
adaptively for downstream continual learning. The basic idea includes construction and inference
of adaptive prompts for each task, so as to instruct a frozen transformer backbone. The former
mainly focuses on exploring prompt architectures to instruct representations with task-sharing
and task-specific knowledge, closely related to the discussion of model architectures in continual
learning [37, 36], while the latter attempts to predict appropriate (combinations of) prompts with
uninstructed representations. Although such methods have achieved remarkably strong performance
under supervised pre-training, whether these advantages are consistent under the more realistic self-
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supervised pre-training remains to be explored. A concurrent study [43] observed that self-supervised
pre-training is more challenging for continual learning approaches that require fine-tuning of the
backbone, implying a non-trivial impact of pre-training paradigms on downstream continual learning.

3 Preliminary Analysis

In this section, we first introduce the problem formulation of prompt-based continual learning, and
then evaluate the impact of pre-training paradigms with an extensive empirical study.

3.1 Formulation of Prompt-Based Continual Learning

Continual learning aims to learn a sequence of tasks on their respective training sets D1, ...,DT and
excel on their corresponding test sets. The training set for task t typically consists of various data-
label pairs Dt = {(xt,n, yt,n)}Ntn=1, where xt,n ∈ Xt and yt,n ∈ Yt represent the sample and label
elements, respectively. We will use | · | to denote the cardinality of a set and [N ] = {1, 2, · · · , N} as
the set of intergers from 1 to N . Consider a neural network model with a backbone fθ parameterized
by θ, and an output layer hψ parameterized by ψ. This model seeks to learn the projection from
X =

⋃T
t=1 Xt to Y =

⋃T
t=1 Yt, aiming to predict the label y = hψ(fθ(x)) ∈ Y of an unseen test

sample x drawn from previous tasks. The backbone function fθ is assumed to be pre-trained with a
substantial quantity of additional training samples external to each Dt. There are commonly three
distinct settings for continual learning [31]: task-, domain-, and class-incremental learning (TIL,
DIL, and CIL). Specifically, Y1, ...,YT are identical for DIL while disjoint for TIL and CIL. The
task identity is provided for TIL at test time but is not available for DIL and CIL. Therefore, CIL
is considered to be more representative and challenging in general. Of note, the continual learning
process is rehearsal-free [30]—all elements of Dt are available only when learning task t.

Prompt-based approaches for vision tasks further specify the backbone fθ as a pre-trained vision
transformer (ViT), where multiple consecutive multi-head self-attention (MSA) layers can transform
an input sample into a sequence-like output representation h ∈ RLh×D of sequence length Lh and
embedding dimension D. The backbone parameters θ are typically frozen to obtain generalizable
representations. A few prompt parameters p ∈ RLp×D of sequence length Lp and embedding
dimension D are prepended to h to exploit the pre-trained knowledge adaptively. Here we denote the
input of the l-th MSA layer as hl ∈ RLhl

×D, which consists of query hlQ, key hlK and value hlV ,
and denote the prompt as pl ∈ RLpl

×D. For notation clarity, we take one MSA layer as an example
and omit the layer label l if not necessary. Then, the output of this MSA layer is given as

MSA(hQ,hK ,hV ) = Concat(h1, ..., hm)WO, (1)

hi = Attention(hQWQ,i,hKWK,i,hVWV,i), i ∈ [m], (2)
where WO, WQ,i, WK,i and WV,i are projection matrices, m is the number of heads, and hQ =
hK = hV in ViT. There are two major implementations of prompt-based methodologies [40], i.e.,
Prompt Tuning (ProT) [18] and Prefix Tuning (PreT) [19]. Specifically, ProT prepends an identical p
to hQ, hK and hV :

fProT(p,h) = MSA([p;hQ], [p;hK ], [p;hV ]), (3)
where [· ; ·] denotes the concatenation operation along the dimension of sequence length, and the

output in R(Lh+Lp)×D has increased dimensions. In contrast, PreT splits p into pK ∈ RLp/2×D and
pV ∈ RLp/2×D only for hK and hV , respectively:

fPreT(p,h) = MSA(hQ, [pK ;hK ], [pV ;hV ]), (4)

where the output dimension remains the same as the input h ∈ RLh×D. As the training samples
for each task are introduced sequentially, prompt-based continual learning needs to incorporate
task-specific knowledge into prompt parameters while overcoming their catastrophic forgetting.
The mainstream idea is to construct adaptive prompts for each task and then infer appropriate
(combinations of) prompts at test time. Here we compare state-of-the-art approaches from these two
aspects, demonstrated conceptually in Fig. 1:

L2P [41] constructs a prompt pool P = {p1, ...,pM} potentially shared by all tasks where M is the
total number of prompts, and then instructs the last MSA layer in a ProT fashion. Each prompt pi is
associated to a learnable key ki ∈ RD, optimized by the cosine distance γ(q(x),ki) of the top-N
keys to a query function q(x) = fθ(x)[0] to incorporate knowledge. Therefore, the most relevant
keys and the corresponding prompts can be selected with uninstructed representations for inference.
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Figure 1: Illustration of prompt-based continual learning.

DualPrompt [40] constructs task-
sharing prompts gl and task-specific
prompts elt to instruct different
MSA layers in a PreT fashion. All
elt belonging to the same task is as-
sociated to a task-specific key kt ∈
RD, optimized by γ(q(x),kt), and
the index of the best-matched key is
selected for inference.

S-Prompt [39] constructs only task-
specific prompts et for each task,
and adopts a similar ProT strategy
as L2P to instruct the last MSA
layer. The inference of task iden-
tity is achieved by a simple KNN
strategy for the nearest task centroid. Unlike other methods, S-Prompt associates an exclusive output
head ψt to each task t = 1, ..., T .

CODA-Prompt [30] exploits the prompt pool P by its weighted summation, i.e., p =
∑M
i=1 αipi,

where αi = γ(q(x),ki) is the weighting factor, and adopts a similar PreT strategy as DualPrompt to
instruct multiple MSA layers. The inference of αi enables construction of adaptive prompts.

3.2 Empirical Study of Pre-Training Paradigms

Either explicitly or implicitly, the above prompt-based approaches all incorporate the knowledge of
each task into prompt parameters and predict their identities from uninstructed representations. To
evaluate the impact of pre-training paradigms, we perform an empirical study with widely-used CIL
benchmarks such as Split CIFAR-100 and Split ImageNet-R [41, 40]. In addition to supervised pre-
training of ImageNet-21K [29] (denoted as Sup-21K), we consider several powerful self-supervised
models that release ViT checkpoints2, such as iBOT [44], DINO [2] and MoCo v3 [5].

Figure 2: Empirical study of prompt-based continual learning under different pre-training paradigms.

We carefully evaluate the official implementations of all baselines for fair comparison. We follow
largely the training regimes of L2P [41] and DualPrompt [40], which are basically consistent. As
S-Prompt [39] is initially designed for DIL, we slightly modify its implementation by inserting
task-specific prompts into the same layers as DualPrompt (i.e., layers 1-5) in a PreT manner, so as
to evaluate the impact of prompt architectures. The output layer retains multiple heads associated

2iBOT currently achieves the first-place performance for self-supervised classification on ImageNet and
releases checkpoints on both ImageNet-21K and -1K, while others only release checkpoints on ImageNet-1K.
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with the task identity (still denoted as S-Prompt), or a single head as with other baselines (denoted
as S-Prompt++). CODA-Prompt [30] is officially implemented in a DualPrompt-like architecture
but depends heavily on the use of a smaller learning rate with cosine decay. Here we present its
performance with both default and reduced learning rates. Using the same learning rate as [41, 39],
we grid search for an appropriate number of epochs (detailed in Appendix D) and report the best
performance for all baselines.

As shown in Fig. 2, a, b, the above prompt-based approaches achieve outstanding performance under
Sup-21K, where the use of task-specific prompts clearly outperforms task-sharing prompts (i.e.,
S-Prompt++ ≈ CODA-Prompt > DualPrompt > L2P) due to explicit avoidance of catastrophic
forgetting. However, the four baselines suffer significant performance degradation under the more
realistic self-supervised pre-training. In particular, the performance differences between prompt
architectures have become much smaller, suggesting that the task-specific and task-sharing knowledge
are not well differentiated. Besides, CODA-Prompt can generally achieve leading performance as a
direct result of the learning rate (LR) reduction rather than the prompt architecture.

We perform two additional experiments to demonstrate the obscured sub-optimality3. First, we
evaluate the CKA similarity of uninstructed and instructed representations by learning task-specific
prompts (Fig. 2, c). The CKA similarity of self-supervised pre-training is significantly higher,
suggesting a greater difficulty for prompt parameters to incorporate task-specific knowledge. Second,
we evaluate the ability to predict task identity from uninstructed representations and task-specific
keys, where self-supervised pre-training exhibits much lower accuracy (Fig. 2, d). Interestingly,
although only less than 40% task identities are correctly predicted, S-Prompt++ can still achieve
considerable (albeit sub-optimal) performance, owning to the compensation effects of using a single-
head output layer (Fig. 2, e). Together with the results in Fig. 2, c, d, it is conceivable that using
an “incorrect” prompt would not severely affect the instructed representations, which can still be
correctly predicted in a well-balanced single-head output layer. In contrast, S-Prompt performs much
worse than S-Prompt++, as its multi-head output layer undertakes all errors of task-identity inference.

4 Theoretical Foundation and Our Approach

In this section, we first present a theoretical analysis of the sufficient and necessary conditions for
improving continual learning in the context of pre-training, and then present an innovative approach
for prompt-based continual learning to achieve this objective.

4.1 Hierarchical Decomposition of Continual Learning Objective

For continual learning of sequentially arrived Dt, Xt and Yt are the domain and label of task t.
Here we take CIL as a typical scenario for theoretical analysis where Yt ∩ Yt′ = ∅, ∀t ̸= t′ (see
Appendix A for DIL and TIL). Let Xt =

⋃
j Xt,j and Yt = {Yt,j}, where j ∈ [|Yt|] indicates

the j-th class in task t. Now assume we have a ground event denoted as D = {D1, ...,Dt} and a
pre-trained model fθ. For any sample x ∈

⋃t
k=1 Xk, a general goal of the CIL problem is to learn

P (x ∈ Xi,j |D, θ), where i ∈ [t] and j ∈ [|Yi|]. This can be decomposed into two probabilities,
including task-identity inference (TII) and within-task prediction (WTP), denoted as P (x ∈ Xi|D, θ)
and P (x ∈ Xi,j |x ∈ Xi,D, θ), respectively. Based on Bayes’ theorem, we have

P (x ∈ Xi,j |D, θ) = P (x ∈ Xi,j |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ). (5)

Let ī ∈ [t] and j̄ ∈ [|Yi|] be the ground truth of an x w.r.t. the task identity and within-task index.
Eq. (5) shows that if we can improve either the WTP performance P (x ∈ Xī,j̄ |x ∈ Xī,D, θ), the
TII performance P (x ∈ Xī|D, θ), or both, then the CIL performance P (x ∈ Xī,j̄ |D, θ) would be
improved. However, such an improvement is limited since it is upper-bounded by WTP or TII. To
further improve the CIL performance, we propose a hierarchical decomposition of its objective.
That is, besides the improvement of P (x ∈ Xī,j̄ |D, θ), we also need to improve the performance of
task-adaptive prediction (TAP), denoted as P (x ∈ X y|D, θ), where X y represents the domain of

3The experiments in Fig. 2, c, d employ the same prompt architecture and inference methodology as S-
Prompt++ to explicitly demonstrate the impact of task specificity. In fact, the objective of continual learning
is tantamount to optimizing the probability distribution on the left side of Eq. (5), which can be decomposed
into the two probabilities on the right side corresponding to Fig. 2, c, d, respectively. Therefore, such empirical
analysis is representative for prompt-based continual learning from a theoretical perspective.
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Figure 3: Illustration of Hierarchical Decomposition (HiDe-)Prompt.

class y in all previous tasks, and y = Yī,j̄ is the ground truth label of x. Then the final goal of CIL is
formulated as a multi-objective optimization problem, i.e., max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)].
Notice that the TII probability is a categorical distribution over all observed tasks upto t, while the
TAP probability is over all observed classes

⋃t
k=1 Yk.

To resolve the problems above, we derive the sufficient and necessary conditions in the context of the
widely-used cross-entropy loss. Specifically, we define

HWTP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j), (6)
HTII(x) = H(1ī, {P (x ∈ Xi|D, θ)}i), (7)
HTAP(x) = H(1c̄, {P (x ∈ X c|D, θ)}c), (8)

where HWTP, HTII, and HTAP are the cross-entropy values of WTP, TII, and TAP, respectively.
The operationH(p, q) ≜ −Ep[log q] = −

∑
i pi log qi. 1· is a one-hot encoding function.

We now present the first theorem under the CIL scenario (see Appendix A for a detailed proof):

Theorem 1 For continual learning with pre-training, if Ex[HWTP(x)] ≤ δ, Ex[HTII(x)] ≤ ϵ, and
Ex[HTAP(x)] ≤ η, we have the loss error L ∈ [0,max{δ + ϵ, η}], regardless whether WTP, TII and
TAP are trained together or separately.

With the use of cross-entropy, the continual learning performance tends to be better as the bounds are
tightened. In Theorem 1 we have shown that good performances of WTP, TII and TAP are sufficient
to guarantee a good performance of CIL. For completeness, we now study the necessary conditions
of a well-performed CIL model in Theorem 2.

Theorem 2 For continual learning with pre-training, if the loss error L ≤ ξ, then there always exist
(1) a WTP, s.t. HWTP ≤ ξ; (2) a TII, s.t. HTII ≤ ξ; and (3) a TAP, s.t. HTAP ≤ ξ.

Theorem 2 suggests that if a continual learning model is well trained (i.e., with low loss), then
the WTP, TII and TAP for sequential tasks are always implied to be small. It is worth noting that
without the pre-trained knowledge carried by θ, Theorem 1 and Theorem 2 would degrade to the main
conclusion of a previous theoretical study [13], suggesting that the presented theorems are particularly
directed to the impact of pre-training for continual learning (detailed in Appendix B). Besides, the
paradigm of pre-training is indeed related to the performance of continual learning, because it can
affect the distribution of representations from fθ, and further WTP, TII and TAP. Previous work
has demonstrated that self-supervised representations tend to be more robust to parameter changes
than supervised ones [9, 21, 37], which is beneficial for accumulating pre-trained knowledge (if
applicable) but challenging for adapting to downstream tasks on a continual basis (see Fig. 2, c, d).

4.2 HiDe-Prompt for Prompt-Based Continual Learning

Motivated by the above empirical and theoretical insights, we propose to optimize explicitly the
hierarchical components (i.e., WTP, TII and TAP) for prompt-based continual learning, as shown
in Fig. 3. Our proposal stems from a particular advantage of pre-training, where the distributions
of uninstructed and instructed representations can be effectively preserved through their statistical
information. In the case of classification, for example, since each class tends to have single-peaked
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representations (see Appendix D, Fig. 5 and Fig. 6), we can naturally approximate them with Gaussian
distributions. For generality, here we denote the approximated distributions of uninstructed and
instructed representations as Ĝc and Gc for each class c ∈ Yi, i ∈ [t− 1], respectively, and discuss
their specific forms latter.

First, we improve WTP through effective incorporation of task-specific knowledge. We construct
an expandable prompt pool with only task-specific prompts et to incorporate the knowledge of Dt,
optimized by a cross-entropy (CE) loss for HWTP. The previous prompts e1, ..., et−1 are frozen
to avoid catastrophic forgetting. In order to transfer knowledge for learning each task effectively,
we employ a prompt ensemble (PE) strategy, where the current prompt is initialized by the last
prompt et ← et−1 and then optimized with a weighted combination of all previous prompts
pt = α

∑t−1
i=1 ei + (1 − α)et. α is a hyperparameter that controls the strength of inherited old

knowledge to facilitate pt in learning the current task. Meanwhile, the instructed representations of
pt, although allowing the new task to be performed well, may overlap with that of the old tasks and
thus affect TAP. To overcome this issue, we exploit the old-task statistics of instructed representations
(collected by fθ and pi for i = 1, ..., t− 1), where for classification we calculate the mean µc of Gc
for each class c ∈ Yi, and design a contrastive regularization (CR):

LCR(pt) =
∑

h∈Ht

1∑t−1
i=1 |Yi|

t−1∑
i=1

∑
c∈Yi

log
exp(h · µc/τ)∑

h′∈Ht exp(h · h′/τ) +
∑t−1
i=1

∑
c∈Yi exp(h · µc/τ)

, (9)

where Ht is the embedding transformation of Dt with fθ and pt. τ is the temperature coefficient,
which is insensitive and set to 0.8 in practice. Notably, here we use only µc to represent each class
for efficiency, which can be optionally replaced by sampling from Gc for better performance.

Then, the loss function of WTP can be defined as
LWTP(ψ,pt) = LCE(ψ,pt) + λLCR(pt). (10)

Therefore, the instructed representations of new classes can be well distinguished for WTP while
avoiding overlap with the previous ones. λ is a hyperparamter to balance the impact of old classes.

Second, we improve TII and TAP through exploiting the approximated distributions of uninstructed
and instructed representations, respectively. For TII, we construct an auxiliary output layer ĥω :
RD → RT parameterized by ω, learning explicitly the projection from uninstructed representations
to task identity via cross-entropy (i.e., HTII):

LTII(ω) =
1∑t

i=1 |Yi|

t∑
i=1

∑
c∈Yi

∑
ĥ∈Ĥi,c

− log
exp(ĥω(ĥ)[i])∑t
j=1 exp(ĥω(ĥ)[j])

, (11)

where Ĥi,c is constructed by sampling an equal number of pseudo representations from Ĝc for c ∈ Yi
and i ∈ [t]. Unlike other baselines that freeze the projection of old tasks (i.e., the previous keys), our
ĥω is continually adapted for all tasks and thus greatly facilitates TII.

Similarly, the final output layer hψ : RD → R|Y| can be further optimized for TAP (i.e., HTAP):

LTAP(ψ) =
1∑t

i=1 |Yi|

t∑
i=1

∑
c∈Yi

∑
h∈Hi,c

− log
exp(hψ(h)[c])∑t

j=1

∑
c′∈Yj exp(hψ(h)[c

′])
, (12)

where Hi,c is constructed by sampling an equal number of pseudo representations from Gc for
c ∈ Yi and i = 1, ..., t. As ω and ψ are usually light-weight, the optimization of TII and TAP is
computationally efficient. At test time, HiDe-Prompt predicts the task identity i = ĥω(fθ(x)) and
then the label y = hψ(fθ(x;pi)). Please refer to Appendix Algorithm 1 for more details.

Since the pre-trained representations are usually well-distributed, there are many reasonable strategies
to model Ĝc and Gc. On default, the distributions of uninstructed and instruted representations can be
faithfully recovered by modeling each class as a Gaussian with a dedicated mean and covariance. With
adequate pre-training, the covariance can be further reduced to variance for efficiency. Alternatively,
such statistical modeling can employ multiple centroids obtained from KNN and add Gaussian noise,
which is also an efficient choice and is applicable to other task types.

5 Experiment

In this section, we first describe the experimental setups, and then present the experimental results.
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Table 1: Overall performance of continual learning. We present the final average accuracy (FAA),
cumulative average accuracy (CAA) and final forgetting measure (FFM) with ± standard deviation
under different pre-trained models (PTM), over three runs of different random seeds and task splits.
∗The original paper [30] used a different supervised checkpoint and a different data split of ImageNet-
R. We asked the authors for official code and reproduced its results under the same setting as [41, 40].

PTM Method
Split CIFAR-100 Split ImageNet-R

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)

Sup-21K

L2P [41] 83.06 ±0.17 88.25 ±0.01 6.58 ±0.40 63.65 ±0.12 67.25 ±0.02 7.51 ±0.17

DualPrompt [40] 86.60 ±0.19 90.64 ±0.01 4.45 ±0.16 68.79 ±0.31 71.96 ±0.04 4.49 ±0.14

S-Prompt++ [39] 88.81 ±0.18 92.25 ±0.03 3.87 ±0.05 69.68 ±0.12 72.50 ±0.04 3.29 ±0.05

CODA-Prompt [30]∗ 86.94 ±0.63 91.57 ±0.75 4.04 ±0.18 70.03 ±0.47 74.26 ±0.24 5.17 ±0.22

HiDe-Prompt (Ours) 92.61 ±0.28 94.03 ±0.01 3.16 ±0.10 75.06 ±0.12 76.60 ±0.01 2.17 ±0.19

iBOT-21K

L2P [41] 79.00 ±0.28 85.13 ±0.05 5.55 ±0.36 55.35 ±0.28 58.62 ±0.05 3.73 ±0.53

DualPrompt [40] 78.76 ±0.23 86.16 ±0.02 9.84 ±0.24 54.55 ±0.53 58.69 ±0.01 5.38 ±0.70

S-Prompt++ [39] 79.14 ±0.65 85.85 ±0.17 9.17 ±1.33 55.16 ±0.83 58.48 ±0.18 4.07 ±0.16

CODA-Prompt [30] 80.83 ±0.27 87.02 ±0.20 7.50 ±0.25 61.22 ±0.35 66.76 ±0.37 9.66 ±0.20

HiDe-Prompt (Ours) 93.02 ±0.15 94.56 ±0.05 1.33 ±0.24 70.83 ±0.17 73.23 ±0.08 2.46 ±0.21

iBOT-1K

L2P [41] 75.57 ±0.41 82.69 ±0.06 7.23 ±0.93 60.97 ±0.26 65.95 ±0.02 4.07 ±0.66

DualPrompt [40] 76.63 ±0.05 85.08 ±0.12 8.41 ±0.40 61.51 ±1.05 67.11 ±0.08 5.02 ±0.52

S-Prompt++ [39] 77.53 ±0.56 85.66 ±0.16 8.07 ±0.97 60.82 ±0.68 66.03 ±0.91 4.16 ±0.14

CODA-Prompt [30] 79.11 ±1.02 86.21 ±0.49 7.69 ±1.57 66.56 ±0.68 73.14 ±0.57 7.22 ±0.38

HiDe-Prompt (Ours) 93.48 ±0.11 95.02 ±0.01 1.00 ±0.24 71.33 ±0.21 73.62 ±0.13 2.79 ±0.26

DINO-1K

L2P [41] 70.65 ±0.57 79.02 ±0.01 9.46 ±1.68 57.40 ±0.23 62.56 ±0.20 3.58 ±0.28

DualPrompt [40] 74.90 ±0.21 83.98 ±0.16 10.26 ±0.62 58.57 ±0.45 64.89 ±0.15 5.80 ±0.21

S-Prompt++ [39] 74.97 ±0.46 83.82 ±0.39 7.78 ±0.66 57.64 ±0.16 63.79 ±0.05 5.08 ±0.31

CODA-Prompt [30] 77.50 ±0.64 84.81 ±0.30 8.10 ±0.01 63.15 ±0.39 69.73 ±0.25 6.86 ±0.11

HiDe-Prompt (Ours) 92.51 ±0.11 94.25 ±0.01 0.99 ±0.21 68.11 ±0.18 71.70 ±0.01 3.11 ±0.17

MoCo-1K

L2P [41] 74.85 ±0.28 83.14 ±0.03 6.51 ±0.95 51.64 ±0.19 58.87 ±0.24 2.37 ±0.59

DualPrompt [40] 77.77 ±0.68 85.31 ±0.07 6.61 ±1.08 52.57 ±0.82 60.65 ±0.16 2.73 ±0.49

S-Prompt++ [39] 76.30 ±0.54 83.88 ±0.12 14.67 ±0.64 53.15 ±1.10 60.03 ±0.95 4.11 ±1.84

CODA-Prompt [30] 76.83 ±0.34 84.97 ±0.23 12.60 ±0.02 55.75 ±0.26 65.49 ±0.36 10.46 ±0.04

HiDe-Prompt (Ours) 91.57 ±0.20 93.70 ±0.01 1.19 ±0.18 63.77 ±0.49 68.26 ±0.01 3.57 ±0.96

Benchmark: We consider multiple CIL benchmarks that are widely used for prompt-based continual
learning [41, 40, 30]. Specifically, Split CIFAR-100 [14] includes 100-class small-scale images,
randomly split into 10 incremental tasks of disjoint classes. Split ImageNet-R [14] includes 200-class
large-scale images that are hard examples of ImageNet [29] or newly collected examples of different
styles, randomly split into 10 incremental tasks of disjoint classes. 5-Datasets [6] includes CIFAR-10
[14], MNIST [15], Fashion-MNIST [42], SVHN [24] and notMNIST [1] datasets, each treated as an
incremental task to evaluate the impact of large inter-task differences. Split CUB-200 [32] includes
200-class fine-grained images of birds, randomly split into 10 incremental tasks of disjoint classes.

Baseline: We compare four representative prompt-based approaches as discussed in Sec. 3.1, such as
L2P [41], DualPrompt [40], S-Prompt++ [39] and CODA-Prompt [30]. To evaluate the performance
of continual learning, we record the average accuracy of all seen classes after learning each task,
presenting the last one as the final average accuracy (FAA) and their historical average as the
cumulative average accuracy (CAA) [37]. We also present the final forgetting measure (FFM) of all
tasks [37]. We consider a variety of pre-training paradigms for ImageNet-21K and ImageNet-1K,
including Sup-21K, iBOT-21K, iBOT-1K, DINO-1K and MoCo-1K, as described in Sec. 3.2.

Implementation: We follow similar implementations as previous work [41, 40, 30]. Specifically, we
adopt a pre-trained ViT-B/16 backbone and train with an Adam optimizer (β1 = 0.9, β2 = 0.999),
a batch size of 128, and a constant learning rate of 0.005 (except for CODA-Prompt with a cosine-
decaying learning rate of 0.001), and grid search for a proper epoch number. The image inputs are
resized to 224× 224 and normalized to [0, 1]. Please refer to Appendix C for more details.

Overall Performance: Table 1 presents the main results of all approaches. Consistent with the
observations in Sec. 3.2, representative prompt-based approaches achieve outstanding performance
under supervised pre-training (i.e., Sup-21K), while perform significantly worse under the more
realistic self-supervised pre-training. In particular, the most recent CODA-Prompt [30] outperforms
other baselines in general (here we take FAA as the primary metric), but is sensitive to learning
rate (see Fig. 2, a, b and Appendix Table 6). In contrast, our HiDe-Prompt achieves generally the
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highest FAA, CAA and the lowest FFM, thus greatly superior to all competitors. This advantage
is more pronounced under self-supervised pre-training, e.g., up to 15.01% and 9.61% lead on Split
CIFAR-100 and Split ImageNet-R, respectively.4 When considering large inter-task differences and
fine-grained classification (see Table 2), the performance lead of our approach under self-supervised
pre-training becomes even more significant, e.g., up to 12.63% and 30.44% on 5-Datasets and Split
CUB-200, respectively. We further evaluate the impact of pre-trained knowledge that is disjoint from
downstream tasks, following the setup of a recent work [12]. Specifically, we perform Split CIFAR-
100 with pre-training on a subset of ImageNet in which 389 similar classes were removed. The FAAs
of S-Prompt++, CODA-Prompt and HiDe-Prompt are 69.00%, 65.07% and 88.05%, respectively. All
above results demonstrate the strength of our approach, thanks to the explicit optimization of the
hierarchical components that overcomes potential sub-optimality.

Table 2: Extended benchmarks. Here we present FAA
(↑) for all approaches. The results of 5-Datasets are
further detailed in Appendix Table 8.

Method
5-Datasets Split CUB-200

Sup-21K iBOT-21K Sup-21K iBOT-21K

L2P [41] 81.84 82.25 74.48 44.29

DualPrompt [40] 77.91 68.03 82.05 41.31

S-Prompt++ [39] 86.06 77.20 82.08 42.73

CODA-Prompt [30] 64.18 51.65 74.34 47.79

HiDe-Prompt (Ours) 93.83 94.88 86.56 78.23

Here we explore the characteristics of HiDe-
Prompt in more depth. First, HiDe-Prompt
requires much smaller GPU memory com-
pared to CODA-Prompt (e.g., 16141MB
vs 25325MB on Split CIFAR-100), since
we optimize the construction and inference
of appropriate prompts separately as hier-
archical components rather than jointly in
an end-to-end fashion. Compared to other
baselines (except L2P that requires a much
smaller epoch number), the computation
cost of our approach is comparable in order
of magnitude. Using the same single-card
A100 GPU, for example, the training times of L2P, DualPrompt, S-Prompt++, CODA-Prompt and
HiDe-Prompt are 0.55h, 2.00h, 2.01h, 2.08h, and 2.80h on Split CIFAR-100, respectively. As for the
impact of statistical modeling, reserving around 5 centroids for each class performs comparably to
a single Gaussian (see Appendix Table 7), which ensures storage efficiency and can potentially be
generalized to other task types.

Table 3: Ablation study of hierarchical components. Here we present FAA (↑) for all baselines.
“WTP” refers to the use of prompt ensemble within the naive architecture of task-specific prompts.

Baseline
Split CIFAR-100 Split ImageNet-R

Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K
Naive Architecture 85.11 73.05 72.20 73.74 75.67 60.22 48.00 53.68 54.33 48.77
WTP 87.86 78.86 75.93 75.15 77.15 71.57 55.16 60.86 57.61 53.21
WTP+TII 88.05 80.77 78.90 76.27 77.78 73.76 55.19 61.22 58.41 53.08
WTP+TAP 89.85 84.23 86.04 84.76 85.17 72.57 60.01 67.13 64.26 58.36
WTP+TII+TAP 92.50 90.21 90.52 88.93 89.28 74.89 70.44 70.66 66.78 63.59
WTP+TII+TAP w/ CR 92.61 93.02 93.48 92.51 91.57 75.06 70.83 71.33 68.11 63.77

Table 4: Effect of CR on WTP and the full HiDe-Prompt. Here we present FAA (↑) for all baselines.

PTM Baseline
Split CIFAR-100 Split ImageNet-R

λ = 0 0.001 0.01 0.1 λ = 0 0.001 0.01 0.1

iBOT-1K
WTP w/ CR 75.13 72.75 72.53 71.53 61.47 61.17 61.07 59.52

WTP+TII+TAP w/ CR 90.15 91.18 91.60 93.35 70.97 71.25 71.57 71.71

DINO-1K
WTP w/ CR 74.99 73.23 72.74 70.87 57.71 58.23 57.35 56.37

WTP+TII+TAP w/ CR 88.97 90.06 90.54 92.61 66.88 67.42 68.13 68.21

Ablation Study: We perform an extensive ablation study in Table 3 to validate the effectiveness of
hierarchical components in HiDe-Prompt. We first construct a naive architecture of task-specific
prompts as the baseline and then incorporate progressively the individual designs of Sec. 4.2. In
general, the optimization of each component, such as within-task prediction (WTP), task-identity
inference (TII) and task-adaptive prediction (TAP), delivers clear benefits and all contribute to the
strong performance of HiDe-Prompt. Interestingly, the improvement of TII only becomes apparent

4A contemporaneous work [20] also reported FAA under DINO-1K on Split CIFAR-100, Split ImageNet-R
and 5-Datasets (83.59%, 61.22% and 89.10%), which lags far behind ours (92.51%, 68.11% and 93.50%).
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with WTP+TAP rather than with WTP only, suggesting that these hierarchical components are highly
synergistic instead of operating in isolation. The proposed contrastive regularization (CR) helps the
instructed representations of individual tasks to be compatible with each other and avoid inter-task
overlap, thus further facilitating the performance of WTP+TII+TAP. Moreover, we observe that
the improvements of WTP, TII, TAP and CR are generally more significant under self-supervised
pre-training, due to effectively addressing the obscured sub-optimality.

Figure 4: Detailed Analysis of WTP and TII.

Detailed Analysis: Now we further an-
alyze the contributions of the three com-
ponents for continual learning. First, we
evaluate the average performance of learn-
ing each new task in Fig. 4, a, where WTP
clearly outperforms the naive architecture,
indicating that the knowledge of resolving
each task is better incorporated into the
task-specific prompts. Second, we present
the accuracy of predicting task identity
from uninstructed representations in Fig. 4,
b, which has been substantially improved
(up to 67.74%) through optimizing TII explicitly. Third, we evaluate the effects of CR on only WTP
and the full model of HiDe-Prompt (i.e., WTP+TII+TAP) in Table 4. Increasing the strength of
CR decreases the performance of WTP since the task-specific prompt includes more knowledge
about other tasks, but improves the performance of HiDe-Prompt since the inter-task representations
become more compatible. These results suggest a potential trade-off between the knowledge for
WTP and TAP, which can be modulated explicitly by CR.

6 Discussion and Conclusion

In this work, we analyze extensively the advanced prompt-based continual learning from both empiri-
cal and theoretical perspectives. An important finding is that, the continual learning objective (which
can be decomposed into WTP, TII and TAP in the context of pre-training) is not adequately achieved,
and this sub-optimality is clearly exposed under the more realistic self-supervised pre-training. By
leveraging statistics of uninstructed and instructed representations, we present a strong approach to
optimize explicitly the hierarchical components, which achieves superior performance across various
pre-training paradigms. In particular, our theoretical analysis and the proposed approach can serve
as a general framework for implementing parameter-efficient fine-tuning techniques (e.g., prompt,
adapter, LoRA, FiLM, etc.) in continual learning5, which differ only in the form of task-specific
parameters. Interestingly, our proposal is consistent with recent advances in neuroscience [17, 16],
where the activation of non-memory cells and memory cells (as well as their specific populations)
is internally switched. Based on these results, we expect subsequent work to further explore the
architecture and optimization of continual learning with an effective use of pre-trained knowledge.

This work remains some potential limitations. First, we assume adequate pre-training to provide mean-
ingful representations, which may not be available in some applications. Second, the prompt-based
strategy is mainly applicable to the transformer backbone rather than other backbone architectures.
Third, the transformer backbone is frozen and adapted to downstream tasks via prompt parameters,
which prevents the pre-trained knowledge from being enriched and updated. As a fundamental
research in machine learning, the potential negative societal impact is not obvious at this stage.
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Algorithm 1 Training Algorithm of HiDe-Prompt
Input: Pre-trained transformer backbone fθ, training sets D1, ...,DT , number of tasks T , number of
epochs E, hyperparameters α, τ and λ.
Output: Parameters p1, ...,pT , ω and ψ

1: Initialize e1, ω and ψ
2: for t = 1, ..., T do
3: for c ∈ Yt do
4: Obtain Ĝc from fθ and Dt ▷ Uninstructed Representations
5: if t > 1 then
6: Initialize et ← et−1

7: Construct pt = α
∑t−1
i=1 ei + (1− α)et

8: else
9: Construct pt = et

10: for epoch = 1, ..., E do
11: Optimize pt and ψ with LWTP in Eq. (10) ▷ Within-Task Prediction
12: Optimize ω with LTII in Eq. (11) ▷ Task-Identity Inference
13: Optimize ψ with LTAP in Eq. (12) ▷ Task-Adaptive Prediction
14: for c ∈ Yt do
15: Obtain Gc from fθ, pt and Dt ▷ Instructed Representations
16: return (p1, ...,pT , ω, ψ)

A Theoretical Foundation

A.1 Class-Incremental Learning (CIL)

Proof of Theorem 1

Proof. For class-incremental learning (CIL) with pre-training, assume Ex[HWTP(x)] ≤ δ,
Ex[HTII(x)] ≤ ϵ, and Ex[HTAP(x)] ≤ η. Let y = Yī,j̄ be the ground truth of an x, where
ī ∈ {1, ..., t} and j̄ ∈ {1, ..., |Yi|} denote the task identity and within-task index, respectively.

As we defined,
HWTP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j)

= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ),
(13)

HTII(x) = H(1ī, {P (x ∈ Xi|D, θ)}i)
= − logP (x ∈ Xī|D, θ),

(14)

HTAP(x) = H(1c̄, {P (x ∈ X c|D, θ)}c)
= − logP (x ∈ X c̄|D, θ)
= − logP (x ∈ X y|D, θ).

(15)

Then, we have
H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= − logP (x ∈ Xī,j̄ |D, θ)
= − log(P (x ∈ Xī,j̄ |x ∈ Xī,D, θ)P (x ∈ Xī|D, θ))
= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)− logP (x ∈ Xī|D, θ)
= HWTP(x) +HTII(x).

(16)

Taking expectations on Eq. (15), we have
L1 = Ex[HTAP(x)] ≤ η. (17)

Taking expectations on both sides of Eq. (16), we have
L2 = Ex[H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)]

= Ex[HWTP(x)] + Ex[HTII(x)]

≤ δ + ϵ.

(18)
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Since our objective of CIL with pre-training is max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)], then we
have the loss error

L = max{Ex[H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)],Ex[HTAP(x)]}
= max{L2,L1}
= max{δ + ϵ, η}.

(19)

This finishes the proof.

Proof of Theorem 2
Proof. For CIL with pre-training, its loss error L ≤ ξ. Assume x ∈ Xī,j̄ ⊆ Xī. According to the
proof of Theorem 1, we have

HWTP(x) = − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)

= − log
P (x ∈ Xī,j̄ |D, θ)
P (x ∈ Xī|D, θ)

≤ − logP (x ∈ Xī,j̄ |D, θ)
= H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= L2 ≤ ξ.

(20)

Likewise, we have

HTII(x) = − logP (x ∈ Xī|D, θ)

= − log
P (x ∈ Xī,j̄ |D, θ)

P (x ∈ Xī,j̄ |x ∈ Xī,D, θ)
≤ − logP (x ∈ Xī,j̄ |D, θ)
= H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= L2 ≤ ξ.

(21)

In addition, we have formulated the final goal of CIL as a multi-objective optimization problem, i.e.,
max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)]. Then, each objective must guarantee the loss error less
than ξ, i.e.,

HTAP(x) = − logP (x ∈ X y|D, θ)
= L1 ≤ ξ.

(22)

This finishes the proof.

A.2 Domain-Incremental Learning (DIL)

For domain-incremental learning (DIL), Let Xt =
⋃
j Xt,j and Yt = {Yt,j}, where j ∈ {1, ..., |Yt|}

denotes the j-th class in task t. Now assume we have a ground event denoted as D = {D1, ...,Dt}
and a pre-trained model fθ. For any sample x ∈

⋃t
k=1 Xk, a general goal of the DIL problem is to

learn P (x ∈ X∗,j |D, θ), where X∗,j represents the j-th class domain in any task. Of note, Yt = Yt′ ,
∀t ̸= t′ for DIL. This can be decomposed into two probabilities, including task-identity inference
(TII) and within-task prediction (WTP), denoted as P (x ∈ Xi|D, θ) and P (x ∈ Xi,j |x ∈ Xi,D, θ),
respectively. Based on Bayes’ theorem, we have

P (x ∈ X∗,j |D, θ) =
∑
i

P (x ∈ Xi,j |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ), (23)

where {∗, j} represents the j-th class in each domain.

Then we have the following theorems in terms of the sufficient and necessary conditions for improving
DIL with pre-training.

Theorem 3 For domain-incremental learning with pre-training, if Ex[HWTP(x)] ≤ δ,
Ex[HTII(x)] ≤ ϵ, and Ex[HTAP(x)] ≤ η, we have the loss error L ∈ [0,max{δ + ϵ+ log t, η}],
regardless whether WTP, TII and TAP are trained together or separately.

Proof of Theorem 3
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Proof. Let j̄ ∈ {1, ..., |Yt|} and y ∈ Yt be the ground truth of an x w.r.t. the within-task index
and class label, and y = Yi,j̄ for any i ∈ {1, ..., t}. Eq. (23) suggests that if we can improve either
the WTP performance P (x ∈ Xi,j̄ |x ∈ Xi,D, θ), the TII performance P (x ∈ Xi|D, θ), or both,
then the DIL performance P (x ∈ X y|D, θ) would be improved. However, such an improvement
is limited since it is upper-bounded by WTP or TII. To further improve the DIL performance,
we propose a hierarchical decomposition of the objective. That is, besides the improvement of
P (x ∈ X∗,j̄ |D, θ), we also need to directly improve the performance of task-adaptive prediction
(TAP), denoted as P (x ∈ X y|D, θ), where y ∈ {1, ..., |Yt|}, X y represents the domain of class y
in all observed domains, and X y =

⋃
i Xi,j̄ . Then the final goal of DIL is formulated as a multi-

objective optimization problem, i.e., max[P (x ∈ X∗,j̄ |D, θ), P (x ∈ X y|D, θ)]. Notice that the TII
probability is a categorical distribution over all observed domains {1 : t}, while the TAP probability
is over all observed classes

⋃t
k=1 Yk.

As similarly defined in CIL, here

HWTP(x) = H(1j̄ , {P (x ∈ Xi,j |x ∈ Xi,D, θ)}j)
= − logP (x ∈ Xi,j̄ |x ∈ Xi,D, θ),

(24)

HTII(x) = H(γ, {P (x ∈ Xi|D, θ)}i)
= −γi logP (x ∈ Xi|D, θ),

(25)

HTAP(x) = H(1c̄, {P (x ∈ X c|D, θ)}c)
= − logP (x ∈ X c̄|D, θ)
= − logP (x ∈ X y|D, θ),

(26)

where γ = {γi}ti=1 represents the possibility of x belonging to each observed domain, γi ∈ [0, 1]
and

∑
i γi = 1.

Then, for any simplex γ, we have

H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)
= − logP (x ∈ X∗,j̄ |D, θ)

= − log(
∑
i

P (x ∈ Xi,j̄ |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ))

≤ −
∑
i

γi log(
P (x ∈ Xi,j̄ |x ∈ Xi,D, θ)P (x ∈ Xi|D, θ)

γi
)

= −
∑
i

γi logP (x ∈ Xi,j̄ |x ∈ Xi,D, θ)−
∑
i

γi logP (x ∈ Xi|D, θ) +
∑
i

γi log(γi)

=
∑
i

γiHWTP +HTII +H(γ).

(27)

Taking expectations on Eq. (26), we have
L1 = Ex[HTAP(x)] ≤ η. (28)

Taking expectations on both sides of Eq. (27), we have

L2 = Ex[H(1j̄ , {P (x ∈ X∗,j |D, θ)}j ]

≤
∑
i

γiEx[HWTP(x)] + Ex[HTII(x)] +H(γ)

≤ δ + ϵ+ log t.

(29)

Since our objective of DIL with pre-training is max[P (x ∈ X∗,j̄ |D, θ), P (x ∈ X y|D, θ)], then we
have the loss error

L = max{Ex[H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)],Ex[HTAP(x)]}
= max{L2,L1}
= max{δ + ϵ+ log t, η}.

(30)

This finishes the proof.

16



Theorem 4 For domain-incremental learning with pre-training, if the loss error L ≤ ξ, then there
always exist (1) a WTP, s.t. HWTP ≤ ξ; (2) a TII, s.t. HTII ≤ ξ; and (3) a TAP, s.t. HTAP ≤ ξ.

Proof of Theorem 4 For DIL with pre-training, its loss error L = max[L1,L2] ≤ ξ. Assume
x ∈ X∗,j̄ ⊆ X y. According to the proof of Theorem 3, if we define P (x ∈ Xi,j̄ |D, θ) = P (x ∈
X∗,j̄ |D, θ), we have

HWTP(x) = − logP (x ∈ Xi,j̄ |x ∈ Xi,D, θ)

= − log
P (x ∈ Xi,j̄ |D, θ)
P (x ∈ Xi|D, θ)

≤ − logP (x ∈ Xi,j̄ |D, θ)
= − logP (x ∈ X∗,j̄ |D, θ)
= H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)
= L2 ≤ ξ.

(31)

Likewise, if we define γi = 1 and γi′ = 0 for i′ ̸= i, we have

HTII(x) = −
∑
i

γi logP (x ∈ Xi|D, θ)

= − logP (x ∈ Xi|D, θ)

= − log
P (x ∈ Xi,j̄ |D, θ)

P (x ∈ Xi,j̄ |x ∈ Xi,D, θ)
≤ − log(x ∈ Xi,j̄ |D, θ)
= − log(x ∈ X∗,j̄ |D, θ)
= H(1j̄ , {P (x ∈ X∗,j |D, θ)}j)
= L2 ≤ ξ.

(32)

In addition, we have formulated the final goal of DIL as a multi-objective optimization problem, i.e.,
max[P (x ∈ X∗,j̄ |D, θ), P (x ∈ X y|D, θ)]. Then, each objective must guarantee the loss error less
than ξ, i.e.,

HTAP(x) = − logP (x ∈ X y|D, θ)
= L1 ≤ ξ.

(33)

This finishes the proof.

A.3 Task-Incremental Learning (TIL)

For task-incremental learning (TIL), let Xt =
⋃
j Xt,j and Yt = {Yt,j}, where j ∈ {1, ..., |Yt|}

indicates the j-th class in task t. Now assume we have a ground event denoted as D = {D1, ...,Dt}
and a pre-trained model fθ. For any sample x ∈

⋃t
k=1 Xk, a general goal of the TIL problem is to

learn P (x ∈ Xī,j |x ∈ Xī,D, θ), where ī ∈ {1, ..., t} and j ∈ {1, ..., |Yī|}. This can be equivalent to
within-task prediction (WTP). Different from CIL, the task identity is provided in TIL. Unlike DIL,
Yt ∩ Yt′ = ∅, ∀t ̸= t′. Then we have the following theorems in terms of the sufficient and necessary
conditions for improving TIL with pre-training.

Theorem 5 For task-incremental learning with pre-training, Ex[HTII(x)] = 0, and task-adaptive
prediction (TAP) is degraded into within-task prediction (WTP). If Ex[HWTP(x)] ≤ δ, we have the
loss error L ∈ [0, δ].

Proof of Theorem 5

Proof. For task-incremental learning (TIL) with pre-training, assume Ex[HWTP(x)] ≤ δ. Given
an x with the task identity ī ∈ {1, ..., t}, let j̄ ∈ {1, ..., |Yi|} be the ground truth of x w.r.t. the
within-task index, and y = Yī,j̄ be the ground truth label of x.

As similarly defined in CIL, here

HWTP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j)
= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ),

(34)
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HTII(x) = H(1ī, {P (x ∈ Xi|D, θ)}i)
= − logP (x ∈ Xī|D, θ)
= − log 1 = 0,

(35)

HTAP(x) = H(1c̄, {P (x ∈ X c|x ∈ Xī,D, θ)}c)
= − logP (x ∈ X c̄|x ∈ Xī,D, θ)
= − logP (x ∈ X y|x ∈ Xī,D, θ)
= HWTP(x).

(36)

Then, we have
H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
= − logP (x ∈ Xī,j̄ |D, θ)
= − log(P (x ∈ Xī,j̄ |x ∈ Xī,D, θ)P (x ∈ Xī|D, θ))
= − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)− logP (x ∈ Xī|D, θ)
= HWTP(x) +HTII(x)

= HWTP(x).

(37)

Taking expectations on both sides of Eq. (37), we have

L = Ex[H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)]
= Ex[HWTP(x)]

≤ δ.

(38)

Since our objective of TIL with pre-training is P (x ∈ Xī,j̄ |x ∈ Xī,D, θ), then we have the loss error
L ≤ δ. This finishes the proof.

Theorem 6 For task-incremental learning with pre-training, if the loss error L ≤ ξ, then there
always exists a WTP, s.t. HWTP ≤ ξ.

Proof of Theorem 6
For TIL with pre-training, its loss error L ≤ ξ. Assume x ∈ Xī,j̄ ⊆ Xī. According to the proof of
Theorem 5, we have

HWTP(x) = − logP (x ∈ Xī,j̄ |x ∈ Xī,D, θ)

= − log
P (x ∈ Xī,j̄ |D, θ)
P (x ∈ Xī|D, θ)

≤ − logP (x ∈ Xī,j̄ |D, θ)
= H(1ī,j̄ , {P (x ∈ Xi,j |D, θ)}i,j)
≤ ξ.

(39)

This finishes the proof.

B Impact of Pre-Training on Continual Learning

In this work, we focus on continual learning with pre-training, especially prompt-based continual
learning that receives significant attention in this direction. Our theoretical contribution lies in the
context of pre-training, where we demonstrate the sufficient and necessary conditions to achieve good
continual learning performance. This is clearly different from those previous theorems on continual
learning from scratch [13], which is analyzed below.

First, the condition is different. We formulate the hierarchical components as θ-conditional probabili-
ties, i.e., P (x ∈ Xī,j |x ∈ Xī,D, θ), P (x ∈ Xi|D, θ) and P (x ∈ X c|D, θ) for WTP, TII and TAP,
respectively, where θ captures the pre-trained knowledge in initialization. When training from scratch,
since the randomly-initialized parameter set θ0 carries no information and is greatly different from
the optimal solution, it needs be substantially changed in continual learning and should not be took
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into account in objectives. In contrast, the pre-trained parameter set θ carries beneficial knowledge for
downstream tasks. If the pre-training is adequately strong, θ is already close to the optimal solution
and only requires appropriate fine-tuning. Therefore, θ needs to be stabilized (usually frozen) in
continual learning and should be considered in objectives.

Then, due to the incorporation of θ, the sufficient and necessary conditions to achieve good continual
learning performance become different. In addition to WTP and TII, TAP is especially required
in the problem of continual learning with pre-training. Without considering the impact of pre-
training, i.e., training from scratch, TAP is equivalent to TII * WTP, i.e., P (x ∈ X y|D, θ) = P (x ∈
Xī|D, θ)P (x ∈ Xī,j̄ |x ∈ Xī,D, θ), corresponding to δ + ϵ = η in our Theorem 1. Therefore,
TAP is not required when training from scratch, consistent with the theorems in [13]. On the other
hand, with considering the impact of pre-training, TAP and TII * WTP are formulated as two
different prediction problems where P (x ∈ X y|D, θ) ̸= P (x ∈ Xī|D, θ)P (x ∈ Xī,j̄ |x ∈ Xī,D, θ).
Therefore, the final performance of having TAP in continual learning can outperform that without
TAP, i.e., max[P (x ∈ Xī,j̄ |D, θ), P (x ∈ X y|D, θ)] > P (x ∈ Xī,j̄ |D, θ).
In the case of prompt-based continual learning, without considering the impact of pre-training,
TAP = TII * WTP, due to classifying the same input in the same semantic space, i.e.,

exp(hψ(f(x))[y])∑t
j=1

∑
y′∈Yj

exp(hψ(f(x))[y′])
= exp(ĥω(f(x)[̄i])∑t

i=1 exp(ĥω(f(x)[i])
∗ exp(hψ(f(x))[j̄])∑

j∈Yi
exp(hψ(f(x))[j])

. With considering the

impact of pre-training, TAP != TII * WTP, because TII * WTP is to calculate exp(ĥω(f(x)[̄i])∑t
i=1 exp(ĥω(f(x)[i])

∗ exp(hψ(f(x;pi))[j̄])∑
j∈Yi

exp(hψ(f(x;pi))[j])
, while TAP is to calculate exp(hψ(f(x;pi))[y])∑t

j=1

∑
y′∈Yj

exp(hψ(f(x;pi))[y
′])

. In other words,

the backbone parameters are frozen to stabilize the pre-trained knowledge, with additional prompts
pi to fine-tune the semantic space (i.e., representations). TAP is essentially classifying the instructed
representations, i.e., h ∈ Hi,c in Eq. (12), while TII * WTP is performed on uninstructed represen-
tations, i.e., ĥ ∈ Ĥi,c in Eq. (11). Targeting on different semantic spaces, TAP and TII * WTP are
clearly different, i.e., TAP != TII * WTP. Strong empirical results also demonstrate their respective
contributions to continual learning performance (see ablation study in Table 3).

C Implementation Details

In this section, we describe the implementation details of all experiments.

Prompt-Based Approaches: We follow the same implementations of the prompt architectures for
all baselines as their original papers [41, 40, 30] (except S-Prompt++), which have been shown to
yield strong performance. Specifically, L2P [41] is implemented with M = 30 as the total number of
prompts (M = 10 [41] and M = 30 [40] have similar results), Lp = 5 as the prompt length, and
N = 5 for the Top-N keys. DualPrompt [40] is implemented with Lg = 5 as the prompt length of
task-sharing prompts g inserted into layers 1-2 and Le = 20 as the prompt length of task-specific
prompts e inserted into layers 3-5. S-Prompt++ [39] is implemented similarly to DualPrompt but
replaces all task-sharing prompts with task-specific prompts, i.e., the task-specific prompts are inserted
into layers 1-5 with prompt length Le = 20. CODA-Prompt [30] is implemented with M = 100
as the total number of prompts and Lp = 8 as the prompt length, inserted into the same layers 1-5
as DualPrompt and S-Prompt++. HiDe-Prompt adopts a similar architecture as S-Prompt++, but
replaces the task-specific keys with an auxiliary output layer ĥω to predict the task identity and
further preserves statistics of uninstructed and instructed representations. The hyperparameters for
HiDe-Prompt are set to α = 0.1, τ = 0.8, and λ = 0.1.

Training Regime: Following the implementations of previous work [41, 40], we employ a pre-trained
ViT-B/16 backbone, an Adam optimizer (β1 = 0.9, β2 = 0.999) and a batch size of 128. The learning
rate is set to 0.001 with cosine decay for CODA-Prompt (empirically validated in Table 6), compared
to 0.005 for other approaches. We then grid search for an appropriate number of epochs (E) under
different pre-training paradigms, and observe that the best choice is generally consistent on each
benchmark (i.e., E is relatively insensitive to the pre-training paradigms). For Split CIFAR-100
with E ∈ {5, 10, 20, 40}, we set E = 10 for L2P and E = 20 for other approaches. For Split
ImageNet-R with E ∈ {25, 50, 75, 150}, we set E = 50 for all approaches. For 5-Datasets with
E ∈ {5, 10, 20, 40}, we set E = 40 for supervised pre-training and E = 20 for self-supervised
pre-training. For Split CUB-200, we set E = 50 for all approaches.
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Evaluation Metric: We focus on three evaluation metrics for continual learning, including the final
average accuracy (FAA), cumulative average accuracy (CAA) and final forgetting measure (FFM).
Specifically, we define the accuracy on the i-th task after learning the t-th task as Ai,t, and define
the average accuracy of all seen tasks as AAt = 1

t

∑t
i=1Ai,t. After learning all T tasks, we report

FAA = AAT , CAA = 1
T

∑T
t=1AAt, and FFM = 1

T−1

∑T−1
i=1 maxt∈{1,...,T−1}(Ai,t − Ai,T ).

FAA is the primary metric to evaluate the final performance of continual learning, CAA further
reflects the historical performance, and FFM serves as a measure of catastrophic forgetting.

Compute: We run all experiments of Split CIFAR-100 on eight Tesla P100-SXM2 GPUs, Split
ImageNet-R on four NVIDIA A100 GPUs, 5-Datasets on both, and Split CUB-200 on eight NVIDIA
GeForce RTX 3090 GPUs.

D Extended Results

In this section, we provide some extended results for the main text.

Reproduction of Baselines: All results of L2P, DualPrompt and CODA-Prompt are reproduced from
their official implementations, while S-Prompt++ is implemented with the code of DualPrompt. We
compare the reported and reproduced results in Table 5. In particular, we use the same Sup-21K
checkpoint as the original papers of L2P [41] and DualPrompt [40], and their reproduced results
are comparable to the reported ones. In contrast, the original paper of CODA-Prompt [30] used a
different supervised checkpoint, which is first pre-trained on ImageNet-21K in a self-supervised
fashion and then fine-tuned on ImageNet-1K in a supervised fashion. Using the same supervised
checkpoint as [30], we have justified that the results of CODA-Prompt on Split CIFAR-100 can be
faithfully reproduced. As for Split ImageNet-R, we obtain the official code directly from the authors
of CODA-Prompt, but it cannot reproduce exactly the reported results on Split ImageNet-R due to
some clean-up issues. Consequently, the reproduced results of CODA-Prompt on Split ImageNet-R
slightly underperform the reported ones under the same setting [30]. Besides, we observe that [30]
used a different data split than originally proposed [40], resulting in an increase of around 3% in FAA.
Together with the differences in supervised checkpoints, the reproduced results of CODA-Prompt in
Table 1 and Table 5 differ by around 4% in FAA.

Table 5: Comparison of reported and reproduced results. ∗The forgetting metric for reported results
[30] is implemented differently from ours.

Baseline
Split CIFAR-100 Split ImageNet-R

FAA (↑) FFM (↓) FAA (↑) FFM (↓)

L2P (Reported) [41] 83.86 7.35 61.57 9.73

L2P (Reproduced) 83.06 6.58 63.65 7.51

DualPrompt (Reported) [40] 86.51 5.16 68.13 4.68

DualPrompt (Reproduced) 86.60 4.45 68.79 4.49

CODA-Prompt (Reported) [30]∗ 85.61 1.82 76.66 1.60

CODA-Prompt (Reproduced) 86.46 6.67 74.05 6.48

Learning Rate of CODA-Prompt: As discussed in the original paper of CODA-Prompt [30], its
performance depends heavily on the reduced learning rates, especially on Split ImageNet-R. Here we
extensively evaluate the effect of learning rate on the performance of CODA-Prompt (see Table 6),
in order to justify the strength of our reproduced results under different pre-training paradigms. It
can be clearly seen that using a smaller learning rate with cosine decay (i.e., LR=0.001 Cosine) is
generally a good choice for CODA-Prompt, which is consistent with its original paper and therefore
employed to reproduce its performance in this work.

Statistical Modeling: Here we evaluate the effect of statistical modeling. As analyzed in Sec. 4.2,
preserving a dedicated mean and covariance for each class of representations can faithfully recover
their distributions and thus achieves strong continual learning performance (see Table 7). Under Sup-
21K that is adequately strong for downstream tasks, the performance remains essentially consistent
when reducing the covariance to variance (e.g., the FAAs are 91.74% and 73.97% on Split CIFAR-100
and Split ImageNet-R, respectively). As a more generalized form of approximated distributions,
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Table 6: Effect of learning rate on the performance of CODA-Prompt. Here we present FAA (↑) for
all baselines. ∗The choice in its original paper [30].

Learning Rate (LR)
Split CIFAR-100 Split ImageNet-R

Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

LR=0.005 Constant 85.92 76.46 72.39 71.43 76.83 62.74 53.51 57.83 54.73 52.27

LR=0.001 Constant 86.78 80.91 79.31 76.86 76.09 67.73 59.80 64.75 61.33 55.75

LR=0.001 Cosine∗ 86.94 80.83 79.11 77.50 74.55 70.03 61.22 66.56 63.15 55.15

Table 7: Effect of statistical modeling. We present the final average accuracy (FAA), cumulative
average accuracy (CAA) and final forgetting measure (FFM) with± standard deviation under different
pre-trained models (PTM), over three runs of different random seeds and task splits.

PTM Method
Split CIFAR-100 Split ImageNet-R

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)

Sup-21K
Covariance 92.61 ±0.28 94.03 ±0.01 3.16 ±0.10 75.06 ±0.12 76.60 ±0.01 2.17 ±0.19

Multi-Centroid 92.92 ±0.12 94.60 ±0.06 0.86 ±0.12 73.55 ±0.21 75.93 ±0.15 0.95 ±0.02

iBOT-21K
Covariance 93.02 ±0.15 94.56 ±0.05 1.33 ±0.24 70.83 ±0.17 73.23 ±0.08 2.46 ±0.21

Multi-Centroid 92.69 ±0.10 94.69 ±0.13 1.57 ±0.24 70.63 ±0.07 72.94 ±0.06 1.31 ±0.15

iBOT-1K
Covariance 93.48 ±0.11 95.02 ±0.01 1.00 ±0.24 71.33 ±0.21 73.62 ±0.13 2.79 ±0.26

Multi-Centroid 91.78 ±0.08 94.10 ±0.10 1.45 ±0.07 71.33 ±0.29 74.38 ±0.24 1.73 ±0.37

DINO-1K
Covariance 92.51 ±0.11 94.25 ±0.01 0.99 ±0.21 68.11 ±0.18 71.70 ±0.01 3.11 ±0.17

Multi-Centroid 90.06 ±0.14 92.92 ±0.19 2.13 ±0.10 69.34 ±0.16 72.35 ±0.11 1.60 ±0.16

MoCo-1K
Covariance 91.57 ±0.20 93.70 ±0.01 1.19 ±0.18 63.77 ±0.49 68.26 ±0.01 3.57 ±0.96

Multi-Centroid 90.70 ±0.02 93.23 ±0.10 1.56 ±0.12 63.05 ±0.15 66.90 ±0.13 1.78 ±0.36

reserving fewer than 10 centroids (around 5 on average)6 for each class achieves comparably strong
performance in all cases (see Table 7), which ensures both efficiency and generality.

5-Datasets: In Table 8, we evaluate the continual learning performance on 5-Datasets for large
inter-task differences. We keep the implementation of prompt architecture for all approaches the
same as in Split CIFAR-100 and Split ImageNet-R. Then we perform an extensive grid search for
learning rate, number of epochs and other applicable hyperparameters with their official or commonly-
used codes. Under Sup-21K, we can essentially reproduce the results of L2P [41]. However, the
reproduced results of DualPrompt [40] is lower than the reported one. We find that this issue is also
discovered by other users and remains open in github. As the original paper of DualPrompt [40] has
not described precisely the implementation for 5-Datasets, we speculate that this issue is possibly
due to the use of different prompt architectures. A supporting evidence is that the reported results of
DualPrompt [40] are similar to those of S-Prompt++, which is equivalent to replacing all task-sharing
prompts in DualPrompt with task-specific prompts. Besides, the most recent CODA-Prompt [30] also
performs poorly on this challenging benchmark. To ensure the strength of reproduced results, we have
extensively searched the learning rate in {0.001, 0.0005}, the number of epochs in {5, 20, 40} and the
hyperparameter of orthogonality regularization in {0, 0.1, 0.01}, and presented the best performance.
The inferiority of CODA-Prompt is possibly due to the excessive attentions to the previously-learned
prompts, since the task distributions are clearly different and the old knowledge might interfere
with the new one. To support this claim, we analyze the attentions of CODA-Prompt and observe a
strong preference for previously-learned prompts (around 0.6 ∼ 0.8). Compared to all competitors,
HiDe-Prompt achieves the strongest performance under different pre-training paradigms, consistent
with the results on Split CIFAR-100 and Split ImageNet-R in Table 1. In particular, the FFM of
HiDe-Prompt is almost zero, indicating its great success in overcoming catastrophic forgetting.

Visualization of Representations: We visualize the uninstructed and instructed representations with
t-SNE, as shown in Fig. 5 for Sup-21K and Fig. 6 for iBOT-21K. Based on these results, we have
the following analysis: (1) The uninstructed representations have shown single-peaked patterns in
general, thanks to the use of adequate pre-training. This property allows them to be approximated with
Gaussian distributions for preservation and recovery, and allows for correct prediction of task identity
from them. (2) The instructed representations tend to be more compact and distinguishable, validating

6We use KNN to select multiple centroids (set to a maximum of 10) for each class of representations, where
the average number of obtained centroids is usually around 5.
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Table 8: Overall performance of continual learning on 5-Datasets.

Baseline
FAA (↑) FFM (↓)

Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

L2P [41] 81.84 82.25 80.02 76.26 66.89 4.78 8.23 9.46 8.50 24.22

DualPrompt [40] 77.91 68.03 68.92 64.66 59.71 13.11 20.30 24.47 27.24 35.89

S-Prompt++ [39] 86.06 77.20 73.51 69.51 72.91 4.74 15.83 7.47 17.87 15.86

CODA-Prompt [30] 64.18 51.65 48.14 50.86 39.02 17.23 27.53 22.02 26.69 64.33

HiDe-Prompt (Ours) 93.83 94.88 93.89 93.50 93.28 0.44 0.09 0.07 0.04 0.14

Figure 1: Visualization of uninstructed and instructed representations with t-SNE. Here we

present the results of Split CIFAR-100 under Sup-21K. Each color represent a class.

1

Figure 5: Visualization of uninstructed and instructed representations with t-SNE: Part I. Here we
present the results of Split CIFAR-100 under Sup-21K. Each color represent a class.

the effectiveness of prompt-based continual learning. The degree of compactness and differentiation
varies across pre-training paradigms, contributing to their performance differences. (3) The differences
in compactness and differentiation between uninstructed and instructed representations suggest that
the design of coarse-grained classification by task and fine-grained classification by class is reasonable
for prompt-based continual learning, as do our theoretical analysis and the proposed approach.
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Figure 6: Visualization of uninstructed and instructed representations with t-SNE: Part II. Here we
present the results of Split CIFAR-100 under iBOT-21K. Each color represent a class.
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