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Abstract

Large language models (LLMs) achieve re-
markable performance on challenging bench-
marks that are often structured as multiple-
choice question-answering (QA) tasks. Zero-
shot Chain-of-Thought (CoT) prompting en-
hances reasoning in LLMs but provides only
vague and generic guidance (“think step by
step”). This paper introduces ARR, an intu-
itive and effective zero-shot prompting method
that explicitly incorporates three key steps in
QA solving: analyzing the intent of the ques-
tion, retrieving relevant information, and rea-
soning step by step. Comprehensive experi-
ments across diverse and challenging QA tasks
demonstrate that ARR consistently improves
the Baseline (without ARR prompting) and out-
performs CoT. Ablation and case studies fur-
ther validate the positive contributions of each
component: analyzing, retrieving, and reason-
ing. Notably, intent analysis plays a vital role
in ARR. Additionally, extensive evaluations
across various model sizes, LLLM series, and
generation settings solidify the effectiveness,
robustness, and generalizability of ARR.!

1 Introduction

Large language models (LLMs) (Zhao et al., 2023;
Min et al., 2023; Minaee et al., 2024) have been a
transformative technique in Natural Language Pro-
cessing (NLP) owing to their excellent text genera-
tion and conversation abilities (Hurst et al., 2024;
Anthropic, 2024; Team et al., 2024a). Challenging
benchmarks for language model evaluation have
significantly driven LLM advancements (Chang
et al., 2024), with most designed as multiple-choice
question-answering (MCQA) tasks (Robinson and
Wingate, 2023) requiring answer selection from
given options (Clark et al., 2018; Liu et al., 2020;
Hendrycks et al., 2021). Recent LLM benchmarks
demand extensive commonsense, world knowledge,
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Figure 1: ARR motivation. To answer a question, we
often need to analyze the question’s intent, retrieve
relevant information, and reason step by step.

and complex reasoning (Srivastava et al., 2023;
Suzgun et al., 2023; Wang et al., 2024b), posing
significant challenges for LLMs. Optimizing LLM
performance in QA tasks is increasingly crucial for
their continued development.

Recent advancements have introduced various
methods to enhance LLM reasoning abilities (Qiao
et al., 2023; Sun et al., 2023), with Chain-of-
Thought (CoT) prompting proving effective across
various tasks (Li et al., 2024). Key variants in-
clude few-shot CoT (Wei et al., 2022), which
provides rationale-based exemplars for in-context
learning (Brown et al., 2020; Dong et al., 2024),
and zero-shot CoT (Kojima et al., 2022), which em-
ploys general instructions such as “Let’s think step
by step.” Due to its simplicity and effectiveness,
zero-shot CoT has gained extensive adoption. By
appending this trigger sentence to the original QA
prompt, LLMs generate step-by-step reasoning to
improve question-answering performance.

Despite its widespread use, zero-shot CoT
prompting provides only generic reasoning guid-
ance. As illustrated in Figure 1, answering complex
questions typically involves three key steps: (1) an-
alyzing the question’s intent (Adams, 1986; Mele,
1989; Mele and Moser, 1994) to obtain a thorough
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context understanding, a clear problem-solving tar-
get, and a purposeful planning guide, (2) retrieving
relevant information from context, external sources,
or memory for supportive reference (Jones and
Steinhardt, 2022; Shi et al., 2023), and (3) system-
atically applying inductive and deductive reason-
ing (Clark, 1969; Johnson-Laird, 1999; Heit, 2000;
Hayes and Heit, 2018). Therefore, we hypothe-
size that an effective prompt should direct LLMs
to complete these steps. To verify this hypothesis,
we propose a refined zero-shot prompting method,
ARR, which explicitly incorporates these three el-
ements: Analyzing, Retrieving, and Reasoning.
Specifically, ARR employs the answer trigger sen-
tence: “Let’s analyze the intent of the question, find
relevant information, and answer the question with
step-by-step reasoning.” This structured approach
is expected to enhance the performance across di-
verse QA tasks and various models, akin to the
improvements observed with zero-shot CoT upon
its first introduction (Kojima et al., 2022).

To evaluate the effectiveness of the proposed
ARR method, we test the performance (accuracy)
of open-weights LLMs (Dubey et al., 2024) on
10 multiple-choice QA datasets, covering reading
comprehension (Clark et al., 2019; Liu et al., 2020),
commonsense reasoning (Talmor et al., 2019; Sap
et al., 2019), world knowledge (Welbl et al., 2017;
Mihaylov et al., 2018; Clark et al., 2018), and multi-
task understanding (Suzgun et al., 2023; Hendrycks
et al., 2021; Wang et al., 2024b). Compared to
the Baseline method without a specific trigger sen-
tence and the zero-shot CoT method with general
prompts, ARR consistently improves QA per-
formance across all datasets, demonstrating its
effectiveness and superiority. Additionally, abla-
tion studies show that each individual component
of ARR-Analyzing, Retrieving, and Reasoning—
outperforms both the Baseline and CoT methods,
confirming their positive contributions. Notably,
the Analyzing-only setting yields the largest per-
formance gain on average, highlighting the critical
role of intent analysis in question answering. Be-
yond quantitative results, we provide qualitative
case studies to reveal problems in the Baseline and
CoT methods such as intent misunderstanding, con-
text misuse, and faulty reasoning.

Furthermore, we conduct extensive experiments
across various settings to assess the generalizability
of the proposed ARR method. ARR consistently
outperforms alternatives across different model
sizes, LLM series (architectures), generation tem-

peratures, and few-shot scenarios. These compre-
hensive experiments and analyses further solidify
its effectiveness, robustness, and adaptability. The
key contributions of this work are as follows:

1. This paper proposes ARR, an intuitive,
general, and effective zero-shot prompting
method to improve LLM performance in vari-
ous question-answering tasks.

2. Comprehensive experiments across diverse
QA tasks demonstrate that ARR consistently
outperforms the Baseline and CoT methods.
Ablation and case studies further validate the
positive contributions of each component.

3. Additional extensive experiments on various
settings solidify the effectiveness and general-
izability of ARR across different model sizes,
LLM series, and generation configurations.

2 Related Work

2.1 LLM Prompting

Recent large language models (LLMs) (Dubey
et al.,, 2024; Lambert et al., 2024; Liu et al.,
2024) are pre-trained on large-scale text corpora
curated from the Internet (Soldaini et al., 2024,
Penedo et al., 2024; Weber et al., 2024). Their
advanced text understanding and generation ca-
pabilities (Hurst et al., 2024; Anthropic, 2024;
Team et al., 2024a) have significantly revolution-
ized the field of natural language processing (NLP).
Consequently, the NLP paradigm is shifting to-
ward a framework comprising pre-training, post-
training, and prompting (Liu et al., 2023), with
post-training focusing on aligning models with hu-
man preferences (Ouyang et al., 2022; Bai et al.,
2022; Rafailov et al., 2023) rather than fine-tuning
for specific downstream tasks (Devlin et al., 2019).
After the training stages, LLMs can generate satis-
factory responses to natural language instructions
and questions, highlighting the growing importance
of prompt design (White et al., 2023; Giray, 2023;
Sahoo et al., 2024). In this work, we propose an in-
tuitive, general, and effective prompting method to
enhance LLM performance in question-answering.

2.2 LLM Reasoning

Recent LLM research increasingly emphasizes
reasoning abilities (Qiao et al., 2023; Sun et al.,
2023). Chain-of-Thought (CoT) is a prompting
strategy that enhances problem-solving by guid-
ing LLMs to generate intermediate reasoning steps.
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Figure 2: Question answering with LLMs. We first obtain rationale r; by reasoning generation and then select the
optimal option via evaluating the language modeling losses of different context-option combinations.

Main variants include zero-shot CoT (Kojima
et al., 2022) that uses general instructions such as
“Let’s think step by step” and few-shot CoT (Wei
et al., 2022) that provides exemplars with ratio-
nales to leverage in-context learning (Brown et al.,
2020; Dong et al., 2024). Building on CoT, var-
ious reasoning techniques have emerged (Zhou
et al.,, 2023a,b; Wang et al., 2023a; Yasunaga
et al., 2024; Wang and Zhou, 2024). Some stud-
ies explore optimal reasoning paths through self-
consistency (Wang et al., 2023c; Chen et al., 2023)
or tree-like searches (Yao et al., 2023), while others
investigate self-refinement (Madaan et al., 2023),
self-correction (Huang et al., 2024; Tyen et al.,
2024; Chen et al., 2024), self-verification (Cobbe
et al., 2021; Li et al., 2023b; Lightman et al.,
2024), and self-evolution (Guan et al., 2025; Lee
et al., 2025) mechanisms. Beyond prompting and
generation-based approaches, post-training meth-
ods (Chu et al., 2025), particularly those leverag-
ing reinforcement learning (RL) (Sutton and Barto,
2018), have been developed to enhance reason-
ing capabilities (Shao et al., 2024; Wang et al.,
2024a; Setlur et al., 2024; Xu et al., 2025). As a
reasoning-eliciting prompting approach, ARR ef-
fectively complements existing research by guiding
LLMs through three essential steps: intent analysis,
information retrieval, and step-by-step reasoning.

2.3 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) enhances
output quality by retrieving relevant information
from pre-processed knowledge sources (Gao et al.,
2023). The retrieving component of our ARR
method is inspired by the traditional “external
RAG” approach (Lewis et al., 2020), which re-
trieves relevant information from the explicit con-
text or outer sources, and realizes instead a form
of “internal RAG,” which utilizes language models
as implicit knowledge bases (Petroni et al., 2019;
Jiang et al., 2020) and extracts references from
memory (training data) (Carlini et al., 2021; Shi

et al., 2024). This retrieval mechanism is essential
for enhancing LLM performance in question an-
swering, as irrelevant information can significantly
degrade accuracy (Jones and Steinhardt, 2022; Shi
et al., 2023; Yoran et al., 2024).

3 Question Answering with LLMs

This section presents a formally defined multiple-
choice question-answering workflow using large
language models. Our pipeline combines ideas
from the two-step prompting introduced by Ko-
jima et al. (2022) and the multiple-choice selection
method proposed by Robinson and Wingate (2023).

3.1 Question Answering Data

In this work, we consider multiple-choice question-
answering (MCQA) tasks with one correct answer,
where the model is asked to answer the question
by selecting an option from a list of choices. For-
mally, let D = {X, )} be a MCQA dataset, where
X = {X1,Xy,...,X,} is the input information,
Y =A{y1,92,...,yn} is the corresponding correct-
choice label (y; € R), and n is the number of
instances in D.

In closed-book QA tasks, X; = {g;,0;}, where
gi is the i-th question, and o; = {0j}7., is the
option list with m choices. In open-book QA tasks,
Xi = {pi, ¢, 0}, where p; is the i-th passage pro-
vided by the task. Then, we obtain the input prompt
x; for LLMs as follows:

N {P(pi, gi,0), Open-book QA
i =

(1)
Closed-book QA

P(q¢;, 0i),

where P(+) denotes the prompt function which con-
catenates the string objects in X; using line breaks
as the delimiter (A =*“\n"). Thus, P(p;, ¢;, 0;) is:

piAinoZ-legA...Ao;-"Agb

The answer trigger sentence ¢ is the only dif-
ference between the proposed ARR method and



baseline methods in each experiment. Figure 2
presents each ¢ used in Baseline, zero-shot CoT,
and our ARR methods. For simplicity, X =
{z1,x9,...,xy} is used in the rest of the paper
for both open- and closed-book QA.

3.2 Multiple-Choice Question Answering

Stage 1: Reasoning Generation. Let Z; be the
tokenized representation of text x;. The decoder-
only Transformer-based (Vaswani et al., 2017; Rad-
ford et al., 2018) LLM M takes Z; as input and
generate a new token after each timestep. The
model freely generates the text response given by

where r; may contain the analysis, reasoning, and
answer. Then, we combine the original text input
x;, the generated response r;, and each choice o]

in the option list o; as follows:
zf = P(:Ui,ri,og). 3)

Stage 2: Option Selection. Let 2/ = [t/ 1772,

., t7F] € R” be the tokenized 2/, where L is
the number of effective tokens that are not used
for word masking or sequence padding. To select
an option, we feed the model M and obtain the
cross-entropy loss (Shannon, 1948, 1951; Jurafsky
and Martin, 2025) of each z/ as follows:

Ll = —ZlogPr(tf’ <% 9), 4)

k
where © is the parameters of M, tZ * is the k-th
token, and ¢/ "<F denotes all the previous tokens

before tg ik, Hence, for each option o] in 0; =
{o] ;”:'1, we have a corresponding cross-entropy
loss £]. Then, the option with the lowest loss value
is selected, i.e.,
yi = argmin {L£]}7L,. 5)
]6{172,,771}

Thus, the overall accuracy is calculated by
1 N
a==> Ty =), (6)

where o € [0,1] and the indicator function I(-)
returns 1 if y; = ¢; or 0 otherwise.

4 Experimental Setup

This section introduces the experimental setup, in-
cluding datasets, models, and evaluation settings.”

*Please refer to Appendix A for more experiment details.

QA Dataset Split #Item # Token # Class
BoolQ Valid 3,270 145 2
LogiQA Test 651 192 4
CSQA Valid 1,221 43 5
SIQA Valid 1,954 51 3
SciQ Test 1,000 132 4
OBQA Test 500 55 4
ARC Test 3,548 59 4
BBH Test 5,281 112 2-18
MMLU Test 13,842 108 4
MMLU-Pro  Test 12,032 186 10

Table 1: QA dataset statistics. “# Class” is the number
of options m, “# Item” is the total number of data items
for evaluation, and “# Token” is the average number of
tokens per instance (zero-shot prompt), tokenized by the
LLaMA (Dubey et al., 2024) tokenizer.

4.1 Datasets

As mentioned in § 3.1, we consider 10 multiple-
choice QA tasks with questions ¢; and options o;.
Reading comprehension tasks (Chen, 2018) explic-
itly provide passages p; to base on. The model M
is asked to answer the question by choosing one
from the option list. We consider a wide range of
QA benchmarks to evaluate the capabilities of M
in different aspects, including reading comprehen-
sion, commonsense reasoning, world knowledge,
and multitask understanding. The dataset statistics
are presented in Table 1.

4.1.1 Reading Comprehension
BoolQ. BoolQ (Clark et al., 2019) is a question

answering dataset for yes/no questions. It evaluates
the performance of M on reading comprehension.

LogiQA. LogiQA (Liu et al., 2020) is a reading
comprehension dataset that requires M to have
logical reasoning for question-answering.

4.1.2 Commonsense Reasoning

CSQA. Commonsense QA (Talmor et al., 2019)
examines M on commonsense question-answering
problems constructed using information from Con-
ceptNet (Speer et al., 2017).

SIQA. SociallQA (Sap et al., 2019) is a large-
scale QA benchmark for commonsense reasoning
about social situations, which probes emotional
and social intelligence in everyday situations.

4.1.3 World Knowledge

SciQ. SciQ (Welbl et al., 2017) provides scien-
tific supports for M to answer the multiple-choice
science questions.



Method Reading Commonsense World Knowledge Multitask Understanding Ave
BoolQ LogiQA CSQA SIQA SciQ OBQA ARC BBH MMLU MMLU-Pro
w/o Reason  77.86 35.64 50.37 47.49 9120 69.80 64.61 5026 45.54 29.60 56.24
Baseline 84.16 35.79 7297 6955 8590 7220 8259 52.19 60.68 38.75 65.48
CoT 84.65 38.10 7371  68.12 93770 78.20 84.31 5840 62.08 40.10 68.14
ARR 86.33 39.02 7494 7098 9440 80.00 84.84 59.01 63.51 42.72 69.58

Table 2: Main experiments. The zero-shot performance (Accuracy %) of the LLaMA3-8B-Chat model on various
multiple-choice QA datasets using different answer trigger sentences ¢. (1) w/o Reason: directly selecting an option
without rationales; (2) Baseline: ¢ is “Answer:”; (3) CoT (Kojima et al., 2022): ¢ is “Answer: Let’s think step by
step.”; (4) ARR: our method that elicits intent analysis, information retrieval, and step-by-step reasoning.

OBQA. OpenBookQA (Mihaylov et al., 2018)
asks M to answer the question based on the given
elementary level science facts and broad common-
sense knowledge.

ARC. AI2 Reasoning Challenge (Clark et al.,
2018) contains grade-school science questions and
is divided into a Challenge and an Easy set.

4.1.4 Multitask Understanding

BBH. BIG-Bench Hard (Suzgun et al., 2023)
is a suite challenging tasks filtered from BIG-
Bench (Srivastava et al., 2023). Solving these prob-
lems often requires multi-step reasoning. In this
work, 4 (out of 27) subtasks in BBH are discarded
as they are not multiple-choice QA tasks.

MMLU. MMLU (Hendrycks et al., 2021) com-
prehensively measures the multitask accuracy of
M on 57 tasks including elementary mathematics,
history, computer science, and more.

MMLU-Pro. MMLU-Pro (Wang et al., 2024b)
extends the mostly knowledge-driven MMLU
benchmark by integrating more challenging,
reasoning-focused questions and expanding the
choice set from four to ten options.

4.2 Models

Our experiments adopt open-weights, decoder-
only, and Transformer-based (Vaswani et al.,
2017) LLMs. We mainly employ LLaMA3-8B-
Chat (Dubey et al., 2024), an instruction-following
LLM with 8 billion model parameters, and use
the model implementation and checkpoints pro-
vided by Hugging Face Transformers (Wolf et al.,
2020). In generalizability experiments, we also
explore LLaMA3-Chat models of different sizes
in § 6.1 and 7B-Chat models of different LLM
series in § 6.2, i.e., Qwen2.5 (Yang et al., 2024),
Gemma (Team et al., 2024b,c), and Mistral (Jiang
et al., 2023).

4.3 Evaluation

To evaluate the QA performance of LLMs, we ap-
ply a two-step process including reasoning gener-
ation and option selection, as mentioned in § 3.2.
First, we let the model freely generate text re-
sponses that may include their analysis, reasoning,
and answer choice. Then, we concatenate the input
and output in the first stage with each choice from
the given option list, pass each concatenation to
the model, and select the option with the lowest
cross-entropy loss. The loss corresponds to the per-
plexity of language models: A lower loss means a
lower perplexity and a higher confidence. Length
normalization is not applied because the options
are mostly in the A/B/C/D, Yes/No, or True/False
format. As the datasets in our experiments are all
multiple-choice QA tasks, we adopt accuracy as
the evaluation metric, which is calculated by Eq. 6.

S Main Experiments

5.1 QA Performance

The main experiments test the zero-shot QA perfor-
mance of LLaMA3-8B-Chat (Dubey et al., 2024)
on various multiple-choice QA datasets. The only
difference between Baseline, zero-shot CoT (Ko-
jima et al., 2022), and ARR is the answer trigger
sentence ¢ shown in Figure 2. The results in Ta-
ble 2 demonstrate that our ARR method boosts
the Baseline method by a large margin, with an im-
provement of +4.1% on average. In addition, ARR
consistently outperforms zero-shot CoT prompting
across all QA datasets, highlighting its universal
superiority in various task types including reading
comprehension, commonsense reasoning, world
knowledge, and multitask understanding. More-
over, the “w/o Reason” method, which directly
selects options without relying on rationales (r; in
Eq. 2), performs significantly worse, emphasizing
the benefits of our two-stage QA approach.



Answer Trigger Sentence ¢

Answer

: Let’s analyze the intent of the question , find relevant information , and answer the question with 'step-by-step reasoning .

Answer
Answer:
Answer:

: Let’s find relevant information , and answer the question.
: Let’s answer the question with step-by-step reasoning .

: Let’s analyze the intent of the question , and answer the question.

@l ®e 0|6

Answer:

Table 3: Ablation study prompts. The answer trigger sentences ¢ used in different ARR ablation study settings.

Ablation Reading Commonsense World Knowledge Multitask Understanding Ave
A R R BoolQ LogiQA CSQA SIQA SciQ OBQA ARC BBH MMLU MMLU-Pro
® v v v 8633 39.02 7494 7098 9440 80.00 84.84 59.01 63.51 42.72 69.58
@ v 86.09 38.40 75.76  70.78 9430 86.80 85.83 57.08 63.66 42.54 70.12
® v 85.35 37.79 75.59 68.01 92.80 81.20 85.33 5827 63.73 43.08 69.12
@ v 8587 38.86 74.53 68.01 9450 82.60 85.03 5896 61.77 41.11 69.12
® 84.16 35.79 7297 69.55 8590 7220 82.59 52.19  60.68 38.75 65.48

Table 4: Ablation study results. The accuracy scores (%) of the LLaMA3-8B-Chat model on various multiple-
choice QA datasets using different answer trigger sentences ¢ ( Analyzing , Retrieving , and Reasoning ).

5.2 Ablation Study

To better understand the performance gains shown
in Table 2, we conduct an ablation study to ex-
plore the efficacy of each component of the ARR
method, i.e., analyzing, retrieving, and reasoning.
Specifically, we test the model’s QA performance
using the five different answer trigger sentences ¢
in Table 3. Table 4 reports the accuracy scores of
LLaMA3-8B-Chat under different ablation cases,
where @ is the full version of ARR and ® is equiv-
alent to the “Baseline” method in Table 2. In @, @,
and @, ¢ only contains one single component, i.e.,
analyzing, retrieving, and reasoning, respectively.

We observe that all the single-component ARR
settings (@, @, and @) outperform the Baseline
method (®) by a large margin, which verifies that
each ARR component contributes positively. In
addition, @ outperforms the CoT method in Table 2,
which means the “Reasoning” prompting of our
ARR method (i.e., “answer the question with step-
by-step reasoning”) is better than zero-shot CoT
prompting (i.e., “think step by step”) for QA tasks.
Furthermore, the complete ARR method (®) has
a higher accuracy score than the Retrieving-only
(®) and Reasoning-only (@) methods, meaning the
intent analysis benefits the other two “R” parts.

Notably, the Analyzing-only setting (®) brings
the greatest improvement gain, suggesting the sig-
nificance of analyzing the intent of the question. @
even outperforms the full ARR version () on aver-
age, mainly because it performs excellently on the

OBQA dataset (86.80%), which means understand-
ing the question’s intent in this task is vital. Exclud-
ing OBQA, the full ARR method achieves an av-
erage accuracy of 68.41%, surpassing @ (68.27%).
Hence, we dive into a concrete case study to exam-
ine the impact of intent analysis on QA solving.

5.3 Case Study

Table 5 shows a case in the OBQA dataset (Mi-
haylov et al., 2018) drawn from the main experi-
ments®, where our ARR method correctly answers
the question but the Baseline and CoT methods
fail. We can observe that the baseline method’s rea-
soning is incorrect: After stating that “the summer
solstice is in June,” it wrongly concludes that “the
summer solstice is four months before July.” The
CoT method misunderstands the question, result-
ing in counting four months before June instead of
after June. In contrast, our ARR method identifies
the question’s intent clearly, leading to a correct
reasoning path and final answer.

6 Generalizability

The main experiments in § 5 have validated the
effectiveness of our ARR method quantitatively
and qualitatively. To verify the generalizability of
ARR, we conduct additional extensive experiments
under different configurations on three challenging,
reasoning-intense, and multitask benchmarks intro-
duced in § 4.1.4: BBH, MMLU, and MMLU-Pro.

3Please refer to Appendix B for more cases.



Fact: the summer solstice is on June 21st in the northern hemisphere.

Task Input z;
(A)May (B) July (C) April (D) October

Question: The summer solstice in the northern hemisphere is four months before

Baseline ¢; Answer:

(B) July. Explanation: The summer solstice is the longest day of the year and marks the beginning of summer.

Reasoning r;

It is four months before the beginning of winter. The beginning of winter is in December, so the summer solstice is in June.

Therefore, the summer solstice is four months before July.

CoT ¢; Answer: Let’s think step by step.

The summer solstice is on June 21st. If we count four months before that, we get March 21st.

Reasoning r;

March is the third month of the year, so the answer is (C). April is the fourth month, May is the fifth month,
and October is the tenth month. None of these months is four months before June. July is the seventh month,

which is five months after June, so it is not the correct answer either. The correct answer is (C).

ARR ¢;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.

The question asks for the month that is four months after the summer solstice.

Reasoning 7;
Therefore, the correct answer is (D) October.

The summer solstice is on June 21st. Four months after June 21st is October 21st.

Table 5: Case study. An instance from the OpenBookQA dataset, where our ARR method correctly answers the
question but the Baseline and CoT methods fail because of intent misunderstanding or faulty reasoning.

Size Method BBH MMLU MMLU-Pro Avg.
Baseline 35.88  43.27 21.62 33.59

1B CoT 36.30  41.10 22.74 33.38
ARR  39.02 42.70 23.49 35.07
Baseline 45.65  48.26 30.88 41.60

3B CoT 46.89  46.80 30.03 41.24
ARR 5197 52.82 33.39 46.06
Baseline 52.19  60.68 38.75 50.54

8B CoT 58.40  62.08 40.10 53.53
ARR  59.01 63.51 42.72 55.08

Table 6: Model size experiments. The zero-shot per-
formance (Accuracy %) of LLaMA3-Chat models of
different sizes on multiple-choice QA datasets.

60
Baseline
CoT 55.08
551 ARR 53.53
& 50.54
N3
=50 1
>
2
E ) 46.06
5 4
<2
& 41.6 4124
=
9 40 1
2
35.07
351 33593338
30 T T T
1B 3B 8B

Figure 3: Model size experiments. The trend of QA
performance changes as the model becomes larger.

6.1 Model Sizes

We evaluate the LLaMA3-Chat models of differ-
ent sizes, i.e., 1B, 3B, and 8B (default) param-
eters, on multiple-choice QA tasks. As the ac-
curacy scores (%) shown in Table 6, our ARR
method brings solid performance gains over the
Baseline method and consistently outperforms zero-
shot CoT. For the 1B model, ARR slightly under-

Series Method BBH MMLU MMLU-Pro Avg.
Baseline 39.21 48.36 32.35 39.97

Qwen CoT 36.66 4491 29.26 36.94
ARR  40.50 50.34 39.10 43.31

Baseline 40.09 45.46 23.45 36.33

Gemma CoT 4439  47.17 26.20 39.25
ARR 4531 50.73 26.98 41.01

Baseline 46.27  55.61 30.68 44.19

Mistral CoT 5342  61.16 34.73 49.77
ARR 53,55 61.49 35.21 50.08

Table 7: LLM series experiments. The zero-shot per-
formance (Accuracy %) of 7B-Chat models of different
LLM series on multiple-choice QA datasets.

performs the Baseline method on MMLU, likely
due to the weaker instruction-following ability in
smaller models. Still, our ARR method achieves
overall performance improvements over the Base-
line in the 1B setting. In addition, Figure 3 illus-
trates the trend of QA performance changes as the
model becomes larger. The results conform to the
scaling laws of language models (Kaplan et al.,
2020), demonstrating the potential of the proposed
ARR method when applied to larger models.

6.2 LLM Series

To verify the effectiveness of our ARR method
on models other than LLaMA3 (Dubey et al.,
2024), we conduct experiments on 7B-Chat LLMs
of different series: Qwen2.5 (Yang et al., 2024),
Gemma (Team et al., 2024b,c), and Mistral (Jiang
et al., 2023). The results in Table 7 exhibit a consis-
tent superiority of the proposed ARR method over
the Baseline and CoT methods. This is similar to
the findings in the main experiments (Table 2), so-
lidifying the efficacy and generalizability of ARR.



Temp. Method BBH MMLU MMLU-Pro Avg.
Baseline 52.19  60.68 38.75 50.54

0.0 CoT 58.40  62.08 40.10 53.53
ARR  59.01 63.51 42.72 55.08

Baseline 50.19  59.35 36.88 48.81

0.5 CoT 56.58  60.82 37.82 51.74
ARR  58.87 62.87 42.64 54.79

Baseline 46.33  54.80 33.10 44.74

1.0 CoT 5146  55.57 33.00 46.68
ARR 5290 56.58 36.73 48.74

Baseline 40.84  45.03 26.85 37.57

1.5 CoT 42.53  44.85 25.61 37.66
ARR  42.65 45.16 27.44 38.42

Table 8: Generation temperature experiments. The
zero-shot performance (Accuracy %) of the LLaMA3-
8B-Chat model on multiple-choice QA datasets using
different generation temperatures (default: 0.0).

6.3 Generation Temperatures

For reproducibility, we set the generation tempera-
ture to 0 by default, as this setting makes the gen-
eration process deterministic. However, a higher
temperature brings a more diverse output, which
may lead to a different QA accuracy. To study the
effect of this key factor, we report the QA accuracy
(%) of the LLaM A3-8B-Chat model using different
temperatures during the reasoning generation stage:
0.0 (default), 0.5, 1.0, and 1.5.

As shown in Table 8, our ARR method surpasses
the Baseline and CoT methods with different tem-
peratures, demonstrating a strong robustness of
ARR. In addition, we observe that the model gener-
ally performs better when the temperature is lower.

6.4 Few-shot Generation

Few-shot Examples with Rationales. For each
subtask in a QA dataset, we randomly pick 10 ex-
amples from the training or validation set if they
exists. If a subtask only has the test set, 10 test ex-
amples are held out for few-shot usage, slightly re-
ducing the number of items for evaluation. For each
raw example, we construct the CoT and ARR ra-
tionales using GPT-4o0 (Hurst et al., 2024). Specifi-
cally, the input prompts provided to GPT-40 match
those used in the evaluation experiments under
CoT/ARR settings. The model’s output is extracted
as CoT/ARR rationales. In few-shot examples,
these rationales, along with correct answers, are
appended to the answer trigger sentence ¢. For the
Baseline setting, few-shot examples include correct
answers for in-context learning (ICL) (Brown et al.,
2020; Dong et al., 2024) but exclude rationales.

Shot Method BBH MMLU MMLU-Pro Avg.
Baseline 52.19  60.68 38.75 50.54

0 CoT 5840  62.08 40.10 53.53
ARR  59.01 63.51 42.72 55.08
Baseline 35.68  44.80 28.62 36.37

1 CoT 4739  48.36 31.07 42.27
ARR 4722 49.29 34.33 43.61
Baseline 34.39  42.08 25.92 34.13

3 CoT 42.84 48.21 26.69 39.25
ARR  40.19  49.68 37.04 42.30
Baseline 34.11 41.14 25.76 33.67

5 CoT 39.92 4748 26.12 37.84
ARR  40.68 49.19 36.62 42.16

Table 9: Few-shot experiments. The few-shot perfor-
mance (Accuracy %) of the LLaMA3-8B-Chat model
on multiple-choice QA datasets using 1, 3, and 5 few-
show examples with rationales.

Few-shot Results. Table 9 presents the accuracy
scores (%) of the LLaM A3-Chat model on multiple-
choice QA tasks. Using different numbers of few-
shot examples (1, 3, and 5), our few-shot ARR
method outperforms the ICL Baseline and few-shot
CoT (Wei et al., 2022) methods on average.
Comparison across the three few-shot settings
reveals that additional examples do not necessar-
ily enhance performance. Moreover, QA perfor-
mance is lower in the few-shot experiments than
in the zero-shot setting, likely because the ran-
domly selected examples mislead the reasoning
process (Zhao et al., 2021; Lu et al., 2022; Peng
et al., 2024). While demonstration selection meth-
ods could mitigate this issue (Gao et al., 2021; Ru-
binetal.,2022; Li et al., 2023a; Wang et al., 2023b),
their exploration is beyond the scope of this study.

7 Conclusion

In this work, we introduce ARR, an intuitive, sim-
ple, and general prompting method that effectively
enhances the question-answering performance of
LLMs by integrating three key steps: analyzing
the question’s intent, retrieving relevant informa-
tion, and reasoning step by step. Extensive exper-
iments across diverse QA tasks demonstrate that
ARR consistently improves the Baseline (without
ARR prompting) and outperforms the CoT prompt-
ing method. Ablation and case studies further vali-
date the positive contributions of each component,
with intent analysis proving particularly crucial. In
addition, evaluations across various model sizes,
LLM series, and generation configurations confirm
the effectiveness, robustness, and generalizability
of the proposed ARR method.



Limitations

We did not explore variations or paraphrases of
the proposed ARR prompts, opting instead for the
straightforward expressions presented in this pa-
per. While certain phrasings may further enhance
performance, the core idea remains the same.

In addition, resource constraints limited our fo-
cus to open-weights LLMs with no more than 8B
parameters. However, the results from model size
experiments (§ 6.1) align with the scaling laws for
language models (Kaplan et al., 2020), demonstrat-
ing the potential and generalizability of our ARR
method when applied to larger models.

Lastly, we observe that some generated ratio-
nales in the Reasoning Generation stage are repet-
itive and redundant. A dynamic stopping strategy
or post-processing to filter out redundancies can re-
duce the computational cost and potentially further
boost the final QA accuracy.
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A Experiment Details

A.1 Dataset Details

All QA datasets used in this work are loaded from
Hugging Face datasets*. Table 10 lists the URL
link of each dataset.

QA Datasets URL
BoolQ (Clark et al., 2019) Link
LogiQA (Liu et al., 2020) Link
CSQA (Talmor et al., 2019) Link
SIQA (Sap et al., 2019) Link
SciQ (Welbl et al., 2017) Link
OBQA (Mihaylov et al., 2018) Link
ARC (Clark et al., 2018) Link
BBH (Suzgun et al., 2023) Link
MMLU (Hendrycks et al., 2021)  Link
MMLU-Pro (Wang et al., 2024b)  Link

Table 10: The URL links of adopted QA datasets.

A.2 Model Details

As mentioned in § 4.2, we mainly employ
LLaMA3-8B-Chat (Dubey et al.,, 2024), an
instruction-following LLM with 8 billion model
parameters, for most experiments. In generalizabil-
ity experiments (§ 6), we also explore LLaMA3-
Chat models of different sizes in § 6.1 and 7B-
Chat models of different LLM series in § 6.2, i.e.,
Qwen2.5 (Yang et al., 2024), Gemma (Team et al.,
2024b,c), and Mistral (Jiang et al., 2023). Table 11
lists the URL link of each model and tokenizer pro-
vided by Hugging Face Transformers (Wolf et al.,
2020).°

LLM Series Size Type URL

8B Chat Link

LLaMA3 (Dubey et al., 2024) 3B  Chat Link
1B Chat Link

Qwen2.5 (Yang et al., 2024) 7B Chat Link
Gemma (Team et al., 2024b,c) 7B  Chat Link
Mistral (Jiang et al., 2023) 7B Chat Link

Table 11: The URL links of models and tokenizers.

A.3 LLM Generation Details

For each experimental setting, the model needs to
perform reasoning generation and option selection

“Data source: https://huggingface.co/datasets
SModel source: https://huggingface.co/models
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sessions on every QA dataset. For each running
session, all experiments are conducted on a single
NVIDIA V100 GPU with 32GB memory except
the few-shot experiments in § 6.4, which use a
single NVIDIA A100 GPU with 40GB memory
since the input length is much longer considering
the few-shot examples with rationales. To avoid
out-of-memory issue, all the models are loaded in a
half-precision (float16) mode, and the generation
batch size is 1. The input sequence is not truncated
since we do not want to lose the context informa-
tion or the answer trigger sentence ¢, but we set
the maximum number of newly generated tokens
as 512 during reasoning generation.

A4 Reproducibility

For the reproducibility of this work, we set the
generation temperature as (0 by default and disable
token sampling for deterministic generation. In ad-
dition, we pre-set the random seed for all random
modules at the beginning of each experiment ses-
sion. By an unofficial tradition®, we set 42 as the
random seed and do not tune the value. To validate
the reproducibility, we ran the main experiments
twice and obtained the same results as shown in
Table 2. Our source code is available on GitHub:
https://github.com/YuweiYin/ARR

A.5 Experimental Cost

In the reasoning generation stage, the total compu-
tational cost is approximately 6,900 GPU hours on
NVIDIA V100 clusters (about 288 days) and 1,300
hours on A100 clusters (about 54 days). We only
use V100 clusters for option selection, and the over-
all running time is approximately 500 hours (about
21 days). In the few-shot experiments, the expense
for GPT-40 API calls to generate CoT and ARR
rationales for few-shot examples is below US$20.

B More Cases

As discussed in § 5.3, this section presents addi-
tional cases (Table 12-21) from our main experi-
ments (§ 5, Table 2) to provide a closer look at how
the ARR method enhances reasoning and improves
QA accuracy. We present one case for each QA
dataset introduced in § 4.1.

6 “The answer to the ultimate question of life, the universe,
and everything is forty-two.” (Adams, 1979)
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Task Input z;

Passage: Feather — Contour feathers are not uniformly distributed on the skin of the bird except in some groups

such as the penguins, ratites and screamers. In most birds the feathers grow from specific tracts of skin called pterylae;
between the pterylae there are regions which are free of feathers called apterylae (or apteria). Filoplumes and down
may arise from the apterylae. The arrangement of these feather tracts, pterylosis or pterylography, varies across

bird families and has been used in the past as a means for determining the evolutionary relationships of bird families.
Question: Do penguins have feathers arising from the epidermis?

Baseline ¢;

Reasoning 7;

Answer:

No, penguins have feathers arising from specific tracts of skin called pterylae.

The pterylae are the areas of skin where the feathers grow. The pterylae are not uniformly distributed on the skin of the penguin.
The feathers grow from the pterylae, and the areas between the pterylae are free of feathers and are called apterylae.

The arrangement of these feather tracts, pterylosis or pterylography, varies across bird families. In penguins, the feathers are
uniformly distributed on the skin, but they arise from specific tracts of skin called pterylae.

The feathers do not arise from the epidermis. The epidermis is the outermost layer of the skin,

and in most birds, the feathers grow from the dermal layer of the skin, not the epidermis.

CoT ¢z

Reasoning r;

Answer: Let’s think step by step.

Penguins are a group of birds that have feathers uniformly distributed on their skin. The passage states that in most birds,
feathers grow from specific tracts of skin called pterylae, and between these tracts, there are regions called apterylae that are
free of feathers. However, it also mentions that in some groups, such as penguins, ratites, and screamers, feathers are not
uniformly distributed on the skin. This suggests that penguins do not have feathers arising from the epidermis.

Therefore, the answer is no. Penguins do not have feathers arising from the epidermis.

ARR ¢;

Reasoning 7;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question asks about the distribution of feathers on penguins. The passage states that in most birds, feathers grow from
specific tracts of skin called pterylae, but penguins are an exception. The passage does not mention the epidermis, but it does
mention that in penguins, feathers are uniformly distributed on the skin. This suggests that feathers in penguins may arise from
the epidermis, as there are no specific tracts of skin called pterylae. Therefore, the answer is yes.

Table 12: Case study. An instance from the Boolq dataset, where our ARR method correctly answers the question
but the Baseline and CoT methods fail.

Task Input z;

Passage: There are five stations set up from west to east along a section of the high-speed railway along the river.

It is known that Fuyi Station is east of Haoyun Station and West of Huyao Station, and is adjacent to Huyao Station;
Jiushang Station is adjacent to Yinling Station.

Question: If Haoyun stands to the east of Jiushang Station, you can get

(A) Yinling Station is adjacent to Haoyun Station and west of Haoyun Station;

(B) Haoyun Station is adjacent to Fuyi Station and west of Fuyi Station;

(C) Jiushang Station is adjacent to Haoyun Station and west of Haoyun Station;

(D) Yinling Station is adjacent to Fuyi Station and west of Fuyi Station;

Baseline ¢;

Reasoning 7;

Answer:

(C) Jiushang Station is adjacent to Haoyun Station and west of Haoyun Station;

(Explanation) Since Jiushang Station is adjacent to Yinling Station, and Yinling Station is adjacent to Haoyun Station,
Jiushang Station is adjacent to Haoyun Station. Since Jiushang Station is east of Yinling Station,

and Yinling Station is west of Haoyun Station, Jiushang Station is west of Haoyun Station.

Therefore, Jiushang Station is adjacent to Haoyun Station and west of Haoyun Station.

CoT (ﬁ,‘

Reasoning 7;

Answer: Let’s think step by step.

If Haoyun stands to the east of Jiushang Station, then Haoyun Station is west of Jiushang Station.
Since Jiushang Station is adjacent to Yinling Station, Haoyun Station is adjacent to Yinling Station.
Since Fuyi Station is east of Haoyun Station, Fuyi Station is east of Yinling Station.

Since Huyao Station is west of Fuyi Station, Huyao Station is west of Yinling Station.

Since Jiushang Station is adjacent to Yinling Station, Huyao Station is adjacent to Jiushang Station . . .

ARR ¢;

Reasoning 7;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question asks us to determine the correct relationship between the stations based on the given information.

We are told that Fuyi Station is east of Haoyun Station and west of Huyao Station, and is adjacent to Huyao Station.

This means that Fuyi Station is between Haoyun Station and Huyao Station.

Additionally, we know that Jiushang Station is adjacent to Yinling Station.

The question also states that Haoyun stands to the east of Jiushang Station.

This implies that Haoyun Station is to the east of Jiushang Station.

Option (B) states that Haoyun Station is adjacent to Fuyi Station and west of Fuyi Station.

This is consistent with the given information that Fuyi Station is east of Haoyun Station.

Therefore, the correct answer is option (B)

Table 13: Case study. An instance from the LogiQA dataset, where our ARR method correctly answers the question
but the Baseline and CoT methods fail. Analysis: the correct station order can be Jiushang-Yinling-Haoyun-Fuyi-
Huyao or Yinling-Jiushang-Haoyun-Fuyi-Huyao.
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Task Input z;

Question: What do people aim to do at work?
(A) complete job (B) learn from each other (C) kill animals (D) wear hats (E) talk to each other

Baseline ¢;

Reasoning 7;

Answer:

(B) learn from each other. The best answer is B.

Step 1: Understand the context of the question: The question is asking about the purpose or goal of people at work.
Step 2: Analyze the options given

Option (A) "complete job" is a task-oriented answer, but it doesn’t necessarily imply learning or personal growth.
Option (C) "kill animals" is unrelated to the typical goals of work in most industries.

Option (D) "wear hats" is a superficial aspect of work attire and not a goal.

Option (E) "talk to each other" is a common aspect of work but doesn’t necessarily imply learning.

Step 3: Identify the most appropriate answer:

Option (B) "learn from each other" is a goal that aligns with personal and professional development,

which is a common aim in many workplaces. It suggests a focus on growth, improvement, and collaboration,
which are key aspects of many work environments. The final answer is: B

CoT ¢;

Reasoning r;

Answer: Let’s think step by step.

(B) People go to work to earn a living, but they also go to learn from each other and to be part of a community.
Choice (A) is incorrect because people do not go to work to complete a job. They go to work to do a job.
Choice (C) is incorrect because people do not go to work to kill animals.

Choice (D) is incorrect because people do not go to work to wear hats.

Choice (E) is incorrect because people do not go to work to talk to each other. They go to work to do a job.
The best answer is B.

ARR ¢;

Reasoning 7;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question asks what people aim to do at work. The relevant information is that people go to work to earn a living.

The answer is that people aim to complete their jobs at work.

Choice (B) is incorrect because people may learn from each other at work, but that is not the main purpose of going to work.
Choice (C) is incorrect because people do not go to work to kill animals.

Choice (D) is incorrect because people do not go to work to wear hats.

Choice (E) is incorrect because people do not go to work to talk to each other.

The best answer is A.

Table 14: Case study. An instance from the Commonsense QA dataset, where our ARR method correctly answers
the question but the Baseline and CoT methods fail.

Task Input z;

Context: Alex grew closer to their significant other after they vacationed together.
Question: How would Alex feel afterwards?
(A)inlove (B)happy (C) back from vacation

Baseline ¢;

Reasoning r;

Answer:

(B) happy

Reasoning Skill: Empathy And Perspective Taking

This question requires the test-taker to put themselves in Alex’s shoes and understand how they would feel
after a positive experience like vacationing with their significant other.

The correct answer, "happy", is a natural emotional response to a pleasant experience.

The other options are not directly related to the emotional state of Alex after the vacation.

"In love" is a more intense and long-term feeling, "back from vacation" is a factual statement rather than
an emotional response, and "happy" is the most appropriate answer given the context.

CoT gi)?

Reasoning r;

Answer: Let’s think step by step.

Alex grew closer to their significant other after they vacationed together.

This implies that the vacation strengthened their relationship. Therefore, Alex would likely feel happy after the vacation.
Reasoning skill: Empathy And Perspective Taking.

This question requires the reader to put themselves in Alex’s shoes and understand how they would feel after a positive experience.
It also requires the reader to consider the context of the situation and how it would impact Alex’s emotions. The best answer is (B)

ARR ¢;

Reasoning 7;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
Step 1: Identify the context of the question. The context is about Alex growing closer to their significant other after a vacation.
Step 2: Determine the emotional state of Alex after the vacation. The question asks how Alex would feel afterwards.

Step 3: Analyze the relationship between Alex and their significant other.

The question implies that the vacation strengthened their bond.

Step 4: Determine the emotional state of Alex based on the context.

Given that the vacation brought them closer together, it is likely that Alex would feel happy or in love.

Step 5: Choose the most appropriate answer. Between "happy" and "in love," "in love" is a more intense emotion that

aligns with the context of growing closer to someone.

The final answer is: (A) in love.

Table 15: Case study. An instance from the SociallQA dataset, where our ARR method correctly answers the
question but the Baseline and CoT methods fail. Analysis: Option B is not wrong, but Option A is more appropriate
as they are in a romantic relationship (“significant other’).
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Question: Rupture can cause fragments of what to travel via the bloodstream and become lodged in other arteries?

Task Input ; (A) red blood cells (B) white blood cells (C) plaque (D) enamel

Baseline ¢; Answer:
Rupture of an atherosclerotic plaque can cause fragments of the plaque to travel
via the bloodstream and become lodged in other arteries. This is known as an embolus.
Reasoning r;  Choice (B) is incorrect because white blood cells are not typically associated with atherosclerosis.
Choice (C) is incorrect because plaque is the substance that ruptures.
Choice (D) is incorrect because enamel is the hard, outer layer of the teeth. The best answer is (A).

CoT ¢; Answer: Let’s think step by step.

The question is asking about the consequences of a rupture, which implies a physical injury or damage to a structure.
The correct answer should be related to the physical structure that

can be damaged and cause fragments to travel through the bloodstream.

Option (A) red blood cells are a type of cell that carries oxygen throughout the body via the bloodstream,
and they can be damaged or ruptured in the event of a physical injury or damage to a blood vessel.

Option (B) white blood cells are part of the immune system and help fight infections,

but they are not a physical structure that can rupture and cause fragments to travel through the bloodstream.
Option (C) plaque is a sticky film of bacteria that can cause dental problems,

but it’s not a physical structure that can rupture and cause fragments to travel through the bloodstream.
Option (D) enamel is a hard, outer layer of teeth,

which is not directly related to the bloodstream or arteries.

Therefore, the correct answer is (A) red blood cells.

Reasoning r;

ARR ¢; Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question is asking about the consequences of a rupture, which is likely referring to a rupture of an aneurysm or

an atherosclerotic plaque. In the context of aneurysms or atherosclerosis, a rupture can lead to the release of fragments into

the bloodstream. These fragments can then travel to other parts of the body and become lodged in other arteries,

potentially causing blockages or other complications. Considering the options provided, the most relevant choice is (C) plaque,
as atherosclerotic plaque is a common cause of arterial blockages and can rupture, releasing fragments into the bloodstream.
The other options are not directly related to the consequences of a rupture in the context of aneurysms or atherosclerosis.

Reasoning r;

Table 16: Case study. An instance from the SciQ dataset, where our ARR method correctly answers the question
but the Baseline and CoT methods fail.

Fact: force causes the speed of an object to decrease.
Task Input z;  Question: The amount of friction and the speed of an object have what kind of relationship?
(A) inverse (B) reverse (C) direct (D) equal

Baseline ¢; Answer:
(C) Direct
Reasoning 7;  Explanation: The more friction an object has, the slower it will move. The less friction an object has, the faster it will move.
This is a direct relationship. The amount of friction and the speed of an object are directly related.

CoT ¢; Answer: Let’s think step by step.

Step 1: Understand the relationship between friction and speed
The relationship between friction and speed is that as friction increases, the speed of an object decreases.
Step 2: Determine the type of relationship

Reasoning r;  Since an increase in friction leads to a decrease in speed, this is a direct relationship.
A direct relationship means that as one variable increases, the other variable also increases.
Step 3: Choose the correct answer
Based on the understanding of the relationship between friction and speed, the correct answer is (C) direct.

ARR ¢; Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question asks about the relationship between the amount of friction and the speed of an object.
The relevant information is that force causes the speed of an object to decrease.
Reasoning r;  The intent of the question is to determine the relationship between the amount of friction and the speed of an object.
The correct answer is (A) inverse. The amount of friction and the speed of an object have an inverse relationship.
The more friction, the slower the object moves. The less friction, the faster the object moves.

Table 17: Case study. An instance from the OpenBookQA dataset, where our ARR method correctly answers the
question but the Baseline and CoT methods fail. Analysis: The CoT method provides a correct fact about the direct
relationship (“A direct relationship means that . . .”), but wrongly infers that “this is a direct relationship” from “an
increase in friction leads to a decrease in speed.” This is because the wrong statement is made without conditioning
on the correct fact that is presented after the statement (due to the autoregressive generation). In contrast, the ARR
method performs reasoning based on sufficient context after analyzing the intent and finding relevant information.
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Task Input z;

Question: A scientist maps a long region in which earthquakes originate and determines this region is a transform plate boundary.
Which evidence would cause the scientist to reevaluate this determination?

(A) Volcanism also characterizes the region.

(B) Earthquake centers in the region occur at shallow depths.

(C) The region shows extensive faulting of sediments.

(D) Equal crust densities are found on opposite sides of the region.

Baseline ¢;

Reasoning r;

Answer:

The best answer is C.

Transform plate boundaries are characterized by horizontal motion and faulting, but the faulting is not necessarily extensive.
Volcanism is characteristic of divergent and convergent plate boundaries, not transform plate boundaries. Shallow earthquake foci
are characteristic of transform plate boundaries. Equal crust densities on opposite sides of the region would indicate that

the region is a transform plate boundary. Therefore, (A), (B), and (D) are incorrect.

(C) is correct because extensive faulting is characteristic of transform plate boundaries.

CoT ¢;

Reasoning 7;

Answer: Let’s think step by step.

Transform plate boundaries are characterized by horizontal motion of the Earth’s crust, which is evidenced by faulting.

Volcanism is characteristic of divergent and convergent plate boundaries, not transform plate boundaries. Therefore, (A) is incorrect.
Earthquakes at transform plate boundaries can occur at any depth, so (B) is incorrect.

(C) is correct because faulting is a characteristic of transform plate boundaries.

(D) is incorrect because transform plate boundaries are characterized by horizontal motion of the Earth’s crust,

not by equal crust densities.

ARR ¢;

Reasoning 7;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.

The question asks for evidence that would cause a scientist to reevaluate the determination that a region is a transform plate boundary.
A transform plate boundary is a region where two plates slide past one another horizontally. The evidence that would

cause a scientist to reevaluate this determination would be evidence that is characteristic of a different type of plate boundary.

A divergent plate boundary is a region where two plates move apart from one another,

and a convergent plate boundary is a region where two plates move toward one another.

Volcanism is characteristic of a divergent plate boundary, so (A) is correct.

Table 18: Case study. An instance from the ARC dataset, where our ARR method correctly answers the question
but the Baseline and CoT methods fail.

Task Input z;

Question: The following paragraphs each describe a set of three objects arranged in a fixed order.

The statements are logically consistent within each paragraph. A fruit stand sells three fruits: peaches, mangoes, and apples.
The peaches are more expensive than the apples. The mangoes are the cheapest.

(A) The peaches are the second-most expensive

(B) The mangoes are the second-most expensive

(C) The apples are the second-most expensive

Baseline ¢;

Reasoning r;

Answer:

The peaches are the second-most expensive. The mangoes are the cheapest. The apples are the least expensive of the three fruits.
The peaches are more expensive than the apples. The mangoes are the cheapest. The peaches are the second-most expensive.

The mangoes are the cheapest. The apples are the least expensive of the three fruits. The peaches are more expensive than the apples.
The mangoes are the cheapest . ..

CoT ¢;

Reasoning r;

Answer: Let’s think step by step.

The peaches are more expensive than the apples. The mangoes are the cheapest.

Therefore, the mangoes are the least expensive of the three fruits.

The peaches are more expensive than the apples, so the peaches are the second-most expensive of the three fruits.
Choice (B) is incorrect. The mangoes are the cheapest of the three fruits. Choice (C) is incorrect.

The apples are less expensive than the peaches. The best answer is A.

ARR ¢;

Reasoning r;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question asks for the second-most expensive fruit. The peaches are more expensive than the apples,

and the mangoes are the cheapest. Therefore, the second-most expensive fruit is the apples.

Choice A is incorrect. The peaches are more expensive than the apples, and the mangoes are the cheapest.

Therefore, the peaches are the most expensive fruit, not the second-most expensive.

Choice B is incorrect. The mangoes are the cheapest fruit.

Table 19: Case study. An instance from the BBH dataset, where our ARR method correctly answers the question
but the Baseline and CoT methods fail. Analysis: The Baseline method rushes to conclusions and then tries to
present an explanation. However, the false statement confuses the whole reasoning process and makes the model
caught in an infinite self-doubting loop.
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Task Input z;

Question: Select the best translation into predicate logic.
David teaches Chris. (c: Chris; d: David; Txy: x teaches y)
(A) Tde (B) Ted (C) Tec (D) dTc

Baseline ¢;

Reasoning 7;

Answer:

(B) The translation of the sentence into predicate logic is Tcd, where Txy means x teaches y.

The subject of the sentence is David, the object is Chris, and the predicate is teaches.

The correct translation is Tcd, not Tdc, because the subject comes before the predicate in a predicate logic statement.
Choice (C) is incorrect because it reverses the subject and object.

Choice (D) is incorrect because it reverses the subject and predicate.

CoT ¢; Answer: Let’s think step by step.
Reasoning r;  (B) The predicate logic translation of the sentence is Tcd, where Txy means x teaches y. The best answer is B.
ARR ¢; Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.

Reasoning r;

The question asks for the best translation into predicate logic. The relevant information is the statement "David teaches Chris."
The statement is in the active voice, so the subject is the teacher, and the object is the student.

The predicate logic translation is Tdc, where Txy means x teaches y, ¢ is Chris, and d is David.

Choice (B) is incorrect. This is the translation of "Chris teaches David."

Choice (C) is incorrect. This is the translation of "Chris teaches Chris."

Choice (D) is incorrect. This is the translation of "David is taught by Chris."

The best answer is A.

Table 20: Case study. An instance from the MMLU dataset, where our ARR method correctly answers the question
but the Baseline and CoT methods fail. Analysis: The Baseline and CoT methods jump to the wrong conclusions
confidently, while the ARR method understands the question first and analyzes each option correctly.

Task Input z;

Question: Which type of research methods are designed to elicit responses to predetermined, standardized questions
from many respondents?

(A) Non-probability. (B) Cross-sectional. (C) Qualitative. (D) Ethnographic. (E) Longitudinal.

(F) Experimental. (G) Probability. (H) Observational. (I) Case Study. (J) Quantitative.

Baseline ¢;

Reasoning r;

Answer:

The best answer is G. Probability sampling is a type of research method that is designed to elicit responses to predetermined,
standardized questions from many respondents. Probability sampling is a type of sampling method that is used to

select a sample of participants from a larger population. Probability sampling methods include simple random sampling,
stratified sampling, and cluster sampling.

CoT ¢;

Reasoning 7;

Answer: Let’s think step by step.

(G) Probability sampling is a method of selecting a sample from a population

in which every member of the population has an equal chance of being selected.

Probability sampling is used in research to ensure that the sample is representative of the population.

ARR ¢;

Reasoning 7;

Answer: Let’s analyze the intent of the question, find relevant information, and answer the question with step-by-step reasoning.
The question asks about research methods that are designed to elicit responses to predetermined, standardized questions

from many respondents. This is a clue that the research method is quantitative. Quantitative research methods

are designed to elicit responses to predetermined, standardized questions from many respondents.

The correct answer is (J). The other choices are incorrect because they are not quantitative research methods.

Table 21: Case study. An instance from the MMLU-Pro dataset, where our ARR method correctly answers the
question but the Baseline and CoT methods fail. Analysis: The ARR method grasps the question’s intent and
implications before answering.
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