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ABSTRACT

Federated Learning (FL) has emerged as a promising paradigm for privacy-
preserving collaborative learning, yet data heterogeneity remains a critical chal-
lenge. While existing methods achieve progress in addressing data heterogene-
ity for participating clients, they fail to generalize to non-participating clients
with in-domain distribution shifts and resource constraints. To mitigate this is-
sue, we present HyperFedZero, a novel method that dynamically generates spe-
cialized models via a hypernetwork conditioned on distribution-aware embed-
dings. Our approach explicitly incorporates distribution-aware inductive biases
into the model’s forward pass, extracting robust distribution embeddings using
a NoisyEmbed-enhanced extractor with a Balancing Penalty, effectively prevent-
ing feature collapse. The hypernetwork then leverages these embeddings to gen-
erate specialized models chunk-by-chunk for non-participating clients, ensuring
adaptability to their unique data distributions. Extensive experiments on multi-
ple datasets and models demonstrate HyperFedZero’s remarkable performance,
surpassing competing methods consistently with minimal computational, storage,
and communication overhead. Moreover, ablation studies and visualizations fur-
ther validate the necessity of each component, confirming meaningful adaptations
and validating the effectiveness of HyperFedZero.

1 INTRODUCTION

Federated learning (FL) McMahan et al. (2017) enables privacy-preserving collaborative learning Li
et al. (2020a) across decentralized clients’ data Dean et al. (2012); Ben-Nun & Hoefler (2019);
Shi et al. (2023); Zhou et al. (2024b). A key challenge of FL is addressing data heterogeneity
among clients, arising from non-i.i.d. (i.e., independent and identically distributed) characteris-
tics, which can significantly impact model performance Ye et al. (2023); Zhang et al. (2021). Ex-
isting approaches primarily focus on client-side personalization, either by learning a personalized
model Marfoq et al. (2021); Zhang et al. (2020) or by fine-tuning the global model (e.g., basic fine-
tuning McMahan et al. (2017), regularised fine-tuning Li et al. (2021); T Dinh et al. (2020); Shi
et al. (2024), selective fine-tuning Arivazhagan et al. (2019); Collins et al. (2021), etc.) to better suit
participating clients. These efforts have achieved remarkable progress in reducing impacts of data
heterogeneity, leading to improved model performance for participating clients.

Nevertheless, this paradigm struggles to generalize when deploying trained models to previously
unseen edge devices (e.g., non-participating clients) with: (1) in-domain distribution shifts (e.g.,
different class frequencies, feature shifts, etc.), and (2) limited computational and communication
resources for fine-tuning. Additionally, as shown in Figure 1a, we observe that state-of-the-art meth-
ods in personalized FL perform exceptionally well on participating clients’ local data but catastroph-
ically fail when applied to non-participating clients with in-domain distribution shifts. This indicates
that current methods lack zero-shot personalization capabilities for new data distributions even in
the same domain, hindering the real-world applications of FL like mobile healthcare Nguyen et al.
(2022b) and edge computing Imteaj et al. (2021).

To address the challenge, FedJets Dun et al. (2023) introduces Mixture-of-Experts (MoE Masoudnia
& Ebrahimpour (2014)) architectures in FL, which turns the challenge of non-i.i.d. data into a
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Figure 1: [Left] Previous state-of-the-art personalized FL methods perform well on seen clients
but fail on unseen clients with in-domain distribution shifts (e.g., different class frequencies, fea-
ture shifts, etc.). Conversely, HyperFedZero enables trained models to adapt to unseen clients by
dynamically generating classifier parameters based on the input’s distribution embeddings, over-
coming in-domain distribution shifts without fine-tuning. [Right] Differences between in-domain
without distribution shifts, in-domain distribution shifts and out-of-domain in FL.

blessing for expert specialization. Specifically, FedJets dynamically assigns different experts to
different clients (whether seen or unseen) based on their unique data distributions, enabling zero-
shot personalization on the fly. However, the server-side and client-side storage and computational
requirements for managing extensive experts, as well as the need for frequent expert-parameter
synchronization, create impractical bottlenecks.

Instead of following the previous approach of adapting each client’s data separately via fine-tuning,
we rethink the problem of deploying trained models to non-participating clients from a novel per-
spective: Can we directly encode distribution-aware inductive biases into the model’s forward pass
in FL without fine-tuning? In this paper, we propose HyperFedZero, a hypernetwork-driven ap-
proach that dynamically generates the classifier parameters based on the input’s distribution embed-
dings for improved zero-shot personalization. Specifically, rather than directly learning the mapping
from inputs to labels, HyperFedZero learns the mapping from inputs to the optimal model parame-
ters that can classify the inputs accurately. Additionally, the NoisyEmbed and the Balancing Penalty
are also incorporated into HyperFedZero to further refine the extracted distribution embeddings by
the distribution extractor to enhance robustness and prevent feature collapses Thrampoulidis et al.
(2022).

Our contributions can be summarized as following:

1. We emphasize the inability to personalize models for unseen clients without fine-tuning
leads to degraded performance when their data distributions, even within the same domain,
differ from those observed during training (i.e., In-domain distribution shifts). This limita-
tion undermines the practicality of FL in dynamic environments with limited resources. To
the best of our knowledge, this work could be one of the first attempts to mitigate this issue
without incurring notable resource overheads.

2. We propose a novel hypernetwork-based approach, HyperFedZero, that directly encodes
distribution-aware inductive biases into the model’s forward pass. HyperFedZero begins
by using a distribution extractor with NoisyEmbed and Balancing Penalty to capture robust
and refined distribution embeddings from the input data. Then, a hypernetwork is condi-
tioned on the extracted embeddings to dynamically generate classifier parameters. Finally,
the input data are passed through classifiers to produce the final predicted labels.

3. Extensive experiments conducted across 7 datasets and 5 models demonstrate that Hyper-
FedZero significantly outperforms competing methods in zero-shot personalization, while
maintaining comparable model size and global and personalized performance. Additional
ablation studies and visualizations further validate the superiority of HyperFedZero. The
code will be made open-source upon acceptance.
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2 RELATED WORK

Data heterogeneity in FL. Data heterogeneity refers to differences in the statistical properties of
data across clients, presenting a significant challenge in FL Ye et al. (2023); Zhang et al. (2021);
Zhou et al. (2024a). Existing solutions fall into (i) personalization—FedPer Arivazhagan et al.
(2019), FedProx Li et al. (2020b), PFedMe T Dinh et al. (2020), Per-FedAvg Fallah et al. (2020)
learn client-specific models; and (ii) domain generalization—COPA Wu & Gong (2021), FedDG Liu
et al. (2021), FedSR Nguyen et al. (2022a), GA Zhang et al. (2023), FedIG Seunghan et al. (2024)
train domain-invariant features for unseen domains. Neither stream handles in-domain distribution
shifts common in practice.

Hypernetworks. A hypernetwork Ha et al. (2017); Chauhan et al. (2024); Wang et al. (2024)
conditions on side information to emit target-network weights; recent chunked/diffusion variants
cut its size. Recently, hypernetworks have gained considerable attention in the FL domain Shamsian
et al. (2021); Chen et al. (2024); Shin et al. (2024); Yang et al. (2022). In FL it supports client
personalization (pFedHN Shamsian et al. (2021)), communication compression (HyperFedNet Chen
et al. (2024)), heterogeneous hardware (HypeMeFed Shin et al. (2024)) and device-specific CT
models (HyperFed Yang et al. (2022)).

Recently, MoE-based FedJets Dun et al. (2023) tackled in-domain distribution shifts, but at the cost
of significant computational and communication overhead. In contrast, OD-PFL Amosy et al. (2024)
and PeFLL Scott et al. (2023) address this issue using hypernetwork to generate client-level weights.
However, these methods introduce additional communication costs or privacy risks stemming from
local data sharing. In comparison, our HyperFedZero generates sample-level weights locally (i.e.,
entirely on client devices), enabling zero-shot adaptation for both seen and unseen clients without
extra overhead or privacy concerns.

3 PROBLEM FORMULATION

Consider a FL training process with N participating clients. Each client i ∈ [0, N) owns a local
dataset Di = (Dx

i , D
y
i ), and (xi,yi) ∼ Di are drawn from the global instance space X and the

global label space Y , respectively. Additionally, each client i maintains a classification model c :
X → Y parameterized by global weights θc in the hypothesis space Θc. The objective of FL is to
find a θc that minimizes the overall losses across all participating clients, while maintaining data
privacy, as shown by Equation 1.

argmin
θc

N∑
i

wiFi((xi,yi), θc), (1)

where Fi(·) and wi are the local objective function and the aggregation weight of client i, respec-
tively. The aggregation weight wi = |Di|/

∑N
k |Dk| helps combine clients’ local losses into a

global optimization target McMahan et al. (2017), where | · | is the size of the ·.
After obtaining θc, the model is deployed to M clients that did not participate in the FL process.
Each client j ∈ [0,M) has a local dataset Dj which is drawn from X and Y (i.e., shares the same do-
main as Di) but exhibits different distributions (e.g., different class frequencies, feature shifts, etc.).
This results in in-domain distribution shifts, as the preferences of these non-participating clients
were not considered during the training process in Equation 1. Therefore, a cold-start problem is
introduced, as the model may not initially be well-suited to the data distribution of client j, leading
to suboptimal performance. A simple workaround for this issue is to perform fine-tuning based on
θc. Nevertheless, it requires non-participating clients to have enough resources to handle additional
local fine-tuning steps.

Intuitively, to avoid the aforementioned issues, we can directly condition the model’s predictions on
the distribution of the inputs. Specifically, this involves transforming Equation 1 to account for the
distribution of Di during training, as illustrated by Equation 2.

argmin
θc

N∑
i

wiFi((xi,yi), θc, ei), (2)

3
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Figure 2: The general architecture of HyperFedZero consists of two main shared models: a distribu-
tion extractor f and a hypernetwork h. During training, the distribution extractor f first transforms
the inputs into distribution embeddings, as shown in ❶. To prevent feature collapses, the NoisyEm-
bed and Balancing Penalty are applied. Then, in ❷, the hypernetwork h generates chunked param-
eters based on the distribution embeddings. Finally, in ❸, a classifier c, initialized with generated
parameters, is used to predict labels of the inputs. After training, frozen f and h can generate accu-
rate classifiers that are well-suited for non-participating clients with in-domain distribution shifts.

where ei is the distribution embeddings in the global distribution embedding space E extracted
from xi. Nevertheless, how to properly obtain ei and incorporate it into model predictions for
non-participating clients with in-domain distribution shifts in FL remains an open problem. This is
crucial for enabling effective zero-shot personalization.

4 OUR APPROACH

The general architecture of HyperFedZero is illustrated in Figure 2. In HyperFedZero, each client
consists of a distribution extractor f : X → E parameterized by θf and a hypernetwork h : E →
Θc parameterized by θh. Specifically, for client i, the distribution extractor f is responsible for
generating inputs xi’s distribution embeddings ei with a Balancing Penalty for preventing feature
collapses. Meanwhile, based on ei, the hypernetwork h generates dynamic θci for the classifier to
predict the labels. In other words, instead of learning the mapping function directly from X to Y ,
HyperFedZero lets clients first learn the mapping function from X to E to Θc. Then, a classifier is
initialized with generated θc ∈ Θc to transform X to Y .

4.1 DISTRIBUTION EMBEDDINGS EXTRACTION
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Figure 3: The NoisyEmbed and the Balacing Penalty
are employed in the distribution extractor for improve
distribution embeddings.

For client i, the distribution extractor f
aims to embed the original inputs xi into
a normalized P -dimensional embeddings
ei ∈ E that captures the geometric rela-
tionships (i.e., similar embeddings imply
similar distributions). Intuitively, similar
to token embeddings in the NLP field An-
toniak & Mimno (2018); Girdhar et al.
(2023), where, with proper supervision
from labels, the smoothness and continuity
properties of neural networks naturally en-
able this embedding structure. However,
we find a significant issue when simply ob-
taining ei by f(xi): feature collapse. In
this scenario, all ei collapse into a narrow
region within the embedding space. This
phenomenon arises because, during training, the local distributions of all clients can be sufficiently
considered by Equation 1, as there are no non-participating clients at this time. In other words, all
distributions are visible during training, minimizing the benefit of customizing models for invisible
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distributions. As a result, the distribution extractor tends to converge to a trivial solution, where all
xi are mapped to similar ei.

To mitigate the feature collapses issue, inspired by the load balance regulation in MoE Shazeer et al.
(2017), we jointly employ NoisyEmbed and Balancing Penalty, as illustrated in Figure 3.

NoisyEmbed deliberately adds noises to f(xi) for increased randomness and robustness, explicitly
preventing feature collapses, as presented by Equation 3.

e = softmax(f(xi; θf ) + z · softplus(noisy(xi))), (3)

where z ∈ N (0, 1). As it can be seen, NoisyEmbed employs an additional learnable global noisy
network f2(·) to customize the added noises to different inputs.

Balancing Penalty implicitly promotes exploration of the embedding space by incorporating Equa-
tion 4 into the loss function.

Fi(·, ei) = Fi(·) + α
var(

∑
ei)

mean(
∑

ei)
+ βE(−ei log ei), (4)

where α and β are two hyperparameters. In Equation 4, the first term encourages an even distribution
of ei across the embedding space Meanwhile, the second term fosters clustering along specific
dimensions of the embedding.

4.2 CONDITIONED PREDICTION VIA HYPERNETWORK

Minimizing Equation 2 essentially maximizes the probability of correctly predicting the labels, i.e.,

argmax
θc

N∑
i

wiPr(yi = ŷi|xi; θc, ei), (5)

where ŷi represents the predicted label for client i given xi, θc and ei. Thus, it is clear that we can
approach the problem in two ways: either by conditioning the model’s inputs on e or by conditioning
the model’s parameters on e, i.e.,

argmax
θc

N∑
i

wiPr(yi = ŷi|{xi, ei}; θc), Opt. 1

argmax
θc

N∑
i

wiPr(yi = ŷi|xi; θc|ei), Opt. 2

. (6)

In HyperFedZero, we condition model’s parameters on e (Opt. 2) for the following reasons: (1) In
Opt. 1, a single classifier is responsible for making predictions on all inputs. This can be seen as
making trade-offs along the Pareto front, limiting its flexibility. (2) Additionally, in Opt. 1, the classi-
fier may choose to ignore ei, which reduces the effectiveness of leveraging distribution embeddings.
In contrast, Opt. 2 can be viewed as employing different models for different ei in an explicit way.
Sec. 6 further validates our design choices by empirically demonstrating that Opt. 2 consistently
outperforms Opt. 1. However, Opt. 2 also introduces several challenges. First, Opt. 2 eliminates the
knowledge sharing between classifiers as they are independent. Second, Opt. 2 requires managing
multiple models on clients’ devices, violating the principles of FL regarding model efficiency and
resource usage. To alleviate these challenges, HyperFedZero employs a chunked hypernetwork h
to generate parameters incrementally, processing them chunk-by-chunk rather than all at once. This
enables the generation of different models based on ei while maintaining shared global knowledge,
as shown by Equation 7.

argmax
θc

N∑
i

wiPr(yi = ŷi|xi;h(ei; θh)). (7)

In this way, HyperFedZero strikes a balance between flexibility and efficiency, allowing the system
to leverage e and shared global knowledge while minimizing the overhead of managing multiple
models on each client device.

5
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Table 1: The zACC, gACC and pACC comparisons (the higher the better) between settings. Bold
marks the best-performing method in each comparison, underline marks the second best-performing
method. HyperFedZero outperforms other baselines consistently.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet MLP LeNet-S LeNet MLP LeNet-S LeNet ZekenNet ResNet ResNet

N = 10

Local 2.26 17.53 2.78 3.82 13.72 4.51 2.21 0.78 2.08 10.03 12.11 30.40 0.65 0.97
FedAvg 93.06 97.92 98.44 77.95 77.78 81.77 70.18 82.42 82.16 83.98 80.01 43.32 13.41 4.69
FedAvg (g) 93.83 97.72 98.40 85.48 86.11 87.69 71.05 82.09 83.31 85.64 83.37 44.27 14.41 6.89
FedAvg (p) 93.93 97.79 98.18 85.48 86.11 87.69 71.13 82.66 83.45 85.64 83.37 44.27 14.41 6.89

FedAvg-FT 89.24 92.01 90.28 57.99 48.44 71.35 47.27 28.52 57.81 46.68 35.61 32.39 3.52 1.34
FedProx 92.71 97.92 98.44 77.95 76.56 80.90 69.01 83.07 81.77 84.51 79.82 43.47 14.06 5.13
Ditto 92.53 98.09 98.26 77.08 77.08 80.03 68.62 82.29 80.73 82.36 68.42 35.80 8.98 4.54
pFedMe 93.23 97.92 98.26 77.78 77.08 78.82 69.40 81.64 81.77 82.62 75.20 38.78 11.46 4.39
pFedHN 26.91 17.36 10.94 26.56 13.37 18.40 9.25 1.17 2.47 6.32 6.58 30.54 4.69 0.89
PerFedAvg 93.23 97.92 98.26 78.30 77.26 80.90 70.05 82.68 81.90 45.25 78.52 43.32 13.28 5.73
FedAMP 89.41 91.67 90.80 59.55 51.04 71.35 47.53 30.86 58.33 47.01 35.42 32.67 4.17 1.12

Scaffold 94.27 98.26 98.61 78.47 78.30 80.73 71.61 82.94 82.94 84.83 81.48 47.30 15.63 8.26
GA 93.23 97.92 98.26 78.13 77.43 81.25 70.57 82.68 81.51 84.64 78.78 43.32 14.58 6.10
FedSR 94.79 97.92 98.44 79.69 81.94 81.94 74.09 82.94 83.07 85.42 79.49 43.18 11.59 6.25

FedEnsemble 84.38 92.53 92.36 65.10 64.58 65.45 11.46 58.07 70.57 59.31 77.38 51.14 11.98 6.17
FedJETs 93.75 96.88 98.26 77.43 78.47 81.77 69.14 73.70 83.33 87.04 77.47 54.69 13.15 4.98

HyperFedZero 95.49 98.09 98.78 82.99 83.68 82.29 76.82 83.20 83.59 85.09 82.36 57.24 16.06 9.08
HyperFedZero (g) 96.03 97.71 98.03 87.36 87.52 88.79 78.90 81.02 82.88 85.94 83.37 51.40 16.28 9.02
HyperFedZero (p) 95.93 97.82 98.21 88.08 88.14 89.24 78.13 81.53 82.46 85.00 83.03 51.00 18.31 9.44

N = 50

Local 10.27 13.39 0.40 4.91 9.38 4.46 3.12 2.08 1.04 2.27 13.06 7.03 1.87 0.00
FedAvg 94.64 97.77 98.21 86.16 91.07 86.60 66.66 81.77 81.25 89.48 44.03 45.31 13.75 6.87
FedAvg (g) 93.60 97.89 98.15 85.42 86.04 87.27 70.67 81.65 83.68 87.17 49.61 42.85 16.60 6.25
FedAvg (p) 95.75 97.77 98.16 87.69 88.11 88.87 76.30 81.11 83.57 87.61 88.73 51.71 17.04 9.45

FedAvg-FT 87.95 83.93 93.30 84.37 67.85 71.42 45.83 28.64 63.02 48.58 41.47 29.68 5.00 0.31
FedProx 94.20 97.32 98.66 85.27 90.62 87.50 66.14 81.25 84.37 89.20 86.08 46.09 13.12 6.56
Ditto 94.20 96.88 98.21 84.82 91.07 87.50 65.62 79.16 81.25 84.37 69.31 33.59 3.75 0.31
pFedMe 94.20 96.43 98.66 84.82 87.50 86.60 61.45 74.47 83.33 80.68 81.53 31.25 6.25 2.81
pFedHN 92.41 63.33 7.58 70.08 47.77 18.30 44.79 7.81 5.20 77.27 44.03 21.09 1.25 0.93
PerFedAvg 94.20 97.77 98.66 85.26 90.18 86.16 67.18 81.71 83.85 90.05 88.07 35.93 16.25 5.62
FedAMP 89.29 89.29 93.30 84.37 77.67 72.76 50.00 41.66 64.06 50.28 42.33 23.43 4.37 0.62

Scaffold 94.64 98.21 98.55 87.94 87.50 87.50 70.83 81.25 84.89 90.34 88.64 45.31 16.87 10.31
GA 94.20 97.77 98.66 85.71 90.18 87.05 67.70 81.25 84.37 89.20 84.65 39.84 15.62 7.18
FedSR 95.98 99.11 97.32 87.94 87.50 88.39 70.31 80.72 83.85 90.62 80.39 39.84 10.62 5.31

FedEnsemble 82.14 94.64 92.86 74.55 72.32 75.00 13.54 59.37 64.58 65.91 85.79 50.00 15.00 6.25
FedJETs 95.98 97.77 98.21 87.05 83.93 90.17 74.49 78.12 83.33 81.25 81.25 53.13 18.75 5.31

HyperFedZero 97.32 98.66 99.55 91.52 91.51 92.86 77.60 83.33 87.00 91.47 92.04 61.79 19.37 14.68
HyperFedZero (g) 93.71 97.72 98.45 85.65 87.06 87.75 70.72 82.83 83.34 86.18 57.36 40.41 14.97 5.70
HyperFedZero (p) 96.08 97.83 98.21 87.92 87.77 89.07 76.40 82.12 84.12 87.56 87.06 52.40 17.36 12.56

4.3 ALGORITHM AND COMPLEXITY ANALYSIS

The pseudocode of HyperFedZero is presented in Algorithm 1 in the Appendix. In HyperFedZero,
during each epoch, each client i simultaneously minimizes the empirical risk on Di and the balanc-
ing penalty with distribution embeddings ei. This enables the extraction of meaningful embeddings,
as well as distribution-aware parameters generation and prediction. Thus, no additional compu-
tational overhead is introduced, and the time complexity of HyperFedZero remains the same as
FedAvg, equaling O(NEK). In terms of space complexity, the distribution extractor and the chun-
ked hypernetwork can be very compact. This approach allows us to maintain a similar number of
total parameters compared to directly using the classifier itself (i.e., |θf | + |θh| ≈ |θc|). Therefore,
3SFC shares the same space complexity, O(N), with FedAvg as well.

5 EXPERIMENTS

Datasets: In line with community conventions Sattler et al. (2019); Zhou et al. (2023); Bernstein
et al. (2018), our experiments utilizes five datasets: MNIST Deng (2012), FMNIST Xiao et al.
(2017), EMNIST Cohen et al. (2017), SVHN Netzer et al. (2011), Cifar10 Krizhevsky et al. (2009),
Cifar100 Krizhevsky et al. (2009) and Tiny-Imagenet Le & Yang (2015). To simulate the non-
i.i.d. characteristic, each dataset is manually partitioned into multiple subsets using a Dirichlet
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Figure 4: (a) Illustration of model sizes for FedAvg, HyperFedZero, and FedJets. HyperFedZero
matches FedAvg in parameters and outperforms others in mitigating in-domain distribution shifts.
(b) Visualized embeddings of three participating clients’ data. Clearly, a decision boundary appears.
(c) Visualized embeddings of a non-participating client’s data. HyperFedZero directly generates
specialized classifiers for different data, achieving optimal performance without local fine-tuning.

distribution parameterized by αd, a method commonly employed in FL settings Wang et al. (2020);
Li et al. (2022); Zhou et al. (2023). As a result, each client owns a distinct subset of the data, varying
both in quantity and category.

Models: To cover both simple and complex learning tasks, five models are used in our experiments:
Multi-Layer Perceptron (MLP), LeNet-S, LeNet, ZenkeNet Zenke et al. (2017), and ResNet He et al.
(2016). Specifically, LeNet-S is a smaller version of LeNet, with reduced hidden layer dimensions.
To enhance practicality, unlike previous work Sattler et al. (2019); Zhou et al. (2021; 2025) that
remove the batch normalization layers Ioffe & Szegedy (2015) and dropout layers Srivastava et al.
(2014) in ResNet, we retain both of them without modification.

Baselines: In our experiments, we compare HyperFedZero against four categories of baselines: (1)
Vanilla FL: Local, FedAvg McMahan et al. (2017); (2) In-domain without distribution shifts (i.e.,
personalized FL): FedAvg-FT, FedProx Li et al. (2020b), Ditto Huang et al. (2021), pFedMe T Dinh
et al. (2020), pFedHN Shamsian et al. (2021), PerFedAvg Fallah et al. (2020), FedAMP Huang
et al. (2021); (3) In-domain with distribution shifts: FedEnsemble Shi et al. (2021), FedJets Dun
et al. (2023); (4) Out-of-domain (i.e., Federated Domain Generalization): Scaffold Karimireddy
et al. (2020), GA Zhang et al. (2023), FedSR Nguyen et al. (2022a). Note that the Local baseline
allows clients to perform local training without any communication, and FedAvg-FT enables clients
to perform an additional one round of local fine-tuning after receiving the global model.

Metrics: For experiments involving N participating clients, we first partition the dataset into N +
M non-i.i.d. subsets. Then, after training the global models on the N participating clients, we
report: (1) gACC: the top-1 accuracy evaluated on the global test set; (2) pACC: the averaged top-
1 accuracy evaluated on the N participating clients’ local test set; (3) zACC: the averaged top-1
accuracy evaluated on the M non-participating clients’ whole set. Note that all three metrics are
evaluated without any further fine-tuning after the training is completed.

Implementation Details: All experiments are conducted with N = 10/50 participating clients and
M = 5 non-participating clients with a participation ratio of 1.0. The environment uses CUDA 11.4,
Python 3.9.15, and PyTorch 1.13.0. The training involves E = 500 global epochs and K = 5 local
iterations, with a global batch size of 800, learning rate η = 0.001, and αd = 1.0. In HyperFedZero,
α = β = 1.0, P = 16 by default. The size of hypernetworks (i.e., the chunk size and the network
architecture) are tuned manually for each setting to ensure a similar number of total parameters
compared to the classifier (i.e., |θf |+|θh| ≈ |θc|). For other baselines, we adopt the hyperparameters
as specified in their original papers.

6 ANALYSIS

Main Results: We compare the zACC of HyperFedZero with other baselines in Table 1. As can be
seen, most personalized FL methods struggle to generalize to unseen data distributions within the
same domain without additional fine-tuning. While federated domain generalization methods con-
siderably enhance model generalization, they rely on training data from diverse and labeled domains,
which does not apply to scenarios with in-domain distribution shifts. On the other hand, FedEnsem-
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Table 2: We conduct an ablation study on HyperFedZero’s key hyperparameters to evaluate the
effectiveness of our design choices. We report gACC, pACC, zACC, and ∆ params (i.e., the param-
eter difference between HyperFedZero and FedAvg) to provide a comprehensive analysis. Default
settings are marked in gray . bold marks the best-performing results.

(a) The dimension of the ei.
Large embedding dimensions
lead to poor generalization.

P gACC pACC zACC
N = 50; α = 1.0

2 2.02 1.65 3.12
8 4.15 4.11 7.18
16 9.45 12.56 14.68
32 5.38 5.92 8.12
64 5.12 5.09 8.43

N = 50; αd = 0.1

2 2.81 2.82 3.81
8 3.89 3.67 4.47
16 5.66 6.51 6.86
32 4.73 4.62 6.25
64 4.46 4.36 6.25

(b) α in Equation 4. A moderate
value of α yields the best perfor-
mance.

α gACC pACC zACC
N = 50; αd = 1.0

0 5.04 4.97 5.62
0.5 6.19 6.29 9.68
1 9.45 12.56 14.68
1.5 5.75 5.64 6.87
2 5.83 5.67 8.75

N = 50; αd = 0.1

0 4.33 4.78 5.55
0.5 5.69 5.28 5.90
1 5.66 6.51 6.86
1.5 5.23 5.17 5.12
2 5.23 5.06 4.51

(c) β in Equation 4. A moderate
value of β yields the best perfor-
mance.

β gACC pACC zACC
N = 50; αd = 1.0

0 5.73 5.71 8.43
0.5 5.96 5.69 8.43
1 9.45 12.56 14.68
1.5 6.45 8.2 10.12
2 6.47 6.29 10.31

N = 50; αd = 0.1

0 5.41 5.15 4.16
0.5 5.67 5.54 4.51
1 5.66 6.51 6.86
1.5 5.56 5.39 5.16
2 5.38 5.54 5.55

(d) Hidden layer sizes in the hypernetwork h: Small
h limits model capacity, while large h leads to poor
convergence.

Archs of h gACC pACC zACC ∆ params

N = 50; α = 1.0

[100, 100] 5.85 5.93 7.5 -69.13%
[300, 300] 9.45 12.56 14.68 +2.30%
[500, 500] 6.48 6.29 6.87 +102.04%

N = 50; α = 0.1

[100, 100] 5.20 4.95 4.86 -69.13%
[300, 300] 5.66 6.51 6.86 +2.30%
[500, 500] 5.11 4.97 6.25 +102.04%

(e) The number of weights produced by the hypernet-
work h at a time (θc of the classifier is generated for
multiple times)

Chunk size gACC pACC zACC ∆ params
N = 50; αd = 1.0

144 5.74 5.77 7.50 -27.01%
288 7.19 6.93 9.37 -22.79%
576 9.45 12.56 14.68 +2.30%
1152 6.66 6.51 8.75 +58.07%
2304 5.11 5.28 7.81 +182.09%

N = 50; αd = 0.1

144 4.86 4.81 5.20 -27.01%
288 5.17 5.52 5.90 -22.79%
576 5.66 6.51 6.90 +2.30%
1152 5.92 5.61 5.90 +58.07%
2304 5.40 5.52 4.90 +182.09%

ble and FedJETs significantly increase the number of trainable parameters and lack shared global
information between sub-models, resulting in poor convergence. In comparison, HyperFedZero
consistently achieves superior zACC across extensive settings with comparable gACC and pACC
to others, indicating its ability to efficiently and effectively personalize the trained global model for
unseen clients with in-domain distribution shifts, without any fine-tuning.

Additionally, we present a visualization of the number of parameters stored in various model archi-
tectures for FedAvg, HyperFedZero, and FedJets in Fig 4a. As shown, HyperFedZero maintains a
similar number of parameters compared to FedAvg, while delivering significantly superior perfor-
mance in terms of zACC. This further verifies the effectiveness of HyperFedZero.

Comparisons between Condition Options: To assess the impact of conditioning the model’s pa-
rameters on the embedding e (i.e., Opt 2 in Equation. 7), we compare Opt 1 and Opt 2 in Table 3.
From the table, we can observe that while Opt. 1 generally outperforms FedAvg, it underperforms
in certain settings (e.g., N = 50, αd = 1.0). This indicates that the injected conditioning does not
generalize the global model effectively, and the added parameters may even degrade performance.
In contrast, Opt. 2 consistently outperforms Opt. 1 and FedAvg across various values of N and αd,
highlighting its superior effectiveness.

Embeddings Visualization: We visualize the distribution embeddings using t-SNE Van der Maaten
& Hinton (2008) after training with an MLP classifier on FMNIST in Figure 4c (N = 50, M = 5).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The left panel shows the embeddings of data in three selected participating clients, while the right
panel displays the embeddings of data in a non-participating client. As seen, a distinct decision
boundary is found in the left panel, indicating that HyperFedZero is capable of distinguishing data
of different clients with distribution shifts. This demonstrates that HyperFedZero can dynamically
generate specialized models based on embeddings when applied to non-participating clients, thereby
enhancing performance. For instance, data in the green region of the right panel can be classified by
generating a model similar to the one owned by the green client in the left panel.

Table 3: The zACC comparisons between Opt. 1 and Opt. 2
(Ours) in Equation 7, i.e., two condition injection options.
Opt. 2 improves flexibility and outperforms Opt. 1. Bold
marks the best-performing results.

MNIST FMNIST EMNIST MNIST FMNIST EMNIST
MLP MLP MLP MLP MLP MLP

N = 10

αd = 1.0 αd = 0.1

FedAvg 93.06 77.95 70.18 94.47 94.79 31.71
Opt. 1 94.87 81.29 72.13 95.79 93.88 40.80
Opt. 2 95.49 82.99 76.82 96.39 95.23 50.49

N = 50

αd = 1.0 αd = 0.1

FedAvg 94.64 86.16 66.66 89.58 82.63 62.50
Opt. 1 95.08 84.82 74.37 90.83 78.75 65.36
Opt. 2 97.32 91.52 77.60 92.36 85.41 68.05

Ablation Study: To investigate
the impact of various hyperparame-
ters on HyperFedZero’s performance,
we conduct ablation studies with a
ResNet classifier on Tiny-ImageNet
(N = 50), as shown in Table 2.
These studies include ablations of P
(the dimension of ei, Table 2a), α and
β from Equation 4 (Table 2b and Ta-
ble 2c), as well as the architectures of
the hypernetwork h (Table 2d and Ta-
ble 2e).

In particular, the values of P , α,
and β are critical in determining the
model’s ability to accurately capture
and adapt to different data distribu-
tions, often requiring manual tuning

through grid search. Empirically, we find that P = 16, α = β = 1.0 yield good performance. On
the other hand, the hyperparameters of h influence the trade-off between model capacity and model
size. Our empirical results show that tuning the hyperparameters of h to maintain a similar number
of parameters as FedAvg often yields the best performance.

7 CONCLUSION

In this work, we propose HyperFedZero, a novel FL method designed to address the critical chal-
lenge of generalizing trained global models to non-participating clients with in-domain distribution
shifts. This is achieved by first learning discriminative distribution embeddings of different data
with NoisyEmbed and Balancing Penalty. Then, these embeddings enable the chunked hypernet-
work to dynamically generate personalized parameters without compromising privacy or requiring
client-side fine-tuning. Empirical results across diverse settings also demonstrate HyperFedZero’s
superiority, outperforming other competing methods significantly while maintaining minimal com-
putational and communication costs.

We believe this work bridges a critical gap in the practicality and scalability of FL by addressing the
cold start problem during FL model deployment through zero-shot personalization. Like the open
source culture, we believe this enables resource-constrained, non-participating clients to benefit from
other clients’ collaborative learning. In the future, we plan to extend HyperFedZero to incorporate
diffusion-based parameter generation for even larger-scale real-world applications.
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A MORE RELATED WORK

A.1 DATA HETEROGENEITY IN FL

Data heterogeneity refers to differences in the statistical properties of data across clients, presenting
a significant challenge in FL Ye et al. (2023); Zhang et al. (2021); Zhou et al. (2024a). To address
this issue, previous research has mainly focused on two perspectives: adapting to in-domain data
without distribution shifts (i.e., personalized FL) and generalizing to out-of-domain data (i.e., fed-
erated domain generalization). Specifically, personalized FL methods aim to learn a local model for
each participant to accommodate its local data distribution. In particular, FedPer Arivazhagan et al.
(2019) integrates a personalization layer into FL for customized fine-tuning. Conversely, FedProx Li
et al. (2020b) introduces a proximal term that encourages the local models to be similar to the global
model while also preserving the personalized updates. PFedMe T Dinh et al. (2020) further en-
hances personalized FL by incorporating Moreau Envelopes Moreau (1963), allowing the model to
learn from global and local data distributions, and thereby improving generalization. Lastly, Per-
FedAvg Fallah et al. (2020) utilizes a meta-learning strategy to develop an initialization for each
client’s local model that captures the structure of its local data. On the other hand, federated domain
generalization approaches aim to improve model robustness across diverse and unseen domains by
learning domain-invariant features. For instance, COPA Wu & Gong (2021) and FedDGLiu et al.
(2021) apply multi-source domain generalization methods Nguyen et al. (2022a); Zhang et al. (2023)
to FL by sharing classifiers and style distributions. Meanwhile, FedSR Nguyen et al. (2022a) pro-
poses to learn a domain-invariant representation of the data with conditional mutual information and
L2-norm regularizers. Later, GA Zhang et al. (2023) calibrates the aggregation weights in FL to
achieve a tighter generalization bound. Recently, FedIG Seunghan et al. (2024) introduced client-
agnostic learning for zero-shot adaptation, but it relies on multi-domain training data, which is often
unavailable or unlabeled in real-world FL scenarios.

Despite the promising performance, existing literature rarely explores in-domain distribution shifts
in FL, as illustrated in Fig 1b. Namely, the data distribution shifts occur within the same domain,
which is very common in real-world FL scenarios(e.g., deploying an FL-trained package filtering
model to a non-participating router Vamanan et al. (2010)). To address this issue, FedJets Dun et al.
(2023) recently applies MoE to FL by dynamically assigning different experts to clients based on a
learned gating function. However, it introduces additional resource overheads, limiting its practical
application.

A.2 HYPERNETWORK FOR PARAMETER GENERATION

The hypernetwork Ha et al. (2017) is a conditional meta neural network that generates all parame-
ters for another network at once, enabling efficient model customization under varying conditions.
However, generating all parameters simultaneously necessitates a sufficiently large hypernetwork,
leading to significant resource overheads and unstable training. To address this, chunked hyper-
network Chauhan et al. (2024) and diffusion-based hypernetwork Wang et al. (2024) propose to
incrementally generate parameters, substantially reducing the hypernetwork size without perfor-
mance degradation. Moreover, hypernetworks can generalize well to unseen conditions Volk et al.
(2022), facilitating diverse downstream applications like meta-learning Zhao et al. (2020); Beck
et al. (2023); Cho et al. (2024), continual learning Von Oswald et al. (2019); Chandra et al. (2023);
Hemati et al. (2023), and generative modeling Ratzlaff & Fuxin (2019); Schürholt et al. (2022); Do
et al. (2020).

Recently, hypernetworks have gained considerable attention in the FL domain Shamsian et al.
(2021); Chen et al. (2024); Shin et al. (2024); Yang et al. (2022). For instance, pFedHN Shamsian
et al. (2021) trains a centralized hypernetwork on the server to dynamically generate personalized
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models for clients based on their client embeddings. However, client embeddings only exist for
participating clients, limiting pFedHN’s adaptability to non-participating clients. Meanwhile, Hy-
perFedNet Chen et al. (2024) reduces communication overhead in FL by compressing parameters of
multiple models into a single hypernetwork. Additionally, HypeMeFed Shin et al. (2024) addresses
hardware heterogeneity in FL by utilizing hypernetworks to generate different model architectures
for different clients. Lastly, HyperFed Yang et al. (2022) employs hypernetworks to generate CT
reconstruction models tailored to the specific parameters of CT machines. In comparison to these
methods, HyperFedZero aims to generate parameters at a more granular level, customized for data
samples rather than entire clients. This significantly enhances the model’s adaptability for both
participating and non-participating clients.

B ALGORITHM OF HYPERFEDZERO

Algorithm 1 HyperFedZero
Input: global model parameters θtf and θth, local dataset Di = {xi,yi}, learning rate ηi
Parameter: number of global epoch E, number of local iteration K, number of participating clients
N
Output: global model parameters θEf and θEh
Clients:

1: for each client i from 1 to N in parallel do
2: initialize θti,f = θtf , θti,h = θth
3: for each local iteration k from 1 to K do
4: obtain ei by Equation 3
5: generate θc = h(ei; θ

t
h)

6: compute loss Fi(·) by Equation 4
7: θti,f = θti,f − ηi∇θt

i,f
Fi(·)

8: θti,h = θti,h − ηi∇θt
i,h

Fi(·)
9: end for

10: return θti,f , θti,h
11: end for
Servers:

1: initialize random θ0f , θ0h
2: for each global epoch e from 1 to E do
3: distribute θe−1

f , θe−1
h

4: clients perform local training
5: receive θe−1

i,f , θe−1
i,h

6: θef =
∑N

i
|Di|∑N
j |Dj |

θe−1
i,f

7: θeh =
∑N

i
|Di|∑N
j |Dj |

θe−1
i,h

8: end for
9: return θEf , θEh

C NOTATIONS

The main notations in this paper are shown in Table 4.

D CONVERGENCE

Strictly speaking, the training phase of HyperFedZero is nothing more than a standard FedAvg
applied to clients’ local hypernetworks. As a result, the classical FedAvg convergence guarantees
for smooth and potentially non-convex objectives Li et al. (2019); Haddadpour & Mahdavi (2019);
Cho et al. (2020) carry over directly to our setting. Therefore, HyperFedZero inherits the same
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Table 4: The glossary of notations

Notation Implication
N Total number of participated clients
M Total number of non-participated clients
Di The local dataset of the i-th participated client
X Global instance space
xi ∈ X Instance from Di

Y Global label space
yi ∈ Y Labels from Di

c : X → Y The classifier
Θc Hypothesis space of the c’s parameters
θc ∈ Θc The c’s parameters
f : X → E The distribution extractor
Θf Hypothesis space of the f ’s parameters
θf ∈ Θf The f ’s parameters
h : E → Θc The hypernetwork
Θh Hypothesis space of the h’s parameters
θh ∈ Θh The h’s parameters
E The global distribution embedding space
ei ∈ E The distribution embeddings of the i-th client
Fi(·) The local objective function of the i-th client
wi The aggregation weight of the i-th client

Table 5: The gACC comparisons (the higher the better) between settings (αd = 1.0). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet MLP LeNet-S LeNet MLP LeNet-S LeNet ZekenNet ResNet ResNet

N = 10

Local - - - - - - - - - - - - - -
FedAvg 93.83 97.72 98.40 85.48 86.11 87.69 71.05 82.09 83.31 85.64 83.37 44.27 14.41 6.89
FedAvg-FT 88.84 91.20 91.58 73.18 60.24 80.70 52.62 37.34 63.27 51.11 35.69 34.06 4.03 1.38
FedProx 93.48 97.64 98.31 85.11 85.73 87.36 69.52 82.53 83.36 85.81 83.85 50.16 14.99 7.40
Ditto 93.28 97.66 98.11 85.11 85.16 87.22 69.49 82.08 82.44 83.74 71.95 40.97 11.28 3.72
Scaffold 94.65 97.85 98.40 86.09 84.91 87.70 73.43 83.53 84.03 85.82 84.17 50.68 16.91 9.78
pFedMe 93.74 97.50 98.13 85.38 85.51 87.16 69.73 81.75 82.83 83.31 79.78 45.61 11.99 6.26
pFedHN - - - - - - - - - - - - - -
PerFedAvg 93.81 97.69 98.36 85.50 85.68 87.61 70.96 82.69 83.32 50.50 83.09 49.35 13.46 6.63
FedAMP 88.72 91.03 91.95 73.38 61.64 80.76 52.78 37.85 63.36 46.42 36.14 34.92 4.28 1.36
GA 93.91 97.82 98.30 85.37 85.85 87.70 70.74 82.81 83.45 85.62 83.79 50.44 15.02 6.93
FedSR 95.15 97.92 98.69 86.16 87.42 88.38 74.67 81.96 84.61 86.13 82.31 46.16 12.48 8.30
Ensemble 81.73 92.02 94.10 70.92 74.77 76.19 19.02 60.38 68.87 60.03 79.19 54.22 15.87 8.88
FedJETs 94.12 96.28 98.22 84.54 84.50 87.64 70.96 75.12 83.90 86.70 79.61 47.97 14.14 6.62
HyperFedZero 96.03 97.71 98.03 87.36 87.52 88.79 78.90 81.02 82.88 85.94 83.37 51.40 16.28 9.02

N = 50

Local - - - - - - - - - - - - - -
FedAvg 93.60 97.89 98.15 85.42 86.04 87.27 70.67 81.65 83.68 87.17 49.61 42.85 16.60 6.25
FedAvg-FT 86.87 87.34 91.58 80.58 71.34 78.97 52.27 37.03 61.61 25.89 28.86 27.44 3.25 0.75
FedProx 93.05 97.74 98.08 85.15 85.42 86.95 69.48 81.27 83.37 87.04 86.82 43.77 16.38 6.18
Ditto 92.54 97.44 97.63 84.90 86.40 86.32 69.21 79.08 81.45 80.03 73.03 33.52 5.16 1.60
Scaffold 94.38 98.04 98.45 85.98 85.41 87.49 72.45 81.79 84.81 88.64 89.01 50.39 20.98 11.43
pFedMe 93.30 97.08 97.37 85.13 84.56 85.72 67.06 76.49 81.51 78.35 84.14 39.72 10.73 2.29
pFedHN - - - - - - - - - - - - - -
PerFedAvg 93.51 97.85 98.11 85.39 86.08 87.24 70.53 81.50 83.77 87.04 87.16 44.80 16.05 5.85
FedAMP 87.56 89.89 91.90 81.08 74.94 78.88 54.14 48.95 62.94 30.33 29.21 28.20 3.34 0.78
GA 93.18 97.82 98.12 85.28 85.83 87.09 70.52 81.49 83.77 87.20 87.39 42.88 15.85 6.03
FedSR 95.20 98.03 98.38 86.43 87.39 87.94 73.35 82.29 84.34 87.58 85.19 41.65 14.71 4.16
Ensemble 81.29 90.86 93.21 68.75 74.11 75.61 16.95 61.04 66.56 60.19 88.24 55.57 16.05 7.76
FedJETs 95.15 96.68 98.14 85.54 84.43 87.60 70.37 77.08 83.36 76.78 83.11 51.65 16.52 6.78
HyperFedZero 95.75 97.77 98.16 87.69 88.11 88.87 76.30 81.11 83.57 87.61 88.73 51.71 17.04 9.45

convergence rates as FedAvg, achieving linear convergence under strongly convex objectives and
sub-linear rates in the non-convex case, even in the presence of aggregation noise.
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Table 6: The pACC comparisons (the higher the better) between settings (αd = 1.0). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet MLP LeNet-S LeNet MLP LeNet-S LeNet ZekenNet ResNet ResNet

N = 10

Local 93.26 96.30 96.76 87.62 87.78 89.16 72.01 76.01 77.94 76.08 48.24 42.43 8.31 6.37
FedAvg 93.93 97.79 98.18 86.39 86.51 88.14 71.13 82.66 83.45 84.81 78.07 40.63 15.31 7.32
FedAvg-FT 93.26 96.27 96.78 87.72 87.81 89.15 71.98 75.88 78.17 76.16 49.02 47.91 13.34 6.37
FedProx 93.62 97.81 98.13 86.03 85.96 88.02 69.64 82.85 83.56 84.89 79.08 46.41 15.16 7.28
Ditto 93.41 97.68 98.05 86.05 85.74 87.87 69.83 82.06 82.30 83.24 66.02 37.21 11.06 3.80
Scaffold 94.76 98.25 98.30 86.87 86.26 88.19 73.54 83.42 84.00 85.15 82.98 49.59 18.23 9.74
pFedMe 93.88 97.70 97.96 86.27 86.01 88.04 70.26 82.07 82.68 83.26 74.59 41.53 12.59 6.51
pFedHN 93.13 94.00 95.76 86.06 82.20 86.76 65.35 51.18 73.70 69.67 63.90 42.59 11.47 5.95
PerFedAvg 93.92 97.75 98.14 86.48 86.31 88.10 71.03 82.64 83.27 76.07 79.19 45.75 13.50 6.90
FedAMP 93.22 96.41 96.75 87.71 87.61 88.95 71.69 76.09 78.36 72.75 48.36 47.35 13.45 6.12
GA 93.93 97.91 98.31 86.54 86.29 88.51 71.11 82.71 83.45 84.92 79.62 47.10 14.29 6.95
FedSR 95.87 97.99 98.61 86.37 87.44 89.24 74.38 81.74 85.48 85.38 77.39 41.16 12.81 8.61
Ensemble 82.96 92.19 94.04 71.43 75.34 77.46 19.22 61.52 69.03 58.51 78.25 49.59 15.22 9.78
FedJETs 93.93 96.17 98.15 85.01 84.26 88.69 71.86 75.51 83.72 85.49 76.39 45.71 14.64 6.81
HyperFedZero 95.93 97.82 98.21 88.08 88.14 89.24 78.13 81.53 82.46 85.00 83.03 51.00 18.31 9.44

N = 50

Local 88.53 91.97 93.30 83.14 82.04 82.16 58.00 64.70 66.46 59.10 41.50 41.02 6.70 1.83
FedAvg 93.71 97.72 98.45 85.65 87.06 87.75 70.72 82.83 83.34 86.18 57.36 40.41 14.97 5.70
FedAvg-FT 88.53 91.97 93.28 83.14 82.11 82.24 58.00 64.84 66.51 59.04 40.98 40.85 6.12 2.08
FedProx 93.19 97.68 98.36 85.18 86.24 87.16 69.44 82.68 83.13 86.35 82.89 40.11 14.53 5.36
Ditto 92.79 97.20 97.83 85.21 87.57 86.52 68.78 80.28 80.93 79.49 66.28 31.25 4.57 1.57
Scaffold 94.68 98.07 98.71 86.10 86.24 88.00 72.82 82.99 84.83 87.78 85.09 46.68 19.30 11.11
pFedMe 93.43 97.17 97.75 85.28 85.87 85.95 67.11 76.81 80.96 77.83 78.58 36.87 10.16 2.24
pFedHN 92.68 75.69 92.34 82.34 71.26 79.93 58.81 16.98 55.19 70.98 57.36 35.11 4.71 2.62
PerFedAvg 93.58 97.72 98.46 85.55 87.20 87.68 70.21 82.73 83.38 86.30 83.01 40.94 14.77 5.45
FedAMP 88.56 91.98 93.29 83.13 82.20 82.29 58.23 64.95 66.45 59.51 40.56 40.50 6.68 1.98
GA 93.30 97.66 98.41 85.53 86.82 87.53 70.32 82.94 83.57 86.37 83.03 40.52 15.12 5.73
FedSR 95.39 97.72 98.49 86.61 87.39 88.90 72.80 83.22 84.69 86.33 81.26 37.71 13.62 4.10
Ensemble 80.76 91.07 93.74 69.76 75.15 76.17 18.10 60.73 65.98 58.99 82.78 49.90 14.51 8.48
FedJETs 95.19 96.86 98.22 85.47 84.21 87.59 69.61 78.23 83.12 76.59 79.45 50.14 16.09 6.19
HyperFedZero 96.08 97.83 98.21 87.92 87.77 89.07 76.40 82.12 84.12 87.56 87.06 52.40 17.36 12.56

E ADDITIONAL EVALUATION RESULTS

In this section, we present additional results for the proposed HyperFedZero and the baseline meth-
ods.

Specifically, Table 5 and Table 6 illustrate the gACC and pACC comparisons between HyperFedZero
and other baseline methods. As shown, HyperFedZero achieves comparable performance to previ-
ous state-of-the-art approaches, while also exhibiting superior performance in zACC (as shown in
the main paper), further reinforcing its overall superiority.

Additionally, we assess the performance of HyperFedZero under more aggressive data heterogeneity
by setting αd to 0.1. The results for gACC, pACC, and zACC are presented in Tabs. 7, 8, and
9, respectively. As shown, HyperFedZero continues to demonstrate strong performance in zACC,
significantly outperforming all other baselines, while achieving comparable performance in gACC.
Notably, HyperFedZero’s personalization capability declines considerably at αd = 0.1, suggesting a
potential trade-off between pACC and zACC, which warrants further investigation in future research.

F LIMITATIONS

In this work, HyperFedZero leverages a chunked-hypernetwork as its parameter generator. However,
it is well-known that chunked-hypernetworks face scalability challenges, particularly when tasked
with generating billions of parameters. To address this limitation, we plan to explore diffusion-based
parameter generation techniques in future work. Additionally, in our supplementary experiments,
we observe a trade-off between pACC and zACC performance. Specifically, as data heterogeneity
increases, HyperFedZero’s personalization ability (pACC) decreases significantly, while its zero-
shot personalization accuracy (zACC) remains robust. This suggests a potential trade-off between
optimizing zero-shot personalization accuracy and preserving personalized accuracy, which warrants
further investigation in subsequent research.
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Table 7: The gACC comparisons (the higher the better) between settings (αd = 0.1). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet MLP LeNet-S LeNet MLP LeNet-S LeNet ZekenNet ResNet ResNet

N = 10

Local - - - - - - - - - - - - - -
FedAvg 89.79 94.93 96.35 82.06 80.86 83.86 60.53 74.77 78.01 78.94 69.59 28.90 12.55 6.79
FedAvg-FT 56.52 40.05 69.51 47.08 33.86 47.25 15.07 10.77 26.40 24.29 26.42 21.68 2.23 0.85
FedProx 89.42 94.65 96.04 81.93 79.73 82.87 59.53 74.57 77.34 77.23 71.96 29.01 12.82 6.90
Ditto 88.89 93.92 95.19 81.60 78.42 81.20 58.22 73.42 75.58 72.53 57.51 24.50 5.85 3.64
Scaffold 95.09 95.15 95.88 85.36 79.49 81.31 71.09 75.16 78.24 79.89 74.71 29.95 13.09 6.60
pFedMe 89.44 94.04 95.38 81.81 79.88 83.41 57.89 73.82 76.22 75.56 64.51 27.21 9.68 4.05
pFedHN - - - - - - - - - - - - - -
PerFedAvg 88.45 68.53 67.03 74.20 72.40 73.40 57.67 33.41 43.32 24.07 61.34 27.72 11.09 6.64
FedAMP 55.01 40.10 70.08 45.24 33.27 44.88 14.85 9.72 26.40 26.14 26.10 21.70 2.35 0.80
GA 89.69 95.09 96.14 81.64 79.96 82.50 60.16 75.70 77.72 78.19 73.24 27.81 12.96 6.73
FedSR 92.06 96.39 96.96 83.44 83.90 85.67 65.01 78.06 80.18 80.80 69.26 26.98 9.91 5.06
Ensemble 80.86 84.59 85.84 73.15 65.77 68.20 18.75 56.76 62.36 56.90 68.66 35.06 12.92 6.09
FedJETs 89.63 91.36 96.01 81.01 79.92 83.44 60.33 75.16 78.33 80.26 69.79 34.57 10.56 3.93
HyperFedZero 94.06 96.31 97.75 85.52 83.97 86.36 72.58 75.23 78.94 81.01 71.27 38.76 13.28 6.97

N = 50

Local - - - - - - - - - - - - - -
FedAvg 91.17 94.24 97.32 82.34 81.53 83.79 64.32 78.56 80.49 82.28 75.37 35.74 15.80 6.95
FedAvg-FT 61.84 36.91 63.24 34.26 32.80 46.83 18.91 9.13 32.29 25.35 24.26 21.44 2.15 0.76
FedProx 90.69 5.29 97.13 81.72 79.99 82.80 62.95 78.17 80.08 81.87 76.85 36.03 16.25 7.28
Ditto 89.66 93.44 96.17 80.75 77.49 79.67 61.85 74.22 77.79 77.18 63.60 27.16 4.46 1.62
Scaffold 92.74 93.75 98.23 83.02 80.49 81.56 68.50 80.53 81.96 74.26 71.76 25.04 21.65 11.43
pFedMe 90.56 96.19 96.56 81.62 80.06 81.97 61.16 75.44 77.73 80.57 71.67 31.41 11.34 3.22
pFedHN - - - - - - - - - - - - - -
PerFedAvg 91.06 79.44 92.04 77.60 48.90 67.40 63.37 78.11 80.27 79.76 70.73 32.56 16.15 6.94
FedAMP 60.34 36.53 61.16 34.81 32.91 45.76 19.34 9.59 32.63 24.45 23.70 21.69 2.20 0.75
GA 90.49 96.32 96.92 81.04 78.29 80.95 63.06 78.50 80.69 80.53 78.46 36.45 16.49 7.15
FedSR 91.92 96.06 98.12 83.87 84.35 85.13 66.37 80.22 82.16 83.29 76.20 33.86 12.70 4.77
Ensemble 86.33 90.54 91.38 74.82 66.75 68.38 13.64 61.25 66.25 59.02 76.30 42.73 15.92 4.93
FedJETs 91.86 95.22 97.34 83.61 84.33 81.97 64.13 75.71 80.13 39.01 74.52 38.94 15.33 5.51
HyperFedZero 94.22 96.79 97.97 84.62 84.63 86.77 70.98 76.49 80.34 82.49 74.56 40.84 12.71 5.66

G DISCLOSURE OF LLM USAGE

LLMs were used to aid in writing and polishing the text of this paper. All content has been reviewed
by the authors, who take full responsibility for the work.
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Table 8: The pACC comparisons (the higher the better) between settings (αd = 0.1). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet MLP LeNet-S LeNet MLP LeNet-S LeNet ZekenNet ResNet ResNet

N = 10

Local 97.15 98.41 98.47 93.81 94.46 94.57 85.88 90.37 91.33 85.49 73.53 84.92 25.48 10.49
FedAvg 88.36 94.05 95.21 83.22 82.08 83.99 63.10 78.25 81.31 81.72 59.04 30.94 12.53 6.66
FedAvg-FT 97.15 98.41 98.47 93.81 94.48 94.62 85.88 90.34 91.22 85.73 74.02 84.81 24.49 10.20
FedProx 87.92 93.62 94.92 82.93 80.91 83.23 62.34 78.24 81.03 80.27 62.67 31.76 13.21 7.14
Ditto 87.58 92.51 93.99 82.65 79.88 82.12 61.76 76.74 79.04 76.26 49.22 19.21 5.47 3.31
Scaffold 94.91 95.60 94.42 85.82 80.57 82.38 75.11 78.90 81.64 80.66 77.51 31.11 13.06 7.48
pFedMe 87.84 92.99 94.11 82.56 81.01 83.84 61.27 77.73 80.40 78.75 56.16 27.67 9.99 4.19
pFedHN 96.45 95.97 97.98 92.66 91.06 93.01 81.94 78.56 86.67 80.75 71.65 82.62 28.92 16.62
PerFedAvg 86.66 64.24 62.64 73.96 74.26 73.43 60.67 34.82 44.85 23.75 48.94 21.19 10.27 6.86
FedAMP 97.03 98.46 98.47 93.84 94.55 94.52 85.81 90.57 91.16 85.58 73.79 85.11 24.67 10.07
GA 89.68 94.78 95.47 83.02 81.30 83.51 63.90 79.65 82.00 82.07 66.56 32.47 13.01 6.83
FedSR 90.92 96.11 96.31 84.07 84.15 86.60 68.15 80.77 82.81 84.53 59.69 34.31 10.42 4.95
Ensemble 76.77 81.15 83.64 73.62 66.55 69.72 16.40 59.79 66.35 58.49 61.26 33.43 12.87 6.82
FedJETs 89.01 90.11 94.90 82.30 80.55 84.31 63.61 76.90 79.87 83.88 66.60 39.73 9.95 3.87
HyperFedZero 93.46 95.80 97.13 85.77 84.51 86.50 75.13 77.88 81.85 83.57 74.76 46.80 13.66 7.24

N = 50

Local 89.95 96.96 97.06 92.75 93.52 93.74 82.02 86.21 86.34 80.36 73.50 72.65 27.08 12.53
FedAvg 91.95 95.25 97.49 80.24 82.03 83.05 64.21 79.00 81.50 81.65 58.50 26.47 13.77 6.40
FedAvg-FT 95.78 96.96 97.06 92.75 93.66 93.75 82.02 86.18 86.38 80.54 73.27 72.48 27.89 12.62
FedProx 91.20 95.98 97.35 80.00 79.70 82.11 62.96 78.86 81.54 81.19 57.24 25.26 13.51 6.11
Ditto 90.54 94.72 96.23 79.45 76.83 78.93 62.04 75.28 78.92 76.44 42.02 18.84 3.55 1.73
Scaffold 93.42 94.74 98.46 81.37 80.85 79.85 68.65 81.95 83.44 75.20 73.43 20.72 18.68 10.19
pFedMe 91.19 94.75 96.83 80.02 80.05 80.57 61.02 76.59 78.90 78.95 51.19 23.29 9.93 2.69
pFedHN 93.03 80.29 93.21 87.40 72.12 84.67 71.25 39.41 79.17 81.38 61.12 54.83 19.50 11.97
PerFedAvg 91.75 78.84 92.97 77.04 52.16 66.40 63.14 78.87 81.00 76.58 48.04 22.50 13.76 5.73
FedAMP 95.79 96.76 97.07 75.55 93.80 93.83 82.05 86.15 86.43 80.23 73.44 72.71 27.22 12.14
GA 91.37 94.75 97.18 79.84 78.33 80.03 63.18 79.43 81.96 80.48 58.53 26.21 13.57 6.30
FedSR 91.80 96.41 98.63 82.29 83.74 83.37 66.16 81.30 83.14 82.18 60.39 26.70 10.85 4.27
Ensemble 86.26 90.56 92.24 74.24 66.89 69.81 13.06 62.04 67.01 55.76 50.30 30.85 14.00 4.83
FedJETs 92.35 95.29 97.40 82.15 83.24 80.26 65.40 75.48 81.19 36.84 68.05 32.22 13.45 5.04
HyperFedZero 94.23 96.59 98.33 83.09 84.65 84.67 71.70 77.35 81.87 81.38 73.21 38.19 12.03 6.51
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Table 9: The zACC comparisons (the higher the better) between settings (αd = 0.1). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet MLP LeNet-S LeNet MLP LeNet-S LeNet ZekenNet ResNet ResNet

N = 10

Local 2.40 1.56 0.96 4.43 1.30 0.39 0.46 0.09 3.95 51.37 7.75 0.00 0.00 0.08
FedAvg 94.47 98.08 97.84 94.79 94.40 95.70 31.71 49.91 54.41 57.10 41.60 7.68 5.52 3.13

FedAvg-FT 87.02 66.11 89.06 89.58 73.31 73.31 5.42 0.37 9.10 7.49 13.74 7.95 0.42 0.63
FedProx 94.35 97.36 97.60 94.66 94.14 95.83 30.15 49.36 54.96 53.39 45.05 7.63 6.04 3.05
Ditto 94.11 97.36 97.36 94.66 94.79 95.44 30.79 46.97 51.38 45.83 32.94 6.48 3.33 1.56
Scaffold 95.55 96.39 96.51 94.92 93.75 95.31 36.40 47.15 52.85 60.03 44.47 10.75 6.46 1.89
pFedMe 94.35 97.24 97.48 94.79 94.14 95.83 29.96 47.89 53.31 53.26 39.00 7.08 4.58 1.80
pFedHN 26.08 48.20 10.70 8.07 0.52 2.47 5.33 1.84 0.64 6.19 0.20 0.05 0.10 0.00
PerFedAvg 94.23 89.66 91.11 93.36 91.41 91.93 33.00 13.51 26.75 9.83 31.25 11.76 4.58 3.20
FedAMP 86.78 69.47 86.66 89.32 68.75 71.48 5.61 0.28 8.82 9.25 13.09 7.95 0.42 0.55

GA 94.47 97.72 97.60 95.18 94.92 96.35 36.31 51.65 55.53 55.40 44.34 9.74 7.50 3.20
FedSR 95.91 98.56 97.96 93.75 94.53 95.83 33.64 51.56 53.22 57.16 40.04 6.80 5.42 2.11

Ensemble 82.69 96.03 95.19 87.11 88.54 89.19 0.46 34.56 37.22 25.39 42.45 6.89 5.10 1.95
FedJETs 93.03 94.47 98.08 92.58 89.58 93.88 32.90 51.38 55.70 60.61 45.51 8.36 5.72 1.56

HyperFedZero 96.39 98.72 98.68 95.23 95.57 96.48 50.49 52.02 55.97 60.81 48.24 16.59 9.90 4.84
N = 50

Local 4.68 11.11 3.47 0.00 2.77 33.33 0.00 0.69 4.86 1.50 8.27 0.00 0.78 0.34
FedAvg 89.58 92.36 96.52 82.63 65.27 77.08 62.50 70.13 74.30 75.93 54.88 11.45 7.03 3.12

FedAvg-FT 60.41 6.25 63.88 24.30 2.77 2.08 4.16 7.63 28.47 44.36 43.60 1.56 3.90 0.34
FedProx 88.19 93.75 96.52 78.47 63.88 74.30 60.41 70.83 74.30 72.93 58.64 12.50 7.81 3.47
Ditto 87.50 92.36 97.91 79.86 63.88 65.27 56.94 71.52 73.61 69.92 54.13 4.68 2.34 1.38
Scaffold 90.97 91.66 98.61 81.25 65.97 77.08 64.53 71.52 74.30 73.68 69.17 11.04 10.93 3.12
pFedMe 89.58 93.05 96.52 79.86 67.36 70.13 56.94 69.44 72.91 72.18 66.91 9.89 5.46 2.43
pFedHN 42.36 2.08 4.16 22.22 41.66 85.41 26.38 1.38 1.38 71.42 66.91 0.50 1.56 1.38
PerFedAvg 88.88 70.83 81.25 75.69 27.77 59.02 65.27 70.83 74.30 76.69 71.42 13.02 7.81 4.16
FedAMP 53.47 5.55 61.80 21.52 2.77 4.16 4.16 9.02 27.77 53.38 63.90 1.56 3.90 0.34

GA 88.88 93.05 98.61 79.86 68.75 72.22 56.94 70.13 70.13 76.69 64.66 10.93 8.59 3.81
FedSR 90.97 94.44 95.13 83.33 77.08 80.55 64.53 69.44 74.30 75.93 71.42 16.14 9.37 3.47

Ensemble 86.11 86.80 84.02 70.83 44.44 45.13 4.16 61.80 63.88 51.12 68.42 13.02 10.15 2.43
FedJETs 90.27 93.75 81.94 74.30 80.55 81.25 63.88 70.13 76.38 66.16 75.93 23.54 12.50 4.16

HyperFedZero 92.36 95.13 99.30 85.41 85.41 88.89 68.05 72.22 77.78 78.94 77.44 42.18 14.84 6.86

20


	Introduction
	Related Work
	Problem Formulation
	Our Approach
	Distribution Embeddings Extraction
	Conditioned Prediction via Hypernetwork
	Algorithm and Complexity Analysis

	Experiments
	Analysis
	Conclusion
	More Related Work
	Data Heterogeneity in FL
	Hypernetwork for Parameter Generation

	Algorithm of HyperFedZero
	Notations
	Convergence
	Additional Evaluation Results
	Limitations
	Disclosure of LLM usage

