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ABSTRACT

Federated Learning (FL) has emerged as a promising paradigm for privacy-
preserving collaborative learning, yet data heterogeneity remains a critical chal-
lenge. While existing methods achieve progress in addressing data heterogene-
ity for participating clients, they fail to generalize to non-participating clients
with in-domain distribution shifts and resource constraints. To mitigate this is-
sue, we present HyperFedZero, a novel method that dynamically generates spe-
cialized models via a hypernetwork conditioned on distribution-aware embed-
dings. Our approach explicitly incorporates distribution-aware inductive biases
into the model’s forward pass, extracting robust distribution embeddings using
a NoisyEmbed-enhanced extractor with a Balancing Penalty, effectively prevent-
ing feature collapse. The hypernetwork then leverages these embeddings to gen-
erate specialized models chunk-by-chunk for non-participating clients, ensuring
adaptability to their unique data distributions. Extensive experiments on multi-
ple datasets and models demonstrate HyperFedZero’s remarkable performance,
surpassing competing methods consistently with minimal computational, storage,
and communication overhead. Moreover, ablation studies and visualizations fur-
ther validate the necessity of each component, confirming meaningful adaptations
and validating the effectiveness of HyperFedZero.

1 INTRODUCTION

Federated learning (FL) McMahan et al.| (2017)) enables privacy-preserving collaborative learning L
et al.| (2020a) across decentralized clients’ data |Dean et al.| (2012); |Ben-Nun & Hoefler| (2019);
Shi et al.| (2023); [Zhou et al.| (2024b). A key challenge of FL is addressing data heterogeneity
among clients, arising from non-i.i.d. (i.e., independent and identically distributed) characteris-
tics, which can significantly impact model performance |Ye et al.| (2023); [Zhang et al.| (2021)). Ex-
isting approaches primarily focus on client-side personalization, either by learning a personalized
model Marfoq et al.[(2021); Zhang et al.| (2020) or by fine-tuning the global model (e.g., basic fine-
tuning IMcMahan et al.| (2017), regularised fine-tuning [Li et al.| (2021); [T Dinh et al.| (2020); [Shi
et al.|(2024), selective fine-tuning |Arivazhagan et al.|(2019);|Collins et al.|(2021), etc.) to better suit
participating clients. These efforts have achieved remarkable progress in reducing impacts of data
heterogeneity, leading to improved model performance for participating clients.

Nevertheless, this paradigm struggles to generalize when deploying trained models to previously
unseen edge devices (e.g., non-participating clients) with: (1) in-domain distribution shifts (e.g.,
different class frequencies, feature shifts, etc.), and (2) limited computational and communication
resources for fine-tuning. Additionally, as shown in Figure[Ta] we observe that state-of-the-art meth-
ods in personalized FL perform exceptionally well on participating clients’ local data but catastroph-
ically fail when applied to non-participating clients with in-domain distribution shifts. This indicates
that current methods lack zero-shot personalization capabilities for new data distributions even in
the same domain, hindering the real-world applications of FL like mobile healthcare Nguyen et al.
(2022b)) and edge computing [Imteaj et al.| (2021)).

To address the challenge, FedJets Dun et al.[(2023) introduces Mixture-of-Experts (MoE |Masoudnia
& Ebrahimpour| (2014))) architectures in FL, which turns the challenge of non-i.i.d. data into a
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Figure 1: [Left] Previous state-of-the-art personalized FL. methods perform well on seen clients
but fail on unseen clients with in-domain distribution shifts (e.g., different class frequencies, fea-
ture shifts, etc.). Conversely, HyperFedZero enables trained models to adapt to unseen clients by
dynamically generating classifier parameters based on the input’s distribution embeddings, over-
coming in-domain distribution shifts without fine-tuning. [Right] Differences between in-domain
without distribution shifts, in-domain distribution shifts and out-of-domain in FL.

blessing for expert specialization. Specifically, FedJets dynamically assigns different experts to
different clients (whether seen or unseen) based on their unique data distributions, enabling zero-
shot personalization on the fly. However, the server-side and client-side storage and computational
requirements for managing extensive experts, as well as the need for frequent expert-parameter
synchronization, create impractical bottlenecks.

Instead of following the previous approach of adapting each client’s data separately via fine-tuning,
we rethink the problem of deploying trained models to non-participating clients from a novel per-
spective: Can we directly encode distribution-aware inductive biases into the model’s forward pass
in FL without fine-tuning? In this paper, we propose HyperFedZero, a hypernetwork-driven ap-
proach that dynamically generates the classifier parameters based on the input’s distribution embed-
dings for improved zero-shot personalization. Specifically, rather than directly learning the mapping
from inputs to labels, HyperFedZero learns the mapping from inputs to the optimal model parame-
ters that can classify the inputs accurately. Additionally, the NoisyEmbed and the Balancing Penalty
are also incorporated into HyperFedZero to further refine the extracted distribution embeddings by
the distribution extractor to enhance robustness and prevent feature collapses Thrampoulidis et al.
(2022).

Our contributions can be summarized as following:

1. We emphasize the inability to personalize models for unseen clients without fine-tuning
leads to degraded performance when their data distributions, even within the same domain,
differ from those observed during training (i.e., In-domain distribution shifts). This limita-
tion undermines the practicality of FL in dynamic environments with limited resources. To
the best of our knowledge, this work could be one of the first attempts to mitigate this issue
without incurring notable resource overheads.

2. We propose a novel hypernetwork-based approach, HyperFedZero, that directly encodes
distribution-aware inductive biases into the model’s forward pass. HyperFedZero begins
by using a distribution extractor with NoisyEmbed and Balancing Penalty to capture robust
and refined distribution embeddings from the input data. Then, a hypernetwork is condi-
tioned on the extracted embeddings to dynamically generate classifier parameters. Finally,
the input data are passed through classifiers to produce the final predicted labels.

3. Extensive experiments conducted across 7 datasets and 5 models demonstrate that Hyper-
FedZero significantly outperforms competing methods in zero-shot personalization, while
maintaining comparable model size and global and personalized performance. Additional
ablation studies and visualizations further validate the superiority of HyperFedZero. The
code will be made open-source upon acceptance.
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2 RELATED WORK

Data heterogeneity in FL. Data heterogeneity refers to differences in the statistical properties of
data across clients, presenting a significant challenge in FL |Ye et al.| (2023); [Zhang et al.| (2021));
Zhou et al.| (2024a). Existing solutions fall into (i) personalization—FedPer |Arivazhagan et al.
(2019), FedProx |Li et al.| (2020b)), PFedMe [T Dinh et al.| (2020)), Per-FedAvg [Fallah et al.| (2020)
learn client-specific models; and (ii) domain generalization—COPA|Wu & Gong|(2021)), FedDG Liu
et al.| (2021), FedSR [Nguyen et al.| (2022a)), GA [Zhang et al.[(2023), FedIG |Seunghan et al.| (2024)
train domain-invariant features for unseen domains. Neither stream handles in-domain distribution
shifts common in practice.

Hypernetworks. A hypernetwork |[Ha et al.| (2017); |Chauhan et al.| (2024); [Wang et al.| (2024)
conditions on side information to emit target-network weights; recent chunked/diffusion variants
cut its size. Recently, hypernetworks have gained considerable attention in the FL domain Shamsian
et al.| (2021)); |Chen et al. (2024); |Shin et al| (2024); |Yang et al| (2022). In FL it supports client
personalization (pFedHN [Shamsian et al.|(2021])), communication compression (HyperFedNet/Chen
et al.| (2024)), heterogeneous hardware (HypeMeFed |Shin et al.| (2024)) and device-specific CT
models (HyperFed Yang et al.| (2022)).

Recently, MoE-based FedJets |Dun et al.|(2023) tackled in-domain distribution shifts, but at the cost
of significant computational and communication overhead. In contrast, OD-PFL|Amosy et al.|(2024)
and PeFLL [Scott et al.|(2023) address this issue using hypernetwork to generate client-level weights.
However, these methods introduce additional communication costs or privacy risks stemming from
local data sharing. In comparison, our HyperFedZero generates sample-level weights locally (i.e.,
entirely on client devices), enabling zero-shot adaptation for both seen and unseen clients without
extra overhead or privacy concerns.

3  PROBLEM FORMULATION

Consider a FL training process with N participating clients. Each client ¢ € [0, N) owns a local
dataset D; = (D¥,DY), and (x;,y;) ~ D; are drawn from the global instance space X’ and the
global label space ), respectively. Additionally, each client ¢+ maintains a classification model ¢ :
X — Y parameterized by global weights 6. in the hypothesis space ©.. The objective of FL is to
find a 6. that minimizes the overall losses across all participating clients, while maintaining data
privacy, as shown by Equation|[I]

N
arg Hgin;wiﬂ((xi,ymcx 1)

where F;(-) and w; are the local objective function and the aggregation weight of client 7, respec-

tively. The aggregation weight w; = |D;|/ ij | Dy| helps combine clients’ local losses into a
global optimization targetMcMahan et al.[(2017), where | - | is the size of the -.

After obtaining 6., the model is deployed to M clients that did not participate in the FL process.
Each client j € [0, M) has a local dataset D; which is drawn from & and ) (i.e., shares the same do-
main as D;) but exhibits different distributions (e.g., different class frequencies, feature shifts, etc.).
This results in in-domain distribution shifts, as the preferences of these non-participating clients
were not considered during the training process in Equation [I] Therefore, a cold-start problem is
introduced, as the model may not initially be well-suited to the data distribution of client 7, leading
to suboptimal performance. A simple workaround for this issue is to perform fine-tuning based on
.. Nevertheless, it requires non-participating clients to have enough resources to handle additional
local fine-tuning steps.

Intuitively, to avoid the aforementioned issues, we can directly condition the model’s predictions on
the distribution of the inputs. Specifically, this involves transforming Equation [I] to account for the
distribution of D; during training, as illustrated by Equation

N
arg I%inzi:wiFi((XMYi)vgc»ei)v )
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Figure 2: The general architecture of HyperFedZero consists of two main shared models: a distribu-
tion extractor f and a hypernetwork h. During training, the distribution extractor f first transforms
the inputs into distribution embeddings, as shown in @. To prevent feature collapses, the NoisyEm-
bed and Balancing Penalty are applied. Then, in @, the hypernetwork h generates chunked param-
eters based on the distribution embeddings. Finally, in @, a classifier ¢, initialized with generated
parameters, is used to predict labels of the inputs. After training, frozen f and h can generate accu-
rate classifiers that are well-suited for non-participating clients with in-domain distribution shifts.

where e; is the distribution embeddings in the global distribution embedding space £ extracted
from x;. Nevertheless, how to properly obtain e; and incorporate it into model predictions for
non-participating clients with in-domain distribution shifts in FL. remains an open problem. This is
crucial for enabling effective zero-shot personalization.

4 OUR APPROACH

The general architecture of HyperFedZero is illustrated in Figure[2] In HyperFedZero, each client
consists of a distribution extractor f : X — & parameterized by 6 and a hypernetwork h : £ —
O, parameterized by 6. Specifically, for client ¢, the distribution extractor f is responsible for
generating inputs x;’s distribution embeddings e; with a Balancing Penalty for preventing feature
collapses. Meanwhile, based on e;, the hypernetwork h generates dynamic 65 for the classifier to
predict the labels. In other words, instead of learning the mapping function directly from X to ),
HyperFedZero lets clients first learn the mapping function from X to £ to ©.. Then, a classifier is
initialized with generated 6, € O, to transform X to ).

4.1 DISTRIBUTION EMBEDDINGS EXTRACTION

For client ¢, the distribution extractor f

aims to embed thef origipal inputs x; .into e — Distribution :
a normalized P-dimensional embeddings ! Extractor f 1 Embeddings 1 Balancing

. | ! o Penalty
e; € & that captures the geometric rela- ' 7‘\ ! g J
tionships (i.e., similar embeddings imply 7“ : fi ——k 2 — F(e)
similar distributions). Intuitively, similar L T (= Loss Function
to token embeddings in the NLP field [An- X; ! i
toniak & Mimno| (2018); [Girdhar et al. ! W\ : g
(2023), where, with proper supervision —l fy & —softplus(| |)

. . 1 z 4

from labels, the smoothness and continuity i i g e

properties of neural networks naturallyen- | =------- NoisyEmbed Noise
able this embedding structure. However,

we find a significant issue when simply ob-  Figure 3: The NoisyEmbed and the Balacing Penalty
taining e; by f(x;): feature collapse. In are employed in the distribution extractor for improve
this scenario, all e; collapse into a narrow  distribution embeddings.

region within the embedding space. This

phenomenon arises because, during training, the local distributions of all clients can be sufficiently
considered by Equation [I] as there are no non-participating clients at this time. In other words, all
distributions are visible during training, minimizing the benefit of customizing models for invisible
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distributions. As a result, the distribution extractor tends to converge to a trivial solution, where all
x; are mapped to similar e;.

To mitigate the feature collapses issue, inspired by the load balance regulation in MoE Shazeer et al.
(2017), we jointly employ NoisyEmbed and Balancing Penalty, as illustrated in Figure 3]

NoisyEmbed deliberately adds noises to f(x;) for increased randomness and robustness, explicitly
preventing feature collapses, as presented by Equation [3]

e = softmax(f(x;;05) + z - softplus(noisy(x;))), 3)

where z € N(0,1). As it can be seen, NoisyEmbed employs an additional learnable global noisy
network f5(+) to customize the added noises to different inputs.

Balancing Penalty implicitly promotes exploration of the embedding space by incorporating Equa-
tiondlinto the loss function.

var(d_ e;)
Fi(-,ei) = Fi(- —— =+ fE(—e;loge), 4
(1e0) = Fi() + o 0 SO + BB log ) @
where « and 3 are two hyperparameters. In Equationf4] the first term encourages an even distribution
of e; across the embedding space Meanwhile, the second term fosters clustering along specific
dimensions of the embedding.

4.2 CONDITIONED PREDICTION VIA HYPERNETWORK

Minimizing Equation 2] essentially maximizes the probability of correctly predicting the labels, i.e.,
N
P P — Ai i ;€i)y
arg n‘lgchXZwl r(y; = ¥ilxi; 0c, ;) 5)

where ¥; represents the predicted label for client i given x;, 6. and e;. Thus, it is clear that we can
approach the problem in two ways: either by conditioning the model’s inputs on e or by conditioning
the model’s parameters on e, i.e.,

N
arg T%%szin(Yi = ¥il{xi,ei};0c), Opt.1
: (6)

N
arg me;CLXZ w; Pr(y; = §ilxi; 0clei), Opt. 2
3

In HyperFedZero, we condition model’s parameters on e (Opt. 2) for the following reasons: (1) In
Opt. 1, a single classifier is responsible for making predictions on all inputs. This can be seen as
making trade-offs along the Pareto front, limiting its flexibility. (2) Additionally, in Opt. 1, the classi-
fier may choose to ignore e;, which reduces the effectiveness of leveraging distribution embeddings.
In contrast, Opt. 2 can be viewed as employing different models for different e; in an explicit way.
Sec. [¢] further validates our design choices by empirically demonstrating that Opt. 2 consistently
outperforms Opt. 1. However, Opt. 2 also introduces several challenges. First, Opt. 2 eliminates the
knowledge sharing between classifiers as they are independent. Second, Opt. 2 requires managing
multiple models on clients’ devices, violating the principles of FL regarding model efficiency and
resource usage. To alleviate these challenges, HyperFedZero employs a chunked hypernetwork £
to generate parameters incrementally, processing them chunk-by-chunk rather than all at once. This
enables the generation of different models based on e; while maintaining shared global knowledge,
as shown by Equation 7}

N
argﬁgsz:wif’f(yz' = ¥ilxi; h(es; 0n)). @)

In this way, HyperFedZero strikes a balance between flexibility and efficiency, allowing the system
to leverage e and shared global knowledge while minimizing the overhead of managing multiple
models on each client device.
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Table 1: The zACC, gACC and pACC comparisons (the higher the better) between settings. Bold

marks the best-performing method in each comparison, underline marks the second best-performing
method. HyperFedZero outperforms other baselines consistently.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet| MLP LeNet-S LeNet| MLP LeNet-S LeNet|ZekenNet ResNet ResNet
N=10
Local 226 1753 278 | 3.82 1372 451|221 078 208 | 10.03 12.11 |30.40 0.65 0.97
FedAvg 93.06 97.92 98.44|7795 77.78 81.77|70.18 8242 82.16| 83.98 80.01 |43.32 13.41 4.69
FedAvg (g) 93.83 97.72 98.40| 8548 86.11 87.69| 71.05 82.09 8331 85.64 8337 4427 14.41 6.89
FedAvg (p) 93.93 97.79 98.18| 8548 86.11 87.69|71.13 82.66 83.45 85.64 8337 4427 14.41 6.89
FedAvg-FT 89.24 92.01 90.28|57.99 48.44 71.35|47.27 2852 57.81| 46.68 3561 [32.39 3.52 1.34
FedProx 9271 97.92 98.44|77.95 76.56 80.90|69.01 83.07 81.77| 84.51 79.82 |43.47 14.06 5.13
Ditto 92.53 98.09 98.26|77.08 77.08 80.03|68.62 82.29 80.73| 8236 68.42 |35.80 8.98 4.54
pFedMe 9323 97.92 98.26|77.78 77.08 78.82|69.40 81.64 81.77| 82.62 75.20 |38.78 11.46 4.39
pFedHN 2691 1736 10.94|26.56 13.37 1840|925 1.17 247 6.32 6.58 [30.54 4.69 0.89
PerFedAvg 9323 97.92 9826|7830 77.26 80.90|70.05 82.68 81.90| 4525 78.52 |43.32 13.28 5.73
FedAMP 89.41 91.67 90.80|59.55 51.04 71.35|47.53 30.86 5833| 47.01 3542 |32.67 4.17 1.12
Scaffold 94.27 9826 98.61|78.47 7830 80.73|71.61 82.94 82.94| 84.83  81.48 |47.30 15.63 8.26
GA 9323 97.92 98.26|78.13 7743 81.25|70.57 82.68 81.51| 84.64 78.78 |43.32 14.58 6.10
FedSR 9479 97.92 98.44|79.69 81.94 81.94|74.09 8294 83.07| 8542 79.49 |43.18 11.59 6.25
FedEnsemble 84.38 9253 92.36]65.10 64.58 65.45|11.46 58.07 70.57| 59.31 77.38 |51.14 11.98 6.17
FedJETs 93.75 96.88 98.26|77.43 7847 81.77|69.14 73.70 83.33| 87.04 77.47 |54.69 13.15 4.98

HyperFedZero 95.49 98.09 98.78 [82.99 83.68 82.29 76.82 83.20 83.59| 85.09 82.36 |57.24 16.06 9.08
HyperFedZero (g)| 96.03 97.71 98.03| 87.36 87.52 88.79| 78.90 81.02 82.88 8594 8337 5140 1628 9.02
HyperFedZero (p)| 95.93 97.82 98.21| 83.08 88.14 89.24|78.13 81.53 8246 85.00 83.03 51.00 18.31 9.44

N =50
Local 1027 1339 040 | 491 938 446 | 3.12 208 1.04 2.27 13.06 | 7.03 1.87 0.00
FedAvg 94.64 97.77 98.21|86.16 91.07 86.60|66.66 81.77 81.25| 89.48  44.03 | 4531 13.75 6.87
FedAvg (g) 93.60 97.89 98.15| 8542 86.04 87.27|70.67 81.65 83.68 87.17 49.61 42.85 16.60 6.25
FedAvg (p) 95.75 97.77 98.16| 87.69 88.11 88.87|76.30 81.11 83.57 87.61 88.73 51.71 17.04 9.45
FedAvg-FT 87.95 8393 9330|8437 67.85 7142|4583 28.64 63.02| 48.58 41.47 [29.68 5.00 0.31
FedProx 9420 9732 98.66|85.27 90.62 87.50|66.14 81.25 84.37| 89.20 86.08 |46.09 13.12 6.56
Ditto 9420 96.88 98.21|84.82 91.07 87.50|65.62 79.16 81.25| 8437 69.31 |33.59 3.75 0.31
pFedMe 9420 96.43 98.66|84.82 87.50 86.60|61.45 7447 83.33| 80.68 81.53 |31.25 6.25 2.81
pFedHN 9241 6333 7.58 |70.08 47.77 18.30(44.79 7.81 520 | 77.27 44.03 |21.09 1.25 0.93
PerFedAvg 9420 97.77 98.66|85.26 90.18 86.16|67.18 81.71 83.85| 90.05 88.07 |35.93 16.25 5.62
FedAMP 89.29 89.29 93.30|84.37 77.67 72.76|50.00 41.66 64.06| 50.28  42.33 |23.43 4.37 0.62
Scaffold 94.64 9821 98.55[87.94 87.50 87.50]70.83 81.25 84.89| 90.34  88.64 |45.31 16.87 10.31
GA 9420 97.77 98.66|85.71 90.18 87.05|67.70 81.25 84.37| 89.20 84.65 |39.84 15.62 7.18
FedSR 9598 99.11 97.32|87.94 87.50 88.39|70.31 80.72 83.85| 90.62  80.39 |39.84 10.62 5.31
FedEnsemble 82.14 94.64 9286|7455 7232 75.00|13.54 5937 64.58| 6591  85.79 |50.00 15.00 6.25
FedJETs 9598 97.77 98.21|87.05 8393 90.17|7449 78.12 83.33| 81.25 81.25|53.13 18.75 5.31

HyperFedZero 97.32  98.66 99.55(91.52 91.51 92.86 [77.60 83.33 87.00 | 91.47 92.04 |61.79 19.37  14.68
HyperFedZero (g)| 93.71 97.72 98.45| 85.65 87.06 87.75|70.72 82.83 83.34 86.18 57.36 40.41 14.97 5.70
HyperFedZero (p)| 96.08 97.83 98.21|87.92 87.77 89.07| 76.40 82.12 84.12 87.56 87.06 52.40 17.36 12.56

4.3 ALGORITHM AND COMPLEXITY ANALYSIS

The pseudocode of HyperFedZero is presented in Algorithm [I]in the Appendix. In HyperFedZero,
during each epoch, each client ¢ simultaneously minimizes the empirical risk on D; and the balanc-
ing penalty with distribution embeddings e;. This enables the extraction of meaningful embeddings,
as well as distribution-aware parameters generation and prediction. Thus, no additional compu-
tational overhead is introduced, and the time complexity of HyperFedZero remains the same as
FedAvg, equaling O(N EK). In terms of space complexity, the distribution extractor and the chun-
ked hypernetwork can be very compact. This approach allows us to maintain a similar number of
total parameters compared to directly using the classifier itself (i.e., || + |0x| = |0.|). Therefore,
3SFC shares the same space complexity, O(N), with FedAvg as well.

5 EXPERIMENTS

Datasets: In line with community conventions [Sattler et al.| (2019); [Zhou et al.[(2023); Bernstein
et al.| (2018)), our experiments utilizes five datasets: MNIST |Deng| (2012)), FMNIST [Xiao et al.
(2017), EMNIST Cohen et al.| (2017), SVHN [Netzer et al.|(2011), Cifar10 Krizhevsky et al.|(2009),
Cifar100 Krizhevsky et al.| (2009) and Tiny-Imagenet |Le & Yang (2015). To simulate the non-
ii.d. characteristic, each dataset is manually partitioned into multiple subsets using a Dirichlet



Under review as a conference paper at ICLR 2026

EmA FedAvg EEN FedEnsemble ESAl Fedjets HEEE HyperFedZero
BN BN B
BN N BN BN B
N B B N

# of Params (Ratio)

MLP LeNet-S LeNet ZenkeNet ResNet

(a) (b) (c)

Figure 4: (a) Illustration of model sizes for FedAvg, HyperFedZero, and FedJets. HyperFedZero
matches FedAvg in parameters and outperforms others in mitigating in-domain distribution shifts.
(b) Visualized embeddings of three participating clients’ data. Clearly, a decision boundary appears.
(¢) Visualized embeddings of a non-participating client’s data. HyperFedZero directly generates
specialized classifiers for different data, achieving optimal performance without local fine-tuning.

distribution parameterized by a4, a method commonly employed in FL settings [Wang et al.| (2020);
Li et al.|(2022);[Zhou et al| (2023). As a result, each client owns a distinct subset of the data, varying
both in quantity and category.

Models: To cover both simple and complex learning tasks, five models are used in our experiments:
Multi-Layer Perceptron (MLP), LeNet-S, LeNet, ZenkeNetZenke et al.|(2017), and ResNet[He et al |
(2016). Specifically, LeNet-S is a smaller version of LeNet, with reduced hidden layer dimensions.
To enhance practicality, unlike previous work [Sattler et al.| (2019); [Zhou et al| (2021}, [2025) that
remove the batch normalization layers Toffe & Szegedy| (2015) and dropout layers |Srivastava et al.
in ResNet, we retain both of them without modification.

Baselines: In our experiments, we compare HyperFedZero against four categories of baselines: (1)
Vanilla FL: Local, FedAvg [McMahan et al. (2017); (2) In-domain without distribution shifts (i.e.,
personalized FL): FedAvg-FT, FedProx |Li et al.|(2020b), Ditto[Huang et al.| (2021)), pFedMe T Dinh
et al| (2020), pFedHN [Shamsian et al| (2021), PerFedAvg [Fallah et al.| (2020), FedAMP |Huang
et al.| (2021); (3) In-domain with distribution shifts: FedEnsemble |Shi et al.| (2021)), FedJets [Dun
et al.| (2023); (4) Out-of-domain (i.e., Federated Domain Generalization): Scaffold |Karimireddy
et al.| (2020), GA [Zhang et al.| (2023), FedSR [Nguyen et al| (2022a). Note that the Local baseline
allows clients to perform local training without any communication, and FedAvg-FT enables clients
to perform an additional one round of local fine-tuning after receiving the global model.

E

:

Metrics: For experiments involving N participating clients, we first partition the dataset into N +
M non-i.i.d. subsets. Then, after training the global models on the N participating clients, we
report: (1) gACC: the top-1 accuracy evaluated on the global test set; (2) pACC: the averaged top-
1 accuracy evaluated on the N participating clients’ local test set; (3) zACC: the averaged top-1
accuracy evaluated on the M non-participating clients’ whole set. Note that all three metrics are
evaluated without any further fine-tuning after the training is completed.

Implementation Details: All experiments are conducted with N = 10/50 participating clients and
M = 5 non-participating clients with a participation ratio of 1.0. The environment uses CUDA 11.4,
Python 3.9.15, and PyTorch 1.13.0. The training involves £ = 500 global epochs and K = 5 local
iterations, with a global batch size of 800, learning rate = 0.001, and gy = 1.0. In HyperFedZero,
a = [ = 1.0, P = 16 by default. The size of hypernetworks (i.e., the chunk size and the network
architecture) are tuned manually for each setting to ensure a similar number of total parameters
compared to the classifier (i.e., |0 |+ 05| = |0.|). For other baselines, we adopt the hyperparameters
as specified in their original papers.

6 ANALYSIS

Main Results: We compare the zZACC of HyperFedZero with other baselines in Table [T} As can be
seen, most personalized FL methods struggle to generalize to unseen data distributions within the
same domain without additional fine-tuning. While federated domain generalization methods con-
siderably enhance model generalization, they rely on training data from diverse and labeled domains,
which does not apply to scenarios with in-domain distribution shifts. On the other hand, FedEnsem-
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Table 2: We conduct an ablation study on HyperFedZero’s key hyperparameters to evaluate the
effectiveness of our design choices. We report gACC, pACC, zACC, and A params (i.e., the param-
eter difference between HyperFedZero and FedAvg) to provide a comprehensive analysis. Default
settings are marked in gray . bold marks the best-performing results.

(a) The dimension of the e;. (b) ain EquationE] A moderate (c) B in Equation E} A moderate
Large embedding dimensions value of « yields the best perfor- value of (3 yields the best perfor-
lead to poor generalization. mance. mance.

P | eACC pACC zACC o | gACC pACC zACC B |gACC pACC zACC

N =50;a=1.0 N =50;a4=1.0 N =504 =1.0

2 2.02 1.65 3.12 0 5.04 4.97 562 0 573 571 843
8 4.15 4.11 7.18 05| 6.19 6.29 968 05| 596 5.69 843
16 | 945 12.56 14.68 1 945 1256 14.68 1 945 12.56 14.68
32| 538 5.92 8.12 1.5 ] 575 5.64 6.87 15| 645 8.2 10.12
64 | 5.12 5.09 8.43 2 5.83 5.67 875 2 647 629 10.31
N =50; aq =0.1 N =50; 04 =0.1 N =50; 04 =0.1
2 2.81 2.82 3.81 0 4.33 4.78 555 0 541 515 4.16
8 3.89 3.67 4.47 05| 5.69 5.28 590 05| 5.67 554 451
16 | 5.66 6.51 6.86 1 5.66 6.51 686 1 566 6.51 6.86
32| 473 4.62 6.25 1.5 ] 523 5.17 512 15| 556 539 5.16
64 | 4.46 4.36 6.25 2 5.23 5.06 451 2 538 554 555

(d) Hidden layer sizes in the hypernetwork h: Small (¢) The number of weights produced by the hypernet-
h limits model capacity, while large h leads to poor work h at a time (6. of the classifier is generated for
convergence. multiple times)

Archs of h ‘ gACC pACC zACC A params Chunk size | gACC pACC zACC A params

N =50; a4 =1.0

N =50, =1.0
144 574 577 150 -27.01%
[100,100] | 5.85 593 75 -69.13% g% 3.‘1'2 162.9536 194.3678 -222.373;7%
J o d S 0
[300,300] | 9.45 1256 14.68 +2.30% 1(9, cee CSL 85 155079
[500,500] | 6.48 629 6.87 +102.04% 2304 511 528 7.81 +182.09%

N =50;a=0.1 N =50;04 =01

144 486 481 520 -27.01%
[100,100] | 520 4.95 486 -69.13% 288 517 552 590 -22.79%
[300,300] | 5.66 6.51 6.86 +2.30% ??22 g-gg g-g} g-gg :5283(97(@;
[500,500] | S.11 497 625 +102.04% 2304 540 552 490 +182.09%

ble and FedJETs significantly increase the number of trainable parameters and lack shared global
information between sub-models, resulting in poor convergence. In comparison, HyperFedZero
consistently achieves superior zZACC across extensive settings with comparable gACC and pACC
to others, indicating its ability to efficiently and effectively personalize the trained global model for
unseen clients with in-domain distribution shifts, without any fine-tuning.

Additionally, we present a visualization of the number of parameters stored in various model archi-
tectures for FedAvg, HyperFedZero, and FedJets in Fig[da] As shown, HyperFedZero maintains a
similar number of parameters compared to FedAvg, while delivering significantly superior perfor-
mance in terms of zZACC. This further verifies the effectiveness of HyperFedZero.

Comparisons between Condition Options: To assess the impact of conditioning the model’s pa-
rameters on the embedding e (i.e., Opt 2 in Equation. [7), we compare Opt 1 and Opt 2 in Table [3]
From the table, we can observe that while Opt. 1 generally outperforms FedAvg, it underperforms
in certain settings (e.g., N = 50, ag = 1.0). This indicates that the injected conditioning does not
generalize the global model effectively, and the added parameters may even degrade performance.
In contrast, Opt. 2 consistently outperforms Opt. 1 and FedAvg across various values of NV and ayg,
highlighting its superior effectiveness.

Embeddings Visualization: We visualize the distribution embeddings using t-SNE |Van der Maaten
& Hinton| (2008)) after training with an MLP classifier on FMNIST in Figure (N =50, M =5).
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The left panel shows the embeddings of data in three selected participating clients, while the right
panel displays the embeddings of data in a non-participating client. As seen, a distinct decision
boundary is found in the left panel, indicating that HyperFedZero is capable of distinguishing data
of different clients with distribution shifts. This demonstrates that HyperFedZero can dynamically
generate specialized models based on embeddings when applied to non-participating clients, thereby
enhancing performance. For instance, data in the green region of the right panel can be classified by
generating a model similar to the one owned by the green client in the left panel.

Table 3: The zACC comparisons between Opt. 1 and Opt. 2 Aplation Study: To investigate
(Ours) in Equation [/| i.e., two condition injection options. the impact of various hyperparame-
Opt. 2 improves flexibility and outperforms Opt. 1. Bold ters on HyperFedZero’s performance,
marks the best-performing results. we conduct ablation studies with a
ResNet classifier on Tiny-ImageNet
P s s B P BT (Y = 50), a5 shown in Table 7
N =10 These. studlgs include ablations of P

(the dimension of e;, Table@, « and

| @a =10 | @q =0.1 f3 from Equation [] (Table [2b] and Ta-

FedAvg| 9306 7795 7018 | 9447 9479 3171 :
Opt 15| 0487 8120 7213 | 9579 oiss doso  DIED as wellasthe architectures of

Opt.2 | 9549 8299 7682 | 9639 9523 5049  the hypernetwork / (Table[2d|and Ta-
N =50 ble[2¢).

\ ag=1.0 \ ag=0.1 In particular, the values of P, «,
ISedA]vg 8451(6;81 ggég gggg gggg %gg g%gg and g are critical in determining the
pt. . . - . . . model’s ability to accurately capture
Opt.2 | 97.32 91.52 77.60 | 9236 8541 68.05 and adapt to )(;ifferent datay distFr) ibu-
tions, often requiring manual tuning
through grid search. Empirically, we find that P = 16, o = § = 1.0 yield good performance. On
the other hand, the hyperparameters of h influence the trade-off between model capacity and model
size. Our empirical results show that tuning the hyperparameters of i to maintain a similar number
of parameters as FedAvg often yields the best performance.

7 CONCLUSION

In this work, we propose HyperFedZero, a novel FL. method designed to address the critical chal-
lenge of generalizing trained global models to non-participating clients with in-domain distribution
shifts. This is achieved by first learning discriminative distribution embeddings of different data
with NoisyEmbed and Balancing Penalty. Then, these embeddings enable the chunked hypernet-
work to dynamically generate personalized parameters without compromising privacy or requiring
client-side fine-tuning. Empirical results across diverse settings also demonstrate HyperFedZero’s
superiority, outperforming other competing methods significantly while maintaining minimal com-
putational and communication costs.

We believe this work bridges a critical gap in the practicality and scalability of FL by addressing the
cold start problem during FL. model deployment through zero-shot personalization. Like the open
source culture, we believe this enables resource-constrained, non-participating clients to benefit from
other clients’ collaborative learning. In the future, we plan to extend HyperFedZero to incorporate
diffusion-based parameter generation for even larger-scale real-world applications.
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A MORE RELATED WORK

A.1 DATA HETEROGENEITY IN FL

Data heterogeneity refers to differences in the statistical properties of data across clients, presenting
a significant challenge in FL Ye et al.| (2023); Zhang et al.| (2021)); Zhou et al.| (2024a). To address
this issue, previous research has mainly focused on two perspectives: adapting to in-domain data
without distribution shifts (i.e., personalized FL) and generalizing to out-of-domain data (i.e., fed-
erated domain generalization). Specifically, personalized FL methods aim to learn a local model for
each participant to accommodate its local data distribution. In particular, FedPer Arivazhagan et al.
(2019) integrates a personalization layer into FL for customized fine-tuning. Conversely, FedProx L1
et al. (2020b) introduces a proximal term that encourages the local models to be similar to the global
model while also preserving the personalized updates. PFedMe |T Dinh et al.| (2020) further en-
hances personalized FL by incorporating Moreau Envelopes Moreau| (1963)), allowing the model to
learn from global and local data distributions, and thereby improving generalization. Lastly, Per-
FedAvg [Fallah et al.| (2020) utilizes a meta-learning strategy to develop an initialization for each
client’s local model that captures the structure of its local data. On the other hand, federated domain
generalization approaches aim to improve model robustness across diverse and unseen domains by
learning domain-invariant features. For instance, COPA Wu & Gong| (2021) and FedDGLiu et al.
(2021) apply multi-source domain generalization methods Nguyen et al.|(2022a); Zhang et al.|(2023)
to FL by sharing classifiers and style distributions. Meanwhile, FedSR [Nguyen et al.|(2022a) pro-
poses to learn a domain-invariant representation of the data with conditional mutual information and
L2-norm regularizers. Later, GA [Zhang et al.| (2023) calibrates the aggregation weights in FL to
achieve a tighter generalization bound. Recently, FedIG |[Seunghan et al|(2024) introduced client-
agnostic learning for zero-shot adaptation, but it relies on multi-domain training data, which is often
unavailable or unlabeled in real-world FL scenarios.

Despite the promising performance, existing literature rarely explores in-domain distribution shifts
in FL, as illustrated in Fig Namely, the data distribution shifts occur within the same domain,
which is very common in real-world FL scenarios(e.g., deploying an FL-trained package filtering
model to a non-participating router Vamanan et al.| (2010)). To address this issue, FedJets Dun et al.
(2023) recently applies MoE to FL by dynamically assigning different experts to clients based on a
learned gating function. However, it introduces additional resource overheads, limiting its practical
application.

A.2 HYPERNETWORK FOR PARAMETER GENERATION

The hypernetwork Ha et al.|(2017)) is a conditional meta neural network that generates all parame-
ters for another network at once, enabling efficient model customization under varying conditions.
However, generating all parameters simultaneously necessitates a sufficiently large hypernetwork,
leading to significant resource overheads and unstable training. To address this, chunked hyper-
network [Chauhan et al.| (2024) and diffusion-based hypernetwork |Wang et al.| (2024) propose to
incrementally generate parameters, substantially reducing the hypernetwork size without perfor-
mance degradation. Moreover, hypernetworks can generalize well to unseen conditions |Volk et al.
(2022), facilitating diverse downstream applications like meta-learning |Zhao et al.[ (2020); Beck
et al.| (2023); |Cho et al.[(2024)), continual learning [Von Oswald et al.| (2019); |Chandra et al.| (2023));
Hemati et al.| (2023), and generative modeling Ratzlaff & Fuxin| (2019)); Schiirholt et al.| (2022); Do
et al.|(2020).

Recently, hypernetworks have gained considerable attention in the FL domain [Shamsian et al.
(2021)); |Chen et al.| (2024); |Shin et al.| (2024); Yang et al.| (2022). For instance, pFedHN |Shamsian
et al.| (2021) trains a centralized hypernetwork on the server to dynamically generate personalized
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models for clients based on their client embeddings. However, client embeddings only exist for
participating clients, limiting pFedHN’s adaptability to non-participating clients. Meanwhile, Hy-
perFedNet|Chen et al.|(2024) reduces communication overhead in FL by compressing parameters of
multiple models into a single hypernetwork. Additionally, HypeMeFed Shin et al.|(2024) addresses
hardware heterogeneity in FL by utilizing hypernetworks to generate different model architectures
for different clients. Lastly, HyperFed |Yang et al.| (2022) employs hypernetworks to generate CT
reconstruction models tailored to the specific parameters of CT machines. In comparison to these
methods, HyperFedZero aims to generate parameters at a more granular level, customized for data
samples rather than entire clients. This significantly enhances the model’s adaptability for both
participating and non-participating clients.

B ALGORITHM OF HYPERFEDZERO

Algorithm 1 HyperFedZero

Input: global model parameters 0} and 6} , local dataset D; = {x;,y;}, learning rate 7;
Parameter: number of global epoch E, number of local iteration K, number of participating clients
N
Output: global model parameters 6 and ;7
Clients:

1: for each client ¢ from 1 to /V in parallel do

2:  initialize 0} , = 0%, 0}, = 0},

3 for each local iteration & from 1 to K do

4: obtain e; by Equation 3]
5: generate 0. = h(e;;0!)
6.
7
8

compute loss F;(-) by Equation 4]
92;‘ = Hif - mVe;,fFi(')
L O =0, — iV Fi()
9:  end for
10:  return 6} ., 0},
11: end for
Servers:
1: initialize random 9;3, 69
2: for each global epoch e from 1 to £ do
3. distribute 0;_1, 92_1

4:  clients perform local training
5:  receive 92}1, 0;;1
. e = SN _IDi| pe—1
6 05 =20 s¥ip,%is
. e _ \~N _|D;] e—1
7 eh - Zz Zj}f |Dj‘9i,h
8: end for

9: return 9?, oF

C NOTATIONS

The main notations in this paper are shown in Table 4]

D CONVERGENCE

Strictly speaking, the training phase of HyperFedZero is nothing more than a standard FedAvg
applied to clients’ local hypernetworks. As a result, the classical FedAvg convergence guarantees
for smooth and potentially non-convex objectives |Li et al.| (2019); [Haddadpour & Mahdavi| (2019);
Cho et al.| (2020) carry over directly to our setting. Therefore, HyperFedZero inherits the same

15
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Table 4: The glossary of notations

Notation Implication

N Total number of participated clients

M Total number of non-participated clients

D; The local dataset of the i-th participated client
X Global instance space

x, € X Instance from D;

y Global label space

yi€)y Labels from D;

c: X =Y The classifier

O, Hypothesis space of the ¢’s parameters

0. € O, The c’s parameters

f:Xx—=¢& The distribution extractor

Oy Hypothesis space of the f’s parameters

0f € Of The f’s parameters

h:&— 06, The hypernetwork

O Hypothesis space of the h’s parameters

0 € Oy, The h’s parameters

& The global distribution embedding space

e, €& The distribution embeddings of the ¢-th client
E;(+) The local objective function of the i-th client
w; The aggregation weight of the i-th client

Table 5: The gACC comparisons (the higher the better) between settings (ag = 1.0). Bold marks

the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet| MLP LeNet-S LeNet| MLP LeNet-S LeNet|ZekenNet ResNet ResNet
N =10
Local - - - - - - - - - - - - - -
FedAvg 93.83 97.72 98.40|85.48 86.11 87.69|71.05 82.09 83.31| 85.64 83.37 |44.27 1441 6.89
FedAvg-FT 88.84 9120 91.58]73.18 60.24 80.70|52.62 37.34 63.27| SI.11  35.69 |34.06 4.03 1.38
FedProx 9348 97.64 98.31|85.11 8573 87.36|69.52 8253 83.36| 85.81 83.85|50.16 14.99 7.40
Ditto 93.28 97.66 98.11|85.11 85.16 87.22|69.49 82.08 82.44| 83.74 71.95|40.97 11.28 3.72
Scaffold 94.65 97.85 98.40|86.09 8491 87.70|73.43 8353 84.03| 85.82 84.17 |50.68 16.91 9.78
pFedMe 93.74 97.50 98.13|85.38 85.51 87.16|69.73 81.75 82.83| 83.31 79.78 |45.61 11.99 6.26
pFedHN - - - - - - - - - - - - - -
PerFedAvg 93.81 97.69 98.36|85.50 85.68 87.61|70.96 82.69 83.32| 50.50 83.09 |49.35 13.46 6.63
Fed AMP 88.72 91.03 9195|7338 61.64 80.76|52.78 37.85 63.36| 4642 36.14 |34.92 4.28 1.36
GA 9391 97.82 98.30|85.37 85.85 87.70|70.74 82.81 83.45| 85.62 83.79 |50.44 15.02 6.93
FedSR 95.15 97.92 98.69 |86.16 87.42 88.38|74.67 81.96 84.61| 86.13 82.31 |46.16 12.48 8.30
Ensemble 81.73 92.02 94.10]70.92 7477 76.19]19.02 60.38 68.87| 60.03  79.19 |54.22 15.87 8.88
FedJETs 94.12 96.28 98.22|84.54 84.50 87.64|70.96 75.12 8390| 86.70  79.61 |47.97 14.14 6.62
HyperFedZero|96.03 97.71 98.03|87.36 87.52 88.79 |78.90 81.02 82.88| 8594 83.37 |51.40 16.28 9.02
N =50

Local - - - - - - - - - - - - - -
FedAvg 93.60 97.89 98.15|85.42 86.04 87.27|70.67 81.65 83.68| 87.17 49.61 |42.85 16.60 6.25
FedAvg-FT 86.87 87.34 91.58|80.58 71.34 78.97|52.27 37.03 61.61| 2589 28.86 |27.44 3.25 0.75
FedProx 93.05 97.74 98.08|85.15 8542 86.95|69.48 81.27 83.37| 87.04 86.82 |43.77 16.38 6.18
Ditto 92.54 9744 97.63|84.90 86.40 86.32|69.21 79.08 81.45| 80.03 73.03 |33.52 5.16 1.60
Scaffold 9438 98.04 98.45 (8598 8541 87.49|72.45 81.79 84.81 | 88.64 89.01 |50.39 20.98 1143
pFedMe 9330 97.08 97.37|85.13 84.56 85.72|67.06 76.49 81.51| 78.35 84.14 |39.72 10.73 2.29
pFedHN - - - - - - - - - - - - - -
PerFedAvg 93.51 97.85 98.11[85.39 86.08 87.24|70.53 81.50 83.77| 87.04 87.16 |44.80 16.05 5.85
FedAMP 87.56 89.89 91.90|81.08 74.94 78.88|54.14 4895 62.94| 3033 29.21 |28.20 3.34 0.78
GA 93.18 97.82 98.12]85.28 85.83 87.09|70.52 81.49 83.77| 87.20 87.39 |42.88 15.85 6.03
FedSR 95.20 98.03 98.38|86.43 87.39 8794|7335 8229 84.34| 87.58 85.19 |41.65 14.71 4.16
Ensemble 81.29 90.86 93.21]68.75 74.11 75.61]16.95 61.04 66.56| 60.19 88.24 |55.57 16.05 7.76
FedJETs 95.15 96.68 98.14|85.54 84.43 87.60|70.37 77.08 83.36| 76.78 83.11 |51.65 16.52 6.78
HyperFedZero|95.75 97.77 98.16|87.69 88.11 88.87 |76.30 81.11 83.57| 87.61 88.73 |51.71 17.04 9.45

convergence rates as FedAvg, achieving linear convergence under strongly convex
sub-linear rates in the non-convex case, even in the presence of aggregation noise.
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Table 6: The pACC comparisons (the higher the better) between settings (o = 1.0). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet| MLP LeNet-S LeNet| MLP LeNet-S LeNet|ZekenNet ResNet ResNet
N =10
Local 93.26 96.30 96.76|87.62 87.78 89.16|72.01 76.01 77.94| 76.08 48.24 |42.43 8.31 6.37
FedAvg 9393 97.79 98.18|86.39 86.51 88.14|71.13 82.66 83.45| 84.81 78.07 |40.63 15.31 7.32
FedAvg-FT 93.26 96.27 96.78|87.72 87.81 89.15|71.98 7588 78.17| 76.16 49.02 |47.91 13.34 6.37
FedProx 93.62 97.81 98.13|86.03 8596 88.02|69.64 8285 83.56| 84.89 79.08 |46.41 15.16 7.28
Ditto 9341 97.68 98.05|86.05 8574 87.87|69.83 82.06 82.30| 83.24 66.02 |37.21 11.06 3.80
Scaffold 94.76  98.25 98.30|86.87 86.26 88.19|73.54 83.42 84.00| 85.15 82.98 |49.59 18.23 9.74
pFedMe 93.88 97.70 97.96|86.27 86.01 88.04|70.26 82.07 82.68| 83.26 74.59 |41.53 12.59 6.51
pFedHN 93.13 94.00 95.76|86.06 82.20 86.76|65.35 51.18 73.70| 69.67 63.90 |42.59 11.47 5.95
PerFedAvg 93.92 9775 98.14|86.48 86.31 88.10|71.03 82.64 83.27| 76.07 79.19 |45.75 13.50 6.90
Fed AMP 93.22 9641 96.75|87.71 87.61 88.95|71.69 76.09 7836| 72.75 48.36 |47.35 13.45 6.12
GA 93.93 9791 98.31|86.54 86.29 88.51|71.11 8271 8345| 8492 79.62 |47.10 14.29 6.95
FedSR 95.87 97.99 98.61 |86.37 87.44 89.24|74.38 81.74 85.48 | 8538 77.39 |41.16 12.81 8.61
Ensemble 8296 92.19 94.04]7143 7534 7746]19.22 61.52 69.03| 5851  78.25 49.59 1522 9.78
FedJETs 9393 96.17 98.15|85.01 84.26 88.69|71.86 7551 83.72| 8549  76.39 |45.71 14.64 6.81
HyperFedZero|95.93 97.82 98.21|88.08 88.14 89.24 |78.13 81.53 82.46| 85.00 83.03 |51.00 18.31 9.44
N =50
Local 88.53 91.97 93.30]83.14 82.04 82.16]/58.00 64.70 66.46| 59.10 41.50 |41.02 6.70 1.83
FedAvg 93.71 97.72 98.45|85.65 87.06 87.75|70.72 82.83 83.34| 86.18 57.36 |40.41 14.97 5.70
FedAvg-FT 88.53 9197 93.28|83.14 82.11 82.24|58.00 64.84 66.51| 59.04 40.98 |40.85 6.12 2.08
FedProx 93.19 97.68 98.36|85.18 86.24 87.16/69.44 82.68 83.13| 86.35 82.89 |40.11 14.53 5.36
Ditto 92.79 97.20 97.83|85.21 87.57 86.52|68.78 80.28 80.93| 7949  66.28 |31.25 4.57 1.57
Scaffold 94.68 98.07 98.71 |86.10 86.24 88.00(72.82 8299 84.83 | 87.78 85.09 | 46.68 19.30 11.11
pFedMe 93.43 97.17 97.75|85.28 85.87 8595|67.11 76.81 80.96| 77.83 78.58 |36.87 10.16 2.24
pFedHN 92.68 75.69 9234|8234 71.26 79.93|58.81 1698 55.19| 7098 57.36 [35.11 4.71 2.62
PerFedAvg 93.58 97.72 98.46|85.55 87.20 87.68|70.21 82.73 83.38| 86.30 83.01 |40.94 14.77 5.45
Fed AMP 88.56 91.98 93.29|83.13 82.20 82.29|58.23 6495 66.45| 59.51 40.56 |40.50 6.68 1.98
GA 93.30 97.66 98.41|85.53 86.82 87.53|70.32 8294 83.57| 86.37 83.03 |40.52 15.12 5.73
FedSR 95.39 97.72 98.49|86.61 8739 88.90|72.80 83.22 84.69| 86.33 81.26 |37.71 13.62 4.10
Ensemble 80.76 91.07 93.74169.76 75.15 76.17]18.10 60.73 65.98| 58.99  82.78 [49.90 14.51 8.48
FedJETs 95.19 96.86 98.22|85.47 84.21 87.59|69.61 7823 83.12| 76.59 79.45|50.14 16.09 6.19

HyperFedZero|96.08 97.83 98.21(87.92 87.77 89.07 |76.40 82.12 84.12| 87.56 87.06 |52.40 17.36  12.56

E ADDITIONAL EVALUATION RESULTS

In this section, we present additional results for the proposed HyperFedZero and the baseline meth-
ods.

Specifically, Table[5|and Table[6]illustrate the gACC and pACC comparisons between HyperFedZero
and other baseline methods. As shown, HyperFedZero achieves comparable performance to previ-
ous state-of-the-art approaches, while also exhibiting superior performance in zACC (as shown in
the main paper), further reinforcing its overall superiority.

Additionally, we assess the performance of HyperFedZero under more aggressive data heterogeneity
by setting oy to 0.1. The results for gACC, pACC, and zACC are presented in Tabs. and
[ respectively. As shown, HyperFedZero continues to demonstrate strong performance in zZACC,
significantly outperforming all other baselines, while achieving comparable performance in gACC.
Notably, HyperFedZero’s personalization capability declines considerably at oy = 0.1, suggesting a
potential trade-off between pACC and zACC, which warrants further investigation in future research.

F LIMITATIONS

In this work, HyperFedZero leverages a chunked-hypernetwork as its parameter generator. However,
it is well-known that chunked-hypernetworks face scalability challenges, particularly when tasked
with generating billions of parameters. To address this limitation, we plan to explore diffusion-based
parameter generation techniques in future work. Additionally, in our supplementary experiments,
we observe a trade-off between pACC and zACC performance. Specifically, as data heterogeneity
increases, HyperFedZero’s personalization ability (pACC) decreases significantly, while its zero-
shot personalization accuracy (zACC) remains robust. This suggests a potential trade-off between
optimizing zero-shot personalization accuracy and preserving personalized accuracy, which warrants
further investigation in subsequent research.
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Table 7: The gACC comparisons (the higher the better) between settings (o = 0.1). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet| MLP LeNet-S LeNet| MLP LeNet-S LeNet|ZekenNet ResNet ResNet
N =10
Local - - - - - - - - - - - - - -
FedAvg 89.79 9493 96.35|82.06 80.86 83.86|60.53 74.77 78.01| 7894  69.59 |28.90 12.55 6.79
FedAvg-FT 56.52 40.05 69.51]47.08 33.86 47.25|15.07 10.77 26.40| 2429 2642 |21.68 2.23 0.85
FedProx 89.42 94.65 96.04|81.93 79.73 82.87|59.53 74.57 77.34| 7723  71.96 |29.01 12.82 6.90
Ditto 88.89 9392 95.19|81.60 78.42 81.20|58.22 7342 75.58| 7253 57.51 |24.50 5.85 3.64
Scaffold 95.09 95.15 9588|8536 79.49 81.31|71.09 75.16 78.24| 79.89  74.71 |29.95 13.09 6.60
pFedMe 89.44 94.04 95.38|81.81 79.88 83.41|57.89 73.82 76.22| 7556 64.51 |27.21 9.68 4.05
pFedHN - - - - - - - - - - - - - -
PerFedAvg 88.45 68.53 67.03]74.20 7240 73.40|57.67 33.41 43.32| 2407 61.34 |27.72 11.09 6.64
Fed AMP 55.01 40.10 70.08|45.24 33.27 44.88|14.85 9.72 2640| 26.14 26.10 |21.70 2.35 0.80
GA 89.69 95.09 96.14|81.64 79.96 82.50|60.16 7570 77.72| 78.19 73.24 |27.81 12.96 6.73
FedSR 92.06 96.39 96.96|83.44 8390 85.67|65.01 78.06 80.18| 80.80 69.26 [26.98 9.91 5.06
Ensemble 80.86 84.59 85.84]73.15 65.77 68.20]18.75 56.76 62.36| 5690  68.66 |35.06 12.92 6.09
FedJETs 89.63 91.36 96.01|81.01 79.92 83.44|60.33 75.16 7833| 80.26  69.79 |34.57 10.56 3.93
HyperFedZero| 94.06 96.31 97.75|85.52 83.97 86.36 |72.58 75.23 78.94| 81.01 71.27 |38.76 13.28 6.97
N =50

Local - - - - - - - - - - - - - -
FedAvg 91.17 9424 9732|8234 81.53 83.79|64.32 7856 80.49| 8228 75.37 |35.74 15.80 6.95
FedAvg-FT 61.84 3691 63.24]34.26 32.80 46.83|18.91 9.13 32.29| 2535 2426|2144 2.15 0.76
FedProx 90.69 529 97.13|81.72 79.99 82.80|62.95 78.17 80.08| 81.87 76.85|36.03 16.25 7.28
Ditto 89.66 9344 96.17|80.75 7749 79.67|61.85 7422 77.79| 77.18 63.60 |27.16 4.46 1.62
Scaffold 92.74 93.75 98.23 |83.02 80.49 81.56|68.50 80.53 81.96| 7426 71.76 |25.04 21.65 11.43
pFedMe 90.56 96.19 96.56|81.62 80.06 81.97|61.16 7544 77.73| 80.57 71.67 |31.41 11.34 322
pFedHN - - - - - - - - - - - - - -
PerFedAvg 91.06 79.44 92.04|77.60 4890 67.40|63.37 78.11 80.27| 79.76  70.73 |32.56 16.15 6.94
FedAMP 60.34 36.53 61.16]34.81 3291 45.76|19.34 959 32.63| 2445 23.70 |21.69 2.20 0.75
GA 90.49 96.32 96.92]81.04 7829 80.95|63.06 7850 80.69| 80.53 78.46 |36.45 16.49 7.15
FedSR 91.92 96.06 98.12|83.87 84.35 85.13|66.37 80.22 82.16 | 8329  76.20 |33.86 12.70 4.77
Ensemble 86.33 90.54 91.38]74.82 66.75 68.38]13.64 61.25 66.25| 59.02 76.30 [42.73 15.92 4.93
FedJETs 91.86 9522 97.34|83.61 84.33 81.97|64.13 7571 80.13| 39.01 74.52 |38.94 15.33 5.51

HyperFedZero|94.22 96.79 97.97|84.62 84.63 86.77 |70.98 7649 80.34| 82.49 7456 |40.84 12.71 5.66

G DISCLOSURE OF LLM USAGE

LLMs were used to aid in writing and polishing the text of this paper. All content has been reviewed
by the authors, who take full responsibility for the work.
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Table 8: The pACC comparisons (the higher the better) between settings (ag = 0.1). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet| MLP LeNet-S LeNet| MLP LeNet-S LeNet|ZekenNet ResNet ResNet
N =10
Local 97.15 9841 98.47[93.81 9446 9457|8588 90.37 91.33 | 8549  73.53 [84.92 25.48 10.49
FedAvg 88.36 94.05 95.21]83.22 82.08 83.99|63.10 7825 81.31| 81.72 59.04 |30.94 12.53 6.66
FedAvg-FT |97.15 98.41 98.47]93.81 9448 94.62 |85.88 90.34 91.22| 85.73  74.02 | 84.81 24.49 10.20
FedProx 87.92 93.62 9492|8293 8091 83.23|62.34 7824 81.03| 80.27 62.67 |31.76 13.21 7.14
Ditto 87.58 92.51 93.99|82.65 79.88 82.12|61.76 76.74 79.04| 7626 49.22 |19.21 547 3.31
Scaffold 9491 95.60 9442|8582 80.57 8238 |75.11 7890 81.64| 80.66 77.51 |31.11 13.06 7.48
pFedMe 87.84 9299 94.11|82.56 81.01 83.84|61.27 77.73 80.40| 7875 56.16 |27.67 9.99 4.19
pFedHN 96.45 9597 97.98|92.66 91.06 93.01|81.94 7856 86.67| 80.75 71.65 |82.62 28.92 16.62

PerFedAvg 86.66 64.24 62.64|73.96 7426 73.43|60.67 3482 44.85| 2375 48.94 |21.19 10.27 6.86
FedAMP 97.03 98.46 98.47 |93.84 94.55 94.52|85.81 90.57 91.16| 8558 73.79 |85.11 24.67 10.07

GA 80.68 9478 9547(83.02 8130 8351|6390 79.65 82.00| 82.07 66.56 3247 1301  6.83
FedSR 90.92 96.11 96.31|84.07 84.15 86.60|68.15 80.77 82.81| 8453 59.69 |3431 1042  4.95
Ensemble  [76.77 81.15 83.64|73.62 66.55 69.72[1640 5979 66.35| 5849 61.26 [33.43 1287  6.82
FedJETs 80.01 90.11 9490|8230 80.55 84.31|63.61 7690 79.87| 83.88 66.60 [39.73 995  3.87
HyperFedZero| 9346 95.80 97.13(85.77 8451 86.50(75.13 77.88 81.85| 83.57 74.76 [46.80 13.66  7.24
N =50
Local 89.95 9696 97.06(92.75 93.52 9374|8202 8621 8634| 80.36 73.50 [72.65 27.08  12.53
FedAvg 9195 9525 97.49(80.24 8203 83.05|6421 79.00 81.50| 81.65 58.50 |26.47 13.77  6.40
FedAvg-FT 9578 96.96 97.06(92.75 93.66 93.75(82.02 86.18 86.38| 8054 73.27 [72.48 27.89  12.62
FedProx 9120 9598 97.35(80.00 79.70 82.11|62.96 78.86 81.54| 81.19 57.24 |2526 1351  6.11
Ditto 90.54 9472 9623|7945 7683 78.93|62.04 7528 7892| 7644 42.02 |18.84 355  1.73
Scaffold 9342 9474 98.46(8137 8085 79.85|68.65 81.95 83.44| 7520 7343|2072 18.68  10.19
pFedMe 91.19 9475 96.83|80.02 80.05 80.57|61.02 7659 78.90| 7895 51.19 (2329 9.93  2.69
pFedHN 9303 8029 9321|8740 72.12 84.67|7125 3941 79.17| 81.38 61.12|54.83 1950 1197

PerFedAvg 91.75 78.84 92.97|77.04 52.16 66.40|63.14 78.87 81.00| 76.58  48.04 |22.50 13.76 5.73
FedAMP 95.79 96.76 97.07|75.55 93.80 93.83 |82.05 86.15 86.43| 8023 73.44 |72.71 27.22 12.14

GA 91.37 9475 97.18|79.84 7833 80.03|63.18 7943 81.96| 80.48 5853 |26.21 13.57 6.30
FedSR 91.80 96.41 98.63 |82.29 83.74 83.37|66.16 81.30 83.14| 82.18  60.39 |26.70 10.85 4.27

Ensemble 86.26 90.56 92.2417424 66.89 69.81]13.06 62.04 67.01| 5576  50.30 |30.85 14.00 4.83
FedJETs 9235 9529 97.40|82.15 83.24 80.26|65.40 7548 81.19| 36.84 68.05 |32.22 13.45 5.04

HyperFedZero| 94.23  96.59 98.33|83.09 84.65 84.67|71.70 77.35 81.87| 81.38 73.21 |38.19 12.03 6.51
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Table 9: The zZACC comparisons (the higher the better) between settings (g = 0.1). Bold marks
the best-performing method in each comparison.

MNIST FMNIST EMNIST SVHN C-10 C-100 T-ImageNet
MLP LeNet-S LeNet| MLP LeNet-S LeNet| MLP LeNet-S LeNet|ZekenNet ResNet ResNet
N =10
Local 240 156 096 | 443 130 039|046 0.09 395]| 5137 7.75 | 0.00 0.00 0.08
FedAvg 94.47 98.08 97.84[94.79 94.40 95.70|31.71 4991 54.41| 57.10 41.60 | 7.68 5.52 3.13

FedAvg-FT |87.02 66.11 89.06|89.58 73.31 7331|542 037 9.10 7.49 1374 | 795 0.42 0.63
FedProx 9435 9736 97.60|94.66 94.14 95.83|30.15 49.36 54.96| 5339 45.05| 7.63 6.04 3.05
Ditto 94.11 97.36 97.36|94.66 94.79 95.44/30.79 4697 51.38| 45.83 3294 | 648 3.33 1.56
Scaffold 95.55 96.39 96.51|94.92 9375 9531|36.40 47.15 52.85| 60.03 44.47 |10.75 6.46 1.89
pFedMe 9435 9724 9748|9479 94.14 9583|2996 47.89 53.31| 5326 39.00 | 7.08 4.58 1.80
pFedHN 26.08 4820 10.70| 8.07 052 247 | 533 1.84 0.64 6.19 0.20 | 0.05 0.10 0.00
PerFedAvg 9423 89.66 91.11|93.36 91.41 91.93|33.00 13.51 26.75| 9.83 31.25 | 11.76 4.58 3.20
FedAMP 86.78 69.47 86.66|89.32 68.75 71.48]|5.61 028 8.82 9.25 13.09 | 795 0.42 0.55
GA 94.47 9772 97.60|95.18 94.92 9635|3631 51.65 55.53| 5540 4434 9.74 7.50 3.20
FedSR ‘ 9591 98.56 97.96 ‘ 93.75 94.53 95.83 ‘ 33.64 51.56 5322| 57.16 40.04 | 6.80 542 2.11

Ensemble ‘82.69 96.03 95.19‘87.11 88.54 89.19‘0.46 34.56 37.22‘ 2539 4245 6.89 5.10 1.95

FedJETs 93.03 9447 98.08|92.58 89.58 93.88|32.90 51.38 55.70| 60.61 4551 | 836 5.72 1.56
HyperFedZero|96.39 98.72 98.68 [95.23 95.57 96.48 [50.49 52.02 5597 | 60.81 48.24 [16.59 9.90 4.84
N =50

Local 468 11.11 347 |0.00 277 3333|000 0.69 486 1.50 8.27 | 0.00 0.78 0.34
FedAvg 89.58 9236 96.52|82.63 6527 77.08|62.50 70.13 74.30| 7593 54.88 |11.45 7.03 3.12
FedAvg-FT |60.41 6.25 63.88|24.30 277 208 |4.16 7.63 28.47| 4436 43.60 | 1.56 3.90 0.34
FedProx 88.19 9375 96.52|78.47 63.88 7430|6041 70.83 74.30| 7293 58.64 |12.50 7.81 3.47
Ditto 87.50 9236 97.91|79.86 63.88 6527|5694 7152 73.61| 69.92 54.13 | 468 2.34 1.38
Scaffold 90.97 91.66 98.61|81.25 6597 77.08|64.53 7152 7430| 73.68 69.17 | 11.04 10.93 3.12
pFedMe 89.58 93.05 96.52|79.86 67.36 70.13|56.94 69.44 7291| 72.18 6691 | 9.89 5.46 2.43
pFedHN 4236  2.08 4.16 |22.22 41.66 8541|2638 138 138 | 7142 6691 | 0.50 1.56 1.38
PerFedAvg 88.88 70.83 81.25|75.69 27.77 59.02|6527 70.83 7430 76.69 71.42 |13.02 7.81 4.16
FedAMP 5347 555 61.80]21.52 277 416|416 9.02 27.77| 5338 6390 | 1.56 3.90 0.34

10.93 8.59 3.81

GA 88.88 93.05 98.61]79.86 68.75 72.22|56.94 70.13 70.13| 76.69  64.66
FedSR 90.97 9444 95.13|83.33 77.08 80.55|64.53 6944 7430 7593 7142 |16.14 9.37 3.47

Ensemble 86.11 86.80 84.02‘70.83 4444 45.13| 416 61.80 63.88| 51.12 6842 |13.02 10.15 2.43

FedJETs 90.27 9375 81.94|74.30 80.55 81.25|63.88 70.13 76.38| 66.16 7593 |23.54 12.50 4.16
HyperFedZero|92.36  95.13 99.30 [85.41 85.41 88.89 |68.05 72.22 77.78| 78.94 77.44 |42.18 14.84 6.86
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