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Abstract

Novelty search (NS) algorithms automatically discover diverse system behaviors
through simulations or experiments, often treating the system as a black box due
to unknown input-output relationships. Previously, we introduced BEACON, a
sample-efficient NS algorithm that uses probabilistic surrogate models to select
inputs likely to produce novel behaviors. In this paper, we present TR-BEACON, a
high-dimensional extension of BEACON that mitigates the curse of dimensionality
by constructing local probabilistic models over a trust region whose geometry is
adapted as information is gathered. Through numerical experiments, we demon-
strate that TR-BEACON significantly outperforms state-of-the-art NS methods on
high-dimensional problems, including a challenging robot maze navigation task.

1 Introduction

Novelty search (NS) refers to a class of methods that, as opposed to minimizing or maximizing over
specific objectives, aim to search for diverse system outcomes [1, 2]. Mathematically, we assume our
system outcomes are determined by evaluating a function f : RD → RM that maps a D-dimensional
input vector x ∈ RD to a M -dimensional outcome space. The inputs typically represent design
parameters that we can tweak in our system and the outcomes correspond to important dimensions
of variation. In airplane design, x would represent things like the size and shape of the wing while
f(x) represents the collection of all important measurable quantities like the drag coefficient, life,
structural integrity, and fuel efficiency. For drug molecules, x could represent different molecular
substitution patterns while f(x) represents the size, effectiveness, and stability of the molecules. NS
has demonstrated strong potential for solving so-called deceptive optimization problems where it is
common for many existing optimization algorithms get stuck in local optima [3, 4, 5].

Assuming we have evaluated f at n > 0 input values, yielding dataset Dn = {(xi,f(xi))}ni=1, a
popular way to measure the “novelty” is the average distance to the k-nearest neighbors as follows

ρ(x|D) = 1
k

∑k
i=1 dist(f(x),y⋆

i ), (1)

where {y⋆
1, . . . ,y

⋆
k} are the k closest outcomes to f(x) and dist(·) is any valid distance metric in

RM . If we had knowledge of f , we could sequentially select inputs that maximize novelty at every
iteration, i.e., xn+1 = argmaxx∈X ρ(x|Dn) over our design space X ⊂ RD. The key challenge in
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practice is that f is often a black-box function such that we cannot solve this optimization problem
exactly. To overcome this challenge, the vast majority of existing NS methods rely on meta-heuristics,
such as evolutionary algorithms, to select new evaluation points, e.g., [1, 6]. These methods can
be effective when we have a large evaluation budget (e.g., can evaluate f several thousand or more
times); however, for many applications of interest, we have expensive evaluations. For example, in
the airplane design problem, evaluating f(x) may require a complex computational fluid dynamic
simulation or physical experiment. These problems naturally require a much smaller evaluation
budget for which existing NS methods are not designed.

Recently, the authors proposed an NS method, called BEACON, specifically designed for expensive
black-box functions [7]. BEACON constructs a multi-output Gaussian process surrogate model for f
that is combined with a novel acquisition function for trading off exploration and exploitation of the
input space, which enables efficient sampling of the search space. However, BEACON relies on a
global surrogate model and thus is inherently limited by the curse of dimensionality. Although we
previously explored the use of custom priors and kernels to deal with this challenge, these require f
to exhibit special structure and are likely to fail when these assumptions do not hold.

Motivated by this challenge, we propose a local variant of BEACON for high-dimensional NS (or
behavior discovery) problems. Our proposed approach, TR-BEACON, leverages the notion of a
trust region (TR) [8] to limit the size of the search space over which we need to build our surrogate
model. Trust regions are commonly applied in the optimization literature and have been used within
the TuRBO algorithm [9] for high-dimensional Bayesian optimization. A key component of TR-
BEACON is the development of a new trust region management system that at every iteration (i)
computes a center point based on the most novel data point observed so far and (ii) uses a variance-
based measure to decide if the trust region should be enlarged or shrunk. The next section provides a
detailed description of TR-BEACON, which is followed by numerical experiments on a synthetic
objective and a challenging robot maze navigation problem from the NS literature that demonstrate
its strong empirical performance on high-dimensional problems.

2 TR-BEACON: Algorithm Description

A complete description of TR-BEACON is given in Algorithm 1. The first key component is the
construction of a (local) multi-output Gaussian processes (MOGPs) [10] to model the M -dimensional
outcome space. Recall that a GP is a non-parametric model that learns a probabilistic surrogate
function from (potentially) noisy data. To build an MOGP, we introduce an additional input variable
j ∈ {1, · · · ,M} to describe the jth element of the outcome vector [f(x)]j . Given observed data Dn,
the expressions for the posterior mean and variance of the MOGP can be derived analytically; see
Appendix A. The second key component is the choice of the “trust region” (TR). Here, we choose the
TR to be a hyperrectangle with center equal to the input that gave the output that is furthest away
from its neighbors, denoted by xc

n. At the start of the method, we set the base side length of the
TR to L ← Linit. Following TuRBO, the base side length is rescaled according to the estimated
average lengthscale ℓi for dimension i across the different outputs in the MOGP model such that
Li = ℓiL/(

∏D
j=1 ℓj)

1/D. As commonly done in TR methods, if the optimizer “makes progress”, the
TR will be expanded whereas, if it “fails”, the TR will be shrunk. We double and halve the size of the
TR after, respectively, τsucc consecutive successes and τfail consecutive failures. In addition, we do not
let the TR length exceed a size Lmax and reset the length to Linit if L falls below a minimum threshold
Lmin. Since the novelty measure (1) changes at every iteration (depends on the full set of collected
data), we cannot define a “success” as simply improving upon the best-known value. Instead, we
define a “success” as choosing a candidate that increases the total variance of the outcomes and
a “failure” as choosing one that does not. The last critical component is the choice of acquisition
function inside of the TR for which we use with the same approach as BEACON, i.e.,

xn+1 ∈ argmax
x∈∆n

1
ke

⊤
k sort

(
[dist(g(x),y1), . . . , dist(g(x),yn)]

⊤) , (2)

where g ∼ f |Dn is a Thompson sample (TS) from the MOGP posterior, ∆n denotes the TR at the
current iteration n, ek is a vector of ones in the first k entries and zeros in the remaining entries, and
sort(·) is the standard sort operator that sorts its input in descending order. The formulation can be
thought of as a differentiable version of (1) where the true unknown function f is replaced with a TS
g. We let Dx and Dy denote the subset of input and output values in the dataset D, respectively. An
illustration of the evolution of TR-BEACON is shown in Fig. 1 for a simple 2-D function. We see
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Algorithm 1 TR-BEACON
1: Input: Initial data D, input domain X , outcome function f , outcome distance metric dist(·), MOGP prior
MOGP(µ,κ), and hyperparameters Linit, Lmax, Lmin, τsucc, τfail, and k.

2: Initialize: Data D0 ← D, success metric τ0 ← trace(Cov({y}y∈Dy
0
)), trust region base length L(0) ←

Linit, and success/failure counters nsucc = nfail = 0.
3: for n = 0, 1, 2, . . . , do
4: Train MOGP surrogate modelMOGPn given all available data Dn.
5: Set the trust region center as xc

n = xi⋆ where i⋆ = argmaxi=1,...,q

∑
j ̸=i dist(yi,yj).

6: Set trust region lengths as Li ← ℓiL/(
∏D

j=1 ℓj)
1/D given average lengthscales {ℓi}Di=1.

7: Construct the trust region set ∆n ← xc
n ⊕ [−0.5L1, 0.5L1]× · · · × [−0.5LD, 0.5LD].

8: Get next sample point xn+1 by maximizing the acquisition function, as shown in (2).
9: Evaluate expensive outcome function at new sample point to get yn+1 ← f(xn+1).

10: Update data Dn+1 ← Dn ∪ {(xn+1,yn+1)} and calculate metric τn+1 ← trace(Cov({y}y∈Dy
n+1

)).
11: if τn+1 > τn then
12: nsucc = nsucc + 1 and nfail = 0.
13: else
14: nsucc = 0 and nfail = nfail + 1.
15: end if
16: if nsucc == τsucc then
17: Enlarge the trust region L(n+1) ← min{2L(n), Lmax} and reset counter nsucc = 0.
18: else if nfail == τfail then
19: Shrink the trust region L(n+1) ← L(n)/2 and reset counter nfail = 0.
20: end if
21: if L(n+1) < Lmin then
22: The trust region is below the minimum size; stop the optimization process.
23: end if
24: end for

that our proposed approach is able to efficiently explore the space of outcomes (finding many values
along the edge of the support of the distribution of outcomes), even though the MOGP model does
not accurately capture the novelty metric surface especially in the early iterations.

3 Numerical Experiments

We compare TR-BEACON with several state-of-the-art (SOTA) baseline algorithms on a synthetic
and a reinforcement learning (RL) problem. Details for all methods are included in Appendix B.
All experiments can be reproduced with the code provided in https://github.com/PaulsonLab/
TR-BEACON.git.

3.1 20-D Ackley

For the first case study, we consider a 20-D Ackley synthetic function; see Appendix C for its
analytical form. We consider the domain x ∈ [−2, 2] and generate 40 initial samples using the Sobol
sequence [11] to train a GP with a standard radial basis function (RBF) kernel. We use reachability
as the performance metric, which corresponds to the number of bins visited by the algorithms given a
finite number of evaluations (50 equally sized bins are chosen, with each bin effectively representing
a behavior we would like to discover). Results are shown in Fig. 2a over 10 replicates of randomly
selected initial points (the dark lines represent the mean and the shaded regions correspond to 95%
confidence regions). We see that TR-BEACON achieves the highest reachability of all the methods,
with BEACON performing second best as the performance drops off due to the difficulty of globally
modeling the outcome over a 20-D input space.

3.2 24-D Reinforcement Learning Problem - Maze Navigation

Next, we examine a challenging RL problem from the OpenAI Gym [12] environment. The task is to
move a ball from its starting location to a target location within a given number of time steps (see
Appendix D for details). We define the actor policy using a bias-free feed-forward neural network. We
want to compute the optimal set of weight parameters that can maximize the reward of successfully
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Figure 1: Illustration of TR-BEACON on a 2-D synthetic function with 2 outcomes. As the algorithm
proceeds (from top to bottom), TR-BEACON identifies novel outcomes from the unexplored local
region and gradually shrink the TR accordingly. (Left) The contour for the true novelty metric by
replacing g in (2) with the true function. (Middle) The contour for the predicted novelty metric by
replacing g in (2) with the MOGP posterior mean. (Right) the scatter plot for sampled outcomes and
the true function outcomes. (■: center point of TR; ×: sampled features; ×: sampled outcomes)

(a) Ackley 20D (b) Maze 24D

Figure 2: Results on (a) 20-D Ackley function and (b) 24-D RL maze navigation problem

getting the ball to the exit. This is known to be a deceptive problem in the sense that the algorithm can
often unexpectedly push the system to have the ball get trapped on a wall when directly optimizing
the objective (distance to the exit) [13]. NS methods can overcome this challenge by considering the
(x, y) coordinates of the landing position as outcomes and biasing the samples toward discovering
new outcomes. Fig. 2b shows the mean of the best reward found by all baseline methods across 30
replicates. The percentage of reaching the maximum achievable reward for all baseline methods is
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shown in Table 1 in Appendix D. TR-BEACON substantially outperforms all considered baselines; it
can in fact reach the maximum achievable reward within 300 episodes in all replicates. NS-EA has
the second-best performance; however, only reaches ∼ 90% of the best possible reward, with even
lower performance in the earlier iterations. Lastly, two SOTA black-box optimizers, mainly TuRBO
[9] and LogEI [14], interestingly exhibit the worst performance out of all tested methods, which is a
consequence of the deceptive characteristics of this problem.
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A GPs and MOGPs

For GP, we assume that function outputs y(x) = f(x) + ϵ, where ϵ ∼ N (0, σ2In), are jointly
Gaussian distributed for any finite collection of input x [15]. For MOGP, the prior h ∼ GP (µ, κ) is
placed on the extended feature space X× Nnf

. Any finite collection from the multi-output GP prior
h ∼ GP(µ, κ) remains a GP, so we can write down the posterior p(h|A) ∼ GP(µA, κA) with the
posterior mean and variance derived based on conditional Gaussian [15]:

µA(x, j) = µ(x, j) + κ⊤
A(x, j)

(
KA + σ2IN

)−1
(y − µA) , (3a)

κA((x, j), (x
′, j′)) = κ((x, j), (x′, j′))− κ⊤

A(x, j)
(
KA + σ2I

)−1
κA(x

′, j′), (3b)

Where κA(x, j) ∈ RN is the covariance vector between the test data and the observed data, KA ∈
RN×N is the covariance matrix of the observed data, y = [y1, . . . , yN ]⊤ is the vector of observed
outcomes, and µA = [µ(x1), . . . , µ(xN )]⊤ is the prior mean vector.

B Method details

We provide the details for all methods considered in this work in this section.

B.1 Hyperparameter settings for TR-BEACON

We use the following default values for all the hyperparameters of TR-BEACON: Linit = 0.8,
Lmin = 0, Lmax = 1.6, τsucc = 10, τfail = D, and k = 10.

B.2 MaxVar

MaxVar [16] is a special setting for BO, where the acquisition function is defined as the trace of the
MOGP posterior variance. The acquisition function can be expressed as follow:

αMaxVar(x) = tr(ΣA(x)) (4)

MaxVar sequentially query new candidate by maximizing the above acquisition using L-BFGS-B
algorithm in this work.

B.3 LogEI

LogEI is a BO algorithm in which the acquisition function is defined as the logarithm of the expected
improvement (EI). The Log EI acquisition function has been shown to effectively mitigate the gradient
vanishing issue commonly encountered when optimizing the conventional EI acquisition function
using gradient-based solvers [14]. The log EI acquisition function is defined as follow:

log EI(x) = log
[
(µ(x)− f∗)Φ

(
µ(x)− f∗

σ(x)

)
+ σ(x)φ

(
µ(x)− f∗

σ(x)

)]
(5)

Where f∗ is the best function value found so far and Φ and φ are cumulative and probability density
function for standard normal distribution. We maximize Log EI with the L-BFGS-B algorithm for
each iteration in this work.

B.4 TuRBO

TuRBO [9] is a local BO algorithm relying on building local GP and searching potential candidates
across one or more TRs. For each iteration t, TuRBO selects a batch of q new candidates x(t)

i that
have the optimum function value across n independent TRs, as shown in Eq.(6). Each TRℓ has an
independent posterior realization generated from Thompson sampling.

x
(t)
i ∈ argminℓargminx∈TRℓ

g
(i)
ℓ where g

(i)
ℓ ∼ GP

(t)
ℓ (µℓ(x), kℓ(x,x

′)) (6)

Unlike TR-BEACON that utilizes the efficient Thompson sampling method to generate differentiable
posterior function realization, TuRBO generate posterior sample at a discrete candidate set and select
the one that has the minimum posterior function value. In other word, no gradient-based algorithm is
implemented to solve for (6).
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B.5 NS-EA

NS-EA (Novelty Search based on Evolutionary Algorithm) is a vanilla NS algorithm that replaces the
objective-oriented fitness function with novelty-based fitness function in the evolutionary algorithm.
The fitness function is shown in (7).

ρ(x|Dobs) =
1

K

K∑
k=1

dist (f(x),ynn
k ) , (7)

where {ynn
1 , ...,ynn

K } denotes the K-nearest observed outcomes, given an outcome f(x), and
dist(·, ·) is a distance metric in Rnf , e.g., the 2-norm. The code for implementing NS-EA can be
found in https://github.com/alaflaquiere/simple-ns.

B.6 NS-FS

NS-FS (Novelty Search in Feature Space) is a NS-based algorithm proposed by Tang et al. [7]. It
is similar to the idea of vanilla NS algorithm, in which we calculate the distance w.r.t. the feature
space instead of the outcome space. NS-FS sequentially sample new candidate by maximizing the
following acquisition function for each iteration:

αNS-FS(x) =

k∑
i=1

distX (x,x⋆
i ),

This acquisition function calculates the sum of distance from x to its k-nearest feature x∗
i . It is worth

noting that NS-FS doesn’t require the need to build surrogate model. The acquisition function αNS-FS
can be maximized by gradient-based solver such as L-BFGS-B implemented in this work.

B.7 RS

Random search (RS) is one of the most commonly used baseline algorithm for optimizing black-box
functions. It works by sequentially sampling new candidate from a uniformly distributed set of
continuous/discrete candidates.

B.8 Sobol

Sobol is a sampling algorithm that sequentially sample new point from the quasi-random low-
discrepancy sequences. Unlike purely random sampling, Sobol sequences are designed to cover the
space more uniformly, reducing the occurrence of clusters and gaps. Sobol sequence is a common
baseline algorithm implemented in optimization literature due to its straightforward implementation
and the guarantee of dense sampling in the limit of an infinite budget.

C Ackley function

The D dimensional Ackley function can be expressed as follow [17]:

f(x) = −a exp

−b
√√√√ 1

D

D∑
i=1

x2
i

− exp

(
1

D

D∑
i=1

cos(cxi)

)
+ a+ exp(1),

where a = −20, b = 0.2, and c = 2π. This function has a global minimum y∗ = 0 locating at
x∗ = (0, ..., 0).

D Maze problem

In Figure 3, the starting location is represented by the green ball, while the target location is
represented by the red ball. This problem involves four state variables (coordinates and velocity in
the x and y directions) and two actions (linear force in the x and y directions). The process terminates
when the Euclidean distance between the achieved location and the target location is less or equal to
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Figure 3: Environment for the maze navigation problem

Table 1: Percentage of reaching maximum possible reward for all tested methods across 30 replicates
Algorithm Best reward percentage

TR-BEACON 100%
NS-EA 77%

RS 53%
BEACON 47%

MaxVar 43%
Sobol 37%

NS-FS 30%
logEI 23%

TuRBO 23%

0.5, as per the OpenAI Gym default setting. We then define the reward function of this RL problem
as follow:

Reward =

{
1 if terminated,
initial distance from the target−final distance from the target

initial distance from the target otherwise.
(8)

We define the control policy as a bias-free single-hidden layer feedforward neural network with 24
weight parameters, structured as 4-4-2. We also include the percentage of reaching reward = 1 for all
baseline methods, as shown in Table 1.
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