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Abstract

Recent advances in large language models
(LLMs) have yielded impressive gains on math-
ematical reasoning benchmarks via supervised
fine-tuning (SFT). However, the brittleness of
these models under input perturbations has cast
doubt on whether such improvements reflect
genuine reasoning abilities or merely superfi-
cial alignment with expected output formats.
We investigate the mechanisms behind SFT im-
provements in small-scale LLMs, addressing
four key questions: (1) Are performance gains
primarily due to format alignment rather than
reasoning? (2) Can high-quality supervision
encourage genuine reasoning? (3) Does scaling
data shift learning from format alignment to
deeper reasoning? (4) Are format alignment
gains consistent across model sizes and archi-
tectures? Through controlled experiments, we
find that most performance improvements arise
from format alignment rather than genuine rea-
soning enhancement. Moreover, SFT’s effec-
tiveness is strongly influenced by the alignment
between the base model’s inductive biases and
the teacher model’s output distribution, rather
than the teacher’s raw strength. Finally, scaling
up training data offers diminishing returns and
does not fundamentally alter the model’s rea-
soning behavior. These findings suggest that
current SFT practices may overestimate the rea-
soning abilities of LLMs and underscore the
need for more rigorous evaluation methods.

1 Introduction

Mathematical reasoning has emerged as a critical
benchmark for evaluating the logical thinking capa-
bilities of large language models (LLMs). With the
growing scale of models and advances in training
techniques, LLMs have demonstrated impressive
performance on challenging mathematical bench-
marks such as OlympiadBench and Omni-Math,
leading to the development of powerful models
like OpenAl-ol(Jaech et al., 2024), OpenAl-03
(OpenAl, 2025), Kimil.5 (Team et al., 2025) and

DeepSeek-R1(Guo et al., 2025). Interestingly, re-
cent work (Yang et al., 2024; Guan et al., 2025;
Team, 2025; Abdin et al., 2025; Luo et al., 2025)
has shown that even small-scale models, when
equipped with carefully designed training strate-
gies, can match or even surpass the reasoning per-
formance of some proprietary LLMs.

However, a central question remains unresolved:
Do these models truly acquire mathematical rea-
soning abilities, or are they merely learning to
reproduce the superficial patterns of reasoning-
like outputs? Several studies (Li et al., 2024; Gu-
lati et al., 2024; Mirzadeh et al., 2024) have high-
lighted the fragility of current models under adver-
sarial or perturbed inputs. For example, (Huang
et al., 2025) found that introducing hard pertur-
bations to math problems led to substantial drops
in accuracy for top-tier models (e.g., -16.49% for
O1-mini, -12.9% for Gemini-2.0 flash-thinking),
suggesting a reliance on surface-level cues rather
than genuine understanding. This paradox gives
rise to our core research question: What under-
lies the apparent reasoning performance gains in
small-scale open-source LLMs?

Recent research has significantly advanced the
reasoning capabilities of small-scale LLMs by
building upon strong base models, particularly the
Qwen2.5-Math-7B model (Ye et al., 2025; Zeng
et al., 2025; Li et al., 2025; Ma et al., 2025;
Liu et al., 2025; Cui et al., 2025). Leveraging
its robust mathematical foundation, these stud-
ies have applied a variety of enhancement tech-
niques—including supervised fine-tuning (SFT),
reinforcement learning (RL) (Xie et al., 2025; Li
et al., 2025), and integration with methods such
as Monte Carlo Tree Search (MCTS) and process
reward model (PRM) (Guan et al., 2025)—to sub-
stantially improve reasoning performance. Among
these approaches, supervised fine-tuning (SFT) has
proven particularly effective, enabling student mod-
els (typically smaller-scale LLMs) to achieve sub-



Example of step-by-step reasoning

Problem: If $5x - 3 = 128, what is the value of $5x + 3$?

Solution: To solve for the value of (5x + 3) given the equation (5x — 3 = 12),
we can follow these steps:

1. Start with the given equation: 5x —3 = 12

2. Add 6 to both sides of the equation to isolate the term 5x: 5x -3 +6=12+6
3. Simplifying both sides, we get: 5x +3 =18

Therefore, the value of (5x+3) is (\boxed{18}).

Figure 1: This figure illustrates the meaning of "format"
as used in this paper. The term refers to the step-by-step
solution procedure provided for a given problem. The
demonstration samples used in SFT follow this format.
The answer only refers to the final output enclosed in
the "\boxed{}".

stantial improvements through fine-tuning on high-
quality data distilled from more capable teacher
models (generally larger LLMs). These SFT-based
enhancements not only yield significant perfor-
mance gains over base models but, in some cases,
allow compact student models to surpass the capa-
bilities of substantially larger counterparts.

A common characteristic of these methods is
their structured output requirement—the genera-
tion of explicit, step-by-step solutions designed to
mimic human reasoning patterns (as illustrated in
Figure 1). We formalize this output format as syn-
tactically constrained generation that requires inter-
mediate reasoning steps. Although this approach
yields outputs that superficially resemble human
reasoning, it raises a crucial question: Are the
observed performance gains indicative of gen-
uine reasoning capabilities, or do they primarily
result from alignment with expected reasoning
formats?

We hypothesize that much of the improvement
stems not from enhanced reasoning ability, but
from format alignment, i.e., models learn to mimic
the structural patterns of human derivations without
truly internalizing their semantic content. To test
this hypothesis, we conduct a systematic empirical
study using lightweight SFT, aiming to disentangle
performance gains driven by reasoning ability from
those driven by superficial pattern imitation.

RQ1: Do recent performance improvements in
small-scale LLMs during SFT primarily arise from
format alignment rather than genuine reasoning
enhancement?

RQ2: If format alignment dominates, can
high-quality supervision (e.g., data distilled from
stronger teacher models) help models move beyond
format imitation toward genuine reasoning ability?

RQ3: As the amount of training data increases,
does the primary driver of performance shift from
format alignment to deeper reasoning?

RQ4: Are format alignment gains consistent
across models of varying sizes and architectures?

To address these questions, we design a set of
controlled experiments across different model sizes,
data sources, and data scales. Our key findings are
as follows:

Result 1 (Section 3.2): Even using a minimal
SFT setup, just 10 random format-correct samples
(as shown in Figure 1), leads to near or surpass-
ing state-of-the-art improvements (e.g., +49.8% vs
SOTA’s +44.6% on MATHS500; +81.6% vs SOTA’s
+75.2% on GaokaoEn 2023). This suggests that
the improvement is unlikely due to the acquisition
of deep reasoning ability under such limited su-
pervision. Instead, the model appears to benefit
from learning to imitate the surface structure of
step-by-step solutions. Further experiments show
that even samples are being disturbed in content
(e.g., incorrect answers, garbled text, mismatched
solutions), only using 10 samples with correct for-
mat can still increase the performance. This further
demonstrates the importance of format than that of
content.

Result 2 (Section 3.3): The match between the
teacher and student models—in terms of reason-
ing style and output distribution—is more critical
than teacher strength alone. In low-resource SFT
settings, compatibility between the teacher’s induc-
tive bias and the student’s capacity significantly
influences knowledge transfer efficiency.

Result 3 (Section 3.4): While format imitation is
highly sample-efficient, its benefits saturate quickly.
Achieving true reasoning ability likely requires
deeper abstraction and generalization, which can-
not be attained through format learning alone. Sim-
ply scaling up the number of formatted examples
is insufficient to drive continued progress.

Result 4 (Section 3.5): Competent small models
can effectively utilize formatted demonstrations,
while weaker models fail to generalize from them,
and stronger models show diminishing marginal
returns.

2 Related Work

Enhancing Mathematical Reasoning in LLMs.
Recent years have witnessed significant progress
in improving the mathematical reasoning capa-
bilities of LLMs. A prominent line of research



leverages Chain-of-Thought (CoT)-based meth-
ods (Ling et al., 2023; Magister et al., 2022; Li
et al., 2023; Yuan et al., 2024), where models
are fine-tuned on specific math QA datasets con-
taining step-by-step reasoning processes to guide
coherent derivations. Further advancements ex-
tend this paradigm by formalizing reasoning as
graph-structured processes (Lei et al., 2023), where
nodes represent intermediate steps and edges de-
note logical dependencies. Techniques like Tree-
of-Thought (ToT) (Yao et al., 2023) and Monte
Carlo Tree Search (MCTS) (Feng et al., 2023;
Gao et al., 2024; Xu, 2023; Xin et al., 2024) ex-
emplify this approach, with (Guan et al., 2025)
demonstrating that even smaller LLMs (e.g., 7B)
can achieve strong mathematical reasoning through
self-evolution within this framework. Addition-
ally, recent RL-based methods (Guo et al., 2025;
Xie et al., 2025; Zeng et al., 2025) combine for-
mat rewards and answer accuracy rewards to push
the state-of-the-art (SOTA) performance further.
Concurrently, another strand of research explores
low-resource fine-tuning strategies to enhance rea-
soning efficiency. (Zhou et al., 2023; Li et al., 2025;
Muennighoff et al., 2025) reveal that a carefully
curated, small dataset (e.g., 1,000 high-quality sam-
ples) suffices to elicit high-quality outputs, while
(Chen et al., 2025)) demonstrate that small-scale
SFT (e.g., 0.072B data) can significantly improve
instruction-following capabilities.

Questioning the True Reasoning Capabilities
of LLMs. The nature of LLM reasoning capa-
bilities remains controversial (Huang et al., 2025;
Jiang et al., 2024; Li et al., 2024; Gulati et al.,
2024; Srivastava et al., 2024). As shown in (Jiang
et al., 2024), LLM reasoning appears to operate
through probabilistic pattern matching rather than
formal logical reasoning. (Mirzadeh et al., 2024)
constructed the GSM-Symbolic dataset using sym-
bolic templates, revealing that numerical variations
cause performance degradation across all models.
MATH-Perturb (Huang et al., 2025) further demon-
strated significant performance drops in state-of-
the-art proprietary models (e.g., ol-mini) under
hard perturbations. While these studies exposed
reasoning fragility through benchmark perturba-
tions, they did not investigate the mechanisms be-
hind observed performance improvements.

Departing from previous approaches, we ana-
lyze the fundamental drivers behind state-of-the-art
performance improvements in leading small-scale
LLMs within extreme low-resource SFT regimes.

Our simple SFT experiments demonstrate that
structural imitation alone suffices for competitive
performance: using merely 10 randomly selected
samples with correct formatting (regardless of an-
swer accuracy), the model achieves near-state-of-
the-art results across multiple mathematical reason-
ing benchmarks. This compelling evidence sug-
gests that prevailing reasoning improvements may
primarily arise from pattern matching of step-by-
step solution formats, rather than the acquisition of
genuine mathematical reasoning capabilities.

3 Experiments

To investigate whether small-scale LLMs can gen-
uinely acquire reasoning capabilities during the
SFT stage, we conduct a series of controlled ex-
periments using a distilled dataset. Specifically,
we fine-tune several commonly used base LLMs
using a distilled dataset consisting of only 10 step-
by-step reasoning examples per dataset, sourced
from advanced reasoning models. By limiting the
amount of training data and focusing exclusively on
reasoning demonstrations, our goal is to examine
whether such sparse fine-tuning can lead to mean-
ingful improvements in mathematical reasoning
tasks, thereby shedding light on whether the mod-
els are truly learning to reason or simply aligning
with the expected output structure.

3.1 Experiment Setup

Evaluation Datasets. We compare different mod-
els on diverse commonly-used mathematical bench-
marks. Beyond the widely adopted GSM8K dataset
(Cobbe et al., 2021), our evaluation also incor-
porates diverse challenging benchmarks spanning
multiple mathematical domains. These include:
(i) advanced problem sets targeting competition
and Olympiad-level reasoning, such as MATH-
500 (Lightman et al., 2023), Olympiad Bench (He
et al., 2024). (i) undergraduate-level mathematics
challenges from the College Math dataset (Tang
et al., 2024); and (iii) a cross-lingual and culturally
distinct math benchmark, GaoKao En 2023 (Liao
et al., 2024), drawn from China’s national college
entrance examination. We exclude benchmarks
such as AIME 2024 and AMC due to their limited
number of available problems, which introduces
high variance and reduces evaluation reliability.
Base Models and Setup. To verify the effects of
SFT on LLMs, we use LLMs of different sizes as
the base models, covering both general LLMs and
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Figure 2: Performance comparison: base model vs. 10-sample fine-tuned model vs. SOTA

Datasets

Base Model (Qwen2.5-Math-7B) Avg.

MATH College Olympiad GSM8K GaokaoEn

500 Math Bench 2023

Base model 542 216 16.1 59.4 375 37.76
+10 samples with correct answer 81.2 479 38.8 84.2 68.1 64.04
Without format
+10 samples with only answers 16.8 8.4 2.5 2.6 11.2 8.3
Content-disturbed
+10 samples with incorrect answer 79.2 44.6 37.8 88.2 63.1 62.58
+10 samples with garbled characters 64.4 28.2 259 80.1 59.5 51.62
+10 samples with unmatched solutions  48.4 45.1 24.3 67.6 48.3 46.74
+10 samples with disrupted steps 69.8 21.8 29.5 83.6 57.1 52.36
SOTA (Guan et al., 2025) 78.4%  52.5% 47.1% 89.7%* 65.7*  66.68*

Table 1: Performance of models trained on different SFT data. The highest results are highlighted in bold and
the second-best results are marked with underline except SOTA. For SOTA, we use the results from their original

reports (Guan et al., 2025), denoted by *.

mathematical reasoning models. Specifically, the
selected base models include Qwen2.5-Math-1.5B,
Mistral-7B-v0.3, DeepSeek-Math-7B, Qwen2.5-
Math-7B, Qwen2.5-7B, Llama-3.1-8B, Qwen2.5-
14B, Qwen2.5-32B, Llama-3.1-70B, and Qwen2.5-
Math-72B.

For the training data, we construct a set of mini-
mal SFT datasets derived from the BigMath dataset
(Albalak et al., 2025). For each target benchmark,
we select a corresponding subset from BigMath
that aligns with the problem distribution and rea-
soning requirements of the evaluation set. For ex-
ample, to evaluate performance on the MATH-500
benchmark, we extract a representative subset from
the MATH portion of BigMath, ensuring that the
training data reflect similar topic coverage and dif-
ficulty. For each such subset, we distill a small
number of high-quality reasoning trajectories using
different LLLMs. These distilled examples are then

used to perform SFT on the selected base models.

The SFT experiments were conducted using a
consistent training configuration. Each model was
fine-tuned for 20 epochs, in order to ensure suffi-
cient exposure to the small training set and to allow
the model to fully internalize the reasoning patterns.
A low learning rate of 7e-6 was used to prevent
overfitting and to ensure stable optimization, es-
pecially given the small dataset size. For models
larger than 7B parameters, due to GPU memory
constraints, we adopted parameter-efficient fine-
tuning via LoRA instead of full fine-tuning. The
experiments were conducted on a server with 8
H20 GPUs, each has 80GB memeory.

Evaluation Metric. We evaluate the perfor-
mance of various LLMs using the evaluation toolkit
provided by Qwen2.5-Math (Yang et al., 2024) and
report the Pass@1 accuracy for all models.



3.2 RI1: Do recent performance improvements
in small-scale LLMs during SFT
primarily arise from format alignment
rather than true reasoning enhancement?

SFT has been widely recognized for its effective-
ness in improving the performance of LLMs across
a variety of tasks. In the domain of mathematical
reasoning, prior work has shown that even small
instruction-following datasets can significantly im-
prove model performance, especially when the base
model already possesses strong reasoning capabil-
ities (Yuan et al., 2023). This has led to the hy-
pothesis that SFT may not fundamentally improve
reasoning ability, but rather activate pre-existing
capabilities by aligning model outputs with a pre-
ferred reasoning format.

To examine whether the performance gains from
SFT arise primarily from format alignment rather
than genuine reasoning improvement, we con-
duct a minimal-data experiment that isolates the
effect of learning reasoning format. By evalu-
ating the model’s performance before and after
sparse fine-tuning, we aim to assess whether ex-
posure to a small number of formatted demonstra-
tions can substantially improve reasoning perfor-
mance—suggesting that SFT may function more as
a format imitation mechanism than as a means of
endowing LLMs with new reasoning capabilities.

Experimental Design. We construct 6 distinct
fine-tuning datasets based on Qwen2.5-Math-7B-
Instruct, each containing only 10 examples dis-
tilled from the original training corpus. These in-
clude (1) well-structured examples with correct
answers, (2) examples that include only the final
answer, (3) well-structured examples with incorrect
answers, (4) well-structured reasoning steps paired
with mismatched solutions, (5) examples with shuf-
fled reasoning steps, and (6) examples with garbled
text. We then fine-tune Qwen2.5-Math-7B on these
datasets and evaluate all models across five math
benchmarks to measure the impact of each data
condition on reasoning performance.

Results and Analysis. We first compare the
models trained on the well-structured dataset with
correct answers with the base and instruct mod-
els, as shown in Figure 2. Remarkably, fine-tuning
the base model with only 10 well-structured and
correctly answered examples yields substantial per-
formance gains across all benchmark datasets, ap-
proaching the performance of the fully instruction-
tuned model. This result suggests that the im-

provement does not stem from a fundamental en-
hancement in the model’s reasoning ability—an
unlikely outcome given the extremely limited su-
pervision—but rather from aligning the model’s
output to the expected reasoning format. The model
appears to benefit primarily from exposure to the
step-by-step reasoning structure, allowing it to im-
itate the format of correct solutions without truly
acquiring deeper reasoning skills.

We further compare fine-tuning with step-by-
step reasoning data against data that with only the
final answer. As shown in Table 1, when fine-tuned
on 10 examples containing only the final answers,
the model’s performance drastically drops to an
average of 8.3, far below even the base model.
This confirms that simply exposing the model to
correct answers provides negligible benefit. In
contrast, even examples with incorrect answers or
mismatched solutions, as long as they retain a co-
herent step-by-step format, significantly improve
performance—achieving average scores of 62.58
and 46.74 respectively. Similarly, models trained
on examples with disrupted steps or garbled con-
tent still outperform the base model. These results
collectively reinforce the conclusion that the ob-
served performance gain stems primarily from for-
mat alignment: LLLMs learn to mimic the struc-
ture of step-by-step reasoning rather than inter-
nalizing the reasoning process themselves.

To further probe the role of format quality in
alignment-driven performance gains, we conduct
a fine-grained comparison of how different types
of formatting perturbations affect model outcomes.
As shown in Table 1, models fine-tuned on well-
structured but incorrect examples still achieve im-
pressive gains (62.58 avg.), indicating that an-
swer correctness is not the dominant factor. More
surprisingly, models trained on mismatched solu-
tions—where the reasoning process does not match
the final answer—still outperform the base model
(46.74 avg.), suggesting that as long as the reason-
ing format remains intact, the model can extract
useful patterns. On the other hand, when the rea-
soning steps are disrupted (52.36 avg.), or when
the inputs include garbled characters (51.62 avg.),
performance degrades more noticeably, though still
remains above the base level. This suggests that
preserving the logical order of reasoning steps is
more critical than answer correctness, and even par-
tially corrupted input retains value if the formatting
skeleton is intact. These findings collectively under-
score that format alignment is highly sensitive to
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Figure 3: Performance of Qwen2.5-Math-7B trained on
data distilled from different teacher models that are of
the instruct version.

both surface-level coherence and deeper struc-
tural regularities. Format elements such as step
order, logical flow, and format consistency appear
to act as strong priors that guide the model toward
generating well-structured outputs, even in the ab-
sence of valid reasoning. This highlights the im-
portance of high-quality formatting in SFT datasets
and provides further evidence that performance im-
provements in few-shot fine-tuning scenarios often
reflect format mimicry rather than genuine reason-
ing acquisition.

3.3 RQ 2: If format alignment dominates, can
high-quality supervision (e.g., data
distilled from stronger teacher models)
help models move beyond format
imitation toward genuine reasoning
ability?

To further understand how LLMs learn to reason

from format-aligned data during SFT, we examine

not only their sensitivity to format preference but
also the effect of supervision strength. While ear-
lier experiments show that even a small number of
exemplars can steer models toward preferred rea-
soning formats, it remains unclear whether stronger
supervision signals—such as those derived from
more capable teacher models—provide benefits be-
yond superficial imitation. In this section, we inves-
tigate whether training student models on demon-
strations produced by models with different levels
of reasoning ability leads to variations in perfor-
mance. This analysis helps assess whether high-
quality supervision enables models to internalize
deeper reasoning patterns.

Experimental Design. To examine how the
quality of supervision affects reasoning perfor-
mance, we distill SFT data from teacher models of

varying capabilities, including the instruct versions
of DeepSeek-Math-7B, Llama-3.1-8B, Llama-3.1-
70B, Qwen2.5-Math-7B, Qwen2.5-Math-72B, and
DeepSeek-R1. From these outputs, we randomly
select 10 samples that are both correctly format-
ted and contain the correct answers. These sam-
ples are then used to fine-tune three base models
with different initial capabilities, with their detailed
experimental results presented in Appendix. All
other training configurations, such as the number
of epochs, batch size, and learning rate, remain
consistent with previous SFT experiments.

Results and Analysis. Figure 3 presents the
performance of various base models fine-tuned
with data distilled from different teacher models.
Contrary to expectations, we find that stronger
teacher models do not consistently yield better SFT
outcomes. For example, although DeepSeek-R1
achieves strong results on full-task benchmarks,
it consistently underperforms as a data genera-
tor for 10-shot SFT. In contrast, smaller or mid-
sized teacher models—such as Qwen2.5-Math-7B-
Instruct—often produce supervision signals that
lead to more effective downstream learning.

This counterintuitive trend appears to arise from
differences in reasoning style and output distribu-
tion across teacher models. Specifically, DeepSeek-
R1 tends to produce long, verbose chains of
thought, which, while effective in isolation, may
be suboptimal when used in few-shot SFT. When
only a few examples are available, such stylisti-
cally complex outputs may overwhelm smaller base
models, leading to underfitting or poor generaliza-
tion—especially if the base model lacks the capac-
ity or prior alignment to internalize such stylistic
nuances.

More generally, our results suggest that raw ac-
curacy or scale of the teacher is not the sole deter-
minant of downstream SFT effectiveness. Instead,
the compatibility between the teacher’s output for-
mat and the base model’s inductive biases plays
a more crucial role. Instruction-tuned teachers
like Qwen2.5-Math-7B-Instruct tend to produce
concise, well-structured outputs, which are easier
for base models to imitate and generalize from,
particularly under limited supervision. In con-
trast, outputs from larger models like Llama-3.1-
70B-Instruct—despite being high-quality in isola-
tion—may contain stylistic or structural patterns
that are less transferable to less capable models.

Taken together, these findings highlight a key
insight: In low-resource SFT settings, compati-



bility between the teacher’s inductive bias and
the student’s capacity significantly influences
knowledge transfer efficiency. Careful selection
of teacher models whose reasoning style aligns
with the learning capacity of the base model is es-
sential for efficient and effective knowledge trans-
fer under data-scarce conditions.

3.4 RQ3: As the amount of training data
increases, does the primary driver of
performance shift from format alignment
to deeper reasoning?

To better understand the relationship between su-
pervision scale and reasoning performance, we
next investigate how the amount of SFT data in-
fluences model behavior. While previous results
have shown that even limited exposure to well-
formatted demonstrations can improve reasoning
performance, it remains unclear whether increasing
the quantity of training data results in proportion-
ally stronger reasoning capabilities, or whether it
primarily reinforces superficial format adherence.
In this section, we vary the size of the fine-tuning
dataset to compare the performance of finetuned
models with different SFT data sizes.

Experimental Design. To examine how the
scale of supervision affects reasoning performance,
we conduct a controlled experiment using varying
amounts of training data distilled from a teacher
model. Specifically, we sample different quantities
of high-quality data from each subsets generated
by Qwen2.5-Math-7B-Instruct. These subsets are
then mixed and used to fine-tune the base model,
Qwen2.5-Math-7B, allowing us to assess whether
increased data volume leads to proportional im-
provements in reasoning ability, or primarily rein-
forces stylistic conformity.

Results and Analysis. The results in Figure 4
reveal a clear yet nuanced relationship between the
data scale of SFT and reasoning performance. In
general, increasing the number of training samples
distilled from Qwen2.5-Math-7B-Instruct leads to
consistent performance improvements, particularly
when moving from extremely low supervision (2
samples from each subset) to moderate-scale SFT
(e.g., 10 or 25 samples from each subset). This
trend is evident across all evaluated datasets, with
average performance rising from 62.4 to 65.3 when
increasing from 2 to 10 samples.

However, increasing the number of training ex-
amples from each subset beyond 10 does not lead
to consistent performance gains. Instead, we ob-
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Figure 4: Performance of Qwen2.5-Math-7B trained
on different data sizes. Training samples are derived
from a subset of BigMath dataset and distilled from
Qwen2.5-Math-7B-Instruct. The average performance
is evaluated across four benchmarks: MATHS500, Col-
lege Math, Olympiad Bench, and GSM8K.

serve fluctuations in performance as the dataset
size scales up to 2,500 examples, with the high-
est average score reaching only 64.2—Ilower than
the performance achieved with just 10 examples.
This trend suggests that simply scaling the amount
of SFT data does not guarantee improved reason-
ing ability. One possible explanation is that the
initial gains primarily result from the model learn-
ing to mimic the surface-level structure and format
of the supervision data. Once this alignment is
achieved, additional examples offer diminishing or
even adverse returns, especially if they reinforce
formatting regularities without introducing novel
reasoning strategies.

These findings highlight a potential bottleneck
in current SFT strategies for reasoning tasks: while
format imitation is highly sample-efficient, its
contribution may quickly saturate. Since un-
derstanding and applying reasoning strategies
likely requires deeper generalization than for-
mat learning alone, merely scaling up format-
ted demonstrations may not be sufficient to
drive further progress. This underscores the need
for complementary approaches—such as higher-
quality demonstrations, curriculum design, or tar-
geted reasoning feedback—that go beyond stylistic
conformity to facilitate deeper reasoning skill ac-
quisition.

3.5 RQ 4: Are format alignment gains
consistent across models of varying sizes
and architectures?

Building on the results from RQ1, we find that
Qwen2.5-Math-7B achieves substantial perfor-
mance gains during SFT primarily through for-
mat alignment, we are now interested in extend-



Base model = fine-tuned on Base model with 10 samples

60.0

40.0

30.0

16.7

Avg. performance

51
3.9 9.9 150

3.6 b

Llama-3.1
8B

Mistral-v0.3 DeepSeek-Math  Llama-3.1
7B 7B 70B

46.9

11.2 10.2 24.1

Qwen2.5-Math  Qwen2.5-Math Qwen2.5
15B 7B 7B

592
o153 56.2

53.0
50.3

59.2
46.3 46.6
424
345

Qwen2.5 Qwen2.5

Qwen2.5-Math
3B 14B 72B

Base models

Figure 5: A comparison of SFT performance across multiple base models, all trained on the same 10 samples distilled
from Qwen2.5-Math-7B-Instruct. Model performance is evaluated by averaging results across six mathematical
reasoning benchmarks: MATHS500, College Math, Olympiad Bench, GSM8K, GaokaoEn 2023, and Omni-math.

ing this investigation to other base models. The
purpose of this section is to examine whether simi-
lar improvements in reasoning performance can be
achieved across different models when fine-tuned
with a small number of well-structured, correct-
answer data samples. By doing so, we aim to ex-
plore how the inherent reasoning capabilities of the
base model influence its ability to learn the cor-
rect reasoning format through SFT. This analysis
will provide valuable insights into whether the ef-
fectiveness of SFT is model-dependent, and how
the baseline reasoning ability of a model interacts
with the fine-tuning process to shape its overall
performance on reasoning tasks.

Experimental Design. We use the 10 samples
generated from Qwen2.5-Math-7B-Instruct that are
both well-structured and contain the correct an-
swers to train different base models and evaluate
the impact of SFT on their reasoning capabilities.

Results and Analysis. The experimental re-
sults presented in Figure 5 reveal a striking trend:
among various base models, only the stronger
small-scale models—such as Qwen2.5-Math-1.5B
and Qwen?2.5-Math-7B—exhibit substantial perfor-
mance gains from fine-tuning with 10 step-by-step
reasoning samples. This shows that this mecha-
nism is only effective for models with sufficient
reasoning capacity and alignment receptiveness.

In contrast, weaker models such as Mistral-7B-
v0.3 fail to benefit significantly from the same
fine-tuning. This suggests that when a model’s in-
herent reasoning and instruction-following ability
is too weak, it cannot effectively absorb or gen-
eralize the reasoning format from a small num-
ber of examples. Similarly, for very large models

like Qwen2.5-32B and Qwen2.5-Math-72B, the ob-
served gains are limited. One possible explanation
is that these models have already been heavily ex-
posed to instruction-like patterns during pretraining
or prior alignment stages, such that the marginal
benefit from additional formatted data is minimal.

In summary, the impact of format alignment in
SFT depends strongly on the capability of the base
model. Small but capable models are best po-
sitioned to leverage format-aligned examples,
while weaker models lack the inductive bias to
learn from them, and strong models offer dimin-
ishing marginal returns.

4 Conclusion

We investigate the underlying mechanisms driving
apparent reasoning improvements in small-scale
LLMs during SFT. Our experiments show that state-
of-the-art small LLMs can approach or surpass
SOTA performance on five math benchmarks us-
ing only 10 random format-correct samples. This
suggests that gains may stem from surface-level for-
mat alignment rather than true reasoning advances.
Moreover, we identify three key factors influencing
SFT efficacy: (i) distributional alignment between
base and teacher model outputs matters most, while
teacher quality has limited effect; (ii) data scaling
yields diminishing returns without qualitative rea-
soning improvements; (iii) base model capability
determines format utilization: small but capable
models benefit most from aligned examples. These
findings indicate that current methods may overes-
timate reasoning ability, highlighting the need for
frameworks that distinguish format imitation from
genuine understanding.



Limitations

Our investigation is limited in two key aspects: (1)
it focuses exclusively on SFT-based approaches,
leaving open whether reinforcement learning or
other training paradigms exhibit similar format
bias susceptibility; and (2) it examines conven-
tional step-by-step formats, omitting alternative
structures like self-correction mechanisms. These
limitations motivate future research directions ex-
ploring the effects of format alignment in different
training methodologies and the comparative effi-
cacy of various formats.
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A Detailed experimental results

Datasets
Model Avg.
MATH College Olympiad GSM8K GaokaoEn Omni-math
500 Math Bench 2023

1.5B Models

Qwen2.5-Math-1.5B 354 7.0 22.7 38.3 27.0 14.5 24.1
Qwen2.5-Math-1.5B +10 samples ~ 71.8  43.7 353 48.1 61.3 21.1 46.9
Qwen2.5-Math-1.5B-Instruct 754 483 379 85.1 67.5 29.0 572
7~8B Models

Qwen2.5-Math-7B 542 216 16.1 59.4 37.5 18.3 34.5
Qwen2.5-Math-7B+10 samples 81.2 479 38.8 84.2 68.1 23.6 57.3
Qwen?2.5-Math-7B-Instruct 832 470 41.2 95.7 68.6 30.2 61.0
DeepSeek-Math-7B 124 7.6 2.5 21.9 11.7 3.0 9.9
DeepSeek-Math-7B + 10 samples 12.4 7.6 2.5 21.8 13.8 3.0 10.2
DeepSeek-Math-7B-Instruct 45.6 31.0 13.5 82.2 42.1 12.1 37.8
Qwen2.5-7B 604  30.8 28.9 65.8 47.0 21.5 424
Qwen?2.5-7B+10 samples 69.8 436 347 88.6 57.1 242 53.0
Qwen?2.5-7B-Instruct 76.8 46.8 39.6 92.5 65.2 26.6 57.9
Llama-3.1-8B 44 2.9 1.9 5.5 4.9 2.0 3.6
Llama-3.1-8B + 10 samples 16.4 8.4 4.3 17.3 17.1 39 11.2
Llama-3.1-8B-Instruct 50.8 30.9 14.4 83.3 40.8 13.2 38.9
Mathstral-7B-v0.3 34 2.2 1.5 8.0 5.7 1.4 3.7
Mathstral-7B-v0.3 + 10 samples 3.8 22 1.5 8.9 5.7 1.6 39
Mathstral-7B-v0.3-Instruct 13.2 6.4 2.8 50.8 16.9 4.5 15.8
14B Models

Qwen2.5-14B 61.0 353 27.3 85.8 49.6 20.5 46.6
Qwen2.5-14B +10 samples 78.0  46.6 394 83.4 64.2 25.5 56.2
Qwen2.5-14B-Instruct 80.0 479 433 94.9 66.8 28.9 60.3
32B Models

Qwen2.5-32B 59.2 378 29.0 82.0 50.1 19.9 46.3
Qwen?2.5-32B + 10 samples 69.8 414 324 68.6 67.0 229 50.3
Qwen2.5-32B-Instruct 83.8 487 444 95.9 70.1 31.9 62.5
~ 70B Models

Qwen2.5-Math-72B 794 447 43.7 86.9 64.9 354 59.2
Qwen2.5-Math-72B + 10 samples ~ 81.0  44.1 444 87.0 63.9 35.0 59.2
Qwen2.5-Math-72B-Instruct 85.6 49.6 48.7 95.9 70.9 329 63.9
Llama-3.1-70B 17.4 7.2 22 40.2 18.4 4.5 15.0
Llama-3.1-70B +10 samples 18.8 8.6 2.2 43.1 22.9 4.7 16.7
Llama-3.1-70B-Instruct 50.8 32.0 25.6 84.2 39.0 15.0 41.1

Table 2: SFT results trained on different base models

Table 2 reports the detailed evaluation results of different base models fine-tuned on 10 examples
distilled from Qwen2.5-Math-7B-Instruct. We evaluate the resulting models on 6 mathematical reasoning
benchmarks to assess the effectiveness of this high-quality supervision. The average performance across
the five benchmarks, as shown in the final column of Table 2, corresponds directly to the data points
plotted in Figure 5.
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Base Model Teacher Models Datasets Avg.
MATH College Olympiad GSM8K GaokaoEn Omni-math
500 Math Bench 2023

Qwen2.5-Math-7B Qwen2.5-Math-7B- 81.2 47.9 38.8 84.2 68.1 23.6 57.3
Instruct
Llama-3.1-8B- 61.2 40.2 12.6 81.5 48.6 20.8 44.1
Instruct
DeepSeek-Math-7B-  46.2 34.5 11.1 51.9 29.1 20.1 32.2
Instruct
Qwen2.5-Math-72B-  83.4 44.0 40.9 71.9 60.8 12.0 52.2
Instruct
Llama-3.1-70B- 51.8 214 13.2 40.7 46.2 9.2 304
Instruct
DeepSeek-R1 42.6 18.0 12.0 52.7 42.9 18.8 31.2
Qwen2.5-Math-7B- 83.2 47.0 41.2 95.7 68.6 30.2 61.0
Instruct
Llama-3.1-8B Qwen2.5-Math-7B- 16.4 8.4 4.3 17.3 17.1 3.9 11.2
Instruct
Llama-3.1-8B- 8.0 8.4 3.1 19.6 6.8 3.0 8.2
Instruct
DeepSeek-Math-7B-  15.0 139 3.7 25.2 13.2 4.2 12.5
Instruct
Qwen2.5-Math-72B-  11.2 8.1 2.8 41.1 15.3 3.5 13.7
Instruct
Llama-3.1-70B- 10.0 9.2 34 30.8 12.2 3.3 11.5
Instruct
DeepSeek-R1 9.2 6.4 34 36.0 14.8 4.0 12.3
Llama-3.1-8B-Instruct 50.8 30.9 144 83.3 40.8 13.2 38.9
Qwen2.5-Math-72B Qwen2.5-Math-7B- 81.0 44.1 44 4 87.0 63.9 35.0 59.2
Instruct
Llama-3.1-8B- 78.2 44.5 43.3 86.8 63.9 354 58.7
Instruct
DeepSeek-Math-7B-  78.4 44.5 44.6 87.3 65.7 35.1 59.3
Instruct
Qwen2.5-Math-72B-  80.0 44.6 44.4 87.3 62.6 352 59.0
Instruct
Llama-3.1-70B- 79.6 44 4 43.0 86.5 62.6 35.0 58.5
Instruct
DeepSeek-R1 80.8 44.8 43.0 86.7 62.1 349 58.7
Qwen2.5-Math-72B- 86.0  49.7 48.4 95.8 73.2 329 64.3
Instruct

Table 3: SFT results trained on various teacher-generated distilled data

Table 3 presents the full evaluation results of different base models fine-tuned on 10 examples distilled
from different teacher models. Each distilled example is both correctly formatted and contains the correct
final answer. The table reports the performance of the resulting SFT models on 6 mathematical reasoning
benchmarks. The average accuracy across these benchmarks, shown in the rightmost column of Table 3,
corresponds to the values plotted in Figure 3, enabling a direct comparison of teacher-specific effects on
downstream reasoning performance.
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Datasets

MATH College Olympiad GSM8K Avg.
500 Math Bench

Base Model Average Training Samples from Each Subset

Qwen2.5-Math-7B 2 80.4  44.0 374 87.6 624
10 822 471 41.3 90.5 65.3

25 80.0 472 39.3 90.1 64.2

125 716 475 40.0 90.4 63.9

500 782 47.1 38.5 89.2 63.3

1000 80.0 474 394 90.1 64.2

1500 78.0 474 37.8 89.8 633

2000 782 475 40.3 89.9 64.0

2500 79.8 474 41.0 88.7 64.2

Qwen2.5-Math-7B-Instruct - 83.2 47.0 41.2 95.7 66.8

Table 4: Performance of models trained on different data sizes

Table 4 reports the evaluation results of the Qwen2.5-Math-7B model fine-tuned on mixed SFT data
of varying scales. Each row corresponds to a different data volume, and the model is evaluated on 4
mathematical reasoning benchmarks. The average performance across these benchmarks, shown in the
rightmost column, is used to generate the trend shown in Figure 4. Due to the limited availability of
correctly formatted and answer-correct samples for GaokaoEn 2023 and Omni-math, these datasets were
not included in the mixed SFT training data. As a result, we also exclude these two datasets from the
evaluation in this setting.
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