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Abstract001

Recent advances in large language models002
(LLMs) have yielded impressive gains on math-003
ematical reasoning benchmarks via supervised004
fine-tuning (SFT). However, the brittleness of005
these models under input perturbations has cast006
doubt on whether such improvements reflect007
genuine reasoning abilities or merely superfi-008
cial alignment with expected output formats.009
We investigate the mechanisms behind SFT im-010
provements in small-scale LLMs, addressing011
four key questions: (1) Are performance gains012
primarily due to format alignment rather than013
reasoning? (2) Can high-quality supervision014
encourage genuine reasoning? (3) Does scaling015
data shift learning from format alignment to016
deeper reasoning? (4) Are format alignment017
gains consistent across model sizes and archi-018
tectures? Through controlled experiments, we019
find that most performance improvements arise020
from format alignment rather than genuine rea-021
soning enhancement. Moreover, SFT’s effec-022
tiveness is strongly influenced by the alignment023
between the base model’s inductive biases and024
the teacher model’s output distribution, rather025
than the teacher’s raw strength. Finally, scaling026
up training data offers diminishing returns and027
does not fundamentally alter the model’s rea-028
soning behavior. These findings suggest that029
current SFT practices may overestimate the rea-030
soning abilities of LLMs and underscore the031
need for more rigorous evaluation methods.032

1 Introduction033

Mathematical reasoning has emerged as a critical034

benchmark for evaluating the logical thinking capa-035

bilities of large language models (LLMs). With the036

growing scale of models and advances in training037

techniques, LLMs have demonstrated impressive038

performance on challenging mathematical bench-039

marks such as OlympiadBench and Omni-Math,040

leading to the development of powerful models041

like OpenAI-o1(Jaech et al., 2024), OpenAI-o3042

(OpenAI, 2025), Kimi1.5 (Team et al., 2025) and043

DeepSeek-R1(Guo et al., 2025). Interestingly, re- 044

cent work (Yang et al., 2024; Guan et al., 2025; 045

Team, 2025; Abdin et al., 2025; Luo et al., 2025) 046

has shown that even small-scale models, when 047

equipped with carefully designed training strate- 048

gies, can match or even surpass the reasoning per- 049

formance of some proprietary LLMs. 050

However, a central question remains unresolved: 051

Do these models truly acquire mathematical rea- 052

soning abilities, or are they merely learning to 053

reproduce the superficial patterns of reasoning- 054

like outputs? Several studies (Li et al., 2024; Gu- 055

lati et al., 2024; Mirzadeh et al., 2024) have high- 056

lighted the fragility of current models under adver- 057

sarial or perturbed inputs. For example, (Huang 058

et al., 2025) found that introducing hard pertur- 059

bations to math problems led to substantial drops 060

in accuracy for top-tier models (e.g., -16.49% for 061

O1-mini, -12.9% for Gemini-2.0 flash-thinking), 062

suggesting a reliance on surface-level cues rather 063

than genuine understanding. This paradox gives 064

rise to our core research question: What under- 065

lies the apparent reasoning performance gains in 066

small-scale open-source LLMs? 067

Recent research has significantly advanced the 068

reasoning capabilities of small-scale LLMs by 069

building upon strong base models, particularly the 070

Qwen2.5-Math-7B model (Ye et al., 2025; Zeng 071

et al., 2025; Li et al., 2025; Ma et al., 2025; 072

Liu et al., 2025; Cui et al., 2025). Leveraging 073

its robust mathematical foundation, these stud- 074

ies have applied a variety of enhancement tech- 075

niques—including supervised fine-tuning (SFT), 076

reinforcement learning (RL) (Xie et al., 2025; Li 077

et al., 2025), and integration with methods such 078

as Monte Carlo Tree Search (MCTS) and process 079

reward model (PRM) (Guan et al., 2025)—to sub- 080

stantially improve reasoning performance. Among 081

these approaches, supervised fine-tuning (SFT) has 082

proven particularly effective, enabling student mod- 083

els (typically smaller-scale LLMs) to achieve sub- 084
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Figure 1: This figure illustrates the meaning of "format"
as used in this paper. The term refers to the step-by-step
solution procedure provided for a given problem. The
demonstration samples used in SFT follow this format.
The answer only refers to the final output enclosed in
the "\boxed{}".

stantial improvements through fine-tuning on high-085

quality data distilled from more capable teacher086

models (generally larger LLMs). These SFT-based087

enhancements not only yield significant perfor-088

mance gains over base models but, in some cases,089

allow compact student models to surpass the capa-090

bilities of substantially larger counterparts.091

A common characteristic of these methods is092

their structured output requirement—the genera-093

tion of explicit, step-by-step solutions designed to094

mimic human reasoning patterns (as illustrated in095

Figure 1). We formalize this output format as syn-096

tactically constrained generation that requires inter-097

mediate reasoning steps. Although this approach098

yields outputs that superficially resemble human099

reasoning, it raises a crucial question: Are the100

observed performance gains indicative of gen-101

uine reasoning capabilities, or do they primarily102

result from alignment with expected reasoning103

formats?104

We hypothesize that much of the improvement105

stems not from enhanced reasoning ability, but106

from format alignment, i.e., models learn to mimic107

the structural patterns of human derivations without108

truly internalizing their semantic content. To test109

this hypothesis, we conduct a systematic empirical110

study using lightweight SFT, aiming to disentangle111

performance gains driven by reasoning ability from112

those driven by superficial pattern imitation.113

RQ1: Do recent performance improvements in114

small-scale LLMs during SFT primarily arise from115

format alignment rather than genuine reasoning116

enhancement?117

RQ2: If format alignment dominates, can118

high-quality supervision (e.g., data distilled from119

stronger teacher models) help models move beyond120

format imitation toward genuine reasoning ability?121

RQ3: As the amount of training data increases, 122

does the primary driver of performance shift from 123

format alignment to deeper reasoning? 124

RQ4: Are format alignment gains consistent 125

across models of varying sizes and architectures? 126

To address these questions, we design a set of 127

controlled experiments across different model sizes, 128

data sources, and data scales. Our key findings are 129

as follows: 130

Result 1 (Section 3.2): Even using a minimal 131

SFT setup, just 10 random format-correct samples 132

(as shown in Figure 1), leads to near or surpass- 133

ing state-of-the-art improvements (e.g., +49.8% vs 134

SOTA’s +44.6% on MATH500; +81.6% vs SOTA’s 135

+75.2% on GaokaoEn 2023). This suggests that 136

the improvement is unlikely due to the acquisition 137

of deep reasoning ability under such limited su- 138

pervision. Instead, the model appears to benefit 139

from learning to imitate the surface structure of 140

step-by-step solutions. Further experiments show 141

that even samples are being disturbed in content 142

(e.g., incorrect answers, garbled text, mismatched 143

solutions), only using 10 samples with correct for- 144

mat can still increase the performance. This further 145

demonstrates the importance of format than that of 146

content. 147

Result 2 (Section 3.3): The match between the 148

teacher and student models—in terms of reason- 149

ing style and output distribution—is more critical 150

than teacher strength alone. In low-resource SFT 151

settings, compatibility between the teacher’s induc- 152

tive bias and the student’s capacity significantly 153

influences knowledge transfer efficiency. 154

Result 3 (Section 3.4): While format imitation is 155

highly sample-efficient, its benefits saturate quickly. 156

Achieving true reasoning ability likely requires 157

deeper abstraction and generalization, which can- 158

not be attained through format learning alone. Sim- 159

ply scaling up the number of formatted examples 160

is insufficient to drive continued progress. 161

Result 4 (Section 3.5): Competent small models 162

can effectively utilize formatted demonstrations, 163

while weaker models fail to generalize from them, 164

and stronger models show diminishing marginal 165

returns. 166

2 Related Work 167

Enhancing Mathematical Reasoning in LLMs. 168

Recent years have witnessed significant progress 169

in improving the mathematical reasoning capa- 170

bilities of LLMs. A prominent line of research 171
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leverages Chain-of-Thought (CoT)-based meth-172

ods (Ling et al., 2023; Magister et al., 2022; Li173

et al., 2023; Yuan et al., 2024), where models174

are fine-tuned on specific math QA datasets con-175

taining step-by-step reasoning processes to guide176

coherent derivations. Further advancements ex-177

tend this paradigm by formalizing reasoning as178

graph-structured processes (Lei et al., 2023), where179

nodes represent intermediate steps and edges de-180

note logical dependencies. Techniques like Tree-181

of-Thought (ToT) (Yao et al., 2023) and Monte182

Carlo Tree Search (MCTS) (Feng et al., 2023;183

Gao et al., 2024; Xu, 2023; Xin et al., 2024) ex-184

emplify this approach, with (Guan et al., 2025)185

demonstrating that even smaller LLMs (e.g., 7B)186

can achieve strong mathematical reasoning through187

self-evolution within this framework. Addition-188

ally, recent RL-based methods (Guo et al., 2025;189

Xie et al., 2025; Zeng et al., 2025) combine for-190

mat rewards and answer accuracy rewards to push191

the state-of-the-art (SOTA) performance further.192

Concurrently, another strand of research explores193

low-resource fine-tuning strategies to enhance rea-194

soning efficiency. (Zhou et al., 2023; Li et al., 2025;195

Muennighoff et al., 2025) reveal that a carefully196

curated, small dataset (e.g., 1,000 high-quality sam-197

ples) suffices to elicit high-quality outputs, while198

(Chen et al., 2025)) demonstrate that small-scale199

SFT (e.g., 0.072B data) can significantly improve200

instruction-following capabilities.201

Questioning the True Reasoning Capabilities202

of LLMs. The nature of LLM reasoning capa-203

bilities remains controversial (Huang et al., 2025;204

Jiang et al., 2024; Li et al., 2024; Gulati et al.,205

2024; Srivastava et al., 2024). As shown in (Jiang206

et al., 2024), LLM reasoning appears to operate207

through probabilistic pattern matching rather than208

formal logical reasoning. (Mirzadeh et al., 2024)209

constructed the GSM-Symbolic dataset using sym-210

bolic templates, revealing that numerical variations211

cause performance degradation across all models.212

MATH-Perturb (Huang et al., 2025) further demon-213

strated significant performance drops in state-of-214

the-art proprietary models (e.g., o1-mini) under215

hard perturbations. While these studies exposed216

reasoning fragility through benchmark perturba-217

tions, they did not investigate the mechanisms be-218

hind observed performance improvements.219

Departing from previous approaches, we ana-220

lyze the fundamental drivers behind state-of-the-art221

performance improvements in leading small-scale222

LLMs within extreme low-resource SFT regimes.223

Our simple SFT experiments demonstrate that 224

structural imitation alone suffices for competitive 225

performance: using merely 10 randomly selected 226

samples with correct formatting (regardless of an- 227

swer accuracy), the model achieves near-state-of- 228

the-art results across multiple mathematical reason- 229

ing benchmarks. This compelling evidence sug- 230

gests that prevailing reasoning improvements may 231

primarily arise from pattern matching of step-by- 232

step solution formats, rather than the acquisition of 233

genuine mathematical reasoning capabilities. 234

3 Experiments 235

To investigate whether small-scale LLMs can gen- 236

uinely acquire reasoning capabilities during the 237

SFT stage, we conduct a series of controlled ex- 238

periments using a distilled dataset. Specifically, 239

we fine-tune several commonly used base LLMs 240

using a distilled dataset consisting of only 10 step- 241

by-step reasoning examples per dataset, sourced 242

from advanced reasoning models. By limiting the 243

amount of training data and focusing exclusively on 244

reasoning demonstrations, our goal is to examine 245

whether such sparse fine-tuning can lead to mean- 246

ingful improvements in mathematical reasoning 247

tasks, thereby shedding light on whether the mod- 248

els are truly learning to reason or simply aligning 249

with the expected output structure. 250

3.1 Experiment Setup 251

Evaluation Datasets. We compare different mod- 252

els on diverse commonly-used mathematical bench- 253

marks. Beyond the widely adopted GSM8K dataset 254

(Cobbe et al., 2021), our evaluation also incor- 255

porates diverse challenging benchmarks spanning 256

multiple mathematical domains. These include: 257

(i) advanced problem sets targeting competition 258

and Olympiad-level reasoning, such as MATH- 259

500 (Lightman et al., 2023), Olympiad Bench (He 260

et al., 2024). (ii) undergraduate-level mathematics 261

challenges from the College Math dataset (Tang 262

et al., 2024); and (iii) a cross-lingual and culturally 263

distinct math benchmark, GaoKao En 2023 (Liao 264

et al., 2024), drawn from China’s national college 265

entrance examination. We exclude benchmarks 266

such as AIME 2024 and AMC due to their limited 267

number of available problems, which introduces 268

high variance and reduces evaluation reliability. 269

Base Models and Setup. To verify the effects of 270

SFT on LLMs, we use LLMs of different sizes as 271

the base models, covering both general LLMs and 272
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Figure 2: Performance comparison: base model vs. 10-sample fine-tuned model vs. SOTA

Base Model (Qwen2.5-Math-7B) Datasets Avg.
MATH College Olympiad GSM8K GaokaoEn

500 Math Bench 2023

Base model 54.2 21.6 16.1 59.4 37.5 37.76
+10 samples with correct answer 81.2 47.9 38.8 84.2 68.1 64.04

Without format
+10 samples with only answers 16.8 8.4 2.5 2.6 11.2 8.3

Content-disturbed
+10 samples with incorrect answer 79.2 44.6 37.8 88.2 63.1 62.58
+10 samples with garbled characters 64.4 28.2 25.9 80.1 59.5 51.62
+10 samples with unmatched solutions 48.4 45.1 24.3 67.6 48.3 46.74
+10 samples with disrupted steps 69.8 21.8 29.5 83.6 57.1 52.36

SOTA (Guan et al., 2025) 78.4* 52.5* 47.1* 89.7* 65.7* 66.68*

Table 1: Performance of models trained on different SFT data. The highest results are highlighted in bold and
the second-best results are marked with underline except SOTA. For SOTA, we use the results from their original
reports (Guan et al., 2025), denoted by *.

mathematical reasoning models. Specifically, the273

selected base models include Qwen2.5-Math-1.5B,274

Mistral-7B-v0.3, DeepSeek-Math-7B, Qwen2.5-275

Math-7B, Qwen2.5-7B, Llama-3.1-8B, Qwen2.5-276

14B, Qwen2.5-32B, Llama-3.1-70B, and Qwen2.5-277

Math-72B.278

For the training data, we construct a set of mini-279

mal SFT datasets derived from the BigMath dataset280

(Albalak et al., 2025). For each target benchmark,281

we select a corresponding subset from BigMath282

that aligns with the problem distribution and rea-283

soning requirements of the evaluation set. For ex-284

ample, to evaluate performance on the MATH-500285

benchmark, we extract a representative subset from286

the MATH portion of BigMath, ensuring that the287

training data reflect similar topic coverage and dif-288

ficulty. For each such subset, we distill a small289

number of high-quality reasoning trajectories using290

different LLMs. These distilled examples are then291

used to perform SFT on the selected base models. 292

The SFT experiments were conducted using a 293

consistent training configuration. Each model was 294

fine-tuned for 20 epochs, in order to ensure suffi- 295

cient exposure to the small training set and to allow 296

the model to fully internalize the reasoning patterns. 297

A low learning rate of 7e-6 was used to prevent 298

overfitting and to ensure stable optimization, es- 299

pecially given the small dataset size. For models 300

larger than 7B parameters, due to GPU memory 301

constraints, we adopted parameter-efficient fine- 302

tuning via LoRA instead of full fine-tuning. The 303

experiments were conducted on a server with 8 304

H20 GPUs, each has 80GB memeory. 305

Evaluation Metric. We evaluate the perfor- 306

mance of various LLMs using the evaluation toolkit 307

provided by Qwen2.5-Math (Yang et al., 2024) and 308

report the Pass@1 accuracy for all models. 309

4



3.2 R1: Do recent performance improvements310

in small-scale LLMs during SFT311

primarily arise from format alignment312

rather than true reasoning enhancement?313

SFT has been widely recognized for its effective-314

ness in improving the performance of LLMs across315

a variety of tasks. In the domain of mathematical316

reasoning, prior work has shown that even small317

instruction-following datasets can significantly im-318

prove model performance, especially when the base319

model already possesses strong reasoning capabil-320

ities (Yuan et al., 2023). This has led to the hy-321

pothesis that SFT may not fundamentally improve322

reasoning ability, but rather activate pre-existing323

capabilities by aligning model outputs with a pre-324

ferred reasoning format.325

To examine whether the performance gains from326

SFT arise primarily from format alignment rather327

than genuine reasoning improvement, we con-328

duct a minimal-data experiment that isolates the329

effect of learning reasoning format. By evalu-330

ating the model’s performance before and after331

sparse fine-tuning, we aim to assess whether ex-332

posure to a small number of formatted demonstra-333

tions can substantially improve reasoning perfor-334

mance—suggesting that SFT may function more as335

a format imitation mechanism than as a means of336

endowing LLMs with new reasoning capabilities.337

Experimental Design. We construct 6 distinct338

fine-tuning datasets based on Qwen2.5-Math-7B-339

Instruct, each containing only 10 examples dis-340

tilled from the original training corpus. These in-341

clude (1) well-structured examples with correct342

answers, (2) examples that include only the final343

answer, (3) well-structured examples with incorrect344

answers, (4) well-structured reasoning steps paired345

with mismatched solutions, (5) examples with shuf-346

fled reasoning steps, and (6) examples with garbled347

text. We then fine-tune Qwen2.5-Math-7B on these348

datasets and evaluate all models across five math349

benchmarks to measure the impact of each data350

condition on reasoning performance.351

Results and Analysis. We first compare the352

models trained on the well-structured dataset with353

correct answers with the base and instruct mod-354

els, as shown in Figure 2. Remarkably, fine-tuning355

the base model with only 10 well-structured and356

correctly answered examples yields substantial per-357

formance gains across all benchmark datasets, ap-358

proaching the performance of the fully instruction-359

tuned model. This result suggests that the im-360

provement does not stem from a fundamental en- 361

hancement in the model’s reasoning ability—an 362

unlikely outcome given the extremely limited su- 363

pervision—but rather from aligning the model’s 364

output to the expected reasoning format. The model 365

appears to benefit primarily from exposure to the 366

step-by-step reasoning structure, allowing it to im- 367

itate the format of correct solutions without truly 368

acquiring deeper reasoning skills. 369

We further compare fine-tuning with step-by- 370

step reasoning data against data that with only the 371

final answer. As shown in Table 1, when fine-tuned 372

on 10 examples containing only the final answers, 373

the model’s performance drastically drops to an 374

average of 8.3, far below even the base model. 375

This confirms that simply exposing the model to 376

correct answers provides negligible benefit. In 377

contrast, even examples with incorrect answers or 378

mismatched solutions, as long as they retain a co- 379

herent step-by-step format, significantly improve 380

performance—achieving average scores of 62.58 381

and 46.74 respectively. Similarly, models trained 382

on examples with disrupted steps or garbled con- 383

tent still outperform the base model. These results 384

collectively reinforce the conclusion that the ob- 385

served performance gain stems primarily from for- 386

mat alignment: LLMs learn to mimic the struc- 387

ture of step-by-step reasoning rather than inter- 388

nalizing the reasoning process themselves. 389

To further probe the role of format quality in 390

alignment-driven performance gains, we conduct 391

a fine-grained comparison of how different types 392

of formatting perturbations affect model outcomes. 393

As shown in Table 1, models fine-tuned on well- 394

structured but incorrect examples still achieve im- 395

pressive gains (62.58 avg.), indicating that an- 396

swer correctness is not the dominant factor. More 397

surprisingly, models trained on mismatched solu- 398

tions—where the reasoning process does not match 399

the final answer—still outperform the base model 400

(46.74 avg.), suggesting that as long as the reason- 401

ing format remains intact, the model can extract 402

useful patterns. On the other hand, when the rea- 403

soning steps are disrupted (52.36 avg.), or when 404

the inputs include garbled characters (51.62 avg.), 405

performance degrades more noticeably, though still 406

remains above the base level. This suggests that 407

preserving the logical order of reasoning steps is 408

more critical than answer correctness, and even par- 409

tially corrupted input retains value if the formatting 410

skeleton is intact. These findings collectively under- 411

score that format alignment is highly sensitive to 412
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Figure 3: Performance of Qwen2.5-Math-7B trained on
data distilled from different teacher models that are of
the instruct version.

both surface-level coherence and deeper struc-413

tural regularities. Format elements such as step414

order, logical flow, and format consistency appear415

to act as strong priors that guide the model toward416

generating well-structured outputs, even in the ab-417

sence of valid reasoning. This highlights the im-418

portance of high-quality formatting in SFT datasets419

and provides further evidence that performance im-420

provements in few-shot fine-tuning scenarios often421

reflect format mimicry rather than genuine reason-422

ing acquisition.423

3.3 RQ 2: If format alignment dominates, can424

high-quality supervision (e.g., data425

distilled from stronger teacher models)426

help models move beyond format427

imitation toward genuine reasoning428

ability?429

To further understand how LLMs learn to reason430

from format-aligned data during SFT, we examine431

not only their sensitivity to format preference but432

also the effect of supervision strength. While ear-433

lier experiments show that even a small number of434

exemplars can steer models toward preferred rea-435

soning formats, it remains unclear whether stronger436

supervision signals—such as those derived from437

more capable teacher models—provide benefits be-438

yond superficial imitation. In this section, we inves-439

tigate whether training student models on demon-440

strations produced by models with different levels441

of reasoning ability leads to variations in perfor-442

mance. This analysis helps assess whether high-443

quality supervision enables models to internalize444

deeper reasoning patterns.445

Experimental Design. To examine how the446

quality of supervision affects reasoning perfor-447

mance, we distill SFT data from teacher models of448

varying capabilities, including the instruct versions 449

of DeepSeek-Math-7B, Llama-3.1-8B, Llama-3.1- 450

70B, Qwen2.5-Math-7B, Qwen2.5-Math-72B, and 451

DeepSeek-R1. From these outputs, we randomly 452

select 10 samples that are both correctly format- 453

ted and contain the correct answers. These sam- 454

ples are then used to fine-tune three base models 455

with different initial capabilities, with their detailed 456

experimental results presented in Appendix. All 457

other training configurations, such as the number 458

of epochs, batch size, and learning rate, remain 459

consistent with previous SFT experiments. 460

Results and Analysis. Figure 3 presents the 461

performance of various base models fine-tuned 462

with data distilled from different teacher models. 463

Contrary to expectations, we find that stronger 464

teacher models do not consistently yield better SFT 465

outcomes. For example, although DeepSeek-R1 466

achieves strong results on full-task benchmarks, 467

it consistently underperforms as a data genera- 468

tor for 10-shot SFT. In contrast, smaller or mid- 469

sized teacher models—such as Qwen2.5-Math-7B- 470

Instruct—often produce supervision signals that 471

lead to more effective downstream learning. 472

This counterintuitive trend appears to arise from 473

differences in reasoning style and output distribu- 474

tion across teacher models. Specifically, DeepSeek- 475

R1 tends to produce long, verbose chains of 476

thought, which, while effective in isolation, may 477

be suboptimal when used in few-shot SFT. When 478

only a few examples are available, such stylisti- 479

cally complex outputs may overwhelm smaller base 480

models, leading to underfitting or poor generaliza- 481

tion—especially if the base model lacks the capac- 482

ity or prior alignment to internalize such stylistic 483

nuances. 484

More generally, our results suggest that raw ac- 485

curacy or scale of the teacher is not the sole deter- 486

minant of downstream SFT effectiveness. Instead, 487

the compatibility between the teacher’s output for- 488

mat and the base model’s inductive biases plays 489

a more crucial role. Instruction-tuned teachers 490

like Qwen2.5-Math-7B-Instruct tend to produce 491

concise, well-structured outputs, which are easier 492

for base models to imitate and generalize from, 493

particularly under limited supervision. In con- 494

trast, outputs from larger models like Llama-3.1- 495

70B-Instruct—despite being high-quality in isola- 496

tion—may contain stylistic or structural patterns 497

that are less transferable to less capable models. 498

Taken together, these findings highlight a key 499

insight: In low-resource SFT settings, compati- 500
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bility between the teacher’s inductive bias and501

the student’s capacity significantly influences502

knowledge transfer efficiency. Careful selection503

of teacher models whose reasoning style aligns504

with the learning capacity of the base model is es-505

sential for efficient and effective knowledge trans-506

fer under data-scarce conditions.507

3.4 RQ3: As the amount of training data508

increases, does the primary driver of509

performance shift from format alignment510

to deeper reasoning?511

To better understand the relationship between su-512

pervision scale and reasoning performance, we513

next investigate how the amount of SFT data in-514

fluences model behavior. While previous results515

have shown that even limited exposure to well-516

formatted demonstrations can improve reasoning517

performance, it remains unclear whether increasing518

the quantity of training data results in proportion-519

ally stronger reasoning capabilities, or whether it520

primarily reinforces superficial format adherence.521

In this section, we vary the size of the fine-tuning522

dataset to compare the performance of finetuned523

models with different SFT data sizes.524

Experimental Design. To examine how the525

scale of supervision affects reasoning performance,526

we conduct a controlled experiment using varying527

amounts of training data distilled from a teacher528

model. Specifically, we sample different quantities529

of high-quality data from each subsets generated530

by Qwen2.5-Math-7B-Instruct. These subsets are531

then mixed and used to fine-tune the base model,532

Qwen2.5-Math-7B, allowing us to assess whether533

increased data volume leads to proportional im-534

provements in reasoning ability, or primarily rein-535

forces stylistic conformity.536

Results and Analysis. The results in Figure 4537

reveal a clear yet nuanced relationship between the538

data scale of SFT and reasoning performance. In539

general, increasing the number of training samples540

distilled from Qwen2.5-Math-7B-Instruct leads to541

consistent performance improvements, particularly542

when moving from extremely low supervision (2543

samples from each subset) to moderate-scale SFT544

(e.g., 10 or 25 samples from each subset). This545

trend is evident across all evaluated datasets, with546

average performance rising from 62.4 to 65.3 when547

increasing from 2 to 10 samples.548

However, increasing the number of training ex-549

amples from each subset beyond 10 does not lead550

to consistent performance gains. Instead, we ob-551

Figure 4: Performance of Qwen2.5-Math-7B trained
on different data sizes. Training samples are derived
from a subset of BigMath dataset and distilled from
Qwen2.5-Math-7B-Instruct. The average performance
is evaluated across four benchmarks: MATH500, Col-
lege Math, Olympiad Bench, and GSM8K.

serve fluctuations in performance as the dataset 552

size scales up to 2,500 examples, with the high- 553

est average score reaching only 64.2—lower than 554

the performance achieved with just 10 examples. 555

This trend suggests that simply scaling the amount 556

of SFT data does not guarantee improved reason- 557

ing ability. One possible explanation is that the 558

initial gains primarily result from the model learn- 559

ing to mimic the surface-level structure and format 560

of the supervision data. Once this alignment is 561

achieved, additional examples offer diminishing or 562

even adverse returns, especially if they reinforce 563

formatting regularities without introducing novel 564

reasoning strategies. 565

These findings highlight a potential bottleneck 566

in current SFT strategies for reasoning tasks: while 567

format imitation is highly sample-efficient, its 568

contribution may quickly saturate. Since un- 569

derstanding and applying reasoning strategies 570

likely requires deeper generalization than for- 571

mat learning alone, merely scaling up format- 572

ted demonstrations may not be sufficient to 573

drive further progress. This underscores the need 574

for complementary approaches—such as higher- 575

quality demonstrations, curriculum design, or tar- 576

geted reasoning feedback—that go beyond stylistic 577

conformity to facilitate deeper reasoning skill ac- 578

quisition. 579

3.5 RQ 4: Are format alignment gains 580

consistent across models of varying sizes 581

and architectures? 582

Building on the results from RQ1, we find that 583

Qwen2.5-Math-7B achieves substantial perfor- 584

mance gains during SFT primarily through for- 585

mat alignment, we are now interested in extend- 586

7



Figure 5: A comparison of SFT performance across multiple base models, all trained on the same 10 samples distilled
from Qwen2.5-Math-7B-Instruct. Model performance is evaluated by averaging results across six mathematical
reasoning benchmarks: MATH500, College Math, Olympiad Bench, GSM8K, GaokaoEn 2023, and Omni-math.

ing this investigation to other base models. The587

purpose of this section is to examine whether simi-588

lar improvements in reasoning performance can be589

achieved across different models when fine-tuned590

with a small number of well-structured, correct-591

answer data samples. By doing so, we aim to ex-592

plore how the inherent reasoning capabilities of the593

base model influence its ability to learn the cor-594

rect reasoning format through SFT. This analysis595

will provide valuable insights into whether the ef-596

fectiveness of SFT is model-dependent, and how597

the baseline reasoning ability of a model interacts598

with the fine-tuning process to shape its overall599

performance on reasoning tasks.600

Experimental Design. We use the 10 samples601

generated from Qwen2.5-Math-7B-Instruct that are602

both well-structured and contain the correct an-603

swers to train different base models and evaluate604

the impact of SFT on their reasoning capabilities.605

Results and Analysis. The experimental re-606

sults presented in Figure 5 reveal a striking trend:607

among various base models, only the stronger608

small-scale models—such as Qwen2.5-Math-1.5B609

and Qwen2.5-Math-7B—exhibit substantial perfor-610

mance gains from fine-tuning with 10 step-by-step611

reasoning samples. This shows that this mecha-612

nism is only effective for models with sufficient613

reasoning capacity and alignment receptiveness.614

In contrast, weaker models such as Mistral-7B-615

v0.3 fail to benefit significantly from the same616

fine-tuning. This suggests that when a model’s in-617

herent reasoning and instruction-following ability618

is too weak, it cannot effectively absorb or gen-619

eralize the reasoning format from a small num-620

ber of examples. Similarly, for very large models621

like Qwen2.5-32B and Qwen2.5-Math-72B, the ob- 622

served gains are limited. One possible explanation 623

is that these models have already been heavily ex- 624

posed to instruction-like patterns during pretraining 625

or prior alignment stages, such that the marginal 626

benefit from additional formatted data is minimal. 627

In summary, the impact of format alignment in 628

SFT depends strongly on the capability of the base 629

model. Small but capable models are best po- 630

sitioned to leverage format-aligned examples, 631

while weaker models lack the inductive bias to 632

learn from them, and strong models offer dimin- 633

ishing marginal returns. 634

4 Conclusion 635

We investigate the underlying mechanisms driving 636

apparent reasoning improvements in small-scale 637

LLMs during SFT. Our experiments show that state- 638

of-the-art small LLMs can approach or surpass 639

SOTA performance on five math benchmarks us- 640

ing only 10 random format-correct samples. This 641

suggests that gains may stem from surface-level for- 642

mat alignment rather than true reasoning advances. 643

Moreover, we identify three key factors influencing 644

SFT efficacy: (i) distributional alignment between 645

base and teacher model outputs matters most, while 646

teacher quality has limited effect; (ii) data scaling 647

yields diminishing returns without qualitative rea- 648

soning improvements; (iii) base model capability 649

determines format utilization: small but capable 650

models benefit most from aligned examples. These 651

findings indicate that current methods may overes- 652

timate reasoning ability, highlighting the need for 653

frameworks that distinguish format imitation from 654

genuine understanding. 655
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Limitations656

Our investigation is limited in two key aspects: (1)657

it focuses exclusively on SFT-based approaches,658

leaving open whether reinforcement learning or659

other training paradigms exhibit similar format660

bias susceptibility; and (2) it examines conven-661

tional step-by-step formats, omitting alternative662

structures like self-correction mechanisms. These663

limitations motivate future research directions ex-664

ploring the effects of format alignment in different665

training methodologies and the comparative effi-666

cacy of various formats.667
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A Detailed experimental results873

Model Datasets Avg.
MATH College Olympiad GSM8K GaokaoEn Omni-math

500 Math Bench 2023

1.5B Models
Qwen2.5-Math-1.5B 35.4 7.0 22.7 38.3 27.0 14.5 24.1
Qwen2.5-Math-1.5B +10 samples 71.8 43.7 35.3 48.1 61.3 21.1 46.9
Qwen2.5-Math-1.5B-Instruct 75.4 48.3 37.9 85.1 67.5 29.0 57.2

7∼8B Models
Qwen2.5-Math-7B 54.2 21.6 16.1 59.4 37.5 18.3 34.5
Qwen2.5-Math-7B+10 samples 81.2 47.9 38.8 84.2 68.1 23.6 57.3
Qwen2.5-Math-7B-Instruct 83.2 47.0 41.2 95.7 68.6 30.2 61.0
DeepSeek-Math-7B 12.4 7.6 2.5 21.9 11.7 3.0 9.9
DeepSeek-Math-7B + 10 samples 12.4 7.6 2.5 21.8 13.8 3.0 10.2
DeepSeek-Math-7B-Instruct 45.6 31.0 13.5 82.2 42.1 12.1 37.8
Qwen2.5-7B 60.4 30.8 28.9 65.8 47.0 21.5 42.4
Qwen2.5-7B+10 samples 69.8 43.6 34.7 88.6 57.1 24.2 53.0
Qwen2.5-7B-Instruct 76.8 46.8 39.6 92.5 65.2 26.6 57.9
Llama-3.1-8B 4.4 2.9 1.9 5.5 4.9 2.0 3.6
Llama-3.1-8B + 10 samples 16.4 8.4 4.3 17.3 17.1 3.9 11.2
Llama-3.1-8B-Instruct 50.8 30.9 14.4 83.3 40.8 13.2 38.9
Mathstral-7B-v0.3 3.4 2.2 1.5 8.0 5.7 1.4 3.7
Mathstral-7B-v0.3 + 10 samples 3.8 2.2 1.5 8.9 5.7 1.6 3.9
Mathstral-7B-v0.3-Instruct 13.2 6.4 2.8 50.8 16.9 4.5 15.8

14B Models
Qwen2.5-14B 61.0 35.3 27.3 85.8 49.6 20.5 46.6
Qwen2.5-14B +10 samples 78.0 46.6 39.4 83.4 64.2 25.5 56.2
Qwen2.5-14B-Instruct 80.0 47.9 43.3 94.9 66.8 28.9 60.3

32B Models
Qwen2.5-32B 59.2 37.8 29.0 82.0 50.1 19.9 46.3
Qwen2.5-32B + 10 samples 69.8 41.4 32.4 68.6 67.0 22.9 50.3
Qwen2.5-32B-Instruct 83.8 48.7 44.4 95.9 70.1 31.9 62.5

∼ 70B Models
Qwen2.5-Math-72B 79.4 44.7 43.7 86.9 64.9 35.4 59.2
Qwen2.5-Math-72B + 10 samples 81.0 44.1 44.4 87.0 63.9 35.0 59.2
Qwen2.5-Math-72B-Instruct 85.6 49.6 48.7 95.9 70.9 32.9 63.9
Llama-3.1-70B 17.4 7.2 2.2 40.2 18.4 4.5 15.0
Llama-3.1-70B +10 samples 18.8 8.6 2.2 43.1 22.9 4.7 16.7
Llama-3.1-70B-Instruct 50.8 32.0 25.6 84.2 39.0 15.0 41.1

Table 2: SFT results trained on different base models

Table 2 reports the detailed evaluation results of different base models fine-tuned on 10 examples874

distilled from Qwen2.5-Math-7B-Instruct. We evaluate the resulting models on 6 mathematical reasoning875

benchmarks to assess the effectiveness of this high-quality supervision. The average performance across876

the five benchmarks, as shown in the final column of Table 2, corresponds directly to the data points877

plotted in Figure 5.878
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Base Model Teacher Models Datasets Avg.
MATH College Olympiad GSM8K GaokaoEn Omni-math

500 Math Bench 2023
Qwen2.5-Math-7B Qwen2.5-Math-7B-

Instruct
81.2 47.9 38.8 84.2 68.1 23.6 57.3

Llama-3.1-8B-
Instruct

61.2 40.2 12.6 81.5 48.6 20.8 44.1

DeepSeek-Math-7B-
Instruct

46.2 34.5 11.1 51.9 29.1 20.1 32.2

Qwen2.5-Math-72B-
Instruct

83.4 44.0 40.9 71.9 60.8 12.0 52.2

Llama-3.1-70B-
Instruct

51.8 21.4 13.2 40.7 46.2 9.2 30.4

DeepSeek-R1 42.6 18.0 12.0 52.7 42.9 18.8 31.2

Qwen2.5-Math-7B-
Instruct

83.2 47.0 41.2 95.7 68.6 30.2 61.0

Llama-3.1-8B Qwen2.5-Math-7B-
Instruct

16.4 8.4 4.3 17.3 17.1 3.9 11.2

Llama-3.1-8B-
Instruct

8.0 8.4 3.1 19.6 6.8 3.0 8.2

DeepSeek-Math-7B-
Instruct

15.0 13.9 3.7 25.2 13.2 4.2 12.5

Qwen2.5-Math-72B-
Instruct

11.2 8.1 2.8 41.1 15.3 3.5 13.7

Llama-3.1-70B-
Instruct

10.0 9.2 3.4 30.8 12.2 3.3 11.5

DeepSeek-R1 9.2 6.4 3.4 36.0 14.8 4.0 12.3

Llama-3.1-8B-Instruct 50.8 30.9 14.4 83.3 40.8 13.2 38.9

Qwen2.5-Math-72B Qwen2.5-Math-7B-
Instruct

81.0 44.1 44.4 87.0 63.9 35.0 59.2

Llama-3.1-8B-
Instruct

78.2 44.5 43.3 86.8 63.9 35.4 58.7

DeepSeek-Math-7B-
Instruct

78.4 44.5 44.6 87.3 65.7 35.1 59.3

Qwen2.5-Math-72B-
Instruct

80.0 44.6 44.4 87.3 62.6 35.2 59.0

Llama-3.1-70B-
Instruct

79.6 44.4 43.0 86.5 62.6 35.0 58.5

DeepSeek-R1 80.8 44.8 43.0 86.7 62.1 34.9 58.7

Qwen2.5-Math-72B-
Instruct

86.0 49.7 48.4 95.8 73.2 32.9 64.3

Table 3: SFT results trained on various teacher-generated distilled data

Table 3 presents the full evaluation results of different base models fine-tuned on 10 examples distilled 879

from different teacher models. Each distilled example is both correctly formatted and contains the correct 880

final answer. The table reports the performance of the resulting SFT models on 6 mathematical reasoning 881

benchmarks. The average accuracy across these benchmarks, shown in the rightmost column of Table 3, 882

corresponds to the values plotted in Figure 3, enabling a direct comparison of teacher-specific effects on 883

downstream reasoning performance. 884
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Base Model Average Training Samples from Each Subset Datasets

MATH College Olympiad GSM8K Avg.
500 Math Bench

Qwen2.5-Math-7B 2 80.4 44.0 37.4 87.6 62.4
10 82.2 47.1 41.3 90.5 65.3
25 80.0 47.2 39.3 90.1 64.2
125 77.6 47.5 40.0 90.4 63.9
500 78.2 47.1 38.5 89.2 63.3

1000 80.0 47.4 39.4 90.1 64.2
1500 78.0 47.4 37.8 89.8 63.3
2000 78.2 47.5 40.3 89.9 64.0
2500 79.8 47.4 41.0 88.7 64.2

Qwen2.5-Math-7B-Instruct - 83.2 47.0 41.2 95.7 66.8

Table 4: Performance of models trained on different data sizes

Table 4 reports the evaluation results of the Qwen2.5-Math-7B model fine-tuned on mixed SFT data885

of varying scales. Each row corresponds to a different data volume, and the model is evaluated on 4886

mathematical reasoning benchmarks. The average performance across these benchmarks, shown in the887

rightmost column, is used to generate the trend shown in Figure 4. Due to the limited availability of888

correctly formatted and answer-correct samples for GaokaoEn 2023 and Omni-math, these datasets were889

not included in the mixed SFT training data. As a result, we also exclude these two datasets from the890

evaluation in this setting.891
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