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ABSTRACT

Humans can naturally decompose scenes into understandable objects, resulting
in strong visual comprehension ability. In light of this, Object-Centric Learning
(OCL) seeks to explore how to construct object-level representations by encod-
ing the information of objects in the scenes into several object vectors referred to
as ‘slots’. Current OCL models rely on an auto-encoding paradigm that encodes
the image feature into slots and reconstructs the images by composing the slots.
However, merely reconstruction objectives do not guarantee that each slot exactly
corresponds to a holistic object. Existing methods often fail when objects have
complex appearances because the reconstruction objective cannot indicate which
pixels should be assigned to the same slot. Therefore, additional regularization
based on a more general prior is required. For this purpose, we draw on the gestalt
ability that humans tend to complete a broken figure and perceive it as a whole,
and propose Predictive Prior that features belonging to the same object tend to be
able to predict each other. We implement this prior as an external loss function,
demanding the model to assign features that can predict each other to the same
slot, and vice versa. With experiments on multiple datasets, we demonstrate that
our model outperforms previous models by a large margin in complex environ-
ments where objects have irregular outlines and intense color changes, according
to various tasks including object discovery, compositional generation, and visual
question & answering. Visualization results verify that our model succeeds in dis-
covering objects holistically rather than dividing them into multiple parts, proving
that Predictive Prior gives a more general object definition. Code is available at
https://anonymous.4open.science/r/PredictivePrior-32EF.

1 INTRODUCTION

The world is highly compositional. Individual objects make up visual scenes. Humans have devel-
oped object vision that allows for understanding complex visual scenes by breaking them down into
individual objects (Kahneman et al., 1992). Such structural representations with objects as the base
unit are crucial for many important visual properties, such as systematic generalization (Kuo et al.,
2021), compositional generation (Singh et al., 2021), and visual reasoning (D’Amario et al., 2022).
However, extracting objects from unstructured RGB pixels is unnatural for neural networks. To ad-
dress this problem, Object-Centric Learning (OCL) is proposed to include the concept of objects in
the network design explicitly. Formally, object-centric models are trained to represent images with
a set of latent object vectors which are often referred to as ‘slots’ (Greff et al., 2019; Locatello et al.,
2020; Burgess et al., 2019), where each slot contains the information of an individual object.

Current mainstream OCL models follow a slot-based auto-encoding structure (Locatello et al., 2020)
that encodes image features into several slots and reconstructs images with these slots. However,
merely auto-encoding objective does not guarantee the correspondence between slots and objects.
Since objects do not naturally emerge from pixels, the models need prior information to discover
object regions. Previous work (Singh et al., 2021; Seitzer et al., 2022) observed that models that
reconstruct raw RGB pixels rely on color bias and tend to assign regions with gentle color change to
a slot. Although color trends inside objects are commonly gentle, this doesn’t always work. Instead,
the simple color bias may lead to inferior binding in more complex scenarios. For example, in Fig.3,
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Figure 1: From gestalt ability to Predictive Prior. Human vision can complete objects: If we
eliminate object parts (e.g., faces of the cube) from the image, it is feasible to recover the eliminated
part with the remaining part. However, when we eliminate a holistic object (e.g., the red ball), its
information is difficult to infer from its surroundings. This helps us distinguish between objects and
parts, i.e. image features belonging to the same object tend to be able to predict each other. Based
on this property, we propose Predictive Prior to predict among image features, requiring the model
to assign features with stronger prediction relationships to the same slot.

we observe that objects are often divided into multiple parts rather than being identified holistically
in MOVi-C. In addition, in the models that introduce DINO features (Seitzer et al., 2022) or diffusion
decoders (Jiang et al., 2023), slots may be bound to fixed spatial locations rather than objects. The
examples in Fig.3 show the case in Super-CLEVR (Li et al., 2023) and PTR (Hong et al., 2021)
where these models can only provide trivial segmentations. Therefore, more general priors are
required to capture object representations across various scenarios.

In this paper, we draw on human’s gestalt ability to propose Predictive Prior that distinguishes ob-
jects according to the prediction relationship between image features. It has been pointed out that
humans tend to complete broken figures in the process of visual perception (Spelke, 1990; Wage-
mans et al., 2012). Similarly, the success of neural networks in processing occluded objects (Xie
et al., 2022; Ozguroglu et al., 2024) shows that self-supervised features have the potential to infer
about invisible object parts. Based on this fact, we propose Predictive Prior, that is, image features
belonging to the same object tend to be able to predict each other and vice versa. For example, as
is shown in Fig.1, we can use one face of a cube to infer the position and appearance of other faces,
but we cannot infer whether there is a sphere nearby. Predictive Prior promotes the models to assign
features with stronger prediction relationships to the same slot, thus discovering individual objects.
Specifically, we train a prediction network that uses a given feature to predict features in other spa-
tial locations. The prediction network gives a quantitative constraint that if two features can predict
each other well, they should be assigned to the same slot. Therefore, when training OCL models,
we construct supervision on the object masks by selecting features and mask pairs with randomly
sampled spatial locations. The mask pairs are supervised according to the Predictive Priors between
the features: high Predictive Priors indicate similar masks, and vice versa.

We evaluate our proposed method on multiple datasets including MOVi-C (Greff et al., 2022), Super-
CLEVR (Li et al., 2023), and PTR (Hong et al., 2021) that cover various multi-object scenarios
composed of complex objects such as vehicle models, furniture, or realistic objects. The shapes
and colors of the objects in these datasets are irregular, making it challenging to identify objects
holistically. We evaluate the models on various tasks to demonstrate the model’s improvement in
object-centric representations. First, we focus on the unsupervised object discovery task where we
show that Predictive Prior brings about clearer object definition, solving the problem that previous
methods tend to divide objects into multiple parts in complex scenes. Second, we introduce the
compositional generation task to verify that the model can store objects in the slots holistically
and compose them into new scenes. Our model generates clear images without obtrusive object
parts. Third, we adopt the visual question & answering task to demonstrate that the slots contain
high-level semantics of their corresponding objects. We verify that the VQA performance has a
strong correlation with the object-centric representations, and the improvement is significant in the
problem of the attribute of a target object. Finally, we analyze multiple priors proposed by previous
segmentation research in the ablative experiment and verify the superiority of Predictive Prior.
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To sum up, current object-centric models are poor at processing complex objects due to the lack
of general prior. The model’s structural inductive bias, e.g., color bias, is not sufficient to identify
objects with irregular appearances. Therefore, additional supervision is required to learn object-
centric representations. For this purpose, we propose the Predictive Prior that utilizes the prediction
relationship between self-supervised features to judge whether these features come from the same
object and construct a loss function based on Predictive Prior. We conduct experiments over multiple
datasets and tasks and show that Predictive Prior largely enhances the object-centric representations.

2 RELATED WORK

Object-Centric Representation Learning. OCL attempts to perceive environments in terms of
object-based elements. Mainstream OCL methods follow an auto-encoding paradigm that first en-
codes input signals into several slots and reconstructs input with these slots. Earlier works, including
IODINE (Greff et al., 2019), MONet (Burgess et al., 2019) and GENESIS (Engelcke et al., 2019),
accomplish this task by using multiple encoder-decoder structures. Slot-Attention (Locatello et al.,
2020) proposed an iterative attention mechanism that allows slots to compete for image segments.
Follow-up studies improve the slot-attention-based model from several aspects to adapt OCL to
complex scenes. BO-QSA (Jia et al., 2023), I-SA (Chang et al., 2022) and InvariantSA (Biza et al.,
2023) focus on query optimization, which uses learnable parameters to initialize slots instead of
random sampling. SLATE (Singh et al., 2021) and LSD (Jiang et al., 2023; Wu et al., 2023) attempt
to improve the decoder structure, introducing transformer-based and diffusion-based decoders to en-
hance the model’s reconstruction ability. DINOSAUR (Seitzer et al., 2022) proposes to replace the
RGB pixel reconstruction objective with the output feature of DINO (Caron et al., 2021).

Exploring prior knowledge to discover objects. Slot-based models contain the structural prior that
pixels with similar features such as locations and colors tend to be assigned to the same slot (Singh
et al., 2021; Seitzer et al., 2022), thus achieving success on simple synthetic datasets (Johnson et al.,
2016; Kabra et al., 2019; Karazija et al., 2021) while degrading largely on more complex scenes.
In addition, the auto-encoding objective does not indicate object representations, i.e. minimizing
reconstruction losses does not necessarily result in better object-centric representations. A promis-
ing approach to address this problem is introducing stronger prior knowledge to define and repre-
sent objects. LearnToCompose (Jung et al., 2024) enhances the compositional generation ability
of object-centric models with the generative prior of diffusion model, making the image generated
by slot composition more reasonable. VideoSAUR (Zadaianchuk et al., 2024) leverages inter-frame
feature similarity to capture moving objects. Unsupervised segmentation studies (Wang et al., 2023;
Hamilton et al., 2022; Lan et al., 2024) also explore several methods to segment objects or semantic
classes based on feature similarity between self-supervised pre-training models. In this paper, we
will revisit how can self-supervised pre-training models guide object-centric representations.

3 METHOD

3.1 PRELIMINARY: SLOT-BASED OBJECT-CENTRIC MODEL

Our model follows previous object-centric models and adopts a slot-based structure that contains
three components. First, a backbone network Ebackbone encodes the input image I ∈ R3×H×W into
image features FI ∈ RCI×HI×WI . For CNN-based image encoders, a position embedding is added
to FI. Second, a slot encoder ES extracting K slots S ∈ RK×CS from FI. Typically, the slot encoder
repeats several times to calculate the attention between FI and S and updates S with a GRU cell:

A(FI,S) = softmax(
K(FI) · Q(S)T√

CS

, axis = S),

U = A(FI,S)
T · V(FI),

S← GRU(S,U),

(1)

where Q,K,V represents linear projections to acquire queries, keys, and values. Finally, a slot
decoder DS decodes slots into reconstructions R ∈ R3×H×W . DS also generates an assignment
mask α to show which slot each pixel is assigned to. For mixture-based decoders (Watters et al.,
2019), we use the object mask generated by the decoder as α. For transformer-based decoders
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Figure 2: Object-Centric Learning Framework with Predictive Prior. The input images pass
through two pathways. The first is the auto-encoding path that encodes the images into slots and
uses a slot decoder to produce reconstruction and mask for each slot. The second path generates
the Predictive Prior that supervises the object masks. A self-supervised encoder first extracts pre-
trained features from the images. Feature pairs are sampled with random spatial locations, and the
Predictive Prior is computed by letting them predict each other. Masks at the same spatial locations
are supervised by the Predictive Prior: they are pulled in when the value of Predictive Prior is higher
than a preset threshold, otherwise, they are pulled away.

(Singh et al., 2021), we use the attention map of the last attention layer. Models are optimized by
minimizing the reconstruction loss between R and I. We use L1 loss and perceptual loss (LPIPS)
(Zhang et al., 2018) as the reconstruction loss. The training loss is written as:

Lrec := ∥R− I∥1 + LPIPS(R, I) (2)

3.2 PREDICTIVE PRIOR DEFINES OBJECTS

As is discussed in Sec.1, neural networks have the potential to predict object parts with features
from other parts. Therefore, we propose Predictive Prior to represent semantic correlations between
features. Intuitively, two features belonging to the same object tend to share high mutual information
to predict each other. Otherwise, they may contain almost no information about each other.

To achieve this intuition, we design a constraint that promotes the model to assign features that can
predict each other to the same slot. Specifically, we first utilize a self-supervised pre-trained model
Eθ, such as DINO, to extract features Fθ ∈ RCθ×Hθ×Wθ from the images I:

Fθ = Eθ(I). (3)

A prediction network P is trained to predict between feature pairs: We sample a feature pair fs and
ft from F with a pair of random spatial locations (xs, ys) and (xt, yt). During training, P takes fs
and (xt, yt) as input and output a predicted feature fp. P is optimized by minimizing the cosine
distance between ft and fp. Formally,

xs, ys, xt, yt ∼ U(−1, 1),
fs, ft = Sample(Fθ, (xs, ys)),Sample(Fθ, (xt, yt)),

fp = P(fs, xt, yt),

Lpred = 1− CosSim(fp, ft),

(4)
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where ‘U’ stands for a uniform distribution, ‘Sample(F, (x, y))’ stands for the grid sampling op-
eration that sample from F according to the coordinate (x, y), and ‘CosSim’ stands for cosine
similarity. After trained done, P is frozen and used to define whether two features belong to the
same objects. Unlike the training process, we perform a bi-directional prediction in this stage: for
fs and ft sampled from F, the prediction network predicts fs with ft and ft with fs, acquiring
two prediction similarity Sims→t and Simt→s, where the smaller one represents the Predictive Prior
Ppred between fs and ft:

Sims→t = CosSim(P(fs, xt, yt), ft),

Simt→s = CosSim(P(ft, xs, ys), fs),

Ppred(fs, ft) = min(Sims→t,Simt→s).

(5)

We adopt the bi-directional prediction setting because Ppred should be symmetric, i.e.,
Ppred(fs, ft) = Ppred(ft, fs). In addition, we observe that features from different semantic parts
have different difficulties in predicting. For example, background features are generally easier to
predict than foreground objects. Therefore, we select the smaller prediction similarity so that a large
Ppred only occurs when both fs and ft can predict each other well.

3.3 OBJECT-CENTRIC LEARNING WITH PREDICTIVE PRIOR

Since the reconstruction loss does not indicate object information, previous OCL models with only
auto-encoding optimization objectives highly depend on the matching between model structure and
dataset. As a result, they often fail to capture valid object representations in complex scenes.

A crucial observation is that there is a strong correlation between the accuracy of the assignment α
and the models’ object-centric representations: More accurate α commonly indicates better object
representations. Therefore, we use the proposed Predictive Prior to construct a constraint that pro-
motes α to fit holistic objects: We introduce a threshold τ and require features with a Predictive
Prior higher than τ to be assigned to the same slot and vice versa. Technically, we find that directly
attaching the constraint to α may make α hard to optimize. Therefore, to achieve better supervision,
we introduce an independent segmentation branch to learn a segmentation mask M, and then use M
to supervise α. Specifically, we use a shallow convolutional network to restore the image features
FI to the resolution of the original image, and then obtain M through the inner product between the
upsampled feature and the slots S. For each image, we randomly sample N pairs of spatial positions
(xs, ys), (xt, yt) and use grid sampling to sample fs, ft from Fθ as well as ms,mt from M. Finally,
the model is supervised with

Lprior := ((Ppred(fs, ft)−τ )∗10).clamp(−1, 1)∗(1−CosSim(ms,mt))+∥SG(M)−α∥1, (6)

where SG(·) represents the stop-gradient operation, and clamp(a, b) is a PyTorch-style function
that truncates values exceed the [a, b] range to a and b. When Ppred(fs, ft) is larger than τ , ms and
mt should have a cosine similarity that is close to 1, indicating that they are assigned to the same
slot. Otherwise, their cosine similarity should be close to 0, representing different assignments. The
overall objective is then formulated as

L = Lrec + λpriorLprior, (7)

4 EXPERIMENTS

Datasets. We compare our model with other SOTA object-centric models on MOVi-C (Greff et al.,
2022), Super-CLEVR (Li et al., 2023) and PTR (Hong et al., 2021). Each image from MOVi-C
contains a random HDRI from Poly Haven as the background and several realistic everyday objects
from the Google Scanned Objects (GSO) dataset (Downs et al., 2022). Super-CLEVR and PTR
respectively introduce vehicle and furniture models into the CLEVR (Johnson et al., 2016) scene
to create more challenging situations. For MOVi-C, we resize the image to 224 × 224 resolution.
For Super-CLEVR and PTR, we crop the center part of the image and resize the cropped image to
128× 128. The RGB values of all the images are normalized to [-1,1].

Predictive Prior Computation. For MOVi-C, we use a DINO pre-trained ViT-Small with patchsize
8 as the encoder Eθ to extract pre-trained features Fθ. For Super-CLEVR and PTR, given that they
have a large domain gap with the data used for DINO training, we trained an MAE from scratch with
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Figure 3: Unsupervised object discovery results. Our model shows far greater segmentation accu-
racy than other methods. It adapts well to different datasets, accurately demarcating the background
and identifying the objects holistically.

Table 1: Unsupervised object discovery comparison. ‘ARI’ in the table refers to ‘ARI-FG’ that
only considers foreground pixels. ‘mIoU’ and ‘mBO’ are metrics that consider backgrounds. Higher
is better for all the metrics.

Model MOVi-C Super-CLEVR PTR
ARI mIoU mBO ARI mIoU mBO ARI mIoU mBO

BO-QSA (Jia et al., 2023) 58.62 44.90 46.77 70.33 57.17 57.44 66.01 63.55 65.26
InvariantSA (Biza et al., 2023) 33.72 26.06 26.94 67.28 58.50 58.86 69.36 33.98 38.28

DINOSAUR (Seitzer et al., 2022) 67.82 31.16 38.18 59.52 15.29 15.59 63.80 16.16 17.57
LSD (Jiang et al., 2023) 51.98 44.19 45.57 53.05 13.15 13.38 62.22 41.16 41.34

ours 74.80 59.32 60.47 86.91 60.74 61.02 70.43 70.81 71.48

images from these datasets to provide Fθ. The prediction network is a simple 6-layer MLP with a
hidden dim of 768. It takes the concatenation of the source features and the position embedding of
target features as input and outputs the prediction of target features.

Object-Centric Framework Setting. For the object-centric model, we adopt ResNet-34 on Super-
CLEVR and PTR, and ViT-Small with patchsize 8 on MOVi-C as the backbone network Ebackbone.
We choose BO-QSA module (Jia et al., 2023) as the slot encoder ES. The number of slots K is set to
11 for Super-CLEVR and MOVi-C and 7 for PTR, i.e., the maximum number of objects in an image
plus one (for backgrounds). For Super-CLEVR and PTR, we use a mixture-based slot decoder that
independently decodes each slot into an RGB reconstruction and an alpha mask, and composes the
final reconstruction through alpha blending. For MOVi-C, we use a transformer-based decoder that
integrates the information from slots through multiple cross-attention layers. The attention map
from the last layer is taken as the object mask.

Compared models. As mentioned in Sec.2, previous methods improve the slot-based model from
three aspects: improving the slot-attention module, introducing more capable decoder modules, and
changing the reconstruction target from RGB pixels to other signals. We choose SOTA models
from these three directions, i.e., InvariantSA and BO-QSA which improve the slot attention mod-
ule, DINOSAUR which changes the reconstruction target to DINO features, as well as LSD which
introduces the diffusion decoder, to compare with our model. For a fair comparison, apart from
the improved component of these methods, the rest components remain consistent with our model.
For example, LSD improves the object-centric model with a diffusion decoder, while the backbone
network and the slot encoder are the same as our model.
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Figure 4: Compositional generation results. The first row is images from the datasets, and the rest
are the generated samples of models by composing slots extracted from multiple images.

Table 2: Reconstruction and Compositional generation comparison. We compare with object-
centric models that have generative capability. Lower is better for all the metrics.

Model MOVi-C Super-CLEVR PTR
FID MSE LPIPS FID MSE LPIPS FID MSE LPIPS

BO-QSA (Jia et al., 2023) 34.96 154 0.222 17.88 31 0.064 16.46 40 0.098
InvariantSA (Biza et al., 2023) 163.94 484 0.421 25.15 38 0.129 42.21 56 0.154

LSD (Jiang et al., 2023) 69.12 661 0.404 74.68 51 0.171 37.30 58 0.151
ours 24.08 147 0.218 15.74 31 0.059 12.98 39 0.093

Evaluation Benchmarks. We adopt multiple tasks to evaluate the object-centric representations
learned by the model. First, we evaluate the unsupervised object discovery task to test the model’s
ability to distinguish objects by calculating ARI-FG, mIoU, and mBO between the ground truth
and the object mask predicted by the model. After that, we use the reconstruction metrics MSE and
LPIPS to evaluate the clarity of images generated by the model, as well as introduce the compo-
sitional generation task, which randomly combines the slots extracted from the image to generate
new images, to evaluate whether the model can separate individual objects and composing them into
novel reasonable scenes. The compositional generation task is evaluated by FID score between 5000
generated images and the original datasets. Finally, considering that the object-centric model learns
through low-level reconstruction signals, we introduce the visual question & answering (VQA) task
on Super-CLEVR to examine whether slots can capture high-level semantics about objects. The
answering accuracy is used as the metric for the VQA task.

4.1 OBJECT-CENTRIC REPRESENTATIONS

4.1.1 UNSUPERVISED OBJECT DISCOVERY

A basic issue of object-centric learning is the object discovery task that evaluates the one-to-one
correspondence between objects and slots. Following previous works, we use ARI-FG, mIoU, and
mBO to evaluate how well the masks coincide with objects. Among these metrics, ARI-FG excludes
the background pixels during evaluation and tests whether a slot captures a holistic foreground ob-
ject. mIoU and mBO further demand the model to distinguish between objects and backgrounds.

We show the quantitative results in Tab.1. Our model creates a significant performance gap com-
pared to other models. In MOVi-C, we exceed the previous best score by 6.98, 14.42, and 13.80
according to ARI-FG, mIoU, and mBO. In PTR, the advantage is 4.42, 7.26 and 6.22. In Super-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

CLEVR, our ARI-FG outperforms other best models by 16.58, and the boosts of mIoU and mBO
are 3.57 and 3.58.

A notable observation is that the reconstruction signal has a great influence on the object representa-
tions learned by the models. Our model presents a pattern that reconstructs RGB pixels while con-
structing constraints on the masks with self-supervised features to optimize object representations,
which allows our model to adapt to various datasets and significantly improve performance. By
contrast, BO-QSA and InvariantSA reconstruct the raw RGB pixel, leading to high performance on
Super-CLEVR, but degrading with the increasing scene complexity. DINOSAUR introduces DINO
features as reconstruction targets, which adapt well on MOVi-C, but fail on Super-CLEVR and PTR.
Similarly, LSD that introduces VAE code works on MOVi-C and PTR but fails on Super-CLEVR.
We further show the visualized comparison in Fig.3, which is consistent with the quantitative results.
Our model solves the problem that BOQSA is sensitive to color change on Super-CLEVR and PTR,
which tends to divide objects with large inter-color differences into multiple parts. For MOVi-C,
there are large object size differences between objects, e.g., the object in the third image in Fig.3
takes up more than half of the image area. Our model is the only one that successfully segments the
holistic object. Other models make mistakes on large objects and are often susceptible to secondary
factors such as shadows.

4.1.2 RECONSTRUCTION AND COMPOSITIONAL GENERATION

A critical property of object-centric models is that the slots are independent and interchangeable,
thus allowing for a natural ability to generate novel images by combining slots extracted from given
images. Therefore, we further evaluate the object representations with reconstruction and composi-
tional generation tasks. We use two reconstruction metrics, MSE and LPIPS, to evaluate the clarity
of generated images, as well as the generation metrics FID to judge whether the model can generate
reasonable images through free combinations of slots.

We find that models with better segmentation performance in Tab.1 also generate images with better
quality through compositional generation, according to the FID score and reconstruction metrics in
Tab.2. The visualization results are shown in Fig.4. Our model presents distinct object properties
across all datasets and succeeds in composing new scenes using holistic objects. Other models show
inferior results. The appearance of the object in the image generated by LSD is distorted, making
it hard to distinguish the objects. InvariantSA succeeds in composing objects on SuperCLEVR,
but deteriorates significantly on MOVi-C and only generates meaningless color blocks. BO-QSA
generates better results than the first two, but parts of the object appear separately in the generated
image in all the datasets, which have been circled in the results of BOQSA in Fig.4. A notable
example is the train model in Super-CLEVR, where BOQSA tends to separate the roof and body
due to their different colors, resulting in a separate roof appearing in the generated images. Our
model succeeds in avoiding this error. For better illustration, we present the original train model on
the first line and give the results that our model and BOQSA generated using this model respectively.

4.1.3 VISUAL QUESTION & ANSWERING

Table 3: Super-CLEVR VQA Accuracy.
‘count’, ‘attr’ and ‘judge’ represents ques-
tions with an answer of a number, an at-
tribute, or a judgment.

Model Super-CLEVR
count attr judge overall

LSD 49.24 36.71 61.79 49.94
InvariantSA 43.78 54.96 63.14 55.86

BO-QSA 51.41 57.86 65.15 59.38
ours 51.90 62.42 65.71 61.35

Previous tasks have proved that our model succeeds in
discovering objects and generating novel images with
the appearance information in the slot. Here we in-
troduce the visual question & answering (VQA) task
to further demonstrate that the quality of object-centric
representations is associated with the model’s ability
to capture high-level semantics. We adopt the ALOE
(Ding et al., 2021) structure to accomplish VQA with
the slots of each model.

We provide the VQA performance on Super-CLEVR
in Tab.3 and divide the questions into three categories,
i.e., count, attr and judge, which respectively repre-
sent questions with answers are the number of objects
that meet the requirements, an attribute of an object, and whether a proposition is correct. Differ-
ent models show significant performance differences in VQA, and we see a link between VQA and
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(a) (b)

Figure 5: Feature pair samples. (a) Cosine similarity and Predictive Prior between feature pairs
sampled from MOVi-C. Red and blue represents whether the features come from the same object.
In the black dashed box, the Predictive Prior showed better discrimination than cosine similarity.
(b) Examples of feature pairs with low cosine similarity (<0.3) and high Predictive Prior (>0.5).

object-centric representation: Models that achieve better performance in object discovery tasks also
have higher accuracy in VQA. By breaking down the tasks, we find that the largest performance
margin occurs in attribute-related tasks that require the model to find a unique object and answer a
property of it, which best embodies the object-centric representations of the models.

4.2 ABLATION AND ANALYSIS STUDIES

4.2.1 SUPERIORITY OF PREDICTIVE PRIOR

Our work focuses on optimizing the model by exploring the relationships between self-supervised
features and constructing constraints on the object masks generated by the model. Compared to
Predictive Prior, a more fundamental prior is the cosine similarity between features, which has been
widely adopted in segmentation tasks as mentioned in Sec.2. Here we provide a comparison when
using similarity-based priors instead of Predictive Prior. Two kinds of priors are considered, i.e.
STEGO (Hamilton et al., 2022) and SmoothSeg (Lan et al., 2024). STEGO proposes a distillation
method to learn low-rank compact representations from the self-supervised features, while SmooSeg
proposes to assign similar labels to patches with similar features. The results are given in Tab.4. In
the first row, we provide the performance of the baseline model trained with only reconstruction loss,
which is consistent with the performance of BO-QSA in Sec.4.1.1. As is shown in Tab.4, Predictive
Prior provides the highest gain across all the datasets.

Table 4: Ablative experiment on the Predictive Prior. We combine object-centric models with priors
proposed in previous segmentation research and compare them with Predictive Prior.

Model MOVi-C Super-CLEVR PTR
ARI mIoU mBO ARI mIoU mBO ARI mIoU mBO

baseline 58.62 44.90 46.77 70.33 57.17 57.44 66.01 63.55 65.26
baseline + STEGO 55.24 53.38 53.97 70.18 54.22 56.22 67.36 66.62 67.45
baseline + SmooSeg 70.61 52.40 53.76 66.07 57.78 58.31 66.45 63.80 65.39
baseline + Predictive Prior 74.80 59.32 60.47 86.91 60.74 61.02 70.43 70.81 71.48

Fig.5 provides further insight into this result. In Fig.5(a) we sample 3000 DINO feature pairs from
MOVi-C. Each point represents a feature pair, whose horizontal and vertical coordinates respectively
represent the cosine similarity and Predictive Prior between the feature pair. The color of points
indicates whether the pair of features comes from the same objects. Red points represent that the
features belong to different objects, while blue points represent the same one. Predictive Prior
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divides the sample better than cosine similarity. To illustrate the superiority of Predictive Prior, we
have marked the region with cosine similarity between 0 and 0.4 with a black dashed box. Samples
in this region are difficult to divide by similarity but can be distinguished according to Predictive
Prior. In Fig.5(b) we give several samples of feature pairs from the same object with low similarity
but high Predictive Prior. Such conditions often occur at the edges, where the features change
dramatically, affecting the cosine similarity. In addition, such conditions also occur in objects with
complex appearance. For example, on a box printed with a face (the second image in Fig.5(b)), the
face part and the box body part share low cosine similarity, but high Predictive Prior.

4.2.2 A HEURISTIC FOR SELECTING PROPER THRESHOLD

Figure 6: Heuristic for selecting threshold. The
total length of the columns in the figure represents
the distribution density of Predictive Prior, while
the red and blue parts represent the ratio of fea-
tures that belong to different objects or the same
object. The lines represent the variation of model
performance when the threshold τ varies in the
trough between the two peaks of the distribution.
The performances of the baseline model without
Predictive Prior are marked with the dashed line
of the corresponding color.

In our method, the threshold hyperparameter τ
is essential for distinguishing objects. High τ
tends to assign pixels to different slots, and vice
versa. Here we propose a simple heuristic to
find an appropriate τ and verify that the model
is robust to the value of the threshold.

We first compute the distribution of Predic-
tive Prior between feature pairs from MOVi-
C, which is presented as the total length of the
columns in Fig.6(a). Note that Predictive Prior
is distributed in a bimodal fashion. We further
mark the source of feature pairs according to
whether the features come from the same or dif-
ferent objects in the ground truth and represent
their ratio with the red and blue parts in each
column. As a result, they respectively corre-
spond to the higher and lower peaks, which is
intuitive because Predictive Prior tends to ap-
proach higher values for features from the same
object and lower for those from different ones.

Based on this pattern, a heuristic method is to
select the point with the lowest Predictive Prior distribution density between the two peaks as the
threshold. We verify on multiple datasets that the thresholds determined in this way are all around
0.3, so we choose 0.3 as the threshold for all our models. In addition, we verify the robustness
of our model to threshold in Fig.6(b), where we vary the thresholds in the range of [0.1, 0.5] and
record model performance using these thresholds. We observe that within [0.2, 0.4], the model’s
performance only fluctuates by about 2% according to ARI-FG and mIoU. Even when τ is set to
0.1 or 0.5, the model maintains much higher performance compared to the baseline model without
Predictive Prior whose performance is marked with the dashed line. We demonstrate that the model
performance is robust to the varying threshold τ .

5 CONCLUSION

Current object-centric models struggle with generalizing to complex scenes. We attribute this weak-
ness to the fact that existing models lack effective prior information to identify holistic objects, lead-
ing to failure in complex scenes where objects are poorly defined. To address this issue, we draw
on human’s gestalt ability to construct Predictive Prior based on the intuition that we can infer from
one part of an object about other parts. We design a loss function that requires the model to assign
the same masks to features that can predict each other and vice versa. Our experiments demonstrate
that Predictive Prior significantly improves the model’s ability to process objects with the growth of
image complexity. On multiple datasets, we show the model’s ability to extract individual objects
and recompose them into new images while avoiding the problem that object parts may appear in
the generated images. In general, our approach uses prediction relationships to construct supervision
signals and guide object-centric representations, which we believe is a more successful practice of
pushing object-centric learning to complex scene applications.
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