Under review as a conference paper at ICLR 2023

THE GANFATHER: CONTROLLABLE GENERATION OF
MALICIOUS ACTIVITY TO EXPOSE DETECTION
WEAKNESSES AND IMPROVE DEFENCE SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning methods to aid defence systems in detecting malicious activity
typically rely on labelled data. In some domains, such labelled data is unavailable
or incomplete. In practice this can lead to low detection rates and high false posi-
tive rates, which characterise for example anti-money laundering systems. In fact,
it is estimated that 1.7—4 trillion euros are laundered annually and go undetected.
We propose The GANfather, a method to generate samples with properties of ma-
licious activity, without label requirements. To go around the need for labels, we
propose to reward the generation of malicious samples by introducing an extra ob-
jective to the typical Generative Adversarial Networks (GANs) loss. Ultimately,
our goal is to enhance the detection of illicit activity using the discriminator net-
work as a novel and robust defence system. Optionally, we may encourage the
generator to bypass pre-existing detection systems. This setup then reveals defen-
sive weaknesses for the discriminator to correct. We evaluate our method in two
real-world use cases, money laundering and recommendation systems. In the for-
mer, our method moves cumulative amounts close to 250 thousand dollars through
a network of accounts without being detected by an existing system. In the latter,
we recommend the target item to a broad user base with as few as 30 synthetic
attackers. In both cases, we train a new defence system to capture the synthetic
attacks.

1 INTRODUCTION

Many aspects of our society become increasingly dominated by digital systems, in turn providing
new opportunities for illicit actors. For example, digital banking enables clients to open bank ac-
counts more easily but also facilitates complex money laundering schemes. It is estimated that
undetected money laundering activities worldwide accumulate to €1.7—4 trillion annually (Lannoo
& Parlour, |2021)), while operational costs related to anti-money laundering (AML) compliance tasks
incurred by financial institutions accumulate to $37.1 billion (Rayl 2021). Another example are
recommender systems, which are often embedded in digital services to deliver personalised experi-
ences. However, recommender systems may suffer from injection attacks whenever malicious actors
fabricate signals (e.g., clicks, ratings, or reviews) to influence recommendations. These attacks have
detrimental effects on the user experience. For example, a one-star decrease in restaurant ratings can
lead to a 5 to 9 percent decrease in revenue (Luca, 2016).

The detection of such malicious attacks is challenging in the following aspects. In many cases,
these illicit activities are adversarial in nature, where an attacker and a defence system adapt to each
other’s behaviour over time. Additionally, labelled datasets are unavailable or incomplete in certain
domains due to the absence of natural labels and the cost manual of feedback. For example, besides
the large amount of undetected money laundering, the investigation of detected suspicious activity
is often far from trivial, resulting in a feedback delay that can last months.

To address these issues, we propose The GANfather, a method to generate examples of illicit ac-
tivity and train effective detection systems without any labelled examples. Starting from unlabelled
data which we assume to be predominantly legitimate, the proposed method leverages a GAN-like

Under review as a conference paper at ICLR 2023

O real B legit.
A generated W malic.

a) GAN b) cGAN c) Adversarial Attack d) Ours
L L]
© o4 o o4 o, o o° * 0.
o 26 0° o Lq0® A o % °,°
Oar 0 a ® ., e VA N °
o o ° A ® L4 Raward ®
o e © L Reward g ®
A o o] A ° A"
o a o A® Decision -

Figure 1: Comparing our method to some widely used approaches. (a) GAN: a vanilla GAN setup
does not require any labels, but one cannot choose the class of a generated sample since the distribu-
tion of the data is learned as a whole. (b) conditional GAN (cGAN): using a cGAN, one learns the
class-conditional distributions of the data, allowing the user to choose the class of a generated sam-
ple. However, labels are needed to train a cGAN. (¢) Adversarial Attack (evasion): starting from a
malicious example, perturbations are found such that a trained classifier is fooled and miss-classifies
the perturbed example. While labels are typically required to select the initial example as well to
train the classifier, eventually the adversarial attacks can be used to obtain a more robust classifier.
(d) Ours: our method has some desirable properties from the three previous approaches: no labels
are needed (as in a GAN), samples of a desired target class are generated (as in a cGAN) and a robust
detection system can be trained (as in adversarial training). The combination of these properties in
one framework is especially suitable in domains where no labelled data is available.

setup (Goodfellow et al.,[2014) to train a generator which learns to create malicious activity, as well
as a detection model learning to discriminate between real data and synthetic malicious data.

To be able to generate samples with malicious properties from legitimate data, our method includes
an additional optimisation objective in the training loss of the generator. This objective is a use-case-
specific, user-defined differentiable formulation of the goal of the malicious agents. Furthermore,
our method optionally allows to incorporate an existing defence system as long as a differentiable
formulation is possible. In that case, we penalise the generator when triggering existing detection
mechanisms. Our method can then actively find liabilities in an existing system while simultane-
ously training a complementary detection system to protect against such attacks.

Our system makes the following assumptions and has the following desirable properties (in a context
of adversarial attacks lacking labelled data):

No labelled malicious samples are needed. Here, we assume that our unlabelled data is predomi-
nantly of legitimate nature.

Samples with features of malicious activity are generated. The key to generate such samples
from legitimate data is to introduce an extra objective function that nudges the generator to produce
samples with the required properties. We implicitly assume that malicious activity shares many
properties with legitimate behaviour. We justify this assumption since attackers often mimic legit-
imate activity to some degree, in order to avoid raising suspicious or triggering existing detection
systems.

A robust detection system is trained. By training a discriminator to distinguish between the syn-
thetic malicious samples and real data, we conjecture that the defence against a variety of real mali-
cious attacks can be strengthened.

While each of these properties can be found separately in other methods, we believe that the com-
bination of all the properties in a single method is novel and useful in the discussed scenarios.
In Figure[I] we illustrate visually how our method distinguishes itself from some well-known ap-
proaches. Finally, while we only perform experiments on two use-cases (anti-money laundering and
recommender systems) in the following sections, we believe that the suggested approach is applica-
ble in other domains facing similar constraints, i.e., no labelled data and adversarial attacks, subject
to domain-specific adaptations.

Under review as a conference paper at ICLR 2023

- Discriminator |—> Real or fake?

C1
L— C3 How much
ptimization .
— | Generator Xere Objective dt:ﬁz gorgte?et
CA Does it
trigger
an alert?

Figure 2: The GANfather framework. Its main components comprise a generator, C, which gen-
erates realistic attacks, a discriminator, C5, which detects these attacks, an optimisation objective,
Cs, to incentivise the generation of malicious instances. Finally, our method optionally supports the
inclusion of an existing alert system, Cy.

2 METHODS

This section provides a general description of our proposed framework in Section We proceed
to describe two use-cases: anti-money laundering (AML) (Section [2.2)) and detection of injection
attacks in recommendation systems (Section [2.3).

2.1 GENERAL DESCRIPTION

Figure 2] depicts the general structure of our framework. It includes a generator, a discriminator, an
optimisation objective, and, optionally, an existing alert system. Each component is discussed in
more detail below.

Generator. As in the classical GAN architecture, the generator G receives a random noise input
vector and outputs an instance of data. However, unlike classical GANSs, the loss of the generator
L(G) is a linear combination of three components: the optimisation objective for malicious activity
Lowvj(G), the GAN loss L an (G, D) that additionally depends on the discriminator D, and the
loss from an existing detection system A, £ ;e (G, A):

L(G) = aLoy;(G)+ BLcaN(G, D) + YL atert (G, A) (D

where a, § and ~ are hyperparameters to tune the strength of each component. The last term is
optional, and if no existing detection system is present we simply choose v = 0. Note also that
one of the parameters is redundant and we tune only two parameters in our experiments (or one if
v = 0).

We show theoretically, in a simplified setting, how this loss function changes the learning dynamics
compared to a typical GAN in section[A.3] Indeed, the stable point of convergence for the generator
in our theoretical example moves away from the data distribution for any o > 0.

Discriminator. The discriminator setup is the same as in a classical GAN. It receives an example
and produces a score indicating the likelihood that the example is real or synthetic. Importantly, as
explained in section [A.3] the generator subject to equation [I] will generate data increasingly out of
distribution for larger o. Therefore, we do not require the discriminator accuracy to fall to chance
level at training convergence, as is usual with GANs. Instead, the discriminator may converge to
perfect classification and may be used as a detection system for illicit activity. In our experiments,
we use the Wasserstein loss (Arjovsky et al.,2017) as our GAN loss.

Malicious optimisation objective. The optimisation objective quantifies how well the synthetic
example is fulfilling the goal of a malicious agent. It can be a mathematical formulation or a differ-
entiable model of the goal. This objective allows the generator to find previously unseen strategies
to meet malicious goals.

Under review as a conference paper at ICLR 2023

Alert system. If an existing, differentiable alert system is present, we can add it to our framework to
teach the generator to create examples that do not trigger detection (see equation|I)). In that scenario,
it is then beneficial for the discriminator to focus on the undetected illicit activity. Whenever the
existing system is not differentiable, training a differentiable proxy may be possible.

Generator vs. Discriminator views. We note that, if required by the malicious optimisation ob-
jective, our generator can be adapted to generate samples which are only partially evaluated by
the discriminator. For example, the layering stage of money laundering typically involves moving
money through many financial institutions (FIs). However, detection systems are in place in single
institutions and therefore have a reduced view of the entire operation. Our method can be adapted to
capture this situation, by generating samples containing various fictitious FIs, but only sending the
partial samples corresponding to each FI through the discriminator. Similarly, in recommender sys-
tems, the malicious objective can act on a group of synthetic illicit actors to generated coordinated
attacks, while the detection of a fraudulent user is typically performed on a single-user level.

Architecture optimisations. In the next sections, we provide more details about the specific archi-
tectures used in the two experiments. We note that the architecture details (layer types, widths and
number of layers) were first optimised using a vanilla GAN setup (i.e. settinga = 0,58 =1,7v=0
in equation [T). With the architecture fixed, the other hyperparameters were tuned as explained in the
next sections.

2.2 ANTI-MONEY LAUNDERING (AML)

We tackle the layering stage of money laundering, in which criminals attempt to conceal the origin
of the money by moving large amounts across financial institutions through what are known as
“mule accounts”. To represent the dynamic graph of transactions over time, we use a 3D tensor. The
first two dimensions correspond to the accounts and the third dimension is discretised time. Each
entry A;ji of the tensor corresponds to the cumulative amount sent from account ¢ to account j on
timestep k. For a more detailed overview of this representation, we refer the reader to section

Architecture. We implement the generator using a set of dense layers, followed by a set of trans-
posed convolutions. Then, we create two branches: one to generate transaction amounts and the
other to generate transaction probabilities. We use the probabilities to perform categorical sampling
and generate sparse representations, similar to real transaction data. After the sampling step, the two
branches are combined by element-wise multiplication, resulting in a final output tensor with the
dimensions described above. More details of the generator’s architecture are found in Table[AT]

The discriminator receives two tensors with the same shape as inputs: one containing the total
amount of money transferred per entry, and the other with the count information (mapping positive
amounts to 1 and empty entries to 0). Each tensor passes through convolutional layers, followed
by permutation-invariant operations over the internal and external accounts. Then, we concatenate
both tensors. We reduce the dimensionality of the resulting vector to a classification outcome using
dense layers. More details of the discriminator architecture are found in Table

Money Mule objective. To characterise the money flow behaviour of layering, where money is
moved in and out of accounts while leaving little behind, we define the objective function as the
geometric mean of the total amount of incoming (G(2);,) and outgoing (G(z)) money per gen-
erated account (Equation [2)).

Lon(G) = — / VG im X Gt - pl2)dz @

Here 2z stands for a random noise input to the generator G and p(z) stands for its probability distri-
bution. This objective function incentivizes the generator to increase the amount of money sent and
received per account and keep these two quantities similar.

Existing Alert System. In AML, it is common to have rule-based detection systems. In our case,
the rules detection system contains five alert scenarios, capturing known suspicious patterns such
as a sudden change in behaviour or rapid movements of funds. However, these rules are not dif-
ferentiable, and our generator requires feedback in the form of a gradient. Hence, we construct a
deep learning model as a proxy for the rules system. We hard-code a neural network mimicking the

Under review as a conference paper at ICLR 2023

rules’ logic operations by choosing the weights, biases and activation functions appropriately. This
network gives the same feedback as the rules system would, but in a differentiable way.

Diversity measure. To quantify the diversity of the generated attacks of a generator GG, we calculate
the inception score of three distributions extracted from the generated data: the amount distribution
dg; the count distribution d. (number of transactions per account); and the interval distribution
d; (the time difference between consecutive transactions of a same account). We then define the
diversity score Sg;,, as the average of these three inception scores (Equation@ D g1, denotes the KL
divergence).

Saiv = (Ezrnpe [Dr 1 (da (@) [|Ey~pg [da(y)])]+
Eunpe [Drcr(de(®)]|Eympe [de(y)])]+ 3)
Eomnpe [Drr(di(2)||[Eympe [di(y)])]) /3

2.3 RECOMMENDATION SYSTEM

In this work, we consider collaborative filtering recommender systems. However, our method is
compatible with any other differentiable recommender. The system receives a matrix of ratings R
with shape (N,, N;), where N, is the number of users and N; is the number of items. First, we
compute cosine distances between users, resulting in the matrix D of shape (N,,, N,,). Then, we
compute the predicted ratings P as a matrix product between D and R[H We also note that, unlike
in the AML scenario, we do not have an existing detection system in this setup.

Architecture. The generator consists of multi-layer perceptrons that gradually increase the size of
the random noise input vector to the output vector of ratings. We implement the network using
residual blocks composed of two dense layers within the skip connection. Then, similarly to the
AML implementation, we create two branches: one for ratings and the other for probabilities. Each
of these passes through additional residual blocks until the last dense layer, where we scale up the
vector size to the number of items N;, before performing the categorical sampling step. In our
experiments, each synthetic user is independent, but the architecture could easily be adapted to
generate a group of users from a single noise vector. More details of the generator architecture are
available in Table[Adl

The discriminator’s architecture mirrors that of the generator. As in the AML implementation, it
receives two tensors with the same shape: one containing the ratings and the other with the count
information. We scale down each tensor with a dense layer before passing through residual blocks.
Finally, we concatenate the two vectors into a single vector. After passing it through additional
residual blocks, we scale down the final vector to single value output with a dense layer. Invariant
permutation is not required because we generate and process each user separately. More details of
the discriminator architecture available in Table[A3]

Injection Attack Objective. We define the goal of malicious agents as increasing the frequency of
recommendation of a specific item. The objective function in Equation] incentivizes the generator
to increase the rating of the target item ¢ for every user.

Nu Ni
Lon(G) = [33 (Ps() = Pale)+ -pla)iz @
iog
Here, the matrix of predicted ratings P depends on the random inputs z through the generator G and
()4 denotes a rectifier setting negative values to zero.

3 RESULTS

We evaluate the efficiency of TheGANfather to generate and detect attacks in two use-cases: money
laundering (Section [3.1)) and recommendation system (Section [3.2)).

"We decide not to represent time since most classical recommender systems do not account for it. However,
it is possible to temporal information using a similar setup to what we described in the AML use case.

Under review as a conference paper at ICLR 2023

3.1 MONEY LAUNDERING

Setup. We use a real-world dataset of financial transactions, containing approximately 200,000
transactions, between 100,000 unique accounts, over 10 month We implement The GANfather’s
generator and discriminator following the architectures presented in section [2.2]

Results. We conduct a hyperparameter random search over the learning rate and the weights of
the loss function components 5 and «y (see Equation [I)) to study the impact of different the relative
weights for each component, as shown in Table It is important to note that we do not have a
ground truth for the generated data, and therefore are limited to measure the success of the generators
as how much money is flowing without being detected by the existing AML system, as well as how
much variety we find in generated samples (details on the diversity score in equation[3). As shown
in Figure[3} we did not find a trade-off between variety and money flowing, instead generators with
high diversity score usually also circulated more money. In Figure d we compare the distribution of
money flows from such a generator compared to the real data distribution. We can observe that the
generated samples successfully move more money through the accounts than real data (up to 250k
vs. up to 7k dollars respectively). Interestingly, the distribution of amounts used is similar to real
data, and the main difference is the amount of transactions used (see Figure[A2).

2 263800
1 L]
s |

pre F 100000

MDS of distribution of probabilities
|
o
Total money laundered

—4 ° lloooo
r r r : : : . : 7800
-1.5 -1.0 -05 0.0 0.5 1.0 1.5 2.0
MDS of distribution of amounts

Figure 3: Hyperparameter search results. Each point corresponds to a different generator, for which
generated samples did not trigger the existing detection system. Distances between generators are
calculated on the empirical distributions of transaction amounts and transaction probabilities. The
x and y axis denote the projected dimensions of a multidimensional scaling embedding of these
distances. The size of the points relates to the diversity score of the data generated and the colour
depicts the average total amount of money flowing per generated instance.

Next, we test the detection performance of the trained discriminators. To detect the potential bias
that a discriminator has by being trained only on samples of the corresponding generator, we first
build a mixed dataset where synthetic malicious data is sampled from various generators at various
epochs during training and with different random noise seeds. We combine this synthetic dataset
with real data, and use it to evaluate the trained discriminators. Importantly, no retraining on this
mixed dataset is performed. In Figure[5] we observe that the discriminator typically achieves a per-
fect classification performance, especially for higher values of the 3 parameter (see equation [I] note
that « was fixed to a value of 1). This can be understood because the S parameter limits the gen-
erated data distribution to diverge largely from the real data distribution. Therefore, discriminators
trained with larger 3 need to more accurately learn a decision boundary around the real data, in turn
becoming more robust when evaluating on the mixed dataset.

3.2 RECOMMENDER SYSTEM

Setup. We use the MovieLens 1M dataseﬂ comprised of a matrix of 6, 040 users and 3, 706 movies,
with ratings ranging from 1 to 5 (Harper & Konstan, 2015). We implement the generator and dis-
criminator and collaborative filtering recommender system as described in section[2.3] To compute

2Due to the confidential nature we cannot disclose the actual dataset
3https://www.kaggle.com/datasets/odedgolden/movielens- 1 m-dataset

Under review as a conference paper at ICLR 2023

0.4
real 1.0 jpwumme seomee o o o)
generated o) °
g 0.3 *
c U 0.8
2 g # e
£ %061 .
- 0.2 @) g
@ Ie) * %
] o lo L
= e
o ¢ 04
£
£ =
c 01 < o
2 °
0.2 .
00 1 2 3 4 5 6 0.0 ™ T T : ; r
10 10 > 100 10 10 o 20000 40000 60000 80000 100000
Total money flowing per instance beta

Figure 4: Empirical distribution of money
flow (as defined by equation [2)), for real
data (blue) and generated data (orange).

Figure 5: Discriminator AUC. Each point
corresponds to a different discriminator.

the predicted ratings, during training we take a weighted average of ratings considering all users in
the dataset. We consider all users during training because the initially generated ratings are random,
and only providing feedback from the top-N closest users limits the strategies that the generator
can learn. In contrast, we consider the top-400 closest neighbours to compute predicted ratings at
inference since we observed empirically that this value produces the lowest recommendation loss.

In this scenario, we do not use an existing detection component, corresponding to v = 0 in equation
[I] We train our networks with 300 synthetic attackers but evaluate the generator’s ability to influence
the recommender system with injection attacks of various sizes. We also define four baseline attacks:
(1) arating of 5 for the target movie and O otherwise, (2) a rating of 5 for the target movie and ~90
random ratings for randomly chosen movies, (3) a rating of 5 for the target movie and ~90 random
ratings for the top 10% highest rated movies, (4) a rating of 5 for the target movie and ~90 random
ratings for the top 10% most rated movies.

Attack with 30 generated users

o Attack with 60 generated users

00 Attack with 120 generated users

S 500
Q ©
] ° o ©
= 400 400 400 o0 o ©
o ©
o
[9) o 1.0 [
23004 300 4 300 4 e
5 ® o0 ¢ o
=) ° =
2 ® o0 .8 . ‘o
5 200 . 200 4 .o 200 4 oL ® ° 9]
- (] ° ° c
B . ° 2
= N ° ° ° o o
» 100 . ° 1001 ® . 1001 o
= >
9] . ° a
S °
® 0 0 : - - - 0 . : - : 0.1

1075 107% 1073 1072 107! 10° 10-° 107* 1073 102 107! 10° 1075 10~* 1073 1072 107! 10°

alpha alpha alpha

Figure 6: Hyperparameter search results. Each point corresponds to a different generator. The
x-axis corresponds to «, the y-axis to the number of users with the target item in their top-10 rec-
ommendations, and the colour denotes the KL divergence between real and generated rating profile
distributions. We include the number of generated users above each panel. The green line represents
the best baseline in each panel, which barely manages to increase the recommendation of the target
movie to the other users.

Results. We choose § = 1 — « in equation 1, with 0 < « < 1 and perform a hyperparameter
search over a. In Figure [6] we observe that with as few as 30 synthetic attackers the generated
attacks (dots) consistently outperform the best baseline (green line) in recommending the target
movie. We observe that increasing o leads to generators whose attacks increasingly recommend the
target movie, at the cost of moving further away from the real data distribution (measured through
the KL divergence). Increasing the number of generated users also increases the target movie’s
recommendation frequency to real users.

Under review as a conference paper at ICLR 2023

Finally, we analyse the detection of synthetic attacks. As in the AML scenario we build a test set
containing real and synthetic data, where the synthetic data contains a mixture of samples from vari-
ous trained generators to identify the possible bias of a discriminator to attacks by the corresponding
generator. We then quantify the AUC of the trained discriminators. In Figure [/] we observe that
most discriminators achieve around 0.75 AUC. Unlike the AML scenario, this suggests that the dis-
criminators are tuned to detect synthetic data from their respective generators, but less so from other
generators. We tested whether we can train a better discriminator directly on this mixed test set, and
indeed are able to obtain near-perfect classification (Figure [8).

1.0

0.98 f========c===oooaaoo -—-
0.91 0.9
[(9]
8 : ‘ ;
80.8~ ® o0 o ° ° 3 0.8
[]
[]
o ° e o o % ° 2
% 0.7 o © . o & 074
g ° ° °)
< ° ° <
0.6 1 0.61
[] ‘ °
) []
[]
0.5 —® - - - 0.5 - " . .
107> 1074 1073 1072 107! 10° 0 1000 2000 3000 4000
alpha epoch

Figure 7: Discriminator AUC. Each point corre- Figure 8: We can train a new discriminator
sponds to a different discriminator which is eval- achieving almost perfect performance on the test
uated on the test set without retraining. set.

4 RELATED WORK

Controllable data generation. [Wang et al.| (2022) review controllable data generation with deep
learning. Among the presented works, we highlight De Cao & Kipf| (2018). It leverages a GAN
trained with reinforcement learning to generate small molecular graphs with desired properties.
Their work is similar to ours in that we both (1) extend a GAN with an extra objective and (2) use
similar data representations, namely sparse tensors. However, whereas|De Cao & Kipf| (2018)) uses a
labelled dataset of molecules and their chemical properties, our method does not rely on any labelled
data.

Adversarial Attacks. A vast amount of literature exists on the generation of adversarial attacks (see
Xu et al.|(2020) for a recent review). Such attacks have been studied in various domains and using
various setups (e.g. cybersecurity evasion using reinforcement learning (Apruzzese et al., |2020),
intrusion detection evasion using GANs (Usama et al., 2019), sentence sentiment misclassification
using BERT (Garg & Ramakrishnan| [2020)). In all cases, a requirement is that labelled examples of
malicious attacks exist.

Anti-Money Laundering. Typical anti-money laundering solutions are rule-based (Watkins et al.|
2003} [Savage et al., |2016; [Weber et al., |2018). However, rules suffer from high false-positive rates,
may fail to detect complex schemes, and are costly to maintain. Machine learning-based solutions
tackle these problems (Chen et al.l [2018). Given the lack of labelled data, most solutions employ
unsupervised methods like clustering (Wang & Dong| 2009} [Soltani et al., 2016), and anomaly
detection (Gaol 2009; [Camino et al., |2017). These assume that illicit behaviours are rare and dis-
tinguishable, which may not hold whenever money launderers mimic legitimate behaviour. Various
supervised methods have been explored (Jullum et al., 2020; |Raza & Haider, [2011}; [Lv et al.| | 2008;
Tang & Yin, [2005; [Oliveira et al.,|2021)), but most of these works use synthetic positive examples or
incompletely labelled datasets. To avoid this, |Lorenz et al.| (2020) propose efficient label collection
with active learning. |[Deng et al.|(2009) and (Charitou et al.,|2021)) explore data augmentation using
conditional GANs. Lastly, |L1 et al.| (2020) and |Sun et al.| (2021) propose a metric to detect dense
money flows in large transaction graphs, resulting in an anomaly score. Their method does not in-
volve training of a classifier, and instead relies on generating many subsets of nodes and iteratively
calculating the anomaly score.

Under review as a conference paper at ICLR 2023

Recommender systems (RS) injection attacks. Most injection attacks on RS are hand-crafted ac-
cording to simple heuristics. Examples include random and average attacks (Lam & Riedl, |2004),
bandwagon attacks (Burke et al., 2005a) and segmented attacks (Burke et al., |2005b). However,
these strategies are less effective and easily detectable as most generated rating profiles differ sig-
nificantly from real data and correlate with each other. |Tang et al.| (2020) address the optimisation
problem of finding the generated profiles that maximise their goals directly through gradient descent
and a surrogate RS. Some studies apply GANs to RS to generate attacks and defend the system.
'Wu et al.|(2021)) combines a graph neural network (GNN) with a GAN to generate their attack. The
former select which items to rate, and the latter decides the ratings. |[Zhang et al.[(2021]) and|Lin et al.
(2022) propose a similar setup to ours in which they train a GAN to generate data and add a loss
function to guide the generation of rating profiles. In both works, the main differences to our work
are the usage of template rating profiles to achieve the desired sparsity, the chosen architecture and
loss functions. In our work, sparsity is learned by the generator through the categorical sampling
branch (see section2)). Moreover, our method allows the generation of coordinated group attacks by
generating multiple attackers from a single noise vector.

5 CONCLUSION

In this work, we propose The GANfather to generate data of a novel class (malicious activity) without
labelled examples, while simultaneously training a detection network to classify the novel class
correctly. We performed experiments in two domains. In the anti-money laundering setting, the
generated attacks are able to move up to 250,000 dollars using just five internal accounts, and without
triggering an existing detection system. In the recommender system setting, we generate attacks
that are substantially more successful at injection attacks than naive baselines. In both cases, we
train a near-perfect classifier to detect the synthetic malicious activity. While no ground truth for the
generated attacks are available, we argue that any attack strategy that is possible could in principle be
exploited by attackers. While a real test in a deployment scenario is lacking and should be addressed
in future work, we believe our current experiments provide a proof of value of the method. In these
experiments, our method generates a variety of successful attacks, and we therefore believe it can
be a valuable method to improve the robustness of defence systems.

The limitations of our method lie in its assumptions. Firstly, we assume that the unlabelled data
is dominated by legitimate events, and our method would not work in settings where this is not
the case. Secondly, we assume that we can quantify the malicious objective in terms of available
features. In this case, one could argue we can just use the malicious objective as a detection score.
However, the detection system often has a (much) smaller view than the malicious objective. For
example, anti-money laundering systems only view incoming and outgoing transactions for one
financial institution. However, our objective can be adapted to generate malicious activity mimicking
flows across multiple synthetic financial institutions, while keeping the view of the discriminator
on an individual institution level. Thirdly, while our method does not prevent generated data to
be very different from real data, we argue that the strength of our method is in generating more
subtle attacks that are not immediately distinguishable from real data. Finally, while we chose the
malicious objectives to be as simple as possible in our proof of concept experiments, there is no
restriction to make them more complex as long as they are differentiable.

To conclude, our method fits the adversarial game between criminals and security systems by simu-
lating various meaningful attacks. If existing defences are in place, our method may learn to avoid
them and, eventually, train a complementary model. We hope our work contributes to increase the
robustness of detection methods of illicit activity.

REFERENCES

Giovanni Apruzzese, Mauro Andreolini, Mirco Marchetti, Andrea Venturi, and Michele Colajanni.
Deep reinforcement adversarial learning against botnet evasion attacks. IEEE Transactions on
Network and Service Management, 17(4):1975-1987, 2020. doi: 10.1109/TNSM.2020.3031843.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International conference on machine learning, pp. 214-223. PMLR, 2017.

Under review as a conference paper at ICLR 2023

Robin Burke, Bamshad Mobasher, and Runa Bhaumik. Limited knowledge shilling attacks in collab-
orative filtering systems. In Proceedings of 3rd international workshop on intelligent techniques
for web personalization (ITWP 2005), 19th international joint conference on artificial intelligence
(IJCAI 2005), pp. 17-24, 2005a.

Robin Burke, Bamshad Mobasher, Runa Bhaumik, and Chad Williams. Segment-based injection
attacks against collaborative filtering recommender systems. In Fifth IEEE International Confer-
ence on Data Mining (ICDM’05), pp. 4—pp. IEEE, 2005b.

Ramiro Daniel Camino, Radu State, Leandro Montero, and Petko Valtchev. Finding suspicious
activities in financial transactions and distributed ledgers. In 2017 IEEE International Conference
on Data Mining Workshops (ICDMW), pp. 787-796. IEEE, 2017.

Charitos Charitou, Simo Dragicevic, and Artur d’ Avila Garcez. Synthetic data generation for fraud
detection using gans. arXiv preprint arXiv:2109.12546, 2021.

Zhiyuan Chen, Ee Na Teoh, Amril Nazir, Ettikan Kandasamy Karuppiah, Kim Sim Lam, et al.
Machine learning techniques for anti-money laundering (aml) solutions in suspicious transaction
detection: a review. Knowledge and Information Systems, 57(2):245-285, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Xinwei Deng, V Roshan Joseph, Agus Sudjianto, and CF Jeff Wu. Active learning through se-
quential design, with applications to detection of money laundering. Journal of the American
Statistical Association, 104(487):969-981, 2009.

Zengan Gao. Application of cluster-based local outlier factor algorithm in anti-money laundering.
In 2009 International Conference on Management and Service Science, pp. 1-4. IEEE, 2009.

Siddhant Garg and Goutham Ramakrishnan. BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 6174-6181, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.498. URL https://aclanthology.org/
2020.emnlp-main.498.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Martin Jullum, Anders Lgland, Ragnar Bang Huseby, Geir Anonsen, and Johannes Lorentzen. De-
tecting money laundering transactions with machine learning. Journal of Money Laundering
Control, 2020.

Shyong K Lam and John Riedl. Shilling recommender systems for fun and profit. In Proceedings
of the 13th international conference on World Wide Web, pp. 393—402, 2004.

Karel Lannoo and Richard Parlour. Anti-money laundering in the eu: Time to get serious. ceps task
force report 28 jan 2021., January 2021. URL http://aei.pitt.edu/103318/|

Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and
Xueqi Cheng. Flowscope: Spotting money laundering based on graphs. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2020.

Chen Lin, Si Chen, Meifang Zeng, Sheng Zhang, Min Gao, and Hui Li. Shilling black-box recom-
mender systems by learning to generate fake user profiles. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

Joana Lorenz, Maria Inés Silva, David Aparicio, Jodo Tiago Ascensio, and Pedro Bizarro. Machine
learning methods to detect money laundering in the bitcoin blockchain in the presence of label
scarcity. arXiv preprint arXiv:2005.14635, 2020.

10

https://aclanthology.org/2020.emnlp-main.498
https://aclanthology.org/2020.emnlp-main.498
http://aei.pitt.edu/103318/

Under review as a conference paper at ICLR 2023

Michael Luca. Reviews, reputation, and revenue: The case of yelp.com. American Economic
Journal - Applied Economics, 2016.

Lin-Tao Lv, Na Ji, and Jiu-Long Zhang. A rbf neural network model for anti-money laundering.
In 2008 International Conference on Wavelet Analysis and Pattern Recognition, volume 1, pp.
209-215. IEEE, 2008.

Catarina Oliveira, Jodo Torres, Maria Inés Silva, David Aparicio, Jodo Tiago Ascensdo, and Pe-
dro Bizarro. Guiltywalker: Distance to illicit nodes in the bitcoin network. arXiv preprint
arXiv:2102.05373, 2021.

Arin Ray. It and operational spending in aml-kyc: 2021 edition, December 2021. URL https:
//www.celent.com/insights/428901357.

Saleha Raza and Sajjad Haider. Suspicious activity reporting using dynamic bayesian networks.
Procedia Computer Science, 3:987-991, 2011.

David Savage, Qingmai Wang, Pauline Chou, Xiuzhen Zhang, and Xinghuo Yu. Detection of money
laundering groups using supervised learning in networks. arXiv preprint arXiv:1608.00708, 2016.

Reza Soltani, Uyen Trang Nguyen, Yang Yang, Mohammad Faghani, Alaa Yagoub, and Aijun An.
A new algorithm for money laundering detection based on structural similarity. In 2016 IEEE 7th
Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON),
pp. 1-7. IEEE, 2016.

Xiaobing Sun, Jiabao Zhang, Qiming Zhao, Shenghua Liu, Jinglei Chen, Ruoyu Zhuang, Huawei
Shen, and Xueqi Cheng. Cubeflow: Money laundering detection with coupled tensors. In PAKDD
(1), pp. 78-90. Springer, 2021.

Jiaxi Tang, Hongyi Wen, and Ke Wang. Revisiting adversarially learned injection attacks against
recommender systems. In Fourteenth ACM conference on recommender systems, pp. 318-327,
2020.

Jun Tang and Jian Yin. Developing an intelligent data discriminating system of anti-money laun-
dering based on svm. In 2005 International conference on machine learning and cybernetics,
volume 6, pp. 3453-3457. IEEE, 2005.

Muhammad Usama, Muhammad Asim, Siddique Latif, Junaid Qadir, and Ala-Al-Fugaha. Gener-
ative adversarial networks for launching and thwarting adversarial attacks on network intrusion
detection systems. In 2019 15th International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 78-83, 2019. doi: 10.1109/IWCMC.2019.8766353.

Shiyu Wang, Yuanqi Du, Xiaojie Guo, Bo Pan, and Liang Zhao. Controllable data generation by
deep learning: A review. arXiv preprint arXiv:2207.09542, 2022.

Xingqi Wang and Guang Dong. Research on money laundering detection based on improved min-
imum spanning tree clustering and its application. In 2009 Second international symposium on
knowledge acquisition and modeling, volume 2, pp. 62—-64. IEEE, 2009.

R Cory Watkins, K Michael Reynolds, Ron Demara, Michael Georgiopoulos, Avelino Gonzalez, and
Ron Eaglin. Tracking dirty proceeds: exploring data mining technologies as tools to investigate
money laundering. Police Practice and Research, 4(2):163-178, 2003.

Mark Weber, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki Kanezashi, Tim Kaler,
Charles E Leiserson, and Tao B Schardl. Scalable graph learning for anti-money laundering: A
first look. arXiv preprint arXiv:1812.00076, 2018.

Fan Wu, Min Gao, Junliang Yu, Zongwei Wang, Kecheng Liu, and Xu Wang. Ready for emerging
threats to recommender systems? a graph convolution-based generative shilling attack. Informa-
tion Sciences, 578:683-701, 2021.

Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K. Jain. Adver-
sarial attacks and defenses in images, graphs and text: A review. pp. 151-178, 2020.

11

https://www.celent.com/insights/428901357
https://www.celent.com/insights/428901357

Under review as a conference paper at ICLR 2023

Xuxin Zhang, Jian Chen, Rui Zhang, Chen Wang, and Ling Liu. Attacking recommender systems
with plausible profile. IEEE Transactions on Information Forensics and Security, 16:4788—4800,
2021.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

A.l

A.l.1

EXTENDED METHODS

REPRESENTING DYNAMIC GRAPHS AS TENSORS

To represent the dynamic graph of transactions, we can use a 3D tensor as depicted in Figure[AT] We
assume the nodes of the dynamic graph are accounts, and the edges are transactions. The first two
dimensions correspond to the weighted adjacency matrix of the accounts and the third dimension
is time. We discretise the events into time windows of fixed length and group events that belong
to the same entry in the tensor by summing their amounts. Our representation covers any dynamic
network with a 3D tensor whose size is fixed and pre-specified, which allows us to avoid using
recurrent models. While this approach may limit the size of generated data, domain experts reported
that up to 95% of the money-laundering investigations involve cases containing up to 5 accounts.

Source

Target

Amount

A

B

A

3.14

15.92

65.35

89.79

32.38

46.26

43.38

89.64

Figure Al: Data representation of transactional data. From the raw tabular data, we build the tripar-
tite graph of the transactions, which is in turn represented as a 3D tensor.

A.1.2 EXPERIMENTAL DETAILS: ANTI-MONEY LAUNDERING

Index Layer Output shape
0 Linear(100, 400) (400,)
1 Linear(400, 1600) (1600,)
2 Linear(1600, 5000) (5000,)
Reshape (5,10,10,10)
3 ConvTransposeld(10,10,4,2,1) | (5,10,20,10)
4 ConvTranspose1d(10,10,4,2,1) | (5,10,40,10)
5 ConvTranspose1d(10,10,4,2,1) | (5,10,80,10)
6 ConvTransposeld(10,10,4,2,1) | (5,10,160,10)
Split amounts and probabilities | (5,10,160,10)
7 ConvTranspose1d(10,10,4,2,1) | (5,10,320,10)
8 Conv1d(10,1,1,1,0) (5,10,320)
Categorical sampling (5,10,320)

Table Al: AML generator architecture.

13

Under review as a conference paper at ICLR 2023

Index Layer Output shape
0 Conv1d(1,10,6,4,1) (5,10,80,10)
1 Conv1d(10,10,6,4,1) (5,10,20,10)
2 Conv1d(10,5,6,4,1) (5,10,5,5)
Reshape (5,2,5,25)
Mean pooling (1,2,1,25)
Concatenate amounts and probabilities (100,)
3 Linear(100,128) (128,)
4 Linear(128,32) 32,
5 Linear(32,1) (1,

Table A2: AML discriminator architecture.

« 1

8 [10,10°]

7y [10%,4 x 10?]
learning rate | [107%,3 x 1073]

Table A3: Hyperparameter search space on the AML use case.

A.1.3 EXPERIMENTAL DETAILS: RECOMMENDER SYSTEMS

Index Layer Output shape

0 ResBlock(128,128) (128,)

1 ResBlock(128,128) (128,)
Split ratings and probabilities (128,)

2 ResBlock(128,128) (128,)

3 ResBlock(128,64) (64,
4 Linear(64,3706) (3706,)
Categorical sampling (3706,)

Table A4: RS generator architecture.

Index Layer Output shape

0 Dense(3706,64) (64,)

1 ResBlock(64,128) (128,)

2 ResBlock(128,64) (64,)
Concatenate ratings and probabilities (128,)

3 ResBlock(128,128) (128,)

4 ResBlock(128,128) (128,)

5 Linear(128,1) (1,

Table AS: RS discriminator architecture.

a [10-5,1]
learning rate | [107°,3 x 1074]

Table A6: Hyperparameter search space on the RS use case.

A.2 EXTENDED RESULTS

In Figure[AZ] we compare the distributions of the total amount of money flowing through the internal
accounts from real data with our generated dataset; we observe that the generators consistently move
more money than real accounts. By investigating the distributions of amounts per transaction and

14

Under review as a conference paper at ICLR 2023

the number of transactions per account, we verify that the generators can circulate more money than
real accounts because they make more transactions but keep the amounts in a similar range as the
real data.

0.4
real real real

generated generated

o

w
o
IS

generated

o
W

Normalized frequency
o
< e <
Normalized frequency
o
w

o
N
o
N

o
i

o
=
Normalized frequency

o
i

0.0 0.0 0.0
10t 102 10° 104 10° 100 10t 102 10% 104 40 80 120 160

Total money flowing per instance Amount per transaction Number of transactions per account

o

Figure A2: Comparison distributions of total money flow, amounts and counts between G and real.

A.3 THEORETICAL JUSTIFICATION: SIMPLIFIED SETTING

In this section, we provide a simplified example to discuss certain aspects of our setup. We will
assume no existing detection system is available (y = 0 in equation [I). In the case such a system
would be available, we assume its effect is to limit how far the generated data distribution can be
from the real data distribution. Furthermore, we assume that a malicious objective would promote a
change in the distribution of at least one feature of the generated data compared to the real data.

In order to facilitate the analytical calculations, we make the following simplifying assumptions.
Firstly, we assume that our data consists of only one feature, for which the regular (legitimate)
activity is distributed following a normal distribution pga, With mean 4 and standard deviation o 4:

Pdaa = N (1ta; 0a) (5)

Secondly, we assume that we do not have any samples of malicious activity but that we know that it is
characterised by larger values of this feature compared to the legitimate activity. Thirdly, we assume
that the generated data follows a normal distribution pge, with mean pi4 and standard deviation o.
Using v = 0 and § = 1 — o in equation[I] assuming 0 < o < 1, we can write the training criterion
of the generator as:

L(G) = (1 —) - (2 ISD (paata| Pgen) — l0g(4)) — cvpsg (6)

Where the first term denotes the GAN loss |Goodfellow et al.| (2014) and the second term denotes
our malicious objective rewarding the generator to produce samples with properties of the malicious
data.

We can analytically solve the Jenson-Shannon Divergence (JSD) between the normal distributions,
using 02, = 02 + 03,

1 1
JSD (pdana|pgen) = -KL (pdata|0‘5 * (pdata + pgen)) + KL (pgen|0~5 * (pdata + pgen)) (7

2 2
1 o 0%+ (g — 0.5(pa + pg))? 1
= — |log = 4 -4 97— 8
5 |85, T 22, 2 ®)
2 2

o, o° + —0.5(pug + 1
+ log omo, 79 (ttg 2(.“ Ig)) 1 ©)

og 202, 2

15

Under review as a conference paper at ICLR 2023

From this, we can calculate the gradient w.r.t. fi,:

OISD(pasalpgen) _ g (L [y oy T3+ Gta = 050t p1g))” 1 (10)
Olg 2 od 202, 2

024 (g — 0.5(g + |
—|—1ogL + 9 (1g 2(#(1 fg)) 1) Jou, (a0

og 20z, 2

1, ((0.5ug —0.5ug)% (0545 — 0.514)>
_1 4 : 12
L (el B Jou, (12)
Hg — Hd

=g 13
402 + 407 (13)

Combining equations [6] and we find that the gradient of the training objective of the generator
w.r.t. the mean of the generated distribution 14 is

OL(G) _(L—a)py—pa

= 14
g 2 o240} (14)
Without loss of generality, we set 03 + 03, = k/2, such that
9L(G) fg — M
=(1—-a)—"%— 15
5y = (-t —a (s)

Denoting as gtg the changes of u, over time (i.e. a continuous version of the discrete gradient

updates), and with 7 a learning rate, this leads to the following linear dynamical system which we
can analyse in function of pi4, tdaa and the hyperparameter o

g 9L(G)

Oty _ _ 16
at o, (16)
alug o Mg — Hd

o = n(l —a) P a7
d

% = —ndpg + ndpa + na (18)

Where we defined d = (1 — «)/k. The stability of this linear system is defined by the sign of —d,
which is always negative and hence the system has a stable fixed point. The stable fixed point for
this dynamical system is easily found to be

@
* = — Kk 19
1% g Hd + 1_ o ()
We plot the phase diagram of the dynamical system in Figure|A3| showing the fixed point in function
of the parameter c.

From this calculation on a simplified setting, we can conclude the following:

* For a > 0, our generated data will move away from the real data distribution and increas-
ingly comply with the malicious objective.

* Various values of o will generate various levels of deviation from the real data. When no
ground truth is available to test the resulting system, hyperparameter tuning and empirical
testing should be performed. Another limiting factor for the deviation from real data can
be the inclusion of an already available detection system.

* When generated data deviates from real data, the discriminator will increasingly achieve
a perfect performance even at training completion. This is a major difference to standard
GAN training.

16

Under review as a conference paper at ICLR 2023

Phase Portrait

}

A \J \J

fixed point

{
{
{

—_— e o = o =

T * ,
/ | 2 A | ‘
A
u_data
0.0 0.5 1.0
alpha

Figure A3: Phase portrait of our toy system. The fixed point of 1, depends on hyperparameter c.
For oo — 1, the fixed point approaches infinity. For o« — 0, the fixed point converges to (4. Arrows

denote the direction of the gradient 85‘;

17

	Introduction
	Methods
	General description
	Anti-Money Laundering (AML)
	Recommendation System

	Results
	Money Laundering
	Recommender System

	Related Work
	Conclusion
	Appendix
	Extended Methods
	Representing dynamic graphs as tensors
	Experimental details: Anti-Money Laundering
	Experimental details: Recommender Systems

	Extended results
	Theoretical justification: simplified setting

