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ABSTRACT

Spatial cognition is one fundamental aspect of human intelligence. A key factor
in spatial cognition is understanding the frame of reference (FoR) that identifies
the perspective of spatial relations. However, the AI research has paid very little
attention to this concept. Specifically, there is a lack of dedicated benchmarks and
in-depth experiments analyzing large language models’ (LLMs) understanding of
FoR. To address this issue, we introduce a new benchmark, Frame of Reference
Evaluation in Spatial Reasoning Tasks (FoREST) to evaluate LLMs ability in un-
derstanding FoR. We evaluate the LLMs in identifying the FoR based on textual
context and employ this concept in text-to-image generation. Our results reveal
notable differences and biases in the FoR identification of various LLMs. More-
over, the bias in FoR interpretations impacts the LLMs’ ability to generate lay-
outs for text-to-image generation. To improve spatial comprehension of LLMs,
we propose Spatial-Guided (SG) prompting, which guides the model in exploit-
ing the types of spatial relations for a more accurate FoR identification. The SG
prompting improves the overall performance of FoR identification by alleviating
their bias towards specific frames of reference. Eventually, incorporating the FoR
information generated by SG prompting in text-to-image leads to a more accurate
visualization of the spatial configuration of objects.

1 INTRODUCTION

Spatial reasoning plays a significant role in human cognition and conducting daily activities. It is
also a crucial aspect in many AI problems, including language grounding (Zhang & Kordjamshidi,
2022; Yang et al., 2024), navigation (Yamada et al., 2024), computer vision (Liu et al., 2023; Chen
et al., 2024), medical domain (Gong et al., 2023), and image generation (Gokhale et al., 2023). One
key concept in spatial cognition is the frame of reference (FoR), which identifies the perspective of
spatial expressions. Levinson (2003) initially defines three basic FoR classes: intrinsic, relative, and
absolute. The intrinsic FoR describes spatial expressions based on the viewer’s perspective, while
the relative FoR uses the object’s perspective. The last type is the absolute FoR, which uses environ-
mental cues such as cardinal directions. The framework from Tenbrink (2011), which is the main
FoR framework of our work, expanded these basics. These FoR concepts have been studied exten-
sively in cognitive linguistics (Edmonds-Wathen, 2012; Vukovic & Williams, 2015). Additionally,
understanding this concept is significant for several AI applications. An important application is
embodied AI. Particularly in a real environment, an instruction-giver and instruction-follower have
different perspectives, and there are potential variations in their usage of FoRs. In such a setting, the
model must comprehend the dynamic changes in the FoR (perspective changes) in the instruction to
perform the task effectively. FoR comprehension can benefit other applications, such as video narra-
tive generation and 3D scene construction based on text. The recent spatial evaluation benchmarks
have paid less attention to the importance of FoRs. For instance, the textual-only benchmarks Shi
et al. (2022); Mirzaee & Kordjamshidi (2022); Rizvi et al. (2024) concentrate on the complex rea-
soning task; however, they limit the evaluation to intrinsic FoR, using one object as the center of
coordinates. Similarly, text-to-image benchmarks (Gokhale et al., 2023; Huang et al., 2023; Cho
et al., 2023a;b) often assume a camera perspective for spatial expressions. This kind of bias in the
datasets potentially restricts the situated spatial reasoning abilities in dynamic environments and
interactive settings where the perspective can change.
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To systematically investigate the concept of FoR in spatial understanding and provide new resources,
we introduce Frame of Reference Evaluation in Spatial Reasoning Tasks (FoREST) benchmark to
assess models’ ability to understand FoR classes from textual descriptions and extend this to ground-
ing and visualization. Our dataset consists of two splits: ambiguous (A-split) and clear (C-split). The
A-split contains spatial expressions with FoR ambiguity, meaning multiple valid FoRs can apply to
the explained situation. In contrast, the C-split has spatial expressions with only one valid FoR. This
design allows us to evaluate models’ understanding of spatial expressions in ambiguous and clear
contexts. We conduct experiments with large language models (LLMs) to identify FoR classes in
spatial expressions and employ this concept in text-to-image models. Our findings reveal perfor-
mance differences across FoR classes and show that LLMs tend to be biased toward particular FoRs
when spatial expressions with ambiguous FoRs are provided. The bias is also evident in diffusion
models that use LLM-generated layouts in the image generation pipeline. These diffusion models
tend to perform better in one specific FoR class. To improve spatial comprehension of LLMs, we
propose Spatial-Guided (SG) prompting, which encourages models to consider the type of spatial
relations, particularly directional, topological, and distance types of relations in their reasoning pro-
cess for a more accurate FoR identification. Our results confirm that these relations provide essential
information to help LLMs accurately identify FoR classes. In addition, we exploit the impact of FoR
identification on downstream tasks like text-to-image generation. We show that FoR identification
can enhance layout generation, ultimately benefiting text-to-image generation performance.

To summarize our contributions, 1. We introduce the FoREST benchmark to systematically evaluate
large language models’ abilities to identify FoR classes from textual spatial expressions, experiment-
ing with various in-context learning approaches for FoR identification. 2. We assess the impact of
using FoR information on text-to-image generation using diffusion models, including stable and lay-
out diffusion models. 3. We propose a new prompting approach that considers the types of spatial
relations in its reasoning process and improves FoR identification and image generation quality.

2 PRIMITIVES

We review three aspects of spatial information expressed in language: spatial roles, spatial relations,
and frame of reference.

Figure 1: Illustration of FoR
classes. The Cat is the loca-
tum, the Car is the relatum,
and the arrow indicates the
perspective.

Spatial Roles. We use the main conceptual roles defined in spa-
tial language literature (Kordjamshidi et al., 2010; Tenbrink, 2011)
These roles include Locatum (L), Relatum (R), and Perspective.
The locatum represents the object described in the spatial expres-
sion. While the relatum represents another object used to describe
the location of the locatum. Lastly, perspective is defined as the
origin of a coordinate system used as the basis for determining the
direction. For example, “a cat is to the left of a dog from the owner.”
In this example, a cat is the locatum, a dog is a relatum, and the per-
spective is the owner’s coordinate.

Spatial Relations. When dealing with spatial knowledge represen-
tation and reasoning, often three main relations categories are con-
sidered: directional, topological, and distance (Hernández, 1994;
Cohn & Renz, 2008; Kordjamshidi et al., 2010).

1. Directional: These relations define one object’s direction from
another based on specific coordinates. Examples of relations include left, right, above, and below.

2. Topological: These relations describe the containment between two objects, such as inside.

3. Distance: These relations provide qualitative and quantitative relations between entities. Exam-
ples of qualitative distance relations are near and far, and quantitative distance relations are 3km.

Spatial Frame of Reference. We use the four frames of reference investigated in-depth in the
cognitive linguistic studies (Tenbrink, 2011) and are defined as follows.

1. external intrinsic. It describes a spatial relation based on the relatum’s perspective, which does
not contain the locatum. The top-right image in Figure 1 illustrates this scenario with the sentence,
“A cat is to the right of the car from the car’s perspective.”
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Figure 2: The pipeline of creating the FoREST dataset starts by selecting the locatum and relatum
based on defined FoR cases. Next, a spatial template is applied to generate the A-split, which is then
extended into the C-split by applying a topology/perspective template. Afterward, the I-C-split and
I-A-split are created by including a direction template into the C-split and A-split. Finally, scene
configurations are generated from the I-C-split and I-A-split to create visualizations using Unity3D.

2. external relative. It presents a spatial relation based on the observer’s perspective, which may not
presented in the context. The top-left image in Figure 1 shows an example with the sentence, “A cat
is to the left of a car from my perspective.”

3. internal intrinsic. It expresses a spatial relation based on the relatum’s perspective, which contains
the locatum. The bottom-right image in Figure 1 illustrates this circumstance with the sentence, “A
cat is inside and back of the car from the car’s perspective.”

4. internal relative. It describes a spatial relation from the observer’s perspective where the locatum
is inside the relatum. The bottom-left image in Figure 1 displays this relation with the sentence, “A
cat is inside and to the left of the car from my perspective.”

3 FOREST DATASET CONSTRUCTION

We propose a new problem setting to identify the frame of reference (FoR) in linguistic expressions
to evaluate the LLMs’ understanding on spatial frames of reference(FoR). In this setting, the lan-
guage model receives a textual spatial explanation as input, denoted as T , and the model outputs
an FoR class in FoR={external intrinsic, external relative, internal relative, internal intrinsic} ac-
cording to the primitives defined in Section 2. We introduce the Frame of Reference Evaluation in
Spatial Reasoning Tasks (FoREST) benchmark to evaluate models’ performance on this problem.
We should note that identifying FoR is challenging and, in some cases, inherently ambiguous. For
example, in “a cat is to the left of a dog.”, It has two correct interpretations. The first one is external
relative FoR interpretation, “a cat is to the left of a dog from the camera’s perspective.” Another
valid interpretation for external intrinsic FoR is “a cat is to the left of a dog from the dog’s per-
spective.” To distinguish clear from ambiguous cases, we create two splits for our FoREST dataset:
ambiguous (A-split) and clear (C-split). Spatial expressions in the A-split can have more than one
valid FoR, while C-split expressions only have one valid FoR.

3.1 FOR CATEGORIES BASED ON RELATUM TYPE

Using the FoR classes defined in Section 2, we found that two properties of relatum cause FoR am-
biguity. The first property is the relatum’s intrinsic direction. It creates ambiguity between intrinsic
and relative FoR classes since spatial relations can originate from both the relatum’s and observer’s
perspectives. The second is the relatum’s affordance as a container. It introduces the ambiguity be-
tween internal and external FoR classes since spatial relations can refer to the inside and outside of
the relatum. We use the combination of these two properties to define four cases of relatum: the cow
case, box case, car case, and pen case. We use these cases to divide the A-split of our dataset into
four subsets. Then, we create clear counterparts of these cases to generate the C-split of our dataset.
There are two types of clear cases. The first type is inherently clear from the context, such as “a
pencil is to the right of a pen.” In this case, there are no different interpretations about the spatial
configuration of the two objects. However, another type needs additional information to be clear,
such as “A cat is to the left of the dog.” In this type, we add a clause clarifying the perspective or
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topology. For example, “the cat is to the left of the dog from the dog’s perspective.” In the following,
we further clarify the four ambiguous cases based on the properties of the relatum.

Case 1: Cow Case. We create a cow case as a subset of our A-split. We select a relatum with
intrinsic directions but without affordance as the container. The obvious example is a cow, which
should not be a container but has a front and back. In such a case, the relatum potentially provides
a perspective for spatial relations. Thus, the applicable FoR classes are FoR = {external intrinsic,
external relative}. We explicitly augment such cases with perspective information to resolve the am-
biguity and add their clear counterparts to the C-split. To specify the perspective, we use templates
for augmenting clauses, such as “from {relatum}’s perspective” for external intrinsic or “from my
perspective” for external relative. An example of A-split context is “a cat is to the right of the cow.”
The counterparts included in the C-split are “a cat is to the right of the cow from cow’s perspective.”
for external intrinsic and “a cat is to the right of the cow from my perspective” for external intrinsic.

Case 2: Box Case. We create a box-case subset as part of the A-split. Unlike the cow case, the
relatum selected in this subset can be a container but lacks intrinsic directions. For example, a box
can serve as a container without having intrinsic directions. An internal FoR can be established
since the relatum can be a container. Accordingly, the applicable FoR classes of this context are
FoR = {external relative, internal relative}, causing the ambiguity. To include their unambiguous
counterparts in the C-split, we explicitly specify the topology between locatum and relatum by
adding “inside” for internal relative and “outside” for external relative in the spatial expression.
An example of the A-split context is “A cat is to the right of the box.” The counterpart for internal
relative is “a cat is inside and to the right of the box.” The counterpart for external relative is “a cat
is outside and to the right of the box.” We add both counterparts in the C-split.

Case 3: Car Case. We introduce the third case subset of A-split, Car case. We select the relatum
with intrinsic direction and affordance as a container for this case. With these two properties, the
relatum can provide the perspective for spatial relations and contain the locatum, allowing all FoR
classes. An obvious example is a car that can be a container with intrinsic directions. Therefore,
the applicable frames of reference classes are FoR = { external relative external intrinsic, internal
intrinsic, internal relative}, which introduces FoR ambiguity. We resolve this ambiguity by includ-
ing perspective and topology information to create clear counterparts for the C-split. The template
for augment clauses is reused from the Cow case and Box case for perspective and topology infor-
mation, respectively. A proper example of context in A-split is “a person is in front of the car.” The
four counterparts to include in the C-split are “a person is outside and in front of the car from the
car itself” for external intrinsic, “a person is outside and in front of the car from the observer” for
external relative, “a person is inside and in front of the car from the car itself” for internal intrinsic,
and “a person is inside and in front of the car from the observer” for internal relative.

Case 4: Pen Case. We called the last subset of A-split with the Pen case. The last case covers the
circumstance that the relatum neither has the intrinsic direction nor the affordance as a container. An
obvious example is a pen that does not have a left or right direction nor the ability to be a container.
Lacking these two properties, the created context should be clear and have one applicable FoR,
FoR = { external relative}. There is no ambiguity to clarify since there is only one valid FoR class.
Therefore, we can reuse it in the C-split without modifications. An example of such a context is “the
book is to the left of a pen.”

3.2 CONTEXT VISUALIZATION

As a part of the dataset, we include the image visualizations of spatial expressions. In intrinsic FoR
classes, the relatum’s perspective influences how we position the locatum when visualizing spatial
expressions, leading to ambiguity in the position of objects in the scene. For example, given the
expression “a cow is to the right of a car relative to the car,” with the car’s position fixed in the scene,
the cows can be placed in different positions depending on the car’s orientation. To address this issue,
we extend the context in both splits of FoREST by adding the relatum’s orientation information. To
specify the relatum’s orientation, we use templates such as “facing forward.” For instance, “a cat
is to the left of a dog” is extended to “a cat is to the left of a dog, facing forward.” In this way,
we obtain I-A-split from A-split and I-C-split from C-split. We restrict I-A-split and I-C-split to
external FoR classes to avoid occlusion in the visualization since one object can become invisible
in internal FoR classes. We then create scene configurations based on the spatial expressions in
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I-A-split and I-C-split, as illustrated in Figure 2. We use the Unity-3D simulator 1 to process scene
configurations and generate four visualizations for each one. The detail on the simulation is provided
in the Appendix B.

3.3 RELATUM/LOCATUM SELECTION

We selected nine object sets to support the four FoR cases defined above. For instance, an example
set of objects is “small objects with intrinsic direction.” Selected objects in this group, such as
dogs and cats, are guaranteed to have intrinsic direction without the affordance of being containers.
This set is used to create the Cow Case context and visualization. All sets of objects are in the
Appendix B. The total number of selected objects is 20, enough to cover all defined FoR cases.

3.4 DATASET CREATION PROCEDURE

The pipeline is illustrated in Figure 2 to combine all the above-explained procedures. First, we select
a set of locatum and relatum based on the FoR cases defined in Section 3.1 to form A-split spatial
expressions. We substitute the actual locatum and relatum objects in the Spatial Relation template,
“<locatum> <spatial relation> <relatum>.” In the figure, left is the spatial relation, locatum is a
horse, and relatum is a cow. After obtaining the A-split contexts, we create their counterparts using
the perspective/topology clauses described in Section 3.1 represented in yellow text. Next, we
apply the orientation template described in Section 3.2 to prepare the context for the visualization.
We then create the scene configuration from modified spatial expression and send it to the simulator
to finalize visualizations. The dataset statistic is in Appendix A, and the complete sets of all patterns
and entities are included in Appendix B.

4 MODELS AND TASKS

4.1 FOR IDENTIFICATION

Task. We evaluate the LLMs’ performance in recognizing the FoR classes from given spatial
expressions. The LLMs receive aspatial expression, denoted as T , and output one FoR class, F ,
from the valid set of FoR classes, F ∈ FoR = {external relative, external intrinsic, internal intrinsic,
internal relative}. All in-context learning examples are in the Appendix C.

Zero-shot model. We follow the regular setting of zero-shot prompting. We only provide instruction
to LLM with spatial context. The instruction prompt briefly explains each class of the FoR and
candidate answers for the LLM. We called the LLM with the instruction prompt and T to find F .

Few-shot model. We manually craft four spatial expressions for each FoR class. To avoid creating
bias, each spatial expression is ensured to fit in only one FoR class. These expressions serve as
examples of our few-shotsetting. We provide these examples in addition to the instruction as a part
of the prompt, followed by T and query F from the LLM.

Chain-of-Thought (CoT) model. To create CoT (Wei et al., 2023) examples, we modify the prompt
to require reasoning before answering. Then, we manually crafted reasoning explanations with
the necessary information for each example used in few-shot. Finally, we call the LLMs, adding
modified instructions to updated examples, followed by T and query F .

Spatial-Guided Prompting (SG) model. We hypothesize that the general spatial relation types
defined in Section 2 can provide meaningful information for recognizing FoR classes. For instance,
a topological relation, such as “inside,” is intuitively associated with an internal FoR. Therefore,
we propose Spatial-Guided Prompting to direct the model in identifying the type of relations be-
fore querying F . We revise the prompting instruction to guide the model in considering these three
aspects. Then, we manually explain these three aspects. We specify the relation’s origin from the
context for direction relations, such as ”the left direction is relative to the observer.” We hypothesize
that this information helps the model distinguish between intrinsic and relative FoR. Next, we spec-
ify whether the locatum is inside or outside the relatum for topological relations. This information
should help distinguish between internal and external FoR classes. Lastly, we provide the potential

1https://unity.com
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(a) An image generated from SD-2.1. (b) An image generated from Llam3-8B + GLIGEN.

Figure 3: Two images generated from the ambiguous spatial expression “A car is to the right of a
cow.” (a) is correct by intrinsic FoR interpretation, while (b) is correct by relative FoR interpretation.
These images only show the examples of possible interpretations of spatial expression in A-split that
can be interpreted using multiple FoR classes.

quantitative distance, e.g., far. This quantitative distance further encourages identifying the correct
topological and directional relations. Eventually, we insert these new explanations in examples and
call the model with the updated instructions followed by T to query F .

4.2 TEXT-TO-IMAGE (T2I)

Task. The input to the text-to-image is a spatial expression, T , and output from the model is a
generated image, denoted as I , corresponding to given T . This task aims to determine the diffusion
models’ ability to consider FoR by assessing their generated images.

Stable Diffusion models. We evaluate the performance of the stable diffusion models for the sim-
plest baseline of T2I models. This model only needs the scene description as input. Therefore, we
provide T to the model and expect an output image of I .

Layout Diffusion models. We evaluate the Layout Diffusion model for more advanced T2I models.
The layout diffusion model has two phases: text-to-layout and layout-to-image. As the LLMs can
be used to generate the bounding box layout (Cho et al., 2023b; Lian et al., 2024), we provide T to
LLMs with the instruction to generate the layout including bounding box coordinates for each object
in the format of {object: [x, y, w, h]}, where x and y represent the starting point of the bounding
box and h and w represent the height and width of the bounding box. After generating the bounding
box coordinates, they are provided with T as an additional input for the layout-to-image model to
create the output image, I .

Spatial-Guide Layout Diffusion models. We propose Spatial-Guide Layout Diffusion pipeline for
image generation, which introduces an additional step before the text-to-layout phase. This step in-
volves obtaining the FoR information from T , denoted as S(T ). We guide LLMs to extract direction,
topology, and distance information from T to generate S(T ). Following the SG prompting proce-
dure, we create examples for this step. Then, we provide examples to help the model understand the
task and generate S(T ). Once S(T ) is generated, it is used as supplementary information to guide
the LLMs in generating bounding box coordinates. This model allows us to consider FoRs in image
generation and assess their impact on the T2I task. After obtaining the bounding box coordinates,
we follow the same outline in Layout Diffusion to generate the final image.

5 EXPERIMENTAL RESULTS

5.1 EVALUATION METRICS

FoR Identification. We report the accuracy of the model on the multi-class classification task.
Note that the expressions in A-split can have multiple correct answers. Therefore, we consider the
prediction correct when it is in one of the valid FoR classes for the given spatial expression.

T2I. To evaluate the generated images, we assess the generated objects and their spatial relation-
ships. To do so, inspired by spatialEval (Cho et al., 2023b), we detect the spatial relation in images.
However, we modify their approach to consider the given FoR when evaluating spatial relations. In
particular, we convert all relations based on their FoR to be expressed from camera view and then
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pass it to spatialEval evaluation since spatialEval assumes the camera perspective. We compare
the bounding box and the depth map of two objects (i.e. relatum and locatum) mentioned in the
spatial expression to determine the accuracy of the generated image. When evaluating the generated
image from a context with FoR ambiguity, we consider it correct if it fits one of the valid FoRs
for the given situation. See Figure 3 where context with FoR ambiguity produces two correct im-
ages in different FoR interpretations. We report the evaluation score in terms of VISORcond and
VISORuncond (Gokhale et al., 2023). VISOR score is a metric designed to compare the spatial
understanding abilities of T2I models. The VISORcond evaluates the spatial relations and only in-
cludes the cases with both objects mentioned in the spatial expression correctly appearing in the
generated image. In other words, it ignores cases with object errors and focuses on how well the
model interprets spatial relations, which is the target of our work. While the VISORuncond evaluates
the model’s overall performance, including object creation errors.

5.2 EXPERIMENTAL SETTING

FoR Identification. We selected five different LLMs including Llama3-8B, LLama3-70B (Llama,
2024), Gemma2-9B (Gemma, 2024), Qwen2-72B (Qwen Team, 2024), GPT-3.5-turbo (Brown et al.,
2020), and GPT-4o (OpenAI, 2024) as the backbones for prompt engineering. The version of GPT-
3.5-turbo is ”gpt-3.5-turbo-0125,” and GPT-4o is ”gpt-4o-2024-05-13”. We set the temperature of all
models to be 0 to make the experiments reproducible. For each model, we apply several in-context
learning (ICL) approaches including, zero-shot, few-shot, CoT, and our technique of Spatial-Guided
Prompting (SG) as described in Section 4.1. For few-shot, CoT, and SG, we provide four examples
to the models. The procedures for creating examples for each ICL are described in Section 4.1. The
data splits used in these experiments are A-split and C-spilt.

T2I. We select Stable Diffusion 1.5 (SD-1.5) and Stable Diffusion 2.1 (SD-2.1) (Rombach et al.,
2021) for stable diffusion models. For the backbone of layout-to-image, we choose GLIGEN (Li
et al., 2023). We utilize LLama3-8B and LLama3-70B to handle the transition from spatial descrip-
tion to the textual bounding box information. The bounding box format is described in Section 4.2.
To generate FoR information, we use the same selection of LLMs for the Spatial-Guided Layout
Diffusion (SG Layout Diffusion), explained in Section 4.2. We generated four images per spatial
expression to evaluate performance and calculated the VISOR score, following the original paper
in Gokhale et al. (2023). The number of inference steps for all text-to-image models was set to
50. The data splits used in these experiments are I-A-split and I-C-split. For the evaluation, we
select grounding DINO (Liu et al., 2024) and DPT (Ranftl et al., 2021), following VPEval Cho et al.
(2023b), to detect objects and depth map, respectively. We conduct all experiments and evaluations
on GPU A6000, taking roughly 300 GPU hours.

5.3 RESULTS

5.3.1 FOR INHERENTLY BIAS IN LLMS

C-spilt. The zero-shot setting reflects the LLMs’ inherent bias in identifying FoR. Table 1 presents
the accuracy for each FoR class in C-split, where sentences explicitly include information about
topology and perspectives. We found that some models strongly prefer specific FoR classes. No-
tably, Gemme2-9B achieves a near-perfect accuracy on external relative FoR but performs poorly
on other classes, especially external intrinsic, indicating a notable bias towards external relative.
In contrast, GPT4o and Qwen2-72B show exceptional performance in both intrinsic FoR classes.
However, they perform poorly in the relative FoRs.

A-spilt. We examine the FoR bias in the A-split. Based on the results in Table 1, we plotted
the top-3 models’ results (Gemma2-9B, Llama3-70B, and GPT4o) for a more precise analysis in
Figures 4. The plots show the frequencies of each FoR category. According to the plot, Gemma
and GPT have strong biases toward external relative and external intrinsic, respectively. This bias
helps Gemma2 perform well in the A-split since all spatial expressions can be interpreted as external
relative. However, GPT4o’s bias leads to errors when intrinsic FoRs aren’t valid, as in the Box and
Pen cases (see plots (c) and (d)). Llama3 exhibits different behavior, showing a bias based on the
relatum’s properties, specifically the relatum’s affordance as a container. In cases where relatum
cannot serve as containers, i.e., Cow and Pen cases, Llama3 favors external relative. Conversely,
Llama3 tends to favor external intrinsic when the relatum has the potential to be a container.
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A-split C-Split
Model ER-C-Split EI-C-Split II-C-Split IR-C-Split Avg.
Gemma2-9B (0-shot) 94.17 94.24 35.98 53.91 57.66 60.45
Gemma2-9B (4-shot) 59.58 55.89(↓ 38.34) 72.61(↑ 36.63) 74.22(↑ 20.31) 54.44(↓ 3.23) 64.29(↑ 3.84)
Gemma2-9B (CoT) 60.49 60.49(↓ 33.74) 60.54(↑ 24.57) 87.50(↑ 33.59) 54.03(↓ 3.63) 65.64(↑ 5.20)
Gemma2-9B (SG)(Our) 72.67 65.87(↓ 28.37) 65.54(↑ 29.57) 53.12(↓ 0.78) 95.97(↑ 38.31) 70.13(↑ 9.68)
llama3-8B (0-shot) 59.58 60.36 83.80 56.25 62.50 65.73
llama3-8B (4-shot) 59.58 58.68(↓ 1.68) 61.74(↓ 22.07) 81.25(↑ 25.00) 51.61(↓ 10.89) 63.32(↓ 2.41)
llama3-8B (CoT) 66.19 66.19(↑ 5.83) 56.63(↓ 27.17) 99.22(↑ 42.97) 51.21(↓ 11.29) 68.31(↑ 2.58)
llama3-8B (SG) (Our) 72.73 69.88(↑ 9.52) 49.24(↓ 34.57) 100.00(↑ 43.75) 49.19(↓ 13.31) 67.08(↑ 1.35)
llama3-70B (0-shot) 77.33 35.04 32.39 57.81 53.23 44.62
llama3-70B (4-shot) 59.78 59.78(↑ 24.74) 66.52(↑ 34.13) 77.34(↑ 19.53) 51.61(↓ 1.61) 63.81(↑ 19.20)
llama3-70B (CoT) 66.00 68.01(↑ 32.97) 65.65(↑ 33.26) 91.41(↑ 33.59) 58.47(↑ 5.24) 70.88(↑ 26.27)
llama3-70B (SG) (Our) 74.94 78.17(↑ 43.13) 70.87(↑ 38.48) 100.00(↑ 42.19) 84.27(↑ 31.05) 83.33(↑ 38.71)
Qwen2-72B (0-shot) 60.21 60.21 93.70 85.16 45.16 71.06
Qwen2-72B (4-shot) 90.83 89.92(↑ 29.71) 59.02(↓ 34.67) 94.53(↑ 9.38) 76.21(↑ 31.05) 79.92(↑ 8.87)
Qwen2-72B (CoT) 84.16 84.69(↑ 24.48) 78.26(↓ 15.43) 92.19(↑ 7.03) 85.89(↑ 40.73) 85.26(↑ 14.20)
Qwen2-72B (SG) 93.84 92.93(↑ 32.72) 97.39(↑ 3.70) 96.09(↑ 10.94) 85.08(↑ 39.92) 92.87(↑ 21.82)
GPT3.5 (0-shot) 60.88 60.62 62.50 74.22 50.81 62.04
GPT3.5 (4-shot) 59.58 39.64(↓ 20.98) 99.89(↑ 37.39) 100.00(↑ 25.78) 51.21(↑ 0.40) 72.68(↑ 10.65)
GPT3.5 (CoT) 59.13 59.52(↓ 1.10) 74.67(↑ 12.17) 100.00(↑ 25.78) 48.39(↓ 2.42) 70.65(↑ 8.61)
GPT3.5 (SG) (Our) 77.59 69.62(↑ 9.00) 97.93(↑ 35.43) 100.00(↑ 25.78) 60.48(↑ 9.68) 82.01(↑ 19.97)
GPT4o (0-shot) 59.90 60.43 99.35 100.00 51.61 77.85
GPT4o (4-shot) 59.78 59.91(↓ 0.52) 100.00(↑ 0.65) 100.00 69.35(↑ 17.74) 82.32(↑ 4.47)
GPT4o (CoT) 64.31 63.99(↑ 3.56) 99.89(↑ 0.54) 100.00 62.10(↑ 10.48) 81.49(↑ 3.65)
GPT4o (SG) (Our) 69.88 70.08(↑ 9.65) 99.67(↑ 0.33) 100.00 73.39(↑ 21.77) 85.78(↑ 7.94)

Table 1: Accuracy results report from FoR Identification with LLMs. The correct prediction is one
of the valid FoR classes for the given spatial expression. All FoR classes are external relative (ER),
external intrinsic (EI), internal intrinsic (II), and internal relative (IR).

(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 4: Red shows the wrong FoR identifications, and green shows the correct ones. The dark
color is for relative FoRs, while the light color is for intrinsic FoRs. The round shape is for the
external FoRs, while the square is for internal FoRs. The depth of the plots shows the four FoRs,
i.e., external relative, external intrinsic, internal intrinsic, and internal relative, from front to back.

5.3.2 BEHAVIOR WITH ICL VARIATIONS

C-spilt. We evaluate the models’ behavior under various in-context learning (ICL) methods. As
observed in Table 1, the few-shot method improves the performance of the zero-shot method across
multiple LLMs by reducing their original bias toward specific classes. Reducing the bias, how-
ever, lowers the performance in some cases, such as the performance of Gemma 2 in ER class.
One noteworthy observation is that while the CoT prompting generally improves performance in
larger LLMs, it is counterproductive in smaller models for some FoR classes. This suggests that
the smaller models have difficulty inferring FoR from the longer context. This negative effect also
appears in SG prompting, which uses longer explanations. Despite performance degradation in par-
ticular classes of small models, SG prompting performs exceptionally well across various models
and achieves outstanding performance with Qwen2-72B. We further investigate the performance of
CoT and SG prompting. As shown in Table 2, CoT exhibits a substantial difference in performance
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Model inherently clear require template
CoT SG CoT SG

Llama3-70B 19.84 44.64 (↑ 24.80) 76.72 87.39 (↑ 10.67)
Qwen2-72B 58.20 84.22 (↑ 26.02) 88.36 93.86 (↑ 10.67)
GPT-4o 12.50 29.17 (↑ 16.67) 87.73 90.74 (↑ 3.01)

Table 2: The comparison between CoT and SG prompting in C-split separated by inherently clear /
required template to be clear.

VISOR(%)
I-A-Split I-C-Split

Model cond (I) cond (R) cond (avg) cond (I) cond (R) cond (avg)
EI FoR ER FoR all

SD-1.5 51.11 21.61 72.72 48.95 68.72 53.92 53.77 53.83
SD-2.1 57.97 21.49 79.46 54.10 75.39 60.06 59.64 59.83
Llama3-8B + GLIGEN 53.67 25.78 79.45 66.08 77.38 57.51 65.98 62.12
Llama3-70B + GLIGEN 54.49 29.45 83.94 68.68 81.43 56.47 69.53 63.49
Llama3-8B + SG + GLIGEN (Our) 57.46 27.96 85.42 71.14 83.17 58.84 70.36 65.15
Llama3-70B + SG + GLIGEN (Our) 56.54 30.59 87.13 66.56 83.75 56.77 70.04 64.06

Table 3: VISORcond score on the I-A and I-C splits where I refer to the Cow case and Car case
where relatum has intrinsic directions, and R refer to the Box case and Pen case where relatum
lacks intrinsic directions, avg is mirco-average of I and R. cond are explained in Section 5.1. EI
and ER FoR represent the generated image considered corrected by EI or ER FoR

between contexts with inherently clear FoR and contexts requiring the template to clarify FoR am-
biguity. This implies that CoT heavily relies on the specific template to identify FoR classes. In
contrast, SG prompting demonstrates a smaller gap between these two scenarios and significantly
enhances performance over CoT in inherently clear FoR contexts. Therefore, guiding the model to
provide characteristics regarding topological, distance, and directional types of relations improves
FoR comprehension. We provide failure examples of these two prompting methods in Appendix G.

A-spilt. We use the same Figure 4 to observe the behavior when applying ICL. The A-split shows
minimal improvement with ICL variations, though some notable changes are observed. With few-
shot, all models show a strong bias toward external intrinsic FoR, even when the relatum lacks
intrinsic directions, i.e., Box and Pen cases. This bias appears even in Gemma2-9B, which usually
behaves differently. This suggests that the models pick up biases from the examples despite efforts
to avoid such patterns. However, CoT reduces some bias, leading LLMs to revisit relative, which
is generally valid across scenarios. In Gemma2, the model predicts relative FoR where the relatum
has intrinsic directions, i.e., Cow and Car cases. Llama3 behaves similarly in cases where the
relatum cannot act as a container, i.e., Cow and Pen cases. GPT4o, however, does not depend on the
relatum’s properties and shows slight improvements across all cases. Unlike CoT, our SG prompting
is effective in all scenarios. It significantly reduces biases while following a similar pattern to CoT.
Specifically, SG prompting increases external relative predictions for Car and Cow in Gemma2-
9B, and for Cow and Pen in Llama3-70B. Nevertheless, GPT4o shows only a slight bias reduction.
However, Our proposed method improves the overall performance of most models, as shown in
Table 1. The Llama3-70B behaviors are also seen in LLama3-8B and GPT3.5. The plots for these
LLMs are in Appendix E due to lack of space.

5.3.3 FOR IMPACT ON IMAGE GENERATION

We evaluate SG layout diffusion to assess the impact of using FoR on image generation. We focus on
VISORcond as it better reflects the model’s spatial understanding than the overall performance mea-
sured by VISORuncond. Due to space limitations, VISORuncond results are reported in Appendix D.
Table 3 shows that adding FoR information (Llama3 + SG + GLIGEN) improves performance across
all splits compared to the baseline models (Llama3 + GLIGEN). The most significant gains occur
when the relatum lacks intrinsic direction, making external relative FoR the only valid option. How-
ever, the results show a significant bias towards the relative FoR of our model. This bias becomes
more evident when comparing SD-2.1 with the baseline of our model (Llama3 + GLIGEN). This
illustrates that the GLIGEN only significantly improves spatial comprehension on relative FoR. In
contrast, SD-2.1 surpasses all GLIGEN-based models, including ours, when FoR is intrinsic, as
seen in the cond(I) of the I-C split in Table 3. This limitation likely arises from the reliance on
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bounding boxes for generating spatial configurations, which makes it challenging to handle intrinsic
FoR due to the lack of object properties and orientation. This challenge is further highlighted in
the separate corrected interpretations for I-A split. From these results , GLIGEN only shows higher
correct interpretation in external relative compared to SD-2.1. This confirms again that the main
improvement in layout diffusion is in the relative FoR, which utilizes the camera perspective as co-
ordinates for spatial relations. Regardless of GLIGEN’s bias, incorporating FoR information from
SG-prompting still improves all FoR classes. We provide further analysis of the improvement when
employing SG in the layout generation in the Appendix F. Our experimental observations also show
that Llama’s bias when generating layouts aligns with the identified FoR, which prefers external
intrinsic in A-Split and external relative in C-Split.

6 RELATED WORKS

Understanding situated spatial expressions requires knowledge of the frame of reference (FoR),
which defines the coordinate system used to describe objects’ positions. A detailed study of the FoR
on multiple natural languages was conducted in (Levinson, 2003), which categorizes the FoR into
three basic categories: intrinsic, relative, and absolute. Inspired by this basic framework, Tenbrink
2011 proposed a more comprehensive framework for specifying the FoR, used as the primary refer-
ence of our study. Their frameworks extended the basics with other spatial relation concepts, such as
topology and temporal. Cognitive studies have increasingly focused on how humans perceive spa-
tial FoR. Many findings in these studies suggest that humans favor specific FoR classes (Edmonds-
Wathen, 2012; Vukovic & Williams, 2015; Shusterman & Li, 2016; Ruotolo et al., 2016) For in-
stance, Ruotolo et al. 2016 investigated how the FoR affects the human’s ability to memorize and
describe the scene within a limited time. They found that participants were better at describing and
answering questions when the spatial relations were based on participants’ position, as opposed to
using other objects as reference points. This highlights a gap between the relative and intrinsic FoR.

Several benchmarks have been developed across various domains to evaluate the spatial understand-
ing of computation models. In the text-based domain, recent benchmarks focus on navigating with
spatial instructions (Yamada et al., 2024) or question-answering tasks (Shi et al., 2022; Mirzaee
& Kordjamshidi, 2022; Rizvi et al., 2024). These benchmarks are developed to assess the spatial
reasoning capability without paying attention to FoR. Existing research often lacks explicit consid-
eration of FoR, and the benchmarks do not include FoR annotations. Consequently, evaluating FoR
understanding remains a research gap in spatial reasoning-related work. Similarly, text-to-image
(T2I) benchmarks (Gokhale et al., 2023; Huang et al., 2023; Cho et al., 2023a;b) face the same is-
sue. They usually focus on correctly placing two objects based on spatial relation from the camera
perspective and relative FoR. Nevertheless, few works in vision-text domains are starting to recog-
nize the importance of a FoR (Chen et al., 2024; Liu et al., 2023). One notable study is provided
by Liu et al. 2023. They provide a case study on the FoR and results showing that making the model
capable of understanding the FoR affects downstream performance on visual question answering.
However, their study is limited in terms of FoR categories. In our work, we extend the coverage of
benchmarks into more diverse frames of reference for the FoR recognition tasks. Moreover, we are
the first to study the impact of FoR identification on text-to-image generation as a downstream task.

7 CONCLUSION

Given the significance of spatial reasoning in AI applications and the importance of understanding
spatial frame of reference (FoR), we introduce Frame of Reference Evaluation in Spatial Reason-
ing Tasks (FoREST) benchmark to assess FoR comprehension in text-based spatial expressions and
its impact on grounding in visual modality by diffusion models. Our benchmark results reveal no-
table differences in FoR identification in various LLMs. Moreover, the bias in FoR interpretations
impacts the LLMs’ ability to generate layouts for text-to-image generation. To improve FoR com-
prehension, we propose Spatial-Guided prompting, which guides the model in considering the type
of spatial relations: topology, distance, and direction, resulting in more accurate FoR identification.
This approach reduces the FoR biases in LLMs and improves the overall performance of the FoR
identification task. Eventually, it enhances text-to-image generation performance by providing more
accurate spatial configurations.
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Case A-Split I-A-Split FoR class C-Spilt I-C-Spilt
Cow Case 792 3168 External Relative 1528 4288
Box Case 120 120 External Intrinsic 920 3680
Car Case 128 512 Internal Intrinsic 128 0
Pen Case 488 488 Internal Relative 248 0

Total 1528 4288 Total 2824 7968

Table 4: Dataset Statistic of FoREST dataset.

Category Object Intrinsic Direction Container
small object without intrinsic directions umbrella, bag, suitcase, fire hydrant ✗ ✗

bog object with intrinsic directions bench, chair ✓ ✗
big object without intrinsic direction water tank ✗ ✗

container box, container ✗ ✓
small animal chicken, dog, cat ✓ ✗
big animal deer, horse, cow, sheep ✓ ✗

small vehicle bicycle ✓ ✗
big vehicle bus, car ✓ ✓

tree tree ✗ ✗

Table 5: All selected objects with two properties: intrinsic direction, affordance of being container

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F. Fouhey,
and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model
as an agent. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
7694–7701, 2024. doi: 10.1109/ICRA57147.2024.10610443.

Yue Zhang and Parisa Kordjamshidi. Lovis: Learning orientation and visual signals for vision and
language navigation, 2022.

A DATASET STATISTICS

The FoREST dataset statistic is provided in the Table 4.

B DETAILS CREATION OF FOREST DATASET

We define the nine categories of objects selected in our dataset as indicated below in Table 5. We
select sets of locatum and relatum based on the properties of each class to cover four cases of frame
of reference defined in Section 3.1. Notice that we also consider the appropriateness of the container;
for example, the car should not contain the bus.

Based on the selected locatum and relatum. To create an A-split spatial expression, we substitute
the actual locatum and relatum objects in the Spatial Relation template. After obtaining the A-split
contexts, we create their counterparts using the perspective/topology clauses to make the counter-
parts in C-spilt. Then, we obtain the I-A and I-C split by applying the directional template to the
first occurrence of relatum when it has intrinsic directions. The directional templates are ”that is fac-
ing towards,” ”that is facing backward,” ”that is facing to the left,” and ”that is facing to the right.”
All the templates are in the Table 6. We then construct the scene configuration from each modified
spatial expression and send it to the simulator developed using Unity3D. Eventually, the simulator
produces four visualization images for each scene configuration.

B.1 SIMULATION DETAILS

The simulation starts with randomly placing the relatum into the scene with the orientation based
on the given scene configuration. We randomly select the orientation by given scene configuration,
[-40, 40] for front, [40, 140] for left, [140, 220] for back, and [220, 320] for right. Then, we create
the locatum from the relatum position and move it in the spatial relation provided. If the frame
of reference is relative, we move the locatum based on the camera’s orientation. Otherwise, we

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: All 3d models used to generate visualizations for FoREST.

{locatum} is in front of {relatum}
{locatum} is on the left of {relatum}
{locatum} is to the left of {relatum}

Spatial Relation Templates {locatum} is behind of {relatum}
{locatum} is back of {relatum}

{locatum} is on the right of {relatum}
{locatum} is to the right of {relatum}

within {relatum}
Topology Templates and inside {relatum}

and outside of {relatum}
from {relatum}’s view
relative to {relatum}

Perspective Templates from {relatum}’s perspective
from my perspective

from my point of view
relative to observer
that is facing toward

Directional Templates that is facing backward
that is facing to the left

that is facing to the right

Table 6: All templates used to create FoREST dataset.

move it from the relatum’s orientation. Then, we check the camera’s visibility of both objects. If
one of them is not visible, we repeat the process of generating the relatum until the correct place-
ment is achieved. After getting the proper placement, we randomly choose the background from 6
backgrounds. Eventually, we repeat the procedures four times for one configuration.

B.2 OBJECT MODELS AND BACKGROUND

For the object models and background, we find it from the unity assert store2. All of them are free
and available for download. All of the 3D models used are shown in Figure 5.

2https://assetstore.unity.com
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B.3 TEXTUAL TEMPLATES

All the templates used to create FoREST are given in Table 6.

C IN-CONTEXT LEARNING

We provide the prompting for each in-context learning. The prompting for zero-shot and few-shot is
provided in Listing 1. The instruction answer for these two in-context learning is “Answer only the
category without any explanation. The answer should be in the form of {Answer: Category.}”

For the Chain of Thought (CoT), we only modified the instruction answer to “Answer only the
category with an explanation. The answer should be in the form of {Explanation: Explanation
Answer: Category.}” Similarly to CoT, we only modified the instruction answer to “Answer only
the category with an explanation regarding topological, distance, and direction aspects. The answer
should be in the form of {Explanation: Explanation Answer: Category.}”, respectively. The example
responses are provided in Listing 2 for Spatial Guided prompting.

1 # Instruction to find frame of reference class of given context
2 """
3 Instruction:
4 You specialize in language and spatial relations, specifically in the

reference frame of context. Identify the following context into the
frame of reference categories (external intrinsic, internal intrinsic
, external relative, internal relative) based on the information.

5

6 "External intrinsic is the context that uses spatial relation to describe
the relative position of the object by referring to the reference

object’s direction, and both objects do not contain one another."
7

8 "Internal intrinsic is the context that uses spatial relation to describe
the relative position of the object by referring to the reference

object’s direction and one object is inside another one"
9

10 "External relative is the context that uses spatial relation to describe
the relative position of the object by referring to the observer’s
direction and both objects are in the same level, not contain one
another."

11

12 "Internal relative is the context that uses spatial relation to describe
the relative position of the object by referring to the observer’s
direction and one object is inside another one."

13

14

15 {Instruction answer}
16 # Normal Instruction answer: Answer without an explanation. The answer

should be in the form of \{Answer: Category.\}
17 # COT Instruction answer: Answer only the category with an explanation.

The answer should be in the form of \{Explanation: Explanation Answer
: Category.\}

18 # SG Instruction answer: Answer only the category with an explanation
regarding topological, distance, and direction aspects. The answer
should be in the form of \{Explanation: Explanation Answer: Category
.\}

19

20 Context: {spatial exprssion}
21

22 """
23

24 # Instruction for generate bounding box
25 """
26 Your task is to generate the bounding boxes of objects mentioned in the

caption.

15
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27 The image is size 512x512. The bounding box should be in the format of (x
, y, width, height). Please considering the frame of reference of
caption and direction of reference object if possible. If needed, you
can make the reasonable guess.

28 """

Listing 1: Prompting to find the frame of reference class of given context and generate bounding
box layout

1 ## This is example response used in few-shot, CoT, and SG
2 # Example 1: The bird is outside and in front of the car relative to the

car.
3 # Few-shot response: Answer: external intrinsic
4 # CoT response: Explanation: The car, which is the relative (relatum)

object, has the front/back direction, and the position of the bird
refers to the front direction of the car based on the context. Answer
: external intrinsic.

5 # SG response: Explanation: Topological: The bird is outside of the car.
Distance: the bird is outside of the position of the car and should
have some distance between the bird and the car. Direction: The car,
the relative object, has the front/back direction, and the bird is
actually in front of the car. Answer: external intrinsic

6

7

8 # Example 2: The bird is inside of the car and to the left of the car
from the car’s perspective.

9 # Few-shot response: Answer: internal intrinsic
10 # CoT response: Explanation: Based on the context, the bird is inside the

car, and the position of the bird refers to the left part of the car
. Answer: internal intrinsic.

11 # SG response: Explanation: Topological: bird is inside of the car.
Distance: From the context, the bird should be in the same location
as the car. Direction: The car, which is the relative object, has the
front/back direction, and the bird is on the left side of the car.

Answer: internal intrinsic.
12

13

14 # Example 3: The box is inside and at the back of the room.
15 # Few-shot response: Answer: internal relative
16 # CoT response: Explanation: The box is inside the room, but the room

doesn’t have the intrinsic direction. Therefore, the back relation is
based on the observer’s perspective of the room. Answer: internal

relative.
17 # SG response: Explanation: Topological: The box is inside the room.

Distance: box should be in the same location with the room from the
context. Direction: The room doesn’t have the direction and context
reference from the observer’s perspective, for the box is in the back
of the room. Answer: internal relative.},

18

19

20 # Example 4: A phone is on the left of a tablet from my perspective.
21 # Few-shot response: Answer: external relative
22 # CoT response: Explanation: Based on the context, the tablet does not

contain the phone. The tablet has the direction; however, the left of
the tablet refers to my perspective rather than the tablet. Answer:

external relative.
23 # SG response: Explanation: Topological: the phone is not inside of the

tablet. Distance: The phone may have some distance from the tablet
according to the context, but they should be near each other in the
scene. Direction: even if the tablet has direction, the context left
relation refers to the observer’s perspective that a phone is on the
left side of the tablet location. Answer: external relative

Listing 2: Spatial expression examples with the response for few-shots, Chain-of-Thought (CoT),
and Spatial Guide (SG) prompting
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VISOR(%)
Model uncond (I) uncond (R) uncond (avg) uncond (I) uncond (R) uncond (avg)

I-A-Split I-C-Split
SD-1.5 45.43 33.22 43.51 35.06 35.68 35.40
SD-2.1 62.87 43.90 59.89 45.98 46.59 46.31
Llama3-8B + GLIGEN 46.74 38.16 45.39 33.98 39.36 36.89
Llama3-70B + GLIGEN 54.33 46.89 53.17 38.04 46.04 42.37
Llama3-8B + SG + GLIGEN (Our) 51.83 43.24 50.48 36.28 44.43 40.70
Llama3-70B + SG + GLIGEN (Our) 58.92 47.44 57.12 38.23 48.62 43.86

Table 7: VISORuncond score on the I-A-Split and I-C-Split where I refer to the Cow Case and
Car Case where relatum has intrinsic directions, and R refer to the Box Case and Pen case where
relatum lacks intrinsic directions, avg is mirco-average of I and R. cond and uncond are explained
in Section 5.1.

(a) Results of Cow Case in A-Split. (b) Results of Car Case in A-Split.

(c) Results of Box Case in A-Split. (d) Results of Pen Case in A-Split.

Figure 6: Red shows the wrong FoR identifications, and green shows the correct ones. The dark
color is for relative FoRs, while the light color is for intrinsic FoRs. The round shape is for the
external FoRs, while the square is for internal FoRs. The depth of the plots shows the four FoRs,
i.e., external relative, external intrinsic, internal intrinsic, and internal relative, from front to back.
This plot is the result of the rest of LLMs.

D VISOR SCORE

VISORuncond provides the overall spatial relation score, including images with object generation
errors. Since it is less focused on evaluating spatial interpretation than VISORcond, which assesses
explicitly the text-to-image model’s spatial reasoning, we report VISORuncond results here in the
Table 7 rather than in the main paper. The results are similar to the pattern observed in VISORuncond

that the based models(SD-1.5 and SD-2.1) perform better in the relative frame of reference, while
the layout-to image models, i.e. GLIGEN, are better in the intrinsic frame of reference.

E A-SPLIT PLOT FOR FREQUENCY PREDICTIONS

Due to a lack of space and the same behavior as explained for LLama3-70B in Section 5.3.2, we
provide the plot for Llama3-8B and GPT3.5 here in Table 6 instead of the main paper.
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Model Layout Layoutcond

Llama3-8B 85.26 88.84
Llama3-8B + SG 85.04 88.86
Llama3-70B 88.47 93.16
Llama3-70B + SG 91.95 95.45

Table 8: Layout accuracy where spatial relations are left or right relative to the camera. Layout is
evaluated for all generated layouts in I-C split while Layoutcond uses the same testing examples as
VISORcond.

F ANALYZE THE IMPROVEMENTS IN SG-PROMPTING FOR T2I.

To further explain improvements of SG-prompting in T2I task, we assess the generated bounding
boxes in the I-C split for left and right relations relative to the camera since these can be evaluated
using only bounding boxes without depth information. As seen is Table 8, our SG prompting im-
proved Llama3-70B’s by 3.48%, while Llama3-8B saw a slight decrease of 0.22%. This evaluation
was conducted on all generated layouts from the I-C split, which differs from the evaluation subset
of images used for VISORcond in Table 3. For a consistent evaluation, we report the layoutcond
score in the same table. Layoutcond shows that Llama3-8B improves within the same evaluation
subset with VISORcond. Overall, by incorporating FoR information through SG layout diffusion,
Llama3 generates better spatial configurations, enhancing image generation performance.

G QUALITATIVE EXAMPLES OF FAILURE CASES OF COT AND SG

G.1 COT INCORRECT BUT RESOLVED BY USING SG

• Context : A cat is inside and on the left of a car from the car’s perspective
CoT : Explanation: Cat is inside of the car, and the car has the intrinsic direction. However,
the left of the car is referring to the car’s perspective rather than the intrinsic direction of
the car. Answer: internal relative.
SG : Explanation: Topological: cat is inside of the car. Distance: cat should be in the same
location with the car from the context. Direction: The car which is the relative object has
the direction, and cat is on the left side of the car. Answer: internal intrinsic.
label : internal intrinsic

• Context : A container is on the right of a dog from the dog’s perspective
CoT : Explanation: Based on the context, dog does not contain the container. The dog
has the direction; however, the right of a dog referring to the dog’s perspective rather than
intrinsic direction of the dog. Answer: external relative.
SG : Explanation: Topological: container is not inside of the dog. Distance: container may
has some distance from dog according to the context. Direction: Dog has the direction and
the context right relation is referred from dog’s perspective that a container is on the right
side of the dog’s facing orientation. Answer: external intrinsic.
label : external intrinsic

• Context : A water tank is on the left of a cow from the cow’s perspective
CoT : Explanation: Based on the context, cow does not contain the water tank. The cow
has the direction; however, the left of a water tank referring to the cow’s perspective rather
than cow’s intrinsic direction. Answer: external relative.
SG : Explanation: Topological: water tank is not inside of the cow. Distance: water tank
may has some distance from cow according to the context. Direction: The cow which is
the relative object has the direction, and water tank is on the left side of the cow. Answer:
external intrinsic.
label : external intrinsic

• Context : A bicycle is in front of a container inside the container
CoT : Explanation: The bicycle is contained within the container, fulfilling the first con-
dition for internal frames of reference. However, since the bicycle is also described as
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being ’in front’ of another object (another container), this implies a spatial relationship that
is dependent on the container’s intrinsic direction. But due to thembiguity of having two
containers mentioned, and assuming the second ’container’ is a typo or misstatement, we
interpret it as a single container scenario. As such, the spatial relation is intrinsic to the
container itself, not relative to an external observer or another entity. Answer: internal
intrinsic.
However, the context provided contains a potential error or ambiguity (”inside the con-
tainer”), which could alter the interpretation if clarified. Assuming there was meant to be
only one container, thebove categorization holds. If there were indeed two distinct contain-
ers, further clarification would be needed to accurately categorize the spatial relation.
SG : Explanation: Topological: bicycle is inside of the container. Distance: bicycle should
be in the same location with the container from the context. Direction: Container doesn’t
have the direction and context refere from observer perspective for bicycle is in the front of
the container. Answer: internal relative. However, there seems to be a contradiction in the
statement as it says the bicycle is both inside and in front of the container. For the purpose
of categorization, we will assume that the intended meaning was that the bicycle is inside
the container and positioned towards the front end of it.
label : internal relative

• Context : A tree is on the left of a box inside the box
CoT : Explanation: Based on the context, box does not contain the tree. However, it seems
there might be a mistake in the sentence as it mentions ’inside the box’ twice. Assuming
the intention was to describe the tree’s position relative to the box without specifying a
container for the tree, we can interpret this as the tree being positioned relative to the
box without being contained within it. Since the box does not have an intrinsic direction,
the reference to ’left’ is relative to an external observer’s perspective. Answer: external
relative.
SG : This context seems to have a logical inconsistency as a tree cannot be inside a box.
However, assuming this was intended to describe two separate spatial relations, we can
interpret it as follows:
Explanation: Topological: tree is not inside of the box. Distance: tree may have some
distance from the box according to the context. Direction: the box does not have a facing
orientation, so the tree being on the left is referred from the observer’s perspective. Answer:
external relative for the relation between the tree and the box.
However, the second part of the sentence ”inside the box” does not provide enough in-
formation to determine a spatial relation between entities. It appears to be incomplete or
incorrectly phrased. If you meant to say ”A tree is on the left of a box inside a room,” then
the relation between the tree and the box would still be external relative, while the relation
of the box being inside the room would be internal relative.
label : internal relative

• Context : A deer is outside and on the left of a bus relative to the bus
CoT : Explanation: The bus has the front/back direction. However, the left of the bus is not
referring to the bus’s intrinsic direction, but rather to an observer’s perspective. Answer:
external relative.
SG : Explanation: Topological: deer is outside of the bus. Distance: deer may be little bit
far from the left of the bus from the context. Direction: The bus which is the relative object
has the direction and deer is actually on the left side of the bus. Answer: external intrinsic.
label : external intrinsic

• Context : A bicycle is behind a fire hydrant
CoT : Explanation: Based on the context, fire hydrant does not contain the bicycle. Fire
hydrant does not have intrinsic direction, so the behind relation is based on the observer’s
perspective. However, since there is no explicit mention of an observer or reference point,
we can consider it as an external intrinsic relation where the observer’s perspective is im-
plied. Answer: external intrinsic.
SG : Explanation: Topological: bicycle is not inside of the fire hydrant. Distance: bicycle
may have some distance from the fire hydrant according to the context. Direction: Fire hy-
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drant does not have a facing orientation, so the spatial relation is not relative to its intrinsic
direction. Instead, it is described from an external perspective. Answer: external relative.
label : external relative

• Context : A box is behind a chicken relative to the chicken
CoT : Explanation: The chicken has no intrinsic direction, so the ’behind’ relation is based
on the perspective of the chicken itself, not its intrinsic orientation. Answer: external
relative. Note that this could potentially be seen as external intrinsic if we assume that the
chicken has a front-back orientation, but since chickens do not typically have a fixed or
understood front-back orientation like humans or cars do, it is more likely to be considered
external relative.
SG : Explanation: Topological: box is not inside of the chicken. Distance: box may be
little bit far from the chicken from the context. Direction: The chicken which is the relative
object has the direction and box is actually behind the chicken. Answer: external intrinsic.
label : external intrinsic

• Context : A car is in front of a deer from the deer’s perspective
CoT : Explanation: Based on the context, deer does not contain the car. The deer has
the direction; however, the front of a deer referring to the deer’s perspective rather than
intrinsic direction of deer. Answer: external relative.
SG : Explanation: Topological: car is not inside of the deer. Distance: car may has some
distance from deer according to the context. Direction: The deer which is the relative object
has the direction, and car is in front of the deer. Answer: external intrinsic.
label : external intrinsic

• Context : An umbrella is on the left of a chicken from the chicken’s perspective
CoT : Explanation: Based on the context, chicken does not contain the umbrella. The
chicken has the direction; however, the left of a chicken referring to the chicken’s perspec-
tive rather than intrinsic direction of the chicken. Answer: external intrinsic. Note that this
sentence is ambiguous because it can be interpreted as external relative if the left is refer-
ring to the observer’s perspective. However, given the context provided, it is more likely to
be interpreted as external intrinsic.
SG : Explanation: Topological: umbrella is not inside of the chicken. Distance: umbrella
may has some distance from chicken according to the context. Direction: The context left
relation is referred from the chicken’s perspective that an umbrella is on the left side of the
chicken’s facing orientation. Answer: external intrinsic.
label : external intrinsic

G.1.1 FAILURE CASE OF SG

• Context : A bus is on the right of a chair from the chair’s perspective
SG : Explanation: Topological: bus is not inside of the chair. Distance: bus may has some
distance from chair according to the context. Direction: Even though the chair does not
have a facing orientation, the perspective is given as the chair’s, making this a case of an
object being described relative to another object’s perspective. Answer: external intrinsic.
However, usually chairs do not have a defined facing direction, so typically this would fall
under external relative. But given the instruction to consider the chair’s perspective, it can
be seen as an exception to the rule, aligning more closely with external intrinsic in this
specific context.
label : external intrinsic

• Context : A tree is on the left of a box inside the box
SG : This context seems to have a logical inconsistency as a tree cannot be inside a box.
However, assuming this was intended to mean ’A tree is on the left of a box inside a room’,
the categorization would be:
Explanation: Topological: tree is not inside of the box. Distance: tree may have some
distance from the box according to the context. Direction: The context left relation is re-
ferred from observer’s perspective that a tree is on the left side of the box location. Answer:
external relative.
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Model ER EI II IR
temp-0 temp-1 temp-0 temp-1 temp-0 temp-1 temp-0 temp-1

Cow Case
0-shot 75.38 87.12 23.86 12.50 0.76 0.13 0.00 0.25
4-shot 0.00 15.66 100.00 84.34 0.00 0.00 0.00 0.00
CoT 31.82 49.87 68.18 49.87 0.00 0.13 0.00 0.13
SG 51.39 70.45 48.61 29.42 0.00 0.00 0.00 0.13
Box Case
0-shot 22.50 41.67 77.50 58.33 0.00 0.13 0.00 0.25
4-shot 0.00 0.00 100.00 100.00 0.00 0.00 0.00 0.00
CoT 0.00 5.83 100.00 94.17 0.00 0.00 0.00 0.00
SG 11.67 33.33 88.33 66.67 0.00 0.00 0.00 0.00
Car Case
0-shot 55.20 68.24 49.01 31.15 0.79 0.61 0.00 0.00
4-shot 0.60 5.94 99.40 94.06 0.00 0.00 0.00 0.00
CoT 19.64 38.52 80.16 61.27 0.20 0.20 0.00 0.00
SG 44.25 56.97 55.75 43.03 0.00 0.00 0.00 0.00
Pen Case
0-shot 90.62 96.88 9.38 3.12 0.00 0.61 0.00 0.00
4-shot 0.00 7.03 100.00 92.97 0.00 0.00 0.00 0.00
CoT 17.19 28.91 82.81 71.09 0.20 0.20 0.00 0.00
SG 48.31 57.81 54.69 42.19 0.00 0.00 0.00 0.00

Table 9: The results between two different temperatures of Llam3-70B on the A-spilt of FoREST.
The number shows the percentage frequency of responses from the model.

If the original context was correct, it would fall under none of these categories due to the
physical impossibility of the scenario described.
label : internal relative

• Context : A cow is in front of a bench relative to the bench
SG : Explanation: Topological: cow is not inside of the bench. Distance: cow may has
some distance from bench according to the context. Direction: Bench doesn’t have the
direction and context refere from observer perspective for cow is in the front of the bench.
Answer: external relative. But if we consider that ’in front of’ refers to the bench’s intrinsic
direction, then it would fall under external intrinsic. However, benches typically do not
have a defined facing direction, so this is less common.
label : external intrinsic

• Context : A dog is on the left of a box within the box
SG : Explanation: Topological: dog is not inside of the box. Distance: dog may has
some distance from box according to the context. Direction: Even if box has direction, the
context left relation is referred from observer’s perspective that a dog is on the left side of
the box location. However, since the dog is not contained by the box, this does not fall
under internal intrinsic or internal relative. Answer: external relative. Note that the phrase
”within the box” seems redundant and does not change the frame of reference.
label : internal relative

H EXPERIMENT WITH DIFFERENT TEMPERATURES

To further investigate the impact of temperature on the biased interpretation of the model in the
A-split of our dataset, we conducted additional experiments. As presented in Table 9, comparing
distinct temperatures (0 and 1) revealed a shift in the distribution. The frequencies of the classes
experienced a change of up to 10%. However, the magnitude of this change is relatively minor, and
the relative preferences for most categories remained unchanged. Specifically, the model exhibited
the highest frequency responses for the cow, car, and pen cases, even with higher frequencies in
certain settings. Consequently, a high temperature does not substantially alter the diversity of LLMs’
responses to this task, which is an intriguing finding.
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