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Abstract

Rigorous software testing is crucial for developing and maintaining high-quality
code, making automated test generation a promising avenue for both improving
software quality and boosting the effectiveness of code generation methods. How-
ever, while code generation with Large Language Models (LLMs) is an extraor-
dinarily active research area, test generation remains relatively unexplored. We
address this gap and investigate the capability of LLM-based Code Agents to for-
malize user issues into test cases. To this end, we propose a novel benchmark
based on popular GitHub repositories, containing real-world issues, ground-truth
bug-fixes, and golden tests. We find that LLMs generally perform surprisingly
well at generating relevant test cases, with Code Agents designed for code repair
exceeding the performance of systems designed specifically for test generation.
Further, as test generation is a similar but more structured task than code gen-
eration, it allows for a more fine-grained analysis using issue reproduction rate
and coverage changes, providing a dual metric for analyzing systems designed for
code repair. Finally, we find that generated tests are an effective filter for proposed
code fixes, doubling the precision of SWE-AGENT. We release all data and code
at github.com/logic-star-ai/SWT-Bench.

1 Introduction

As the complexity of software systems increases, rigorous testing is becoming more important than
ever to ensure their reliability and correctness. However, while a large portion of these tests aims to
reproduce previously reported issues (Kang et al., 2023), such issue reproduction is often disliked
by professional developers (Straubinger & Fraser, 2023). Therefore, automatic generation of tests
reproducing such issues from informal natural language descriptions is a promising path toward
improving both code quality and developer productivity. Finally, generated tests can be leveraged as
formal specifications to boost the effectiveness of automatic code repair tools (Chen et al., 2023a).

However, while automatic code generation, in particular using Code Agents, is an extremely active
research area (i.e. Yang et al. (2024); Tao et al. (2024); Zhang et al. (2024); Bouzenia et al. (2024b);
OpenDevin (2024); Bouzenia et al. (2024a); Schäfer et al. (2024); Alshahwan et al. (2024a)), there
is comparatively little work investigating automatic test generation directly. Indeed, while prior
work has proposed methods based on symbolic execution (Lukasczyk & Fraser, 2022), specialized
transformers (Tufano et al., 2020), and general-purpose LLMs (Li et al., 2023; Alshahwan et al.,
2024b; Kang et al., 2023, 2024; Chen et al., 2023b), Code Agents have not been considered in this
context, and even less work is applicable to the issue reproduction setting. Finally, large-scale, di-
verse test-generation datasets are lacking for Python, which is one of the most popular programming
languages at the time of writing (TIOBE, 2024; PYPL, 2024) and a focus of Code Agent research.

https://github.com/logic-star-ai/SWT-Bench
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Figure 1: Evaluation of an SWT-BENCH instance. Given an issue description in natural language
and the corresponding codebase, the task is to generate tests that reproduce the issue. We considered
a test to reproduce the issue if it fails on the codebase before the pull request (PR) is accepted, i.e.,
before the golden patch is applied, but passes after. We call this a fail-to-pass test (F→P ).

A Benchmark for Test Generation In this work, we propose SWT-BENCH, a novel and com-
prehensive dataset for test generation with the goal of issue reproduction in Python. SWT-BENCH
contains over 1 900 samples, each consisting of a GitHub issue, a golden code patch resolving the
issue by adjusting the code, and a set of golden reference tests, obtained by transforming the popular
SWE-BENCH (Jimenez et al., 2023) from code repair to test generation. We leverage the fact that
any code repair task can be transformed into a test generation task, even in the absence of golden
tests, by utilizing the golden code patch for evaluation. Concretely, for every generated test, we
determine whether it reproduces the described issue, by checking whether it fails on the original
repository but passes after the golden patch is applied. The golden reference tests, used in SWE-
BENCH for the evaluation of code repair performance, are solutions in this test generation setting.
We illustrate this evaluation process of SWT-BENCH in Fig. 1. Further, we report the coverage of
the code modified by the golden patch as a more fine-grained evaluation metric for generated tests.

Benchmarking Test Generation Methods We evaluate various existing test generation ap-
proaches on SWT-BENCH, including directly prompting state-of-the-art LLMs to generate tests
for the given issue, a state-of-the-art issue reproduction method LIBRO (Kang et al., 2023), and dif-
ferent Code Agents adapted to the task of test generation (Yang et al., 2024; Zhang et al., 2024;
Aider, 2024). Interestingly, we find that despite being designed for code repair, the Code Agent
SWE-AGENT outperforms non-agent methods at test generation, both reproducing more issues and
achieving higher coverage, and generally find all agents to perform strongly in both areas. How-
ever, we still observe significant complementarity between the different approaches, with an ideal
ensemble of the best four methods solving 71% more samples than the best single method. Further,
while the performance on code repair and test generation is generally correlated, this does not hold
on a per-sample basis. This indicates that reproducing an issue with a test and fixing this issue are
distinct tasks of different difficulty. Finally, we find that generated tests can serve as a strong signal
for the correctness of proposed code fixes, with SWE-AGENT achieving over twice the precision on
fixes that pass self-generated tests that failed before the fix was applied.

Key Contributions Our key contributions are:
• We introduce SWT-BENCH, a new benchmark for test-based issue reproduction based on an ex-

tensive dataset of real-world software repositories, user issues, code patches, and test cases (§3).
• We propose to adapt Code Agents to the task of test generation for issue reproduction (§4).
• We provide an extensive evaluation of SWT-BENCH, and demonstrate that, while issue reproduc-

tion is generally hard, Code Agents perform well, outperforming prior methods (§5).

2 Related Work

Code Datasets Over recent years, a variety of code datasets such as HumanEval (Chen et al.,
2021), APPS (Hendrycks et al., 2021), and MBPP (Austin et al., 2021) have been proposed to assess
the capabilities of code synthesis and repair systems (Lin et al., 2017; Li et al., 2022). However,
these largely focus on interview-style coding challenges or function-level code synthesis and do not
capture the complexity of real-world codebases. Further, they have been shown to often include
insufficient test cases to properly assess the correctness of the generated code (Liu et al., 2023a).

Recently, a range of repository-level code-generation benchmarks (Liu et al., 2023b; Jain et al.,
2024) including the popular SWE-BENCH (Jimenez et al., 2023) have emerged, as modern LLMs
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began to saturate the simpler function-level benchmarks. However, none of these benchmarks were
designed to assess test generation.

The only dataset for reproducing bugs based on real-world issues, Defects4J (Just et al., 2014),
focuses on Java, is outdated, limited in size, and contains only short bug descriptions rather than
detailed issue reports. In contrast, SWT-BENCH is based on Python, which is better supported by
modern Code Agents, contains more recent issue reports, and is significantly larger.

Automated Unit Test Generation Many approaches have been suggested to automate (unit) test
generation leveraging symbolic execution (Lukasczyk & Fraser, 2022), specialized transformers
(Tufano et al., 2020), and general purpose LLMs (Li et al., 2023; Alshahwan et al., 2024b; Kang
et al., 2023; Tufano et al., 2020; Kang et al., 2024; Schäfer et al., 2024; Alshahwan et al., 2024a;
Chen et al., 2023b). Depending on their focus, they can be used to increase test coverage (Alshah-
wan et al., 2024b; Schäfer et al., 2024), find edge cases (Lukasczyk & Fraser, 2022), or reproduce
reported issues (Kang et al., 2023). Issue-reproducing tests are especially interesting, as they can be
used to validate automatically generated code repair candidates and thus improve the precision of
code repair systems (Chen et al., 2023a). However, most test-generation approaches are not appli-
cable to issue reproduction. We therefore evaluate the most recent applicable method, LIBRO (Kang
et al., 2023), and a range of other LLM-based baselines on SWT-BENCH.

Code Agents Over the last year, LLMs have been equipped with tools to observe and interact with
their environment over multiple turns and preserve a state across these turns (Wang et al., 2024).
These so-called agents have proven successful on a range of complex tasks, including code repair
and synthesis (Bouzenia et al., 2024b; OpenDevin, 2024; Zhang et al., 2024; Yang et al., 2024; Tao
et al., 2024; Bouzenia et al., 2024a; Aider, 2024). Such Code Agents can typically search, read, and
edit code using an agent computer interface (ACI) (Yang et al., 2024). In this work, we leverage
such Code Agents for generating issue-reproducing tests by changing their instructions.

3 Benchmarking Test Generation

In this section, we outline the structure of the proposed benchmark, SWT-BENCH, and how we
leverage it to measure the capabilities of LLMs and Code Agents for test generation.

3.1 Notation and Definitions

We first introduce the notation to describe codebases, their test suites, and changes to these codebases
in the form of patches. We denote a codebase R after applying patch X as R ◦X . Several patches
can be applied sequentially, i.e. R ◦X ◦ Y is the codebase R after applying a first patch X and then
a second one Y . When a code patch X is applied to R, a set of tests T can be used to check the
correctness of the applied patch.

A single test s can either pass (P) or fail (F) after we execute it within the context of codebase
R. We consider a test to fail if an error is thrown during its execution, e.g., an AssertionError or
ValueError. Such test errors frequently occur if R lacks or misimplements the functionality targeted
by the test. They can also occur due to other reasons, such as incorrect syntax or formatting of the
test s. Conversely, a test passes when running the test triggers no error. We define this process as an
execution function: exec(s,R) ∈ {P, F}.

We consider a test s to reproduce a described issue I of R, which is resolved by patch X if it fails
on the original codebase (i.e. exec(s,R) = F ) but passes on the patched codebase (i.e. exec(s,R ◦
X) = P ). We denote these fail-to-pass tests with F →P and define F →F , P →P , and P →F
tests similarly. If a test transitions from failing on R to any state on R◦X , we denote it as F→× and
vice versa for ×→F . Further, we consider a set of tests T to be successful at reproducing the issue
I , if it contains at least one F →P test and no ×→F test, or equivalently ∃s ∈ T, exec(s,R) =
F ∧ ∀s ∈ T, exec(s,R ◦X) = P .

3.2 Benchmark Overview

To construct SWT-BENCH, we leverage the same underlying data as SWE-BENCH (Jimenez et al.,
2023) and summarize its three-stage construction process here for completeness.
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1. Scrape a total of ∼90 000 pull requests (PRs) from 12 popular open-source Python reposi-
tories from GitHub.

2. Filter PRs to only include those that were merged, resolved a GitHub issue, and made
changes to at least one test file.

3. Filter PRs to feature at least one F → P test, removing PRs that result in installation or
runtime errors.

This results in 2 294 task instances, each consisting of a GitHub issue, a golden patch X∗ fixing the
issue, and a set of golden reference tests T ∗. Table 1: Characterization of different attributes of

SWT-BENCH instance.

Mean Max

Issue Text # Words 318.0 8756

Codebase # Files 1563.0 2757
# Lines 337K 772K

Existing Tests

# F→P 0.0 4
# F→F 5.0 183
# P →P 116.7 4837
# P →F 1.5 607
# Total 123.2 4842
Coverage 70.1% 100%

Golden Tests

# F→P 2.0 958
# P →P 0.9 339
# Added 2.9 958
# Removed 0.3 104
# Files Ed. 1.5 15
# Lines Ed. 31.8 581

However, we find that for 311 instances, the
golden patch can not be evaluated without er-
rors or does not fix the described issue reliably,
i.e., some tests of T ∗ fail on R ◦ X∗. The
main reasons are flaky test suites, e.g., django
cases where HTTP requests sometimes return
500 Internal Server Error although the re-
lated code was not changed, erroneous test suite
setup, e.g., the test suite tool tox not allowing
external tools invoked in the sphinx setup, and
time outs, e.g., when slow tests in the sympy li-
brary are run. We exclude these, leaving a total
of 1 983 instances in SWT-BENCH. To enable
cheaper evaluation we create SWT-BENCH-
LITE, a subset of 276 issues, corresponding to
SWE-BENCH-LITE.

sympy

pylint

django

xarray

pytest
astropy scikit

requests
sphinx

matplotlib

flask

seaborn

Figure 2: Distribution of
SWT-BENCH instances over
GitHub repositories.

We summarize key statistics of SWT-BENCH in Table 1 and show
its repository composition in Fig. 2. While issue descriptions are on
average only 318 words long, the longest one reaches 8 756 words.
Generally, repository complexity is high with on average over 1 500
files and over 300 000 lines of code. Many repositories feature large
test suites of > 120 and up to 4 800 tests, already covering 70% of
the lines in the to-be-patched code. Most of these existing tests are
unaffected by the golden patch with basically no F →P and only
1.5 P → F tests on average. The golden tests remove on average
0.3 tests and add another 2.9 new test cases, of which roughly two-
thirds are F → P . The test patches edit on average 31.8 lines in
1-2 files. Due to the filtering for unresolved issues during dataset
curation, no golden tests are F→F or P →F .

3.3 Metrics

We propose two main metrics to evaluate the test generation performance of any method; Success
rate (S) and change coverage (C), described below. We further introduce the necessary but insuffi-
cient property of patch well-formedness (W).

Success Rate The success rate S measures the portion of instances where the generated tests T
reproduced the issue according to the definition in §3.1, i.e. at least one test in T transitions from
failing to passing and none fail after applying the patch. This is the most important performance
measure, as the presence of F → P and the absence of × → F tests are key for test-driven de-
velopment and automatic code generation. We further report the portion of instances for which at
least one Fail-to-Pass (F → P ), Fail-to-Any (F →×), and Pass-to-Pass (P → P ) was generated.
While F→× tests, i.e., all tests that fail on the original codebase, are not necessarily desirable, only
F →× tests can result in the reproducing F →P test, whereas P →× tests can never reproduce an
issue. As F →× can further be identified without knowledge of the golden code patch, generation
methods can aim to always produce an F →× test. Finally, P → P tests indicate that the model
generated well-formed and valid, but unrelated tests.
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Change Coverage Coverage is an important metric to determine what portion of a codebase is
tested. While path coverage measures this optimally, the exponential number of paths makes it
infeasible in practice. We thus follow common practice, and instead measure line coverage. As
we aim to specifically test the code described in the issue text, we consider only the coverage
of the changes made by the golden code patch. Further, we observe that patches may include
portions of non-executable lines, e.g. documentation or configuration files, and exclude them.
Specifically, we consider all lines that are executed by the original test suite S or the golden test
suite T ∗ on both R and R ◦ X∗ to be executable and track coverage of such executable lines.

def isValid(name):
   """ check digit """
   digitInFront = match(
  r"\d+.*",
  name
   )
   if digitInFront:
  print("has digit")
  return False
   return True

def isValid(name):
   """ check d & n """
   digitInFront = match(
  r"\d+.*",
  name
   )
   trailNewl = newl(name)
   if trailNewl:
  print("trail newl")
   if digitInFront:
  print("has digit")
  return digitInFront
   return trailNewl

+

+

Figure 3: Illustration of change coverage ∆C
of the generated tests T , given the original
code base R, the golden patch X∗, and the
golden tests T ∗.

Finally, we consider both the coverage of removed
(including modified) lines of code in the original
codebase and added (including modified) lines of
code in the patched codebase, illustrated in Fig. 3.

Formally, given the number of times CR
S (l) ∈ Z≥0

a specific line of code l was executed when running
the test suite S on codebase R, we define the exe-
cutable lines of the patch X as

X ∗
r = {l ∈ Xr | CR

S (l) + CR
S∪T∗(l) > 0}

X ∗
a = {l ∈ Xa | CR◦X

S (l) + CR◦X
S∪T∗(l) > 0}

where Xr and Xa are the lines added and removed
by patch X , respectively, and T ∗ are the golden tests.
Finally, we obtain the change coverage of the gener-
ated tests T as

∆CX
T =

|{l ∈ X ∗
r | CR

S∪T (l) > CR
S (l)}|+ |{l ∈ X ∗

a | CR◦X
S∪T (l) > CR◦X

S (l)}|
|X ∗

r |+ |X ∗
a |

.

Where X and T are clear from context, we drop them for notational clarity. If none of the lines
modified by the golden patch X are executed by any test, i.e., |X ∗

r | + |X ∗
a | = 0, we exclude this

instance from our coverage analysis (1% of cases).

Patch Well-Formedness Many LLMs struggle to generate well-formed code patch files (Jimenez
et al., 2023) and the methods we investigate employ different approaches to mitigate this issue.
To assess them, we additionally measure the patch applicability W as the portion of instances for
which a well-formed patch was generated. We define W as the portion of instances for which the
generated patch X can be applied to the original codebase R without errors. Since well-formedness
is necessary for any test to be executed, it always exceeds S, F→P , and related rates.

4 Automatic Test Generation

We first discuss how the test generation task differs from code repair, before introducing a novel
code diff format based on these insights that is optimized for fault tolerance. Finally, we propose a
range of test generation methods based on directly querying LLMs and leveraging Code Agents.

4.1 Test Generation vs Code Repair

Automatic test generation is closely related to code repair: Instead of predicting a patch X that
fixes the described issue and is then evaluated using a golden test T ∗, we aim to predict reproducing
tests T which are then evaluated on both the original state of the codebase R and the state after
applying the golden code patch X∗. However, there are some key differences between the two
tasks: First, adapting an existing test suite to reproduce an issue typically only requires adding new
tests. Concretely, 71% of golden tests in SWT-BENCH only add new test functions, with another
28% modifying existing functions, and only 1% removing functions. Second, testing permits and
requires a more granular analysis. While fixed code is either correct and passes all test cases or
incorrect when failing any of them, generated tests can be correct but irrelevant to the issue (P→P ),
call relevant code but fail to expose the precise bug (increase in coverage), reproduce the issue with
varying comprehensiveness on edge cases (F→P , with varying coverage), or fail in different ways.
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1 -- demo/file.py
2 +++ demo/file.py
3 @@-4,5 +4,5 @@
4 def test_euclidean(a, b):
5 - assert euclidean(1, 0) == 1
6 + assert euclidean(100, 10) == 10
7 assert euclidean(1, 1) == 1

1 demo/file.py
2 rewrite
3 1
4 def test_euclidean(a, b):
5 assert euclidean(100, 10) == 10
6 assert euclidean(1, 1) == 1
7 end diff

Figure 4: Comparison of the default unified diff format (left) and our fault-tolerant version (right).

4.2 A Code Diff Format for Automatic Test Generation

Code changes are typically represented in the unified diff format, i.e., in the git patch and diff
format. While using this format to represent code changes is both precise and human-readable, it
is very sensitive to misspecifications, requiring, e.g., the exact line numbers of code changes to be
specified and specific code snippets (including all to-be-changed lines) to be repeated verbatim. As
a result, many LLMs struggle to produce well-formed patch files (Jimenez et al., 2023). Even when
loosening the strict diff requirements and fuzzy-matching the generated diff to a best-fit part of the
code, GPT-4 only succeeded in 48% of cases, resulting in only 10 correctly reproduced issues.

To alleviate this issue, we propose an adjusted patch format optimized for LLM generation that is
easier to adhere to and more robust. Specifically, our custom diff format allows entire functions
or classes to be inserted, replaced, or deleted, given the full function or class definition and (fault-
tolerant) location in the code. We show an example in Fig. 4, comparing it to the unified diff format.
Based on whether the model wants to rewrite an existing function or insert a new function, the
provided code is then substituted or inserted at the code location. This format is particularly well
suited for test generation which usually only requires adding test functions. We provide a more
formal description of this format in App. A and demonstrate its effectiveness in §5.

4.3 Direct LLM Generation of Tests

We consider four baselines for test generation: Direct zero-shot prompting with the unified patch
format (ZEROSHOT), zero-shot prompting with our novel patch format (ZEROSHOTPLUS), select-
ing the best out of 5 patches using an oracle (PASS@5), and the state-of-the-art test generation
method, LIBRO (Kang et al., 2023), which uses a range of heuristics to pick the most promising
among multiple generated tests. In all methods, the LLM is instructed to add tests to reproduce
and cover the described issue in the codebase. We describe these methods below, deferring further
details to App. E.

ZEROSHOT prompts the model with the issue description, a subset of the codebase retrieved using
BM-25 (Robertson & Zaragoza, 2009), and instructions to generate a patch file in unified diff format.
This method corresponds to the LLM-only baseline in SWE-BENCH (Jimenez et al., 2023).

ZEROSHOTPLUS is similar to ZEROSHOT but leverages our custom diff format, discussed in §4.2,
which is optimized for LLMs and robustness to minor specification errors.

PASS@5 uses our ZEROSHOTPLUS prompting scheme to generate 5 proposal tests and then uses an
oracle to pick the best one. While this is of course not practical in a real-world setting, it allows us to
assess the potential of the LLM to generate good test cases given an effective selection mechanism.

LIBRO (Kang et al., 2023), is the current state-of-the-art for LLM-based test generation. Similar to
PASS@5 it generates multiple proposal tests using ZEROSHOTPLUS prompting. However, instead
of using an oracle, it combines multiple heuristics to select the best test cases. In particular, it runs
all generated tests and then selects the one inducing an error that is most similar to the problem
description. This permits not only checking whether a generated diff is well-formed and the pro-
posed test fails on the original codebase but also selecting the most relevant test case. As LIBRO was
originally proposed for Java, we adapt it to our Python setting, as detailed in App. B.

4.4 Code Agents for Test Generation

LLM-based agents are systems that take actions based on LLM-generated text, providing tools to
observe and interact with their environment over multiple turns and preserve some state across these
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turns. In the case of Code Agents, they can typically search, read, and edit code using an agent
computer interface (ACI) (Yang et al., 2024). Recent work has shown that such Code Agents are
particularly effective for complex repository-level code synthesis and repair tasks, outperforming
unaided LLMs by a significant margin (Bouzenia et al., 2024b; OpenDevin, 2024; Zhang et al.,
2024; Yang et al., 2024; Tao et al., 2024). In this work, we leverage Code Agents for automatic test
generation by adjusting their instructions. Specifically, we adapt SWE-AGENT (Yang et al., 2024),
AIDER (Aider, 2024), and AUTOCODEROVER (Zhang et al., 2024).

SWE-AGENT (Yang et al., 2024) provides the LLM direct access to (augmented) command line
tools and processes the output of these tools to be more easily parseable by an LLM. In particular,
they provide special tools for searching, viewing, and editing files. Beyond initial instructions, they
provide little guardrails or structure for the LLM and let it interact with a limited shell environment.

AIDER (Aider, 2024) performs a repository indexing step to guide file selection and then includes all
selected files in the next prompts. Further, model-generated summaries and reflections on previous
actions are leveraged to augment the context. Before an edit is applied, it undergoes validation via
static analysis and repository test cases using project-specific evaluation harnesses.

AUTOCODEROVER (Zhang et al., 2024) separates the code repair task into two distinct stages. In
the first stage, the LLM is tasked with collecting all required context for the task at hand. To this
end, it is equipped with a range of advanced code search and navigation tools, allowing it, e.g., to
retrieve class signatures, function definitions, or surrounding code snippets. Once the LLM believes
it has gathered sufficient context, it proceeds to the second stage. There, the LLM is tasked with
generating the actual code patch in a single step, retrying only if the patch can not be applied.

Adapting Code Agents for Test Generation As SWE-AGENT, AIDER, and AUTOCODEROVER
were designed for program repair, we adapt their system and instruction prompts to focus on creating
high-quality test cases. We find that the underlying LLMs are capable of following these changed
instructions and successfully generate test cases for up to 87% of issues. Typically, the instruction
changes were as simple as replacing phrases like "solve the issue" with "create unit tests that cover
the issue". We provide a more detailed description of the used prompts in App. E.

We experiment with instructing SWE-AGENT explicitly to execute the generated test cases before
submitting them. We call this variant SWE-AGENT+ and find that this increases the success rate S
from 15.9% to 18.5% (see Table 2). Note we do not provide any information on how to run the tests.
This contrasts the LIBRO setting, in which the test execution commands are assumed to be known.

5 Experimental Evaluation

We leverage SWT-BENCH to compare the performance of different test generation methods and
underlying LLMs (§5.2), their relation with the code repair setting (§5.3), and the impact of instance
characteristics (§5.4). We further explore hyperparameter ablations in App. C.

5.1 Experimental Setup

We consider GPT-4 (gpt-4-1106-preview OpenAI 2023), GPT-4o mini (gpt-4o-mini-2024-07-18
OpenAI 2024), Claude 3.0 Haiku (Anthropic, 2023), Claude 3.5 Sonnet (Anthropic, 2024), Mis-
tral Large 2 (Team, 2024b) (served via the Mistral AI API), and Mixtral 7x22b (Team 2024a served
by Together AI TogetherAI 2023), as underlying LLMs, using GPT-4 unless indicated otherwise.
We sample at temperature t = 0 for all zero-shot methods and agents and at t = 0.7 for LIBRO
and PASS@5. For SWE-AGENT, AIDER, and AUTOCODEROVER, we use their default settings,
restricting the number of API calls to 20, reflection steps to 3, and interaction rounds to 10, re-
spectively. For LIBRO we sample 5 tests. Due to budget constraints, we focus our evaluation on
SWT-BENCH-LITE. In App. C we explore and justify this choice of hyperparameters in detail.

5.2 Automatic Test Generation

Comparing Test Generation Methods We compare test generation performance in Table 2
where all methods have access only to the issue description and the original codebase. We ob-
serve that using the original git code-diff format, ZEROSHOT only generates well-formed patches
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for 48.6% of issues. Using our novel test-specific code-diff format (ZEROSHOTPLUS) boosts
this rate to 89.5% yielding an almost 3x increase in success rate (S) to 9.4%. While pick-
ing the best among five generated tests (PASS@5) even yields an S of 20.3%, the heuris-
tics employed by LIBRO can only convert about half of this gap into an S of 14.1%, still
beating AUTOCODEROVER and AIDER which achieve an S of 9.1% and 12.7% respectively.

Table 2: Rate of well-formed patches (W), successful
tests (S), potentially reproducing initially failing tests
(F → ×), reproducing fail-to-pass tests (F → P ), and
correct but unhelpful pass-to-pass tests (P →P ), in %.

Method W S F→× F→P P→P

GOLDEN 100.0 100.0 100.0 100.0 11.2
PASS@5 93.1 20.3 62.7 22.1 7.2

ZEROSHOT 48.6 3.6 38.8 5.8 3.6
ZEROSHOTPLUS 89.5 9.4 55.4 10.1 7.2
LIBRO 92.0 14.1 60.1 15.2 7.2
AUTOCODEROVER 47.1 9.1 43.8 9.1 7.6
AIDER 66.7 12.7 57.6 17.0 8.7
SWE-AGENT 87.3 15.9 48.2 16.7 9.8
SWE-AGENT+ 85.5 18.5 46.4 19.2 10.1

SWE-AGENT, however, outperforms LI-
BRO at an S of 15.9%, increased to
18.5%, when instructed to check its
generated tests (SWE-AGENT+). This
stronger performance is significant at
p < 0.1%. Interestingly, SWE-AGENT
produces fewer F →× tests than AIDER
and LIBRO despite having much higher
applicability and yielding a higher S.

We conclude that general-purpose Code
Agents already perform as well as
domain-specific test generation methods,
with simple test-specific adjustments
providing significant improvements.

Table 3: Change Coverage ∆C [%] as defined
in §3.3 aggregated over all instances, S in-
stances and non S instances (¬S).

Method ∆Call ∆CS ∆C¬S

GOLDEN 72.0 72.0 -
PASS@5 31.3 65.6 22.5

ZEROSHOT 7.6 34.9 6.6
ZEROSHOTPLUS 21.5 76.7 15.7
LIBRO 23.8 64.2 17.0
AUTOCODEROVER 17.9 61.3 13.6
AIDER 27.8 59.5 23.1
SWE-AGENT 26.5 64.7 19.1
SWE-AGENT+ 27.6 69.4 18.0

Coverage of Generated Tests We analyze the
change coverage ∆C of the generated tests, i.e.,
the portion of executable golden patch code that is
covered by the generated tests, in Table 3. Across
all methods, we observe a significantly higher
coverage on successful instances (∆CS ), indicat-
ing that coverage is indeed correlated with test
quality but more granular than S. Interestingly,
SWE-AGENT+ achieves notably higher coverage
on successful instances than SWE-AGENT high-
lighting the impact of providing agents with more
test-generation-specific tools to identify promising
tests. Further, LIBRO achieves lower coverage than
most Code Agents, most likely as a consequence
of preferring shorter tests.

Table 4: Comparison of different underlying LLMs for
SWE-AGENT, all in %.

Model W S F→× ∆Call

Mistral L. 2 76.1 16.3 51.4 23.0
GPT-4 87.3 15.9 48.2 26.5
Cl. 3.5 Sonnet 67.8 12.3 59.1 30.3
GPT-4o mini 71.0 9.8 36.2 20.9
Cl. 3.0 Haiku 20.3 2.5 6.9 3.0
Mixtral 8x22B 3.3 0.7 1.8 0.9

Model Effect We compare the effect
of different underlying LLMs for SWE-
AGENT in Table 4. We observe that
not only S but even applicability (W) is
highly sensitive to the underlying LLM’s
performance, with Haiku, GPT-4o mini,
and Mixtral achieving significantly lower
performance than GPT-4. More capable
models like Claude 3.5 Sonnet and Mis-
tral Large 2 perform on par, with the lat-
ter even outperforming GPT-4.

5.3 Code Repair and Test Generation Table 5: Performance of ZEROSHOTPLUS, given the
test file to change, none (-), the golden (✓) or an in-
correct (✗) code patch, and the files retrieved via BM-25
(r), or modified by the golden (✓) or incorrect patch (✗).

Test File Mod. Files Patch W S F→× ∆Call

- r - 87.8 8.1 52.3 12.5
- ✓ ✓ 85.5 10.5 64.0 18.4
- ✗ ✗ 75.0 10.5 50.0 13.2
✓ r - 76.7 15.1 59.3 17.6

Test Generation for a Given Code
Patch To assess the effectiveness of au-
tomatic test generation at testing specific,
provided fixes, we investigate the effect
of providing a (possibly incorrect) code
patch, the files it changed, and the test
file to be modified instead of the files re-
trieved with BM25, reporting results in
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Table 5 in %. We use ZEROSHOTPLUS to generate incorrect patches, resampling ≤5 times and
excluding instances where we could not generate an incorrect but applicable patch, reducing the
sample size to n = 172. Providing the test files to change almost doubles S from 8.1% to 15.1%,
pulling even with SWE-AGENT. We observe that meanwhile providing a code patch and the files
it changed has a much smaller impact, increasing S only to 10.5% for both the golden patch and
an incorrect patch. This highlights the importance of retrieving the correct context for generating
relevant tests. Meanwhile, GPT-4 is able to leverage the correct patch, and to improve the coverage
increase of the relevant lines by almost 50%, from 12.5% to 18.4%.

Filtering Code Fixes with Generated Tests State-of-the-art code generation methods only re-
solve around 20% of cases on SWE-BENCH-LITE (Jimenez et al., 2023). Without suitable tests to
distinguish correct from incorrect fixes, the overhead from manual testing (Yang et al., 2008) would
thus outweigh any benefits from automatic code generation. To address this issue, we use SWE-
AGENT to generate both bug fixes and tests, in a similar manner to Chen et al. (2023a). We then
filter the generated bug fixes, retaining only those where all generated tests are F →P or P →P .
While only achieving 20% recall, this more than doubles the precision of SWE-AGENT to 47.8%,
making it significantly more practically useful, highlighting the importance of test generation, and
opening an avenue to transferring the results from Chen et al. (2023a) towards more complex and
realistic scenarios with more expensive inference and evaluation steps.

Table 6: Overlap in solved instances of
SWE-BENCH and SWT-BENCH.

SWT SWE Overlap p-Value [%]

ZEROSHOTPLUS 26 16 1 80.4%
SWE-AGENT 44 50 7 72.8%

Correlation of Test Generation and Code Repair
We analyze the overlap between solved instances of
SWE-BENCH and SWT-BENCH, showing results in
Table 6. We observe that the overlap is small for both
methods, with no statistical evidence of correlation
(p-values of 80.4% and 72.8% for ZEROSHOTPLUS
and SWE-AGENT, respectively, under the null hypothesis of independence and uniform hardness),
indicating that generating tests and fixes are distinct tasks of different difficulties. We explore this
relationship in more detail in App. D.

5.4 Test Generation Success and Instace Characteristics
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Figure 5: Distribution of success rate (S) across issue de-
scription lengths in # tokens

Effect of Issue Description Length
We investigate the relationship between
issue description length and test gener-
ation performance in Fig. 5. We ob-
serve a general trend that issues with
longer descriptions are easier to gener-
ate tests for, with all methods achieving
a higher S for longer descriptions, how-
ever tending to slightly decrease for
very long descriptions. This is likely
due to the increased amount of infor-
mation available in longer descriptions, while too-long descriptions may contain many distractors
and make it difficult to extract relevant information for the LLM. SWE-AGENT+, which actively
summarizes context, limiting file content and reducing history, is least sensitive to issue description
length, achieving approximately the same S for all but the shortest lengths.

Table 7: Performance of ZEROSHOTPLUS on PRs before/after
GPT-4 knowledge cutoff (KC = 30th April 2023) in %.

PR created n W S F→× F→P P→P ∆Call

before KC 83 56.6 6.0 42.2 8.4 4.8 35.9
after KC 83 47.0 4.8 39.8 4.8 3.6 35.9

Effect of Data Contamination
As SWT-BENCH is based on
historic GitHub issues, they may
be contained in the pre-training
data of the LLMs we use. To
investigate this issue, we con-
ducted an experiment compar-
ing the performance of ZEROSHOTPLUS on all issues created after the Knowledge Cutoff (KC)
of GPT-4 (April 2023) to a random subset of the same size of instances created before, and report
the results in Table 7. While we observe a small performance difference, we can not confirm its
statistical significance (p ≈ 37%) due to the low number of samples created after the KC. Further,
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all methods in Table 2 use the same underlying LLM and should thus benefit from any potential
contamination to a similar degree, allowing for a fair comparison between different methods.
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Figure 6: Overlap in instances solved by
the four best performing methods.

Method Complimentarity We consider four di-
verse methods from §5.2 and analyze the overlap in
the instances for which they are able to generate suc-
cessful tests. We show the results in Fig. 6. While the
best-performing approach, SWE-AGENT+, alone is
able to solve 51 instances, the combination of all four
approaches is able to solve 87 instances, highlighting
the benefit of exploring a variety of approaches for test
generation.

6 Limitations and Future Work

While our novel SWT-BENCH covers a wide range of
real-world issues, it has several limitations: It is lim-
ited to Python, which may limit the generalizability of our findings to other programming languages.
Second, the dataset is based on popular GitHub repositories, which may not be representative of
common software development practices and does preclude the generation of a private holdout test
set. Finally, the dataset is limited to bug reproduction and issues that can be easily covered by adding
test cases and does not measure edge case detection or global coverage increase.

Further, as discussed in §5.4, most issues in SWT-BENCH have been created before the knowledge
cutoff of state-of-the-art models, posing a risk for data contamination. One approach to address this
issue is to create a rolling version of SWT-BENCH, based only on the most recently created GitHub
issues. However, this comes at the cost of direct comparability of results and increased cost for
reproducing results for all baselines on a changing evaluation set.

Addressing these limitations would be an interesting direction for future work. As concrete starting
points, we found several common errors even in the best performing method SWE-AGENT+ that
could be addressed through specialized monitoring: Adding passing tests that do not reproduce the
given issue, getting stuck in loops after generating inapplicable edit commands, failing to execute
the test environment correctly and adding tests with syntax errors or using invalid variables.

7 Conclusion

We proposed SWT-BENCH, a novel benchmark for generating reproducing tests from GitHub issue
descriptions and the corresponding code bases. SWT-BENCH leverages the dataset underlying the
popular SWE-BENCH which additionally contains a golden patch fixing the described issue. We
judge whether a generated test reproduces the described issue by checking whether the test fails
before applying this golden patch and succeeds afterward. We measure both the rate of such fail-to-
pass tests and the coverage of the golden patch, providing a corresponding evaluation harness. We
evaluated a variety of LLM-based test generation methods including Code Agents on SWT-BENCH
and found that Code Agents already outperform other approaches with only minor adaptations for
the test-generation task. Finally, we demonstrated the great potential of generated tests to serve as a
signal for the correctness of code fixes, i.e., we double the precision of Code Agents by filtering the
generated patches to only those that cause a previously failing self-generated test to pass.
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1 diff
2 < path or filename >
3 < "rewrite" or "insert" >
4 < line number / EOF / BOF >
5 < function to rewrite or insert >
6 end diff
7 < repeat as necessary >

Figure 7: The Custom Diff format for ZEROSHOTPLUS

A Formalization of Custom Prompt Format for ZEROSHOTPLUS

We introduce a custom prompt format for language models to aid them with patch generation in the
zero-shot setting. The format is visualized in Fig. 7 similar to how it is provided to the language
model. A full example of applying the format on two files is part of the full prompt of ZEROSHOT-
PLUS in Figs. 11 and 12.

A diff block must start and end with diff and end diff respectively. The first line inside the block
must specify an existing file for rewrites and may point to a new file in the case of insertion. Next,
the language model specifies whether it intends to rewrite an existing function or insert a new
function. If no exact match of the function name is found, we employ a fuzzy search using the line
number or EOF/BOF as an indicator for where to look for the existing functions. EOF and BOF are
particularly useful for inserting new functions. We note that diff blocks can be repeated an arbitrary
number of times.

B Adapting LIBRO to our Setting

Kang et al. (Kang et al., 2023) originally proposed LIBRO for an evaluation in a pass@k setting.
There, it is useful to rank all generated tests to improve performance at k > 1. As we only consider
pass@1, we drop ranking components irrelevant for the top-1 test in our reimplementation. Further,
LIBRO includes heuristics for importing missing dependencies and inserting tests into the correct
classes. While effective in Java, this is superfluous for Python, where tests can be added outside
classes and dependency imports are (empirically) correctly generated by the LLM. We thus also
drop these components.

LIBRO clusters test cases based on whether the generated execution trace matches the issue descrip-
tion. As exact matching is often not applicable for the unstructured issue descriptions, we measure
the similarity between the error message and the issue description by extracting the execution trace
of the generated test cases and querying the same LLM used for test generation to judge whether they
relate to the same issue. Depending on its answer, we obtain two clusters and choose the shortest
result of the preferred cluster.

C Hyperparameter Ablations

C.1 Ablation on number of LIBRO samples

We perform an ablation study by varying the number of samples used for the LIBRO baseline. The
result is presented in Fig. 8a. LIBRO’s performance improves as more samples are considered,
however the gains of additional samples are marginal from around the 5 samples we use by default.
As shown in section App. G, to enable comparison at similar cost to Code Agents, we settle for 5
samples.

C.2 Ablation on Interaction Rounds for Code Agents

We analyze the number of interactions required for each Agent to submit a solution and plot the
results in Fig. 8b. We observe increasing interaction rounds improve performance until saturation at
5-10 iterations (we use 20 as a default) with the only exception being AutoCodeRover, which still
gains performance up to the maximum of 20 iterations we consider.
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Table 8: Comparison of ZEROSHOTPLUS for different T on GPT-4 (95% CI, n = 25).

T W S F→× F→P P →P ∆Call

0.0 89.5 9.4 55.4 10.1 7.2 21.5
0.2 89.3 ± 0.3 8.8 ± 0.5 56.2 ± 0.5 9.6 ± 0.5 6.0 ± 0.2 21.8 ± 0.3
0.4 89.9 ± 0.5 10.1 ± 0.6 56.8 ± 0.6 10.9 ± 0.6 6.1 ± 0.5 22.3 ± 0.4
0.7 89.3 ± 0.4 8.8 ± 0.4 55.5 ± 0.8 9.7 ± 0.5 6.1 ± 0.5 21.1 ± 0.6
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Figure 8: Ablation on the number of samples and API calls for LIBRO and code agents resp.

C.3 Ablation on Temperature

We run ZEROSHOTPLUS using GPT-4 with 25 samples and analyze the performance variation for
a temperature range from greedy decoding (T = 0), used for ZEROSHOT, ZEROSHOTPLUS and
the agent settings, to T = 0.7, the setting used in LIBRO. The results are presented in Table 8. We
observe a tendency of decreased performance and increasing variance in all metrics for increasing
T . Moreover we observe a minimal variability among several runs of the test environment at T = 0,
however much smaller than the variability due to temperature.
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Figure 9: Distribution of success rates across reposito-
ries for SWE-AGENT.

We compare the success rate of SWE-
AGENT for test and fix generation across
repositories in Fig. 9. We observe that,
while SWE-AGENT obtains similar suc-
cess rates in both settings in three reposi-
tories, success rates vary strongly on most
other repositories. Indeed, there are five
repositories where test generation fails en-
tirely while code repair fails on three and
on only two of these both fail. Manually
inspecting instances from the repositories
where test generation fails shows a variety
of reasons, astropy usually features complex computations where unit test creation is difficult,
requests features a highly complex code base, flask has extremely long golden test lengths indi-
cating particularly challenging testing problems. For pylint generated tests are all P →P making
them correct but unhelpful.

E Full prompts

ZEROSHOT, ZEROSHOTPLUS and LIBRO The full prompt for ZEROSHOT is displayed in
Figs. 10 and 11. The full prompt for ZEROSHOTPLUS and LIBRO is displayed in Figs. 12 and 13.
Except for the way we include files, all lines are changed with respect to the setting in SWE-BENCH.

15



Table 9: Cost of different LLMs running SWE-AGENT on SWT-BENCH Lite in USD
Model GPT-4 Haiku Mixtral 8x22B Mistral Large 2 Sonnet GPT-4o mini

Cost 290.71 10.28 67.90 211.34 263.13 8.43

Table 10: Cost of running different methods on SWT-BENCH Lite using GPT-4 in USD

Method ZEROSHOT ZEROSHOTPLUS PASS@5 LIBRO

Cost 82.13 80.70 403.65 420.14

Method AIDER AUTOCODEROVER SWE-AGENT SWE-AGENT+

Cost 256.10 368.40 290.71 478.21

This includes in particular the demonstration of the unified diff format on an example. In the setting
for Table 5 we add the lines highlighted in boldface.

SWE-AGENT and SWE-AGENT+ The prompt for SWE-AGENT and SWE-AGENT+ is shown
in Fig. 14. Changes with respect to the prompt of (Jimenez et al., 2023) are highlighted in boldface.
The additional changes for SWE-AGENT+ are highlighted in green.

AIDER We only minimally adapt the provided evaluation harness for AIDER on SWE-BENCH1.
In this harness, AIDER is provided with a single initial user prompt based on the user issue, while
the entire agent workflow remains unchanged. We provide the entire prompt in Fig. 16 and highlight
our change in boldface.

AUTOCODEROVER AUTOCODEROVER (Zhang et al., 2024) leverages a number of prompts that
are provided to the model in different phases of the code/test generation process. We adapt the key
prompts and display them in Fig. 15. Changes are highlighted in boldface. Further, we change
every occurrence of "bug location" in the original prompts to "relevant location". We further add a
function to the ACI that allows inserting code in new files and fetching the entire code (capped at
the first 100 lines) of any file.

F Licenses of used Code

We adapt code from the following projects in our work and include the respective licenses:

1. SWE-BENCH (Jimenez et al., 2023): MIT License
2. SWE-AGENT (Yang et al., 2024): MIT License
3. AIDER (Aider, 2024): Apache License 2.0
4. AUTOCODEROVER (Zhang et al., 2024): GNU General Public License

For all licenses of the repositories used in SWT-BENCH, we refer to Jiminez et al. (Jimenez et al.,
2023), which contains a detailed list with licenses for each repository included.

G Computational cost

There is cost to both running inference on Language Models and on evaluation their predictions
on the test suites of the repositories. Since the evaluation can be performed on a consumer grade
machine in reasonable time, we focus on the cost inferred from LLM inference. We report the cost
for each setting in Tables 9 and 10, displaying the average cost of a full inference on SWT-BENCH
Lite for each model and method. The difference between cost of PASS@5 and LIBRO is just the
additional filtering step incurred by LIBRO.

1https://github.com/paul-gauthier/aider-swe-bench
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Table 11: Average execution time t per instance

Method ZEROSHOTPLUS LIBRO SWE-AGENT SWE-AGENT+ AUTOCODEROVER

t 12.6s 2m52s 3m42s 4m25s 5m1s

H Execution times

We run the different methods from Table 2 on 5 instances and compute the average execution time.
For all LLMs we consider, part of the execution time is directly related to the number of tokens
digested and generated (see Table 10). For methods that require interaction with an execution en-
vironment however, time is usually dominated by setting up such an environment in a clean and
reproducible manner (i.e. dockerized). We list results on execution times in Table 11 and observe
that all methods except zero-shot inference take between 3-5 minutes per instance, where we can
observe a small trade off due to many-turn interactions in Code Agents versus single-shot execution
in LIBRO. Given these small differences however, we believe execution time to be of limited prac-
tical relevance as issues can be processed in the background, similar to continuous integration, in
response to raised user issues
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1 The following text contains a user issue (in <issue/> brackets) posted at a repository.
Further, you are provided with file contents of several files in the repository that
contain relevant code (in <code> brackets). It may be necessary to use code from
third party dependencies or files not contained in the attached documents however.
Your task is to identify the issue and implement a test case that verifies a
proposed solution to this issue. More details at the end of this text.

2

3 <issue>
4 user issue comes here
5 </issue>
6

7 retrieval results or oracle files come here
8

9 Please generate test cases that check whether an implemented solution
10 resolves the issue of the user (at the top, within <issue/> brackets).
11 Present the test cases in unified diff formatting.
12

13 The general format of a diff is the unified output format, described as follows.
14 The unified output format starts with a two-line header, which looks like this:
15

16 --- from-file
17 +++ to-file
18

19 Next come one or more hunks of differences; each hunk shows one area where the files
differ. Unified format hunks look like this:

20

21 @@ from-file-line-numbers to-file-line-numbers @@
22 line-from-either-file
23 line-from-either-file
24

25 If a hunk contains just one line, only its start line number appears. Otherwise its line
numbers look like 'start,count'. An empty hunk is considered to start at the line
that follows the hunk.

26

27 If a hunk and its context contain two or more lines, its line numbers look like 'start,
count'. Otherwise only its end line number appears. An empty hunk is considered to
end at the line that precedes the hunk.

28

29 The lines common to both files begin with a space character. The lines that actually
differ between the two files have one of the following indicator characters in the
left print column:

30

31 '+' A line was added here to the first file.
32 '-' A line was removed here from the first file.
33

34 Insertion can only be done at the end or beginning of the file, indicated by EOF or BOF
respectively.

35

36 As an example for a diff, consider the following two versions of the same file, once
before and once after a change.

37 The original version of the file was as follows.
38 [start of demo/test_file.py]
39 1 def test_euclidean(a, b):
40 2 assert euclidean(0, 0) == 0
41 3 assert euclidean(0, 1) == 1
42 4 assert euclidean(1, 0) == 1
43 5 assert euclidean(1, 1) == 1
44 6
45 7 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)

])
46 8 def test_gcd(a, b):
47 9 assert gcd(a, b) == expected
48 10
49 [end of demo/file.py]

Figure 10: Part 1 of the Prompt for ZEROSHOT on SWT-BENCH
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1

2 The diff for fix in function euclidean and adds the function gcd is as follows.
3 This diff changes the first file into the second file.
4 ```diff
5 --- a/demo/file.py
6 +++ a/demo/file.py
7 @@ -4,4 +4,5 @@
8 assert euclidean(1, 0) == 1
9 assert euclidean(1, 1) == 1

10 + assert euclidean(100, 10) == 10
11

12 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)
])

13 @@ -9,2 +10,6 @@
14 assert gcd(a, b) == expected
15

16 +@pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1),
(100, 10, 10)])

17 +def test_lcm(a, b):
18 + assert lcm(a, b) == expected
19 +
20 ```
21

22 The new version of the file is as follows.
23 [start of demo/file.py]
24 1 def test_euclidean(a, b):
25 2 assert euclidean(0, 0) == 0
26 3 assert euclidean(0, 1) == 1
27 4 assert euclidean(1, 0) == 1
28 5 assert euclidean(1, 1) == 1
29 6 assert euclidean(100, 10) == 10
30 7
31 8 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)

])
32 9 def test_gcd(a, b):
33 10 assert gcd(a, b) == expected
34 11
35 12 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1,

1), (100, 10, 10)])
36 13 def test_lcm(a, b):
37 14 assert lcm(a, b) == expected
38 15
39 [end of demo/file.py]
40

41 As you can see, you need to indicate the approximate line numbers, function name and the
path and file name you want to change,

42 but there can be as many independent blocks of changes as you need. You may also apply
changes to several files.

43 Apply as much reasoning as you please and see necessary. The format of the solution is
fixed and has to follow the custom diff format.

44 Make sure to implement only test cases and don't try to fix the issue itself.

Figure 11: Part 2 of the Prompt for ZEROSHOT on SWT-BENCH
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1 The following text contains a user issue (in <issue/> brackets) posted at a repository.
Further, you are provided with file contents of several files in the repository that
contain relevant code (in <code> brackets). It may be necessary to use code from
third party dependencies or files not contained in the attached documents however.
Your task is to identify the issue and implement a test case that verifies a
proposed solution to this issue. More details at the end of this text.

2

3 <issue>
4 user issue comes here
5 </issue>
6

7 The following patch has been proposed to fix the issue described in the user issue (in
<issue/> brackets).The patch might give you a hint on how to write a covering test
for the issue, but you should not assume that the patch is correct.It might be that
the provided patch is not correct, so your test should check whether the patch
resolves the issue.<patch>proposed patch</patch>

8

9 retrieval results or oracle files come here
10

11 Please generate test cases that check whether an implemented solution
12 resolves the issue of the user (at the top, within <issue/> brackets).
13 Present the test cases as a diff (custom format, explained below).
14

15 The general format of a diff is as follows.
16 ```custom-diff
17 diff
18 <path/filename>
19 < "rewrite" or "insert" >
20 < rough line number / EOF / BOF >
21 < insert function that should be added or rewritten >
22 end diff
23 < repeat blocks of diff as necessary >
24 ```
25 Insertion can only be done at the end or beginning of the file, indicated by EOF or BOF

respectively.
26

27 As an example for a diff, consider the following two versions of the same file, once
before and once after a change.

28 The original version of the file was as follows.
29 [start of demo/test_file.py]
30 1 def test_euclidean(a, b):
31 2 assert euclidean(0, 0) == 0
32 3 assert euclidean(0, 1) == 1
33 4 assert euclidean(1, 0) == 1
34 5 assert euclidean(1, 1) == 1
35 6
36 7 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)

])
37 8 def test_gcd(a, b):
38 9 assert gcd(a, b) == expected
39 10
40 [end of demo/file.py]
41 ```

Figure 12: Part 1 of the Prompt for ZEROSHOTPLUS on SWT-BENCH
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1 The diff for fix in function euclidean and adds the function gcd is as follows.
2 This diff changes the first file into the second file.
3 ```custom-diff
4 diff
5 demo/file.py
6 rewrite
7 1
8 def test_euclidean(a, b):
9 assert euclidean(0, 0) == 0

10 assert euclidean(0, 1) == 1
11 assert euclidean(1, 0) == 1
12 assert euclidean(1, 1) == 1
13 assert euclidean(100, 10) == 10
14 end diff
15 diff
16 demo/file.py
17 insert
18 EOF
19 @ pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1),

(100, 10, 10)])
20 def test_lcm(a, b):
21 assert lcm(a, b) == expected
22 end diff
23

24 The new version of the file is as follows.
25 [start of demo/file.py]
26 1 def test_euclidean(a, b):
27 2 assert euclidean(0, 0) == 0
28 3 assert euclidean(0, 1) == 1
29 4 assert euclidean(1, 0) == 1
30 5 assert euclidean(1, 1) == 1
31 6 assert euclidean(100, 10) == 10
32 7
33 8 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1)

])
34 9 def test_gcd(a, b):
35 10 assert gcd(a, b) == expected
36 11
37 12 @pytest.mark.parametrize("a, b, expected", [(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1,

1), (100, 10, 10)])
38 13 def test_lcm(a, b):
39 14 assert lcm(a, b) == expected
40 15
41 [end of demo/file.py]
42

43 As you can see, you need to indicate the approximate line numbers, function name and the
path and file name you want to change,

44 but there can be as many independent blocks of changes as you need. You may also apply
changes to several files.

45 Apply as much reasoning as you please and see necessary. The format of the solution is
fixed and has to follow the custom diff format.

46 Make sure to implement only test cases and don't try to fix the issue itself.

Figure 13: Part 2 of the Prompt for ZEROSHOTPLUS on SWT-BENCH
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1 We have received following issue within our repository. Here's the issue text:
2 ISSUE:
3 {issue}
4

5 INSTRUCTIONS:
6 Now, you’re going to create unit tests that cover the issue. In other words, you should

write unit tests that fail in the current state of the repositorybut will pass when
the issue has been resolved. Essentially, you’ll want to write a unit test that
reproduces the described issue.

7 Your terminal session has started and you're in the repository's root directory. You can
use any bash commands or the special interface to help you. Edit all the files you
need to and run any checks or tests that you want.

8 Remember, YOU CAN ONLY ENTER ONE COMMAND AT A TIME. You should always wait for feedback
after every command.

9 When you're satisfied with all of the changes you've made, you can submit your changes
to the code base by simply running the submit command.

10 Note however that you cannot use any interactive session commands (e.g. python, vim) in
this environment, but you can write scripts and run them. E.g. you can write a
python script and then run it with `python <script_name>.py`.

11

12 NOTE ABOUT THE EDIT COMMAND: Indentation really matters! When editing a file, make sure
to insert appropriate indentation before each line!

13

14 IMPORTANT TIPS:
15 1. Always start by trying to replicate the bug that the issues discusses.
16 If the issue includes code for reproducing the bug, we recommend that you re-

implement that in your environment, and run it to make sure you can reproduce
the bug.

17 Then start trying to fix it.
18 When you think you've fixed the bug, re-run the bug reproduction script to make sure

that the bug has indeed been fixed.
19

20 If the bug reproduction script does not print anything when it successfully runs, we
recommend adding a print("Script completed successfully, no errors.") command
at the end of the file,

21 so that you can be sure that the script indeed ran fine all the way through.
22

23 2. If you run a command and it doesn't work, try running a different command. A command
that did not work once will not work the second time unless you modify it!

24

25 3. If you open a file and need to get to an area around a specific line that is not in
the first 100 lines, say line 583, don't just use the scroll_down command multiple
times. Instead, use the goto 583 command. It's much quicker.

26

27 4. If the bug reproduction script requires inputting/reading a specific file, such as
buggy-input.png, and you'd like to understand how to input that file, conduct a
search in the existing repo code, to see whether someone else has already done that.
Do this by running the command: find_file "buggy-input.png" If that doesn't work,
use the linux 'find' command.

28

29 5. Always make sure to look at the currently open file and the current working directory
(which appears right after the currently open file). The currently open file might
be in a different directory than the working directory! Note that some commands,
such as 'create', open files, so they might change the current open file.

30

31 6. When editing files, it is easy to accidentally specify a wrong line number or to
write code with incorrect indentation. Always check the code after you issue an edit
to make sure that it reflects what you wanted to accomplish. If it didn't, issue
another command to fix it.

32

33 7. After having applied your changes and before submitting, make sure to run pytest and
check if the code *fails* as expected due to the issue description. If it doesn’t,
revisit your code changes and adapt them accordingly.

Figure 14: The Prompt for SWE-AGENT on SWT-BENCH
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1 You are a software developer maintaining a large project.
2 You are working on an issue submitted to your project.
3 The issue contains a description marked between <issue> and </issue>.
4 Your task is to invoke a few search API calls to gather information about relevant code

lines, then write unit tests to capture the described behaviour in the
issue.Ideally, the unit tests should fail before the bug is fixed or the requested
feature is added, and pass after.Note you are not trying to solve the bug itself,
but just capture the behaviour described in the issue by creating appropriate test
cases.

1 You are a software developer maintaining a large project.
2 You are working on an issue submitted to your project.
3 The issue contains a description marked between <issue> and </issue>.
4 You ultimate goal is to write one or more unit tests that capture this issue.Ideally,

the unit tests should fail before the bug is fixed or the requested feature is
added, and pass after.Note you are not trying to solve the bug itself, but just
capture the behaviour described in the issue by creating appropriate test cases.

1 Write one or more unit tests for the issue, based on the retrieved context.
2

3 You can import necessary libraries.
4

5

6 Return the tests as patch in the format below.
7

8 Within `<file></file>`, replace `...` with actual file path.
9

10 Within `<original></original>`, replace `...` with the original code snippet from the
program.

11

12 Within `<patched></patched>`, replace `...` with the fixed version of the original code.
When adding orignal code and updated code, pay attention to indentation, as the
code is in Python.

13 You can write multiple modifications if needed.
14

15 ```
16 # modification 1
17 <file>...</file>
18 <original>...</original>
19 <patched>...</patched>
20

21 # modification 2
22 <file>...</file>
23 <original>...</original>
24 <patched>...</patched>
25

26 # modification 3
27 ...
28 ```

Figure 15: The Prompt for AUTOCODEROVER on SWT-BENCH
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1 Below is a real GitHub issue from a popular GitHub repository.
2 The issue was filed some time ago.
3 The repo has been checked out at the commit that existed at the moment the issue was

filed.
4 If you are already familiar with this repo, be cautious!
5 You are working with an old version of the repo!
6 Filenames, directory names, file contents, etc may be different than what you're used to

.
7

8 Propose changes to update the repo to reproduce the problem below.
9 You’re going to create unit tests that cover the issue. In other words, you should

write unit tests that fail in the current state of the repository
10 but will pass when the issue has been resolved. Essentially, you’ll want to write a

unit test that reproduces the described issue.
11

12

13 {issue}

Figure 16: The Prompt for AIDER on SWT-BENCH
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope, as described in §3–§5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations thoroughly in §6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: There are no theoretical results included.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our approach in detail and publish all code, data, and instructions
required to reproduce our results. All experimental details can be found in §5 and full
details on used prompts are laid out in App. E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release all code, data, and instructions required to reproduce our results
online at https://github.com/logic-star-ai/swt-bench.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all key experimental details in §5. Further details on the used
prompts for LLM interaction are provided in App. E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We add results of tests of statistical significance in the text accompanying
experiments in §5. We further provide a temperature ablation with error bars in App. C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We outline the cost of the significant parts of our experiments (mostly domi-
nated by the cost of LLM inference) in App. G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms to the NeurIPS Code of Ethics. In particular, we did
not conduct research involving humans, used only publicly available data open source data
with permissive licenses, and believe that our research has no negative societal impact.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

28

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators have included the licenses of all used code in the submitted code
together with the package. The code adjusted and used for the experiments in this paper
was licensed with permissive licenses, that we respect and redistribute with out adjusted
code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide a detailed description of our dataset creation process in §3, and
distribute this description as well as license information alongside the dataset at https:
//github.com/logic-star-ai/swt-bench.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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