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Abstract

Few-shot classification and segmentation (FS-CS) focuses
on jointly performing multi-label classification and multi-
class segmentation using few annotated examples. Although
the current state of the art (SOTA) achieves high accuracy in
both tasks, it struggles with small objects. To overcome this,
we propose the Efficient Masked Attention Transformer
(EMAT), which improves classification and segmentation
accuracy, especially for small objects. EMAT introduces
three modifications: a novel memory-efficient masked at-
tention mechanism, a learnable downscaling strategy, and
parameter-efficiency enhancements. EMAT outperforms all
FS-CS methods on the PASCAL-5i and COCO-20i datasets,
using at least four times fewer trainable parameters.

1. Introduction

Recently, data-intensive methods have been introduced for
various deep learning applications [5, 8, 22, 24, 31, 33, 40].
These methods rely on large training datasets, making them
impractical in fields where collecting extensive datasets is
challenging or costly [12, 13, 63]. Consequently, few-
shot learning (FSL) methods have gained significant at-
tention for their ability to learn from just a few exam-
ples and quickly adapt to new classes [1, 43, 50, 54].
In computer vision, FSL has been mostly applied to im-
age classification (FS-C) [3, 17, 39, 42] and segmentation
(FS-S) [10, 29, 53, 60, 61].

FS-C and FS-S often co-occur in real-world applications,
e.g., in agriculture, where crops must be segmented and
classified by type or health status. Hence, recent works
[18, 20] integrate multi-label classification and multi-class
segmentation into a single few-shot classification and seg-
mentation (FS-CS) task. While FS-CS addresses some lim-
itations of FS-C (e.g., assuming the query image contains
only one class) and FS-S (e.g., assuming the target class
is always present in the query image), it also increases the
task difficulty by simultaneously tackling classification and
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Figure 1. Qualitative comparison of small objects between the
current SOTA FS-CS method (CST) [20] and our EMAT. CST*

uses the same backbone as EMAT (i.e., DINOv2 [31]). By pro-
cessing high-resolution correlation tokens, EMAT preserves finer
details, yielding more accurate segmentation masks.

segmentation. Moreover, some applications, e.g., medical
imaging, rely on precise small-object analysis [12, 15, 63].
Thus, achieving high accuracy on small objects is a desired
property for FS-CS methods. Yet, as shown in Fig. 1, the
current state-of-the-art (SOTA) FS-CS method [20] strug-
gles with small objects, a limitation we address in this work.

Contributions. (1) Building on the current SOTA FS-CS
method [20], we propose an efficient masked attention
transformer (EMAT), which enhances classification and
segmentation accuracy, particularly for small objects, while
using approximately four times fewer trainable parame-
ters. (2) Our EMAT outperforms all FS-CS methods on the
PASCAL-5i and COCO-20i datasets, supports the N-way
K-shot configuration, and can generate empty segmentation
masks when no target objects are present.

2. Related Work

Few-shot classification (FS-C) methods can be catego-
rized into three groups based on what the model learns.
Representation-based approaches learn class-agnostic, dis-
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Figure 2. FS-CS pipeline used by our EMAT. A frozen, pre-trained ViT [11] extracts image and class tokens from support and query
images, which are correlated via cosine similarity. The resulting correlation tokens are processed by a two-layer transformer equipped
with our masked attention mechanism, learnable downscaling, and parameter-efficient design (see the supplementary material for details).
Task-specific heads then predict the multi-label classification vector and multi-class segmentation mask.

criminative embeddings [3, 16, 19, 38, 45, 46, 58].
Optimization-based approaches learn the optimal set of
weights that allow the model to adapt to new classes in just
a few optimization steps [4, 14, 34, 39]. Transfer-based ap-
proaches adapt large pre-trained [6, 9, 23, 27, 42] or foun-
dation models [17, 36, 62]. A major limitation of most
FS-C methods is the assumption of a single label per im-
age [2, 37], limiting them in multi-label settings.

Few-shot segmentation (FS-S) methods can also be cat-
egorized into three groups: prototype matching, which
aligns support embeddings with query features [10, 25,
44, 48, 49, 56]; dense correlation, which constructs sup-
port–query correlation tensors [7, 28, 29, 32, 51, 52]; and
model-adaptation, which fine-tunes large pre-trained mod-
els [26, 47, 55, 59, 60]. Despite the advancements in FS-S,
most methods have two main limitations: (1) they target
only the 1-way K-shot configuration and (2) they assume
the query image contains the target class, preventing the
models from predicting empty segmentation masks. Only a
few recent works [41, 57] address the more general N-way
K-shot configuration.

Few-shot classification and segmentation (FS-CS) fo-
cuses on jointly predicting the multi-label classification vec-
tor and multi-class mask without assuming support classes
are present in the query image [18]. The current SOTA FS-
CS method, CST [20], uses a memory-intensive masked-
attention mechanism that requires significant downsam-
pling of the correlation features, reducing its accuracy on
small objects. In this work, we enhance CST by propos-
ing an efficient masked-attention formulation and adding
further refinements, resulting in a more memory- and
parameter-efficient method with improved accuracy, espe-
cially for small objects.

3. Problem Definition
This work focuses on the FS-CS task [18], formulated as an
N-way K-shot learning problem [46]. We assume two dis-
joint class sets: Ctrain for training and Ctest for testing. Ac-
cordingly, training tasks are sampled from Ctrain, and testing
tasks from Ctest. Each task consists of a support set S and a
query image Iq , where S contains N classes Cs (Cs ⊆ Ctrain
or Cs ⊆ Ctest), each represented by K examples:

S =
{{

(Iij ,M
i
j , i) | i ∈ Cs

}K

j

}N

i
, (1)

where Iij , Mi
j , and i denote the support image, segmenta-

tion mask, and class label for the jth example of the ith class.
The goal of FS-CS is to learn from S so that, given Iq , the

model can (i) identify which support classes appear (multi-
label classification), and (ii) segment them (multi-class seg-
mentation). Moreover, FS-CS allows Iq to contain a subset
of the support classes. Thus, when N > 1, Iq can con-
tain: (1) none of the support classes, (2) a subset of them,
or (3) all support classes. Note that case (1) requires models
to predict empty segmentation masks when necessary.

4. Efficient Masked Attention Transformer
Fig. 2 illustrates the pipeline used by our proposed EMAT,
which builds upon CST [20]. Both methods share the
same feature extraction process: support and query images
Iij , Iq ∈ RH×W×3 are processed by a frozen, pre-trained
ViT [11] with patch size p, producing support and query
image tokens Tsi ,Tqi ∈ Rh×w×d, and a support class to-
ken Tsc ∈ R1×d, where h = H/p, w = W/p, and d
is the token dimension of a single ViT head. The support
tokens Tsi are downsampled via bilinear interpolation and
reshaped to Tf

si
∈ R(h′·w′)×d. Similarly, query image to-

kens Tqi are reshaped to Tf
qi

∈ R(h·w)×d. Next, Tf
si

and



Tsc are concatenated to form Tc
s. Finally, cosine similar-

ity between Tc
s and Tf

qi
is computed across all ViT layers

l and attention heads g, resulting in the correlation tokens
C ∈ Rts×tq×(l·g), where ts = h′ · w′ + 1 and tq = h · w.

EMAT differs from CST in its two-layer transformer that
processes correlation tokens and feeds task-specific heads
for multi-label classification and multi-class segmentation.
We enhance this transformer with three key improvements.
(1) A memory-efficient masked attention formulation:

Oijk =
∑

p⊘

[
σ
(
Qd

ijk ·
(
K:jk ⊘Mf

:

))]
p⊘

⊙
(
V:jk ⊘Mf

:

)
p⊘ , (2)

where Qd,K,V are the downscaled query, key, and value
matrices, and Mf is the resized, flattened segmentation
mask; i ∈ {1, . . . , h′′·w′′+1}, j ∈ {1, . . . , tq}, k ∈
{1, . . . , e} with e denoting the embedding size. The op-
erators σ, ⊙, and ⊘ denote softmax, element-wise multipli-
cation, and our element-wise masking operator:

(Zpjk ⊘Mf
p) =

{
Zpjk if Mf

p = 1,

∅ otherwise,
∀p ∈ {1, . . . , ts}, (3)

with p ∈ {1, . . . , ts} and ∅ indicating exclusion of the en-
try. By excluding masked-out tokens, EMAT supports much
higher-resolution inputs than CST. (2) A learnable down-
scaling strategy that combines small convolutions with aver-
age pooling, avoiding large pooling kernels. (3) A reduction
in the number of channels across attention layers and task-
specific heads to improve parameter efficiency and mitigate
overfitting. Further details of these three improvements are
provided in the supplementary material.

Following CST, EMAT is trained using the 1-way 1-shot
configuration. Since EMAT uses task-specific heads, it is
trained with two losses:

Lclf = −y log ŷ, (4)

Lseg = − 1

HW

H∑
i=1

W∑
j=1

Mij log M̂ij , (5)

where y ∈ {0, 1} and Mij ∈ {0, 1} are the ground-truth
classification and segmentation labels, and ŷ, M̂ij are the
corresponding predictions. The final loss function jointly
optimizes both losses using a balancing hyperparameter λ:

L = λLclf + Lseg. (6)

Inference on N-way K-shot tasks is performed as in
CST [20], by treating each class as an independent 1-way
K-shot task: class-wise logits and masks are averaged over
the K examples, producing N predictions. Logits above a
threshold δ=0.5 form the multi-label vector, and M̂ij is as-
signed to the class with the highest score, or to background
if all scores fall below δ, thereby allowing empty masks.

Dataset Method Train.
Params.

1-way 1-shot 2-way 1-shot

Acc. mIoU Acc. mIoU

PASCAL-5i

PANet [48] 23.51 68.70 36.14 56.53 37.20
PFENet [44] 31.96 74.38 43.08 39.35 35.57
HSNet [28] 2.57 83.60 49.62 67.27 44.85
ASNet [18] 1.32 84.85 52.32 68.30 47.87
CST [20] 0.37 85.72 55.52 70.37 53.78
CST* 0.37 90.62 64.40 80.58 63.28
EMAT 0.09 91.25 64.64 82.70 63.38

COCO-20i

PANet [48] 23.51 66.62 25.16 51.30 23.64
PFENet [44] 31.96 71.40 31.86 36.45 23.37
HSNet [28] 2.57 76.95 34.33 62.43 30.58
ASNet [18] 1.32 78.60 35.82 63.05 31.62
CST [20] 0.37 80.53 38.28 64.02 36.23
CST* 0.37 88.50 53.48 78.70 51.47
EMAT 0.09 88.70 54.76 80.07 52.81

Table 1. Comparison of FS-CS methods on PASCAL-5i and
COCO-20i across different task configurations. CST* and EMAT
were trained and evaluated, while other methods were only evalu-
ated using the checkpoints from [18]. CST* uses the same back-
bone as EMAT (i.e., DINOv2 [31]). All values, except the num-
ber of trainable parameters (in millions), are percentages (higher
is better). Highlight indicates our proposed method. Bold and
underlined values indicate the best and second best results.

tls per
Layer Method ME LD PE Mem.

Usage
Train.

Params. Acc. mIoU

t1s=145
t2s=10

CST* – – – 8.68 366.00 80.58 63.28

t1s=401
t2s=101

CST* – – – ≈ 63 366.00 N/A N/A
EMAT ✓ – – 36.92 366.00 81.95 62.97
EMAT ✓ ✓ – 36.53 404.48 82.17 63.36
EMAT ✓ ✓ ✓ 38.31 86.02 82.70 63.38

Table 2. Ablation study on PASCAL-5i using 2-way 1-shot tasks.
“tls” indicates the value of ts for each layer l ∈ {1, 2}. The mem-
ory efficiency (ME), learnable downscaling (LD), and parameter
efficiency (PE) columns correspond to the modifications of EMAT
described in Sec. 4. “Mem. Usage” reports the average per-GPU
memory used during training. CST* uses the same backbone as
EMAT (i.e., DINOv2 [31]). (Top) CST* with its original support
dimension per layer tls. (Bottom) successive modifications intro-
duced by EMAT. Highlight indicates our complete EMAT. Bold
and underlined values indicate the best and second best results.

5. Experiments
Datasets. We evaluated our EMAT on the widely used
PASCAL-5i [35] and COCO-20i [30] datasets. Although
they were designed for few-shot segmentation, both can
also be used for few-shot classification and segmenta-
tion [18]. PASCAL-5i comprises 20 classes and COCO-20i

80 classes, each partitioned into four non-overlapping folds.
Implementation details. EMAT uses a frozen ViT-S en-
coder [11] pre-trained with DINOv2 [31]. The two-layer
transformer uses our memory-efficient masked attention
with 8 heads. We train for 80 epochs with a batch size
of 9 using Adam [21] with learning rate 10−3. Following
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Figure 3. Analysis of small objects on PASCAL-5i and COCO-20i. Each bar represents the average across the four folds of each dataset,
filtered by object size, using 1-way 1-shot tasks. To enable a more controlled analysis, we modified the setting described in Sec. 3 to ensure
that the query image always contain the class of the support image. CST* uses the same backbone as EMAT (i.e., DINOv2 [31]).

[20], we use 1-way 1-shot tasks and set the loss weight λ
in Eq. (6) to 0.1. Moreover, we re-train CST [20] with the
same DINOv2 backbone used by EMAT and denote it as
CST*. All training was conducted on three NVIDIA RTX
A6000 GPUs, with evaluation performed on a single GPU.

5.1. Comparison to SOTA FS-CS
To evaluate the effectiveness of our EMAT, we compare it
with CST [20] and other SOTA FS-CS methods. Tab. 1
shows mean classification accuracy (Acc.) and mean IoU
(mIoU) over the four folds of PASCAL-5i [35] and CO-
CO-20i [30]. Although DINOv2 pre-training [31] al-
ready significantly improves CST* over its original version,
EMAT consistently outperforms all methods. These results
validate the benefit of processing higher-resolution corre-
lation tokens enabled by our memory-efficient masked at-
tention (see Sec. 4). Moreover, EMAT requires at least
four times fewer parameters than CST, making it the most
parameter-efficient method among SOTA FS-CS models.

5.2. Analysis of Small Objects
To analyze the impact of higher-resolution correlation to-
kens on small objects, we filter each fold of PASCAL-5i

and COCO-20i based on object size, creating three splits:
objects occupying 0–5 %, 5–10 %, and 10–15 % of the im-
age. Fig. 3 shows the average accuracy and mIoU of CST*

and the corresponding improvement achieved by EMAT
across the three splits for both datasets. The results indi-
cate that accuracy and mIoU increase with the object size,
and EMAT provides the largest improvement over CST* for
the smallest objects, gradually decreasing as object size in-
creases. The enhanced classification and segmentation ac-
curacy of EMAT is likely due to improved localization en-
abled by the increased resolution of the correlation tokens.

5.3. Ablation Study
Tab. 2 reports the results of CST* using its original support
dimension per layer tls. For fair comparison, we increased

the tls of CST* to use the same as EMAT, but it required
about 63 GB of GPU memory, which exceeded the 48 GB
capacity of our GPUs. For EMAT we progressively inte-
grated the improvements described in Sec. 4: (1) memory-
efficient masked attention, (2) learnable downscaling of the
query matrix, and (3) parameter-efficiency modifications.

Adding our memory-efficient masked attention alone re-
duces memory usage by 26 GB (≈ 41 %) and yields an
absolute accuracy gain of +1.37 %, but it slightly lowers
mIoU, likely because the model relies on large pooling win-
dows for processing the higher-resolution correlation to-
kens. Incorporating our learnable downscaling removes
these large windows and yields absolute gains of +1.59 %
in accuracy and +0.08 % in mIoU over CST*. Since learn-
able downscaling increases the number of trainable param-
eters, we next apply our parameter-efficiency modifications
that remove 318 K parameters (≈ 79 %), while still saving
about 39 % of the memory CST* would require for the same
tls as EMAT. These modifications also improve accuracy by
+2.12 % and mIoU by +0.1 % compared to CST*.

6. Conclusion

In this work, we propose EMAT, an enhancement over
CST, the state-of-the-art method for few-shot classifica-
tion and segmentation (FS-CS). EMAT incorporates our
novel memory-efficient masked attention mechanism that
allows our model to process high-resolution correlation to-
kens while maintaining memory efficiency. Our learnable
downscaling strategy and additional parameter-efficiency
refinements enhance the classification and segmentation ac-
curacy of EMAT while improving its parameter efficiency.
Our results demonstrate that EMAT consistently outper-
forms all FS-CS methods across different task configura-
tions while requiring at least four times fewer trainable pa-
rameters. Moreover, our qualitative results highlight that
EMAT captures finer details more accurately, improving ac-
curacy when dealing with small objects.
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