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Abstract. Head and Neck Cancer (HNC) is a broad term for cancers
that develop in the head and neck region. Accurate survival prediction
is critical for guiding patient management and treatment planning. Tra-
ditional survival models, such as Kaplan–Meier curves and Cox Propor-
tional Hazards models, are limited by their dependence on linearity and
proportional hazards assumptions. Recently, deep learning–based sur-
vival models have demonstrated promising results for risk prediction.
However, current approaches still struggle to fully integrate multimodal
data and to capture region-specific features effectively. In this work, we
employed a Multitask Learning framework that simultaneously performs
Human Papillomavirus (HPV) classification, tumor segmentation, and
survival prediction based on Positron Emission Tomography, Computed
Tomography imaging, and clinical features. Integrating these three tasks
into a unified model enables the use of shared feature representations.
The segmentation module facilitates the extraction of tumor-specific fea-
tures, while the classification branch incorporates HPV status prediction
as a critical prognostic factor in HNC.
This approach was developed and evaluated as part of our participa-
tion in the MICCAI 2025 HEad and neCK TumOR segmentation and
outcome prediction challenge as the SIMS-LIFE team.

Keywords: Multitask learning · Survival prediction · PET/CT · Head
and neck cancer.

1 Introduction

Head and Neck Cancer (HNC) is the seventh most common cancer worldwide.
It typically arises from squamous cells covering the mucosal surfaces of the lip,
oral cavity, pharynx, larynx, and paranasal sinuses. The prognosis for HNC varies
greatly, with an overall 5-year survival rate of 50–60% [11]. The global incidence
of HNC continues to rise, with 946,456 new cases and 482,001 deaths reported
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worldwide in 2025 [2], emphasizing the importance of accurately and promptly
diagnosing high-risk patients. In this context, survival analysis is a powerful tool
for estimating risk, guiding early prognosis, and personalizing treatment plans.

18F-FluoroDeoxyGlucose Positron Emission Tomography (PET) and Com-
puted Tomography (CT) imaging play a crucial role in tumor characterization
at both initial staging and follow-up of HNC, thanks to the complementary na-
ture of both anatomical and functional information these medical images provide
[10]. Traditional survival prediction methods are usually based on clinical and
tabular information collected by clinicians or handcrafted radiomics features
[7] extracted from PET/CT images, which are then modeled using statistical
survival models such as the Cox Proportional Hazards (CoxPH) [5]. In this re-
gard, several studies investigating the impact of radiomics features in patients
with HNC have shown promising results in improving survival predictions. For
example, Haidar et al. [8] demonstrated that such features can provide comple-
mentary prognostic information, enabling more accurate outcome estimations.
Other studies have further shown that choices within the radiomics pipeline,
such as harmonization strategies, sub-volume feature extraction, and segmenta-
tion methods, can significantly influence survival predictions for HNC, thereby
improving the performance of the CoxPH models in risk stratification [23].

More recently, deep survival models [13, 15, 6] based on deep learning have
been introduced to overcome the limitations of traditional approaches, which
often assume linear effects and proportional risks. Deep survival models are
designed to capture non-linear feature interactions and integrate heterogeneous
data sources. In HNC, such approaches have shown promise in more accurately
predicting patient outcomes [19] and have the potential to outperform traditional
survival models [1]. Moreover, other studies have leveraged graph-convolutional
networks to build survival prediction models [18].

Building on deep models, Multitask Learning (MTL) has been explored to
further improve survival prediction. MTL lies in learning shared representations
across related tasks, which reduces the prediction error and improves event oc-
currence estimation within specific time intervals [16]. Leveraging the multi-
ple ground-truth tasks provided in the HEad and neCK TumOR (HECKTOR)
Grand Challenge 2025, we incorporate two auxiliary tasks alongside our main
task of survival prediction within a unified network to enhance risk estimation.

To this end, in this work, we employed a modified version of DeepMTS [20].
While the original framework focused on segmentation and survival analysis, our
adaptation integrates both classification and segmentation with survival analysis
to maximize the extraction of relevant features while preserving prognostic infor-
mation. In particular, the classification branch predicts Human Papillomavirus
(HPV) status, a key prognostic factor strongly associated with patient outcomes.
Multimodal PET/CT data served as input, and deep features derived from both
the classification and segmentation backbones were combined with clinical fea-
tures to generate the final Recurrence-Free Survival (RFS) prediction. In addi-
tion, a strategy was adopted to address incomplete data, handling cases with
missing labels and/or missing categorical clinical features. Experiments on the
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challenge dataset suggest that incorporating HPV classification can contribute
to improved risk prediction performance.

2 Multitask Framework

This study focused on RFS prediction, defined as the time interval between the
date of diagnosis and the date of disease recurrence. Using PET, CT, and clinical
features as input, the model performed survival prediction as the primary task,
with classification and segmentation serving as auxiliary tasks. Accordingly, the
survival label, HPV status, and segmentation mask were used as ground-truth
labels.

Fig. 1 illustrates the overall model architecture, which is a modified version of
DeepMTS [20]. Within this multitask framework, training was performed using

Full-label 5-fold CV:

Only Task 2 samples with 
available segmentation and HPV 

status were used for training.

Partial-label 3-fold CV:

All Task 2 samples, regardless of 
segmentation or HPV status 

availability, were used for training.
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Fig. 1: Flowchart of the overall pipeline, with key modifications relative to the
original DeepMTS highlighted in red. CV: Cross-Validation; PET: Positron
Emission Tomography; CT: Computed Tomography; DF: Deep Feature; CF:
Clinical Feature.

a combined multitask loss (LTotal) defined as follows:

LTotal = LSeg + LClass + LSurv + 0.1L2Reg, (1)

Based on the original DeepMTS, the preprocessed PET and CT images were
first concatenated on the channel axis and fed into the segmentation backbone,
a modified version of 3D U-Net [4]. The predicted tumor probability map was
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compared with the ground-truth segmentation label using the sum of Dice [21]
and Focal [17] losses (LSeg), instead of only the Dice used in DeepMTS [20], to
emphasize hard tumor pixels that would otherwise be overwhelmed by the large
background regions. Next we describe the details of the loss functions:

LSeg = LDice + LFocal, (2)

LDice = 1−
2
∑N

i piyi∑N
i p2i +

∑N
i y2i

, (3)

LFocal =
1

N

N∑
i=1

FL(pi, yi), (4)

where
FL(p, y) =

{
−α(1− p)γ log(p) y = 1

−(1− α)pγ log(1− p) y = 0
(5)

Here N is the total number of voxels, p ∈ {0, 1} is the predicted tumor probability
map, and y ∈ {0, 1} is the ground-truth segmentation label. In Eq. 5, α is for
the voxel weighting factor and γ is a focusing parameter were set to 0.25 and 2,
respectively.

Subsequently, the tumor probability map and the preprocessed PET/CT
images were concatenated and input into the HPV classification backbone, which
is one of our main modifications. The classification branch was implemented as
a cascaded network based on a modified 3D DenseNet [12], introducing it as a
new branch added to the original DeepMTS [20]. The network parameters were
optimized using a binary focal cross-entropy loss (LClass) [17], which follows the
same formulation as in Eq. 5, but this time comparing the predicted HPV status
(pc) of the whole image with the ground-truth classification labels (yc).

Next, the clinical features (z3) were concatenated with 124 deep features
(z1) derived from the encoder branch of the segmentation backbone and 112
deep features (z2) extracted from the classification backbone, and fed into the
survival branch, which consisted of three Fully Connected (FC) layers. As in
the original DeepMTS, the predicted risk factor was compared with the ground-
truth survival label using the Cox negative log partial likelihood loss (LSurv)
[13]:

LSurv = − 1

NE=1

∑
i:Ei=1

(hi − log
∑

j∈R(Ti)

ehj ) (6)

where NE=1 is the number of patients with disease recurrence, Ei ∈ {0, 1} is
the event indicator (1 = event, 0 = censored), h denotes the predicted risk
scores, T is the ground-truth observed times, and R(Ti) is the risk set defined
as {j : Tj ≥ Ti}, representing the set of patients j who have survived up to time
Ti.

Additionally, an L2 regularization (L2Reg) term with a coefficient of 0.1 was
applied to all FC layers of the survival branch, consistent with the original frame-
work.
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Since HPV and/or segmentation labels were not present for all samples, but
we aimed to utilize all available data, we adopted a simple strategy to handle
missing labels. When a segmentation mask was available, the primary tumor
and metastatic lymph node delineations were merged into a single ground-truth
segmentation label; otherwise, a zero-valued image was generated. Missing HPV
status and categorical clinical features were assigned to a separate category to
account for incomplete data. We considered an approach inspired by tree-based
algorithms, such as XGBoost with a linear booster, to handle missing values [3].
Accordingly, all missing values were coded as 0, and the remaining categories
were shifted forward by one to preserve their distinction.

3 Experimental Settings

3.1 Dataset

In this study, we used a publicly available dataset from the HECKTOR 2025
challenge [22], which was designed for developing and benchmarking automatic
methods for HNC segmentation and survival prediction. For each sample, the
CT image was paired with the corresponding registered PET image. The chal-
lenge organizers precomputed the Standardized Uptake Value (SUV) for the
PET images, and all PET/CT files were provided in NIfTI format. The consid-
ered clinical features consisted of age, gender, tobacco and alcohol consumption,
treatment (radiotherapy only or combined with chemotherapy and/or surgery),
performance status, and distant metastasis stage.

For our main task of RFS prediction (Task 2), a training set of 678 sam-
ples was collected from seven centers, including CHUM (n=56), CHUP (n=44),
CHUS (n=72), HGJ (n=55), HMR (n=18), MDA (n=422), and USZ (n=11).
Six samples were excluded from the analysis, two due to negative SUV values
and four due to significant extravasation at the injection area, which impairs
the SUV computation. The HECKTOR challenge provided a validation set of
50 samples (HECKTOR validation set), while the test set contains 400 samples
with withheld ground-truth labels. Further details of the dataset are available
in [22].

3.2 Image Preprocessing

For early PET/CT fusion, we initially performed resampling onto a common
voxel grid to address differences in voxel size between the two modalities. The CT
images exhibited higher spatial resolution than the corresponding PET images,
with CT voxel sizes ranging from 0.49× 0.49× 2 mm3 to 2.73× 2.73× 3 mm3,
while PET voxel sizes ranged from 0.98× 0.98× 2.50 mm3 to 5.47× 5.47× 3.27
mm3. All images were resampled to isotropic voxels of 2 × 2 × 2 mm3, using
spline interpolation for the PET/CT images and nearest-neighbor interpolation
for the corresponding segmentations. Subsequently, the images were cropped
to 128 × 128 × 128 voxels, centered on the tumor using PET intensity-based
bounding boxes derived from SUV thresholding.
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3.3 Metrics

Considering RFS prediction as the primary objective of this study, the following
metrics were used to evaluate model performance for each task.

Concordance Index (C-index) The C-index is an extension of the area un-
der the curve that considers censored data. It refers to the model’s ability to
accurately produce a trustworthy ranking of survival durations according to the
personal scores [9]. This metric is measured between 0 and 1, where any value
less than 0.5 indicates random predictions. The equation for this metric is as
follows:

C-index =

∑
i,j 1Tj<Ti

· (1rj>ri + 0.5 · 1rj=ri)∑
i,j 1Ti<Tj · δi

(7)

Here Ti and Tj represent the time for a pair of patients, respectively, δ denotes
the event indicator, and r represents the risk score.

Dice Coefficient It is a similarity metric calculated between the ground-truth
and the predicted segmentations. Its value is between 0 (no overlap) and 1 (per-
fect prediction). This metric is defined as:

Dice(ytrue, ypred) =
2
∑

(ytrue · ypred) + ϵ∑
ytrue +

∑
ypred + ϵ

(8)

where ytrue and ypred indicate the ground-truth and the predicted segmentations,
respectively, and ϵ represents a constant of 1e− 8.

Balanced Accuracy It accounts for class imbalance by averaging the recall of
each class and can be calculated according to the following equation:

Balanced Accuracy =
1

2
·
(TP

P
+

TN

N

)
(9)

where TP represents true positives, TN indicates true negatives, P represents all
positives, and N represents all negatives.

3.4 Implementation Details

The model implementation was performed using TensorFlow 1.x on a 16 GB
NVIDIA Quadro RTX 5000 for the first setup and TensorFlow 2.x on a 20
GB NVIDIA RTX 4000 Ada Generation for the second setup (see the descrip-
tion of setups in Section 4.2). Both models were trained for 500 epochs with a
batch size of 4. Early stopping was applied based on the validation set C-index.
The Adam optimizer [14] was initialized with a learning rate of 1 × 10−4 and
subsequently reduced to 5 × 10−5, 1 × 10−5, and 1 × 10−6 at epochs 100, 200,
and thereafter. The code is publicly available at https://github.com/Dalalsh/
HNC-Multi-task-Learning.
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(a) Seg+Surv loss (b) Surv loss

(c) Class+Seg+Surv loss

Fig. 2: Total loss over 100 epochs for the ablation study.

4 Experimental Validation and Results

4.1 Task Ablation

For the ablation study, three model configurations were evaluated prior to se-
lecting the final model for submission. The first model (Seg+Surv) followed the
original DeepMTS framework [20], incorporating the segmentation and survival
branches. The second model consisted solely of the survival branch (Surv). The
last model was the modified version of DeepMTS (Fig. 1) that integrated three
tasks: classification, segmentation, and survival (Class+Seg+Surv). In the abla-
tion study, experiments were conducted using a single train/validation/test split
across all patients, with 60% of the samples allocated to the training, 30% to
the validation, and 10% to the test set. All models were trained for 100 epochs
to assess performance with and without the multitask configuration.

As shown in Fig. 2, the validation loss curve for the Surv model exhibited
some instability, whereas the curves for Seg+Surv and Class+Seg+Surv demon-
strated better convergence. Comparing the validation C-index across the three
model configurations, the Class+Seg+Surv configuration tended to provide a
better performance. As reported in Table 1, incorporating HPV status classifica-
tion improved overall network performance, with the multitask Class+Seg+Surv
model achieving the higher validation C-index values than both the Surv and
Seg+Surv configurations. This indicates that incorporating clinically relevant
classification tasks can enhance the discriminative power of the model and con-
tribute positively to survival prediction.
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Table 1: Results of the ablation study. Higher C-index values across the validation
set for each of the three model configurations at each epoch are highlighted in
bold.

Epoch Training C-index Validation C-index
Seg+Surv Surv Class+Surv+Seg Seg+Surv Surv Class+Surv+Seg

0 0.5445 0.4964 0.5265 0.4031 0.4687 0.4901
10 0.5018 0.5538 0.5603 0.4724 0.4444 0.6070
20 0.7216 0.7255 0.7717 0.5813 0.6604 0.6939
30 0.9217 0.8748 0.9322 0.6224 0.5999 0.6580
40 0.9323 0.9221 0.9338 0.6417 0.5442 0.7206
50 0.9625 0.9558 0.9406 0.5922 0.5791 0.7986
60 0.9772 0.9467 0.9634 0.5323 0.6065 0.7899
70 0.9769 0.9721 0.9658 0.6073 0.7055 0.6694
80 0.9772 0.9672 0.9835 0.6406 0.5520 0.7198
90 0.9818 0.9675 0.9679 0.5833 0.5480 0.6326
100 0.9823 0.9665 0.9778 0.5495 0.6123 0.5639

4.2 Final Submission

Based on observations from the ablation study (Table 1), the Class+Seg+Surv
configuration was selected for our final multitask framework and applied Cross-
Validation (CV) techniques to achieve a more generalized predictive model. Ac-
cordingly, two training and validation setups were evaluated (Fig. 1) using the
Class+Seg+Surv model configuration.

Full-label 5-fold CV In the first setup, a 5-fold CV was performed using
only samples from the Hecktor challenge Task 2 that had labels available for
both segmentation masks and HPV status (n=518). Samples missing either label
(n=154) were systematically added to the validation set of each fold.

Partial-label 3-fold CV The second setup employed a 3-fold CV that included
all Task 2 samples in the training set (n=672) regardless of segmentation mask
or HPV status availability. In this setup, samples with missing labels contributed
to model optimization solely through their image data and were excluded from
the corresponding loss calculations (LClass and LSeg), aiming to leverage the
full image distribution to enhance feature representation despite partial labels.

For the final submission, we considered the average of the best model from
each fold to obtain the final predicted risk score on the shared validation set.
This approach was intended to reduce the influence of any outliers in the training
data on the final predictions and to make predictions based on an ensemble of
models. Fig. 3 shows the mean total loss across CV folds for both setups, with
the networks exhibiting stable validation loss across the CV folds.

Table 2 report the C-index values for the considered setups. For the local
validation sets, the results are presented as mean C-index values across CV folds,
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(a) Full-label 5-fold CV (b) Partial-label 3-fold CV

Fig. 3: Mean total loss across CV folds for the Class+Seg+Surv multitask con-
figuration with early stopping.

followed by the 95% confidence intervals. The C-index values on the HECKTOR
validation and test sets are also provided, where our team achieved first place
on the HECKTOR test set (0.658), with a clear margin over the second-place
score (0.602).

Table 2: C-index results on the local validation set (from our CV), the HECK-
TOR validation and test sets (provided by the challenge), based on the
Class+Seg+Surv multitask configuration.

Setup Local validation HECKTOR
Validation set Test set

Full-label
5-fold CV 0.666 [0.632, 0.705] 0.566 0.658
Partial-label
3-fold CV 0.682 [0.671, 0.703] 0.583 0.494

5 Conclusion and Limitation

This study focused on predicting survival outcomes using a multitask framework
that simultaneously performs classification, segmentation, and survival predic-
tion. A key observation was the critical role of incorporating HPV status as a
clinical integration in survival prediction. However, implementing such a multi-
modal and multitask approach is challenging, as complete multimodal data are
often not available for all samples. To address this, categorical features with
missing values were assigned to a separate category. Additionally, to enable the
model to learn image feature representations from all available samples, unla-
beled data for classification and/or segmentation were included during training
but excluded from loss computation. Finally, we considered an ensemble tech-
nique that uses a CV scheme to improve the generalizability of the model to
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unseen samples. Although the improvements in the C-index were moderate, they
were consistent across our local validation set and the HECKTOR validation set.
This approach could potentially be extended by employing other losses beyond
the survival loss to better handle these unlabeled samples. While the frame-
work achieved promising performance, future work could explore more advanced
survival prediction methods, such as DeepHit or attention-based networks, to
strengthen the survival branch. In addition, refining training strategies for the
classification branch and incorporating attention or uncertainty modeling can
enhance interpretability in clinical settings.
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