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Abstract

Recent work shows that features from Stable Diffusion (SD) and contrastively
pretrained models like DINO can be directly used for zero-shot semantic corre-
spondence via naive feature concatenation. In this paper, we explore the stronger
potential of Stable Diffusion 3 (SD3), a rectified flow-based model with a multi-
modal transformer backbone (MM-DiT). We show that semantic signals in SD3
are scattered across multiple timesteps and transformer layers, and propose a
multi-level fusion scheme to extract discriminative features. Moreover, we iden-
tify that naive fusion across models suffers from inconsistent distributions, thus
leading to suboptimal performance. To address this, we propose a simple yet
effective confidence-aware feature fusion strategy that re-weights each model’s
contribution based on prediction confidence scores derived from their matching
uncertainties. Notably, this fusion approach is not only training-free but also
enables per-pixel adaptive integration of heterogeneous features. The resulting
representation, Fuse2Match, significantly outperforms strong baselines on SPair-
71k, PF-Pascal, and PSC6K, validating the benefit of combining SD3, SD, and
DINO through our proposed confidence-aware feature fusion. Code is available at
https://github.com/panda7777777/fuse2match

1 Introduction

Dense correspondence prediction is a fundamental computer vision task that aims to establish
pixel-level matches between two images. Conventional methods often rely on a large amount of
task-specific data and fine-tuning. In contrast, humans can naturally align semantically related
regions without supervision. This has motivated growing attention in zero-shot semantic dense
correspondence, which serves as a critical benchmark for assessing the generalizability of large-scale
foundation models.

Recent advancements in large-scale diffusion models for text-to-image generation have sparked
interest in their potential beyond generative tasks. In particular, works such as DIFT [27] and
SD+DINO [33] demonstrate that features extracted from diffusion models (i.e., Stable Diffusion [25]),
either alone or in combination with contrastive models (i.e., DINO [3]), enable strong performance in
zero-shot semantic correspondence, without any fine-tuning. However, existing research typically
adopts UNet-based Stable Diffusion and has not fully explored the latest architectures or the question
of how to effectively combine multiple pretrained models. Specifically, we ask: (i) Can the latest
flow-based diffusion models, such as SD3, bring further benefits? (ii) More importantly, can we
better integrate diverse pretrained models with complementary strengths for dense matching, in a
training-free way?
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A common strategy for model fusion is knowledge distillation [11], where a student network learns to
mimic multiple teacher models, such as AM-RADIO [24]. While effective, distillation requires costly
training, and often fails to preserve the diversity of the source models. In this work, we introduce a
confidence-aware feature fusion framework that is training-free: features from different off-the-shelf
models are fused at inference time, based on their estimated matching confidence. This allows us
to leverage complementary inductive biases across different model families (e.g., contrastive [3] vs.
generative pertaining [25], ViT [5] vs. UNet [26] vs. DiT [21] backbones), in a lightweight and
effective manner.

Importantly, our work is not a simple extension of prior methods like SD+DINO or DIFT. While we
draw inspiration from these studies, we tackle a much more challenging and unexplored scenario: the
use of rectified flow models with transformer-based backbones (i.e., MM-DiT in SD3) for zero-shot
correspondence. Due to substantial differences in architecture and training objectives (e.g., flow-
matching vs. denoising), extracting meaningful features from SD3 is highly non-trivial. Following
previous wisdom to naively select a single timestep and transformer block from SD3 even leads
to inferior performance compared to UNet-based SD, despite SD3 being a more powerful model
overall. Through a systematic exploration of hyperparameters such as timesteps, transformer blocks,
and attention facets (e.g., key, query, value, token), we reveal that semantic information is dispersed
across multiple blocks and facets in SD3. Thus, we explored multi-level fusion across timesteps and
layers, enabling SD3 to achieve performance on par with DIFT (SD) and DINOv2.

In addition, we investigate whether incorporating features from earlier UNet-based Stable Diffusion
(SD) models and contrastively pretrained ViTs (i.e., DINO) can further enhance the SD3 representa-
tions. However, our empirical analysis reveals substantial inconsistencies across these foundation
models, stemming from their heterogeneous architectures and training objectives. As a result, naive
feature concatenation leads to suboptimal performance due to conflicting feature distributions. To
address this, we propose a simple yet effective confidence-aware fusion strategy that adaptively
re-weights each model’s contribution in a per-pixel fashion, guided by a matching uncertainty-based
confidence score. This design differs from SD+DINO, which performs feature fusion by treating
each model’s contribution equally across all pixels. Moreover, we show that our fusion mechanism is
generalizable across different model combinations, demonstrating its flexibility and robustness.

Our main contributions are as follows: (i) To our best knowledge, it is the first attempt to leverage
SD3, a large-scale text-to-image generation pretrained model built on rectified flow, for zero-shot
semantic correspondence without any task-specific fine-tuning. (ii) A simple yet effective method is
devised for pixel-wise adaptive fusion of features from diverse foundation models, leveraging their
complementary knowledge arising from distinct architectures and pretext training tasks. As a result,
robust and generalizable features for dense matching across categories, viewpoints, and domains
are obtained. (iii) Substantial performance gains have been achieved across various benchmarks
(SPair-71k, PF-Pascal, and PSC6K datasets), validating the effectiveness.

2 Related Work

Zero-Shot Semantic Correspondence. The goal of semantic correspondence is to identify match-
ing object locations that share the same semantics, regardless of differences in categories[27],
viewpoints[6, 18], deformations [8], or domains[16]. Many recent works [2, 27, 33] focus on the
zero-shot setting, which requires no task-specific fine-tuning. This is achieved by directly utilizing the
features obtained from foundation models, which are shown to be effective in learning implicit seman-
tic correspondence. DINOv1 was first explored by Amir et al. [2] as a feature extractor with localized
semantic information, demonstrating its applicability to various zero-shot tasks such as segmentation
and correspondence. DINOv2[20], trained on larger and higher-quality datasets, has been shown
to achieve superior performance in zero-shot correspondence tasks [33]. Text-to-image diffusion
models, such as DIFT, have been leveraged for semantic correspondence lately since stable diffusion
(SD) features have a strong sense of spatial layout, thereby facilitating part-level correspondence.
SD+DINO demonstrates that SD and DINO features have different properties that are complementary.
By simply concatenating these two features, significant performance improvements can be achieved.
In this work, we show that the latest flow-based model, i.e., SD3, trained by text-to-image generation
can tackle zero-shot semantic correspondence. In addition, we observe significant performance gains
over SD+DINO by fusing features of SD3, SD, and DINO.
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Representation Learning with Diffusion Models. Diffusion models have demonstrated excep-
tional performance in image and video generation [7]. By generative modeling trained using large-
scale text-photo pairs, diffusion models have been shown to be an effective representation learner
exhibiting robust generalization to novel scenarios [30]. It has been observed that the intermediate
layers of the UNet decoder can capture rich semantic information across various granularity levels by
utilizing different timesteps and layer depths during denoising [27, 29]. Consequently, representations
derived from diffusion models have proven to be highly effective in downstream tasks involving
image segmentation [28], classification [31], and semantic correspondence [27, 33]. In this work, we
focus on directly utilizing features obtained from multimodal diffusion transformers (MM-DiT) for
zero-shot semantic correspondence, which is less studied.

3 Preliminary on Stable Diffusion 3

We begin by introducing background on Stable Diffusion 3 (SD3), which serves as the feature
extractor for semantic correspondence prediction.

Rectified Flow Model. One of the key properties of Stable Diffusion 3 (SD3) [7] is that it is built
upon Rectified Flow (RF) [1, 14, 15], which connects data p0 and noise distribution p1 = N (0, I)
via linear paths, hence can mitigate error accumulation during sampling. Coupled with the novel
Logit-Normal sampler, SD3 outperforms early versions of diffusion models, such as SDXL [22]. The
forward process is defined as:

zt = (1− t)x0 + tϵ, (1)

where x0 is the data sample, ϵ ∼ N (0, I) is Gaussian noise, and t ∈ [0, 1] denotes the timestep. The
backward process reverses this trajectory using a velocity field vΘ(zt, t), governed by the ordinary
differential equation (ODE):

dzt
dt

= vΘ(zt, t). (2)

The model is trained via the Conditional Flow Matching (CFM) [12], which minimizes the discrepancy
between the learned velocity field vΘ(zt, t) and the target velocity field ut(zt|ϵ):

LCFM = Et,zt,ϵ∥vΘ(zt, t)− ut(zt|ϵ)∥22. (3)

MM-DiT Backbone. Unlike the commonly adopted UNet architecture in the early versions of
Stable Diffusion, another key difference in SD3 is the employed diffusion transformer backbone DiT.
Notably, DiT backbone exhibits better scalability and facilitates bidirectional information exchange
between text and image modalities, resulting in fine-grained, semantically rich image representations.

4 Methodology

In this section, we first introduce how we extract pixel-level matching features from Stable Diffusion
3 and utilize them to perform the nearest search for semantic correspondence. We then introduce our
method to fuse features from diverse large-scale pretrained models.

4.1 Problem Setup

Following the common practice [2, 27, 33], semantic correspondence aims to find paired locations
that share similar semantics between two images. We simply extract dense pixel features in both
photos then match them. Given a feature map Fi for image Ii, the feature vector for pixel at location
p is Fi(p). Then we can match the most relevant pixel from image I2 given a pixel p1 from image I1,
which can be formally defined as:

p2 = argmin
p

d(F1(p1), F2(p)) (4)

where d denotes the cosine distance used to mature the feature vector similarity.
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4.2 Extracting Matching Features From MM-DiT

Forward Process. Similar to the Latent Diffusion Models (LDM) [25], given an image x0 ∈
Rh×w×3, we first project it into the latent space through a pretrained VAE, i.e., z0 = E(x0), where
z0 ∈ RH×W×D represents the latent image, and E denotes the pretrained encoder. Gaussian noise
is then added to corrupt z0 at a noise level determined by timestep t using Eq. (1). Next, MM-DiT
blocks are used to predict noise at each timestep.

Figure 1: We extract SD3 features from intermedi-
ate MM-DiT blocks and empirically identify that the
query (Qx) and value (Vx) from the image-branch at-
tention blocks serve as the most effective features for
semantic matching.

Feature Extraction via Backward Process.
Given the corrupted latent image zt, we can
extract features from the MM-DiT blocks of
the pretrained SD3 during the backward denois-
ing process. Apart from zt and timestep t,
a text prompt embedding is fed into the net-
work as well for image denoising. Follow-
ing DIFT, we simply adopt "A photo of a
{object category}." as the text prompt, which
is encoded into an embedding c ∈ RLc×Dc using
pretrained, frozen text encoders. To construct the
image embedding, we first add positional embed-
ding and patchify the latent image zt, then project
this patch encoding and the text embedding to the
same dimension. The text and image embeddings
are concatenated as a sequence, which is then pro-
cessed by the MM-DiT blocks to predict the in-
jected noise at timestep t. Notably, each modality
is handled by its own independent transformer, yet
the input sequence contains both text and image
tokens. This allows each representation to operate within its own domain while still exchanging
knowledge from the other modality.

Feature Facets Selection. While also built upon the ViT architecture, SD3 provides a broader set
of feature facets by allowing cross-modal interactions. As shown in Figure 1, it feeds both a text
prompt embedding (i.e., ci) and an image embedding (i.e., xi) into the transformer blocks, enabling
the emergence of self-attention, cross-attention, and joint attention, in addition to the conventional
feature facets used in DINO-ViT [2], such as tokens, queries, keys, and values. In this context,
self-attention refers to interactions among tokens within the same modality (e.g., image-to-image
or text-to-text), while cross-attention facilitates information exchange between different modalities
(e.g., text-to-image). Joint attention denotes the process of concatenating text and image embeddings
prior to attention computation, enabling unified reasoning over fused representations. To identify
the most effective representations for semantic matching, we perform a greedy search to select the
optimal feature facets for establishing correspondences between two images. Note that once the
hyperparameters are determined via greedy search on the training set, they remain fixed during
inference, introducing no additional computational overhead.

4.3 Confidence-aware Feature Fusion

We hypothesize that different large-scale pretrained models, including DINOv2, UNet-based Stable
Diffusion (SD), and DiT-based Rectified Flow Transformers (SD3), all learn implicit and complemen-
tary knowledge of semantic correspondence due to their diverse network architectures and pretraining
tasks. SD and SD3 perform latent space generative pertaining, while DINOv2 is obtained via con-
trastive learning. As recent evidence shows that simply fusing features from SD and DINO yields
surprisingly strong performance in zero-shot semantic correspondence. Therefore, we are interested
in exploring whether combining SD3 with other pretrained models would provide additional benefits
for zero-shot semantic correspondence.

A straightforward approach is to directly concatenate SD3 features with those from other pretrained
models, such as DINO and SD. However, due to fundamental differences in network architectures
and training objectives, foundation models naturally exhibit diverse feature characteristics when
performing semantic matching, which inevitably leads to inconsistencies across models. To address
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this, we propose a confidence-aware feature fusion strategy that effectively integrates the most
reliable predictions from each model. Intuitively, we place greater trust in models that exhibit lower
uncertainty in their semantic correspondences between two images. In practice, given a pair of image
feature maps, i.e., F1 ∈ Rh1×w1×C and F2 ∈ Rh2×w2×C extracted from a pretrained model, a
feature vector of query pixel p1 at location (x, y) in F1 is defined as vx,y ∈ RC . Then a similarity
vector M ∈ Rh2w2 representing the distances between p1 and all locations in F2 can be obtained by:

M = vx,y · flatten(F2)
T (5)

where flatten(F2) is a flattened matrix derived from feature map F2, containing h2w2 pixel vectors.
Consequently, we define the prediction certainty by measuring the gap between the maximum and
average value in the similarity vector M :

w = max
x,y

M − avg M (6)

Intuitively, a sharp activation in M suggests high confidence in matching, whereas a more evenly
distributed similarity across M implies lower confidence. To this end, we fuse features from different
pretrained models by concatenating their re-weighted features with the normalized confidence scores.
This ensures that models with higher matching confidence contribute more prominently, with the
fusion operating at the pixel level to allow for highly localized and adaptive feature integration.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate the MM-DiT features and its fused features on three challenging benchmarks,
namely SPair-71K [19], PF-Pascal [10], and PSC6K [16]. Following the tuning-free setting, we
directly test our pixel matcher on the corresponding test sets. SPair-71K and PF-Pascal are datasets
constructed for photo-to-photo matching. SPair-71K contains 12,714 test image pairs across 18
categories, featuring a wide variety of object keypoints and viewpoints, which pose significant
challenges for dense matching. PF-Pascal, on the other hand, has 299 test image pairs distributed
across 20 categories. PSC6K is a photo-sketch paired dataset consisting of 6,250 photo-sketch pairs
across 125 categories, with 150,000 keypoint annotation pairs. Establishing semantic correspondence
between photos and sketches is particularly challenging since free-hand sketches are inherently
abstract, lacking the texture and color cues present in RGB images, which are crucial for accurate
dense correspondence prediction. Evaluation on the PSC6K dataset is significant as it verifies whether
pretrained models trained with photorealistic images can generalize to vastly different domains, such
as human-drawn sketches.

Competitors. We compare our method against the current state-of-the-art semantic correspondence
approaches, specifically focusing on those in the zero-shot setting, where point matching is performed
directly based on their distance in the feature maps of image pairs, without additional task-specific
fine-tuning, involving SD+DINO [33], DIFT [27], OpenCLIP[23], DINOv2[20], DINOv1[3], and
SigLip[32]. To gain insights about their comparison results over conventional unsupervised and super-
vised methods with task-specific fine-tuning, we also include ISCVGSM[18], ASIC[9], CATs++[4],
DHF[17] and SD4Match[13] for comparison.

Evaluation Metric. Following [27, 33], we adopt the Percentage of Correct Keypoints (PCK)
metric to assess the accuracy of keypoint correspondences. Essentially, a predicted keypoint is
deemed correct if it is sufficiently close to the corresponding ground truth keypoint, i.e., the distance
is within τ × max(h,w), where τ is a positive scalar in the range [0, 1] controlling the strictness of
the criterion, and (h,w) denote the dimensions of the object bounding boxes in the SPair-71k dataset,
or the image resolutions in the PF-Pascal and PSC6K dataset.

Implementation details. We implement our approach using PyTorch. We choose the Stable
Diffusion 3.5 large model for extracting MM-DiT features. During feature fusion, the Stable
Diffusion 2.1 and DINO v2 large models are adopted following the experimental setups in [27, 33].
In accordance with the common practice, we retain the original image resolutions used by each
foundation model during training, i.e., 768 x 768 for SD, 480 x 480 for DINOv1, 840 x 840 for
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Table 1: Comparison results (PCK@0.1) on SPair-71k dataset. S, U, ZSS , and ZSM represent supervised,
unsupervised, zero-shot using single model, and zero-shot with multiple models, respectively. Our proposed
SD3-based approaches are color-coded in gray. The best and second-best scores are marked in bold and
underlined, respectively.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All

S CATs++ 60.6 46.9 82.5 41.6 56.8 64.9 50.4 72.8 29.2 75.8 65.4 62.5 50.9 56.1 54.8 48.2 80.9 74.9 59.9

DHF 74.0 61.0 87.2 40.7 47.8 70.0 74.4 80.9 38.5 76.1 60.9 66.8 66.6 70.3 58.0 54.3 87.4 60.3 64.9

SD4Match 75.3 67.4 85.7 64.7 62.9 86.6 76.5 82.6 64.8 86.7 73.0 78.9 70.9 78.3 66.8 64.8 91.5 86.6 75.5

U ISCVGSM 74.8 64.5 87.1 45.6 52.7 77.8 71.4 82.4 47.7 82.0 67.3 73.9 67.6 60.0 49.9 69.8 78.5 59.1 67.3

ASIC 57.9 25.2 68.1 24.7 35.4 28.4 30.9 54.8 21.6 45.0 47.2 39.9 26.2 48.8 14.5 24.5 49.0 24.6 36.9

ZSS SigLip 51.5 41.7 74.4 25.1 34.1 41.1 42.7 61.1 23.8 49.1 47.5 46.1 41.4 58.4 25.7 41.3 45.8 18.7 42.8

DINOv1 41.3 27.5 67.2 23.1 45.3 39.7 35.8 65.5 25.8 55.1 45.9 31.8 27.5 44.5 34.1 38.7 45.7 42.0 42.5

DINOv2 75.5 67.5 86.4 47.9 46.2 58.0 53.9 71.0 37.8 69.5 67.8 70.0 69.6 67.0 30.9 65.6 56.9 31.6 59.0

OpenCLIP 53.2 33.4 69.4 28.0 33.3 41.0 41.8 55.8 23.3 47.0 43.9 44.1 43.5 55.1 23.6 31.7 47.8 21.8 41.4

DIFT (SD2) 63.2 54.3 80.3 34.4 46.0 52.2 48.3 77.1 38.9 76.6 55.2 61.4 53.2 45.8 57.6 56.3 70.9 63.5 59.4

SD3 63.7 50.9 79.4 37.0 51.9 58.1 52.8 73.9 41.9 70.7 52.2 55.1 57.2 60.4 53.0 54.6 63.8 64.6 59.8

ZSM SD+DINO 73.4 64.0 86.5 39.8 53.0 55.2 53.9 78.4 46.3 77.6 65.0 69.8 63.2 69.1 58.9 68.0 66.7 54.5 63.3

SD3+DINOv2 75.5 66.4 86.8 45.1 58.5 61.5 56.2 77.0 48.5 76.6 64.9 69.2 69.7 69.0 57.2 66.3 64.5 62.9 65.9

SD+SD3+DINOv2 74.3 63.8 86.5 43.0 56.1 61.6 56.8 80.2 52.1 81.3 65.3 70.0 67.4 68.1 66.2 67.4 74.2 69.8 67.9

Fuse2Match 75.1 66.2 87.7 43.4 55.3 61.4 57.1 81.1 51.9 82.1 67.1 71.6 67.9 68.8 66.2 69.6 75.4 69.9 68.8

DINOv2, and 1024 x 1024 for SD3. Given an input image in resolution h× w, the extracted features
using those models will be upsampled by bilinear interpolation into an image size feature map,
resulting in feature map of size (h×w×9728) for SD3, (h×w×1280) for SD, and (h×w×1024)
for DINOv2. All those features are normalized before concatenation, resulting in the combined
feature map of size (h×w×12,032), substantially larger than those used in DIFT and SD+DINO. To
reduce the computational cost, we apply matrix factorization, which significantly improves efficiency
and allows inference on a single A100 40G GPU.

5.2 Semantic Correspondence Results

Quantitative Results on SPair-71k. Following the same setting in DIFT and SD+DINO (i.e.,
SD-2.1+DINOv2 more precisely), the metric PCK@0.1 (i.e., setting τ = 0.1) is reported on the
SPair-71k dataset. Results are shown in Table 1, we can see that: (i) SD3 (Ours) can achieve
slightly better results (PCK@0.1 59.8) among competitors using features from single pretrained
models, where OpenCLIP, SigLip, and DINOv1/v2 demonstrate relatively weaker performance
compared to DIFT and SD3, suggesting the advantages of generative diffusion and flow models
over discriminatively or contrastively trained models. (ii) Feature fusion using UNet-based diffusion
and DINOv2 (i.e., SD+DINO) achieves PCK@0.1 score of 63.3, clearly outperforming all single
pretrained models. Compared to SD+DINO, feature fusion using SD3 and DINO yields consistently
improved performance (63.3 vs. 65.9), highlighting the superior compatibility and representational
capacity of SD3 in conjunction with DINO. Interestingly, this advantage emerges despite SD3 and SD-
2.1 achieving comparable results when used individually, suggesting that the improvements stem not
from raw performance differences, but from enhanced complementarity in the fused representation.
(iii) The highest performance is obtained by integrating SD3, stable diffusion (SD), and DINO via our
proposed confidence-aware fusion strategy. We attribute this gain to the architectural heterogeneity
between SD3 (DiT-based) and earlier SD variants (UNet-based), which enables more complementary
feature representations for semantic matching. Notably, the fusion scheme guided by estimated
confidence scores (i.e., Fuse2Match) consistently outperforms naive feature concatenation (i.e., SD +
SD3 + DINOv2), underscoring the effectiveness of our adaptive weighting mechanism.
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Figure 2: Visualization of feature maps from SD3, SD, and DINO via PCA and K-Means clustering.

Table 2: Semantic matching statistics to reflect the “con-
flict” and “complementary” effects among SD3, SD, and
DINOv2.

Fusion None
(1984)

One
(1974)

Two
(2557)

All
(5719)

Naive Con. 6.4% 40.9% 88.3% 99.5%
Ours 12.7% 55.7% 90.9% 99.5%

‘Conflict’ and ‘complementary’ effects among
foundation models. We evaluate (i) whether
different single foundation models can achieve
correct matching at the same locations, and (ii)
whether the combination of foundation models
can achieve improved per-point matching results
compared to single models, to explicitly study
their conflict and complementary effects. The
idea is that the matched locations would be dif-
ferent when conflicts among foundation models
exist, and improved matching results are expected due to the complementary effects offered by
feature combination, either via naive concatenation or our proposed confidence-aware feature fusion.
Specifically, given the test set of SPair-71k, which contains 12,234 image pairs, we evaluate whether
each foundation model (i.e., SD3, SD, DINOv2) can achieve correct matching for at least half of the
annotations within each image pair. As shown in Table 2, we present the number of image pairs that
could be correctly matched by different numbers of foundation models. For example, none of the
models succeeded in matching 1,984 image pairs (denoted as None), while only one model succeeded
in another 1,974 image pairs, and so forth. It is evident that models often conflict with each other, as
some models fail at specific matchings while others succeed, indicating contradictory predictions.
Regarding the complementary effects among foundation models, we can see that, for example, simply
concatenating features from all models improves correct matches from none to 6.42%, which further
increases to 12.75% when adopting our confidence-aware feature fusion approach, validating their
complementary effects. Similar trends can be observed even though saturation occurs in easier cases,
such as the 5,719 image pairs where all single foundation models succeed. In addition, we visualize
the feature maps from SD3, SD, and DINO using PCA and K-Means clustering. The resulting clusters
shown in Figure 2 demonstrate that each model captures the data with distinct structural patterns.

Table 3: Comparisons under various conditions.

viewpoint diff. scale diff. truncation diff. occlusion diff.

easy medi. hard easy medi. hard none source target both none source target both

SD3 61.2 46.7 43.9 56.5 54.0 47.7 57.1 51.4 50.4 48.8 56.7 49.5 49.2 50.0
SD2 61.9 42.9 36.9 55.8 52.1 43.8 56.1 48.8 48.4 45.5 54.9 48.2 48.0 49.4
DINOv2 55.7 58.1 57.4 58.5 57.0 50.6 59.4 54.4 52.9 50.1 57.2 55.5 55.3 58.0
Fuse2Match 70.7 56.8 50.7 65.5 63.5 58.6 65.7 62.1 61.2 58.6 65.1 61.0 61.0 61.7

Model behavior in various cases. Apart from evaluating the conflict and complementary effects
among different foundation models, we provide additional experimental results on how these models
behave in various cases. Specifically, we follow SPair-71k, which splits the image pairs in the test set
into diverse variations, resulting in different levels (i.e., easy, medium, and hard) of viewpoint and
scale, and various situations regarding truncation and occlusion. As shown in Table 3 (PCK@0.1),
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Figure 3: Comparison of semantic correspondence results using features from different pretrained models on
the SPair-71k and PSC6K dataset. Key points in source images are color-coded. The incorrect matches are
highlighted in cross mark in the corresponding color. Zoom in for the best view.

we can find out that (i) features from DiT-based SD3 alone do not exhibit a clear advantage over
UNet-based SD, but SD3 indeed performs better on difficult cases on viewpoint and scale. (ii)
DINOv2 outperforms both SD and SD3 generally, especially for hard cases, suggesting that DINOv2
offers accurate matching, while SD and SD3 excel at establishing rough correspondences. (iii)
Utilizing our proposed feature fusion approach can significantly improve the performance of relying
on any single model, verifying the efficacy of the confidence weight used in the process.

Table 4: PF-PASCAL and PSC6K results.

PF-PSCAL PSC6K
Method 0.05 0.1 0.15 0.05 0.1 0.15

DINOv1 55.6 74.2 81.6 38.98 65.05 78.76
DINOv2 63.4 82.6 89.9 35.91 61.02 74.45
DIFT 69.0 82.2 88.1 35.80 58.67 72.37
SD3 72.0 86.5 92.2 41.86 67.50 81.02
SD+DINO 68.1 85.7 91.5 - - -
Fuse2Match 78.6 90.6 94.6 49.62 74.31 86.28

Quantitative results on PF-Pascal
and PSC6K. As shown in Ta-
ble 4, similar conclusions can be
drawn that our integrated features
of SD3+SD+DINO achieve the best
performance across various matching
thresholds on both the PF-Pascal and
PSC6K datasets. Surprisingly, the per-
formance of utilizing SD3 features
alone can even surpass that of the com-
bined SD+DINO features on the PF-
Pascal dataset, highlighting its strong
capability for matching similar semantic locations between images. On the PSC6K dataset, we
observe that SD3 features still outperform DIFT when matching sketch-photo pairs. Interestingly,
while SD3 alone does not surpass the contrastively trained DINOv1/v2 models, the combination of
features significantly improves the matching accuracy. This implies their complementary properties,
which generalize effectively to image pairs with significant domain shifts using the integrated features.

Qualitative Results. To better understand the performance of different pretrained models in differ-
ent matching scenarios, i.e., photo-to-photo, sketch-to-photo, and sketch-to-sketch, we present some
qualitative comparison results in Figure 3. We can find that our proposed fused feature is capable of
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Figure 4: Visualization of semantic correspondence and matching heat maps by our fused SD3+SD+DINO
feature on the PSDC6K dataset.

Figure 5: Ablation study results (PCK@0.1) on (a) block number, (b) timestep, and (c) facets of MM-DiT
blocks evaluated on the first five categories of SPair-71k dataset.

more accurately identifying pixel pairs with similar semantics across different objects and varying
viewpoints. Our approach demonstrates strong robustness to geometric transformations, such as
aligning the left and right legs of a chair in the second row or the front and back wheels of a bicycle
in the last row. In addition, our fused SD3+SD+DINO feature archives highly precise matching even
between sketch-photo pairs or two sketches, demonstrating the robustness and generalizability of the
feature. Moreover, we visualize more sketch2photo and sketch2sketch matching results coupled with
attention heat maps on the PSC6K dataset. As shown in Figure 4, reasonable attention heat maps can
be obtained, indicating the domain-agnostic semantic knowledge contained in the fused feature.

5.3 Ablation Study

We ablate several key hyperparameter choices of the feature extraction network (MM-DiT) on a
subset of the SPair-71k training split, which is constructed by randomly selecting 10 photo pairs
across all the 18 categories.

Timestep and block number. Similar to DIFT, the selection of timestep t and block number
is crucial for feature extraction. DIFT shows that a large timestep and earlier UNet upsampling
layer yield more semantically-awere features. On the contrary, for extracting feature from SD3, our
ablation results in Figure 5(a) and (b) reveal that a moderate timestep t around 521 and later MM-DiT
blocks around 24th yield better performances. In practice, we select three different timesteps, i.e.,
t = [521, 621, 721], and conduct feature extraction from two attention blocks, namely 24 and 25,
which have been proven to be effective in our case.

Facets of MM-DiT. We apply different facets in MM-DiT blocks serving as pixel-level features
for semantic matching to study the impacts, involving the image tokens, queries, values, keys, self-
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Table 5: Performance gains after performing confidence-aware feature fusion to various model combinations on
a subset of SPair-71k dataset.

Models Aero. Bike Bird Boat Bottle All

SD1.5+DINOv2 +0.99 +1.73 -0.60 -0.99 +1.73 +0.25
SD3+SD2 +0.25 -0.75 +0.87 +0.27 +0.48 +0.27
SD2+DINOv2 +0.26 -0.13 +0.35 +0.45 +0.12 +0.20
SD3+DINOv2 +0.84 +1.50 -0.02 +2.28 -0.07 +0.74

Figure 6: Visualization of matching probability maps using different MM-DiT facets. Features from query and
value concentrate more precisely to the desired object parts.

attention, cross-attention, and joint attention. Experimental results in Figure 5(c) show that employing
either the query or value as features for matching outperforms other options. In practice, we combine
their strengths by concatenating query and value as the feature, which produces more accurate and
sharper activations, as validated in Figure 6.

Generalization of confidence-aware feature fusion. We evaluate the generalization capability
of our proposed confidence-aware feature fusion strategy by applying it to different combinations
of foundation models, involving SD3, DIFT (SD2/SD1.5), and DINOv2. As shown in Table 5, our
proposed confidence-aware feature fusion achieves superior matching performance compared to naive
concatenation, demonstrating its strong generalization ability across different model combinations.

6 Conclusions

We demonstrated that SD3, a transformer-based diffusion model, provides strong zero-shot semantic
correspondence performance without task-specific fine-tuning. Through systematic exploration
of SD3’s architecture, we identified feature configurations that yield robust pixel-level matching.
Moreover, we showed that SD3’s global semantic features can be effectively complemented by SD
and DINO’s fine-grained representations. By introducing a confidence-aware fusion strategy, we
adaptively integrate features from diverse models, significantly improving generalization across tasks
such as photo-to-photo and sketch-to-photo matching.

Limitations. The text prompt adopted in our approach is coarse-grained, which might be suboptimal
and could limit the SD3 features for dense semantic matching, which demands fine-grained image
understanding. Therefore, exploring ways to enhance SD3 features by prompt tuning further will be
an important endeavor in the future.
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Appendix & Supplementary Materials

A Semantic Matching

In this section, we further present more visual results of semantic matching across different models in
Figure 7 and 8. We also provide heatmap visualizations in Figure 9, which highlight the matching
quality and indicate the domain-agnostic semantic knowledge contained in the fused feature.

Figure 7: More comparison results on SPair-71k datasets.
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Figure 8: Comparison results for semantic correspondence between sketches and photos.
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Figure 9: Heat maps of matching similarity between sketch-photo and sketch-sketch pairs.
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B Instance-level Image Swapping

In this section, we further investigate the application of semantic matching to instance-level image
swapping. Given the dense correspondence between two images established by our pixel matcher, we
can transplant an instance from a source image onto the instance in a target image. The obtained new
image preserves the identity of the source instance, while adapting to the pose or layout present in the
target instance. Specifically, we replace the pixels of target image with the pixels in source image
by nearest neighbor lookup, producing a swapped image. The swapped image is then refined using
Stable Diffusion. As shown in Figure 10, the object in the swapped image resembles the pose and
size of the object in target image (works well for sketch too) while the appearance comes from the
source. After refinement using SD, high-quality images are obtained.We show more swap results in
Figure 11and 12

Figure 10: Instance swapping with Fuse2Matchfeatures. Swap: image after pixel replacement.
Inversion: image refined by SD.
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Figure 11: More instance swapping results between photos.
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Figure 12: More instance swapping results from sketch to photo.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction state the main claims clearly and the experiment
results support the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All necessary experimental details are discussed in this paper. We will release
the code to ensure full reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All datasets used in the paper are publicly available. We will release our code
with detailed instructions for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The proposed method is zero-shot and the test details is reported in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow prior work in the dense matching field that doesn’t include statistical
significance of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the information in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and we respect it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See at the end of the Experiments section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper does not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We don’t release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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