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ABSTRACT

Augmenting Large Language Models (LLMs) with external tools enables them
to execute complex, multi-step tasks. However, tool learning is hampered by the
static synthetic data pipelines where data generation and model training are exe-
cuted as two separate, non-interactive processes. This approach fails to adaptively
focus on a model’s specific weaknesses and allows noisy labels to persist, degrad-
ing training efficiency. We introduce LoopTool, a fully automated, model-aware
data evolution framework that closes this loop by tightly integrating data synthe-
sis and model training. LoopTool iteratively refines both the data and the model
through three synergistic modules: (1) Greedy Capability Probing (GCP) diag-
noses the model’s mastered and failed capabilities; (2) Judgement-Guided Label
Verification (JGLV) uses an open-source judge model to find and correct anno-
tation errors, progressively purifying the dataset; and (3) Error-Driven Data Ex-
pansion (EDDE) generates new, challenging samples based on identified failures.
This closed-loop process operates within a cost-effective, open-source ecosystem,
eliminating dependence on expensive closed-source APIs. Experiments show that
our 8B model trained with LoopTool significantly surpasses its 32B data generator
and achieves new state-of-the-art results on the BFCL-v3 and ACEBench bench-
marks for its scale. Our work demonstrates that closed-loop, self-refining data
pipelines can dramatically enhance the tool-use capabilities of LLMs.1

1 INTRODUCTION

Large Language Models (LLMs) augmented with external tools have become a powerful paradigm
for solving complex tasks beyond pure text generation (Qu et al., 2025; Schick et al., 2023; Qin et al.,
2023). By invoking APIs, querying databases, and interacting with computational engines, such
agents can tackle diverse real-world scenarios (Chen et al., 2025b; Xie et al., 2024; Pan et al., 2025)
with high efficiency and adaptability. The development of robust tool-use capabilities, however,
hinges on access to accurate, large-scale, and well-aligned training data that matches the model’s
current competencies (Liu et al., 2025).

A widely adopted approach in this domain involves constructing large-scale tool-calling datasets
through automated synthesis pipelines (Qin et al., 2023; Liu et al., 2024; Tang et al., 2023; Liu et al.,
2025; Prabhakar et al., 2025), followed by supervised fine-tuning (SFT) or reinforcement learn-
ing (Wang et al., 2025; Shao et al., 2024). Despite notable advances, they almost invariably adopt
a static design, wherein data generation and model training are executed as two separate, non-
interactive processes. In these settings, the training data is generated a priori without awareness
of the evolving state of the model, causing wasted capacity on trivial cases already mastered while
leaving harder, underrepresented cases unresolved. Furthermore, the model plays no role in guiding
or influencing data generation. This inherent disconnect leads to a persistent mismatch between the
model’s learning needs and the fixed nature of the available training data, thereby constraining both
the efficiency and effectiveness of post-training.

Another major challenge in tool-use data generation lies in the trade-off between cost-efficiency
and data quality. Many pipelines depend on large closed-source models (OpenAI, 2023) for data
generation and evaluation. While these models are capable of producing high-fidelity tool-calling

1The code is accessible in this anonymous repository https://anonymous.4open.science/r/LoopTool.
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sequences, their use incurs high API costs and low generation efficiency, making frequent large-
scale data synthesis impractical. Replacing them with more accessible open-source models often
introduces noisy annotations, including incorrect arguments, incomplete function calls, or outputs
misaligned with task requirements. Such errors inject misleading learning signals and can undermine
model generalization (Liu et al., 2025).

To address the limitations of static, costly, and error-prone tool-use data pipelines, we propose Loop-
Tool—an automatic, model-aware data evolution framework that couples data synthesis and training
in a closed loop. LoopTool begins with an Automated Tool-Augmented Data Construction stage,
where tool specifications are synthesized and combined with multi-agent dialogue generation to pro-
duce a diverse seed corpus of realistic tool-oriented conversations. This corpus undergoes an initial
GRPO-based (Shao et al., 2024; DeepSeek-AI et al., 2025) post-training round.

Each iteration then integrates three synergistic modules. First, Greedy Capability Probing (GCP)
queries the fine-tuned model on the seed corpus using greedy decoding, revealing mastered, border-
line, and failure cases. The predicted tool calls are used for automated error analysis, allowing the
pipeline to target challenging, underperforming cases. Second, Judgement-Guided Label Verifi-
cation (JGLV) employs a high-capacity open-source judge model, Qwen3-32B (Yang et al., 2025),
to compare each prediction against its reference label—identifying genuine model errors as well
as cases where the model output surpasses the original annotation. Such “model-better-than-label”
examples replace noisy labels, enabling systematic self-refinement and progressively purifying the
supervision signal. Third, Error-Driven Data Expansion (EDDE) transforms verified failure cases
into new, structurally similar but contextually diverse challenging samples. Augmented samples
preserve the core functional challenge while introducing varied conditions, ensuring scenario diver-
sity. Across iterations, LoopTool incorporates corrected annotations, diversified hard samples, and
refined seeds into subsequent training rounds, creating a dynamic curriculum attuned to the model’s
evolving strengths and weaknesses. This process focuses learning on non-trivial, high-value oppor-
tunities while progressively mitigating noisy-label effects.

To balance quality and cost, LoopTool unifies the roles of data generator and evaluation judge within
a single, open-source model, Qwen3-32B, eliminating reliance on expensive closed-source APIs
while maintaining high data quality. Strikingly, despite being trained entirely on data generated
and evaluated by Qwen3-32B, the final 8B-scale LoopTool model surpasses the 32B generator in
tool-use performance, highlighting the amplifying effect of iterative, model-aware data refinement.

In summary, our main contributions are:

• We present LoopTool, the first fully automated, model-aware iterative framework that tightly
couples reinforcement learning post-training with targeted data synthesis. By continuously di-
agnosing model weaknesses and generating capability-targeted training data, LoopTool enables
dynamic co-adaptation of the model and the dataset.

• We propose a closed-loop data refinement and augmentation strategy that purifies labels through
comparative judgment (JGLV) and transforms verified failures into diverse, high-value training
samples (EDDE), enhancing tool-use learning without reliance on closed-source models.

• Leveraging fully open-source, self-contained data generation and refinement, our 8B model
trained by LoopTool surpasses its 32B generator and achieves state-of-the-art performance on
BFCL-v3 (Patil et al., 2025) and ACEBench (Chen et al., 2025a) among models of similar scale.

2 RELATED WORK

Tool-Augmented Large Language Models. Integrating large language models (LLMs) with ex-
ternal tools has proven effective in overcoming their inherent limitations (Qu et al., 2025).Such
integration enables API invocation (Shen et al., 2023; Qin et al., 2023), interaction with knowledge
bases (Lazaridou et al., 2022; Chen et al., 2025b), code execution (Wang et al., 2024), and mul-
timodal processing (Hu et al., 2024; Ma et al., 2024). Early efforts mainly relied on supervised
fine-tuning (SFT) with human-labeled tool-use data, focusing on accurate tool selection and argu-
ment generation (Schick et al., 2023; Qin et al., 2023; Liu et al., 2024). Recent advances explore
autonomous tool creation and dynamic invocation, enabling adaptation to unseen APIs without pre-
defined schemas. Benchmarks such as tau-bench (Yao et al., 2024; Barres et al., 2025), BFCL (Patil
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et al., 2025), and ACEBench (Chen et al., 2025a) provide standardized evaluations across tool se-
lection, argument generation, multi-step reasoning, and multi-turn tool calling.

Synthetic Data Generation for Tool Use. The scarcity and cost of high-quality tool-use datasets
have driven research into automated synthesis pipelines (Qin et al., 2023; Liu et al., 2025; 2024;
Prabhakar et al., 2025). Methods include multi-agent simulation (Alvarez et al., 2024; Tang et al.,
2024), modular task composition (Chen et al., 2025c), and graph-based query–function synthe-
sis (Arcadinho et al., 2024; Yin et al., 2025). Our work builds on this line but differs by introducing
a fully automated, model-aware, iterative paradigm in which synthesis is guided by post-training
diagnostics and refined via systematic error correction.

Reinforcement Learning for Tool-Use Optimization. Reinforcement learning (RL) increasingly
enhances LLM reasoning and decision-making (Ouyang et al., 2022; Rafailov et al., 2024; Meng
et al., 2024; Shao et al., 2024). In tool-use settings, GRPO has shown strong performance (Qian
et al., 2025; Zhang et al., 2025). We embed RL into an interleaved train–generate loop, enabling the
model to iteratively improve through exposure to prior failures and progressively refined supervision.

3 AUTOMATED TOOL-AUGMENTED DIALOGUE CONSTRUCTION
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Figure 1: The overall closed-loop automatic pipeline of LoopTool, which couples (a) GRPO opti-
mization, (b) Greedy Capability Probing, (c) Judgement-Guided Label Verification, and (d) Error-
Driven Data Expansion for iterative tool-use enhancement.

Before initiating our iterative model-aware data evolution process, we require a diverse and high-
quality seed dataset Dseed to support the first round of post-training. To this end, we introduce an
Automated Tool-augmented Data Construction that synthesizes realistic function-calling interac-
tions by combining curated APIs with simulated multi-agent conversations. While this stage is not
the core innovation of our work, it establishes the essential foundation for the following iterations.

3.1 HIERARCHICAL DUAL-TREE GUIDED API SYNTHESIS

Our tool set comprises both real-world APIs collected from public resources (Liu et al., 2025; 2024)
and synthetically generated APIs produced via a Hierarchical Dual-Tree method. For each appli-
cation domain, we define two complementary hierarchical structures: (i) Context Tree encodes the
topical scope and functional granularity of the domain, from coarse categories at the root to fine-
grained specializations at the leaves; (ii) Constraint Tree specifies structural and functional con-
straints for valid APIs, such as naming conventions, parameter types and counts, and output formats.
To synthesize an API, we independently sample a leaf path from each tree and merge the results into
a structured prompt for the LLM, ensuring that both functional intent and structural requirements
are satisfied. Rule-based validation is subsequently applied to ensure conformity and semantic co-
herence. Concrete examples of Context and Constraint Trees are provided in Appendix G.
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3.2 MULTI-AGENT TOOL-USE DIALOG GENERATION

The dialog generation stage incorporates two components: the Multi-Agent Dialogue Simulation
and Correctness Verification for quality control.

Multi-Agent Dialogue Simulation. We populate the seed dataset by simulating tool-usage di-
alogues with four distinct roles: Planner Agent designs coherent conversation flows based on a
sampled subset of tools and a target number of dialog turns. This planning phase ensures realistic
task decomposition and natural progression toward tool use. User Agent interacts with the assistant
according to the Planner’s high-level outline, generating new requests, clarifying requirements, or
providing additional information such as missing parameters. Assistant Agent selects appropriate
APIs from the assigned subset, extracts candidate parameters based on the dialog context, executes
tool calls, or synthesizes responses for the user. Tool Agent processes the tool calls according to the
given API definitions and produces simulated execution results. For certain domains, we integrate
real executable backends to return authentic responses through actual code execution. The dialog
proceeds turn-by-turn until the predefined conversation length is reached.

Rule-based and LLM-based Verification. All generated dialogues undergo a two-tier verification
process. Rule-based verification checks API call syntax, parameter coverage, type matching, and
adherence to schema definitions. LLM-based evaluation leverages an open-source judge model
(Qwen3-32B) to holistically evaluate every tool call step for contextual appropriateness, logical
consistency, and alignment with the user’s intent. Only dialogues satisfying both stages are admitted
into the initial seed dataset.

4 ITERATIVE MODEL TRAINING AND DATA AUGMENT

To overcome the limitations of static data generation and support dynamically adaptive model train-
ing, we develop an automated iterative framework for tool-augmented LLM learning as shown in
Figure 1. LoopTool integrates the GRPO Optimization, Greedy Capability Probing, Judgement-
Guided Label Verification, and Error-Driven Data Expansion into a unified closed loop. This itera-
tive cycle enables the model to assess its own capabilities continuously, target its weaknesses, and
refine the quality of supervision data.

4.1 GRPO TRAINING FOR TOOL CALLING

Data Format. We construct an initial seed tool-calling dialogue dataset Dseed through the Au-
tomated Tool-Augmented Data Construction in Section 3. Each multi-turn dialog sample is trans-
formed into multiple GRPO training samples, which consist of the tuple: (T , ct, a∗t ), where t de-
notes the current turn in the dialogue, as a single conversation may contain multiple sequential tool
calls. T denotes the set of available tools at the current step, ct represents the historical dialogue
context, which can be either a single-turn user query or a multi-turn conversation. a∗t is the tool
call step from the conversation corresponding to the last user query. The model’s output Ot include
two structured components: a reasoning trace wrapped within <think> . . .</think> and the
predicted tool invocation at inside <tool call> . . .</tool call>. A detailed specification of
both the single-turn and multi-turn training formats is provided in Appendix H.

Binary Reward Definition. To quantify the quality of model-generated tool calls, we adopt a
Binary Reward scheme, which serves as a simple yet effective rule-based reward function. For a
given context ct and the model output at, the reward is defined as:

r(T , ct, a∗t , at) =
{
1, ToolMatch(at, a∗t )
0, otherwise

(1)

GRPO Optimization. Given the tool sets T and historical dialogue ct, the policy πθ sample a group
of candidate response {O1

t , O
2
t , . . . , O

G
t } from the old policy πθold and their corresponding rewards

are {r1t , r2t , . . . , rGt }. We optimizes the πθ through maximizing the following objective:

4
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JGRPO(θ) = E(T ,ct)∼D,{Oi
t}G

i=1∼πθold

1

G

G∑
i=1

[
min

(
ρitA

i
t, clip(ρit, 1− ϵ, 1 + ϵ)Ai

t

)
− β KL(πθ ∥πold)

]
,

where ρit =
πθ(O

i
t | ct, T )

πθold(O
i
t | ct, T )

, Ai
t =

rit −mean({r1t , r2t , . . . , rGt })
std({r1t , r2t , . . . , rGt })

(2)
ϵ is the PPO clipping parameter, and β controls the strength of the KL penalty.

4.2 GREEDY CAPABILITY PROBING

GRPO-based post-training often assigns near-zero advantage values to both trivially solvable and
prohibitively hard samples, resulting in negligible parameter updates despite non-trivial computa-
tional costs (Yu et al., 2025). To mitigate this inefficiency, we introduce Greedy Capability Probing
(GCP)—an offline diagnostic stage to identify samples of substantive learning value.

Given the training set Dj in the j-th iteration, we perform deterministic greedy decoding with the
current policy πθj on every instance. For each tool-call sample (T , ct, a∗t ), the model generates a
prediction at ∈ Ot via greedy search. If at = a∗t , the sample is provisionally considered mastered
under the assumption that its label is correct. Otherwise, the quadruple (T , ct, a∗t ; at) is passed
to Judgement-Guided Label Verification (JGLV) for correctness assessment. To further quantify
sample difficulty, we compute sample-level perplexity(PPL) as:

PPL(T ,ct) = exp

(
− 1

L

L∑
i=1

log pθ(oi | T , ct, o1:i−1)

)
(3)

where L is the output length and oi denotes the i-th token in the output sequence. High perplexity
indicates low model confidence and suggests that the sample resides near the decision boundary,
making it more valuable for continued training. In subsequent iterations, GCP selectively retains a
subset of these high-PPL cases DHPPL

j into the next-turn iteration.

4.3 JUDGEMENT-GUIDED LABEL VERIFICATION

To mitigate the impact of noisy synthetic annotations and integrate automatic label refinement di-
rectly into the iterative loop, we introduce Judgement-Guided Label Verification (JGLV)—a
structured evaluation stage that distinguishes genuine model failures from annotation errors.

In each iteration j, for every mismatched case (T , ct, a∗t ; at) identified by Greedy Ca-
pability Probing, we organize the tool specifications T , dialogue context ct, refer-
ence label a∗t and model prediction at into an open-source LLM—in our implementa-
tion, Qwen3-32B (Yang et al., 2025)-which outputs a categorical decision: yjudge ∈
{PRED WRONG,LABEL WRONG,BOTH CORRECT,BOTH WRONG} and formatted error analysis
emessage. Based on the judgment results, we define two key subsets of the evolving dataset: the
Prediction Wrong set and the Label Wrong Set.

DPW
j = {(T , ct, a∗t ; at) | yjudge = PRED WRONG}
DLW

j = {(T , ct, a∗t , at) | yjudge = LABEL WRONG}
(4)

DPW
j are retained for retraining in the next iteration. We replace the a∗t inDLW

j with at to transform
the dataset intoDLR

j (Refer to Appendix I for judgement prompt and detailed samples). For samples
classified as BOTH CORRECT, we retain only those with high-PPL into DHPPL

j . Samples identified
as BOTH WRONG are directly discarded to avoid propagating noisy supervision.

Compared with approaches that rely on a large language model to directly regenerate or correct la-
bels, JGLV reframes annotation refinement as a comparative judgment task, where the judge model
only determines which of two existing candidates better satisfies the task specification instead of pro-
ducing a new output from scratch. Moreover, by incorporating outputs from the evolving current pol-
icy into the judgment process, JGLV leverages the model’s progressively improving tool-calling
competence to assist data refinement. As training advances, the policy increasingly produces

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

valid and high-quality tool invocations, enabling the replacement of incorrect labels with superior
model outputs. This synergy transforms label verification into a self-reinforcing mechanism that
continuously generates cleaner and more representative training data.

4.4 ERROR-DRIVEN DATA EXPANSION

While GCP and JGLV effectively identify mismatched cases and correct noisy labels, reusing these
instances without modification often yields marginal benefit (see Section 5.4), especially when fail-
ures arise from systematic weaknesses rather than incidental noise. To directly broaden the model’s
coverage of challenging tool-use scenarios, we propose Error-Driven Data Expansion (EDDE)—an
augmentation strategy that transforms verified failure cases into structurally similar “hard” samples.

In iteration j, EDDE operates on the union of the DMR
j and DLR

j identified by JGLV: DES
j =

DMR
j ∪DLR

j . For each error seed (T , ct, a∗t ; at) ∈ DES
j , EDDE parses the following structured com-

ponents: tool subset T , dialog context ct, correct call acorrect
t , wrong call awrong

t , and error analysis
emessage. The generator is instructed to produce k new tool-calling samples that mirror the structural
complexity of the error seed (e.g., similar argument, multi-step dependencies). To avoid excessive
similarity among the augmented samples derived from the same error seed, we additionally introduce
scenario diversification constraints sconstraint. Specifically, each generation prompt is enriched with
varied situational contexts—such as alternative user goals, different domain-specific constraints, or
modified environmental conditions—while preserving the core challenge (Refer to Appendix J for
error generation prompt and new generated samples). All EDDE-generated samples are subjected to
the same two-tier validation pipeline outlined in Section 3.2—including rule-based and LLM-based
evaluation. Samples passing both filters are collected into: DEE

j = Verify
(
Generate(DES

j )
)
.

Integration into the Iterative Loop. At the end of iteration j, the training dataset for the next round
is constructed by merging multiple sources identified during the current iteration:

Dj+1 = DES
j ∪ DEE

j ∪ DHPPL
j ∪ DSeed-new

j (5)

where DSeed-new
j is a small untrained subset from the initial seed dataset Dseed. This merged dataset

Dj+1 is then used in the subsequent GRPO training round, with the policy πθj serving as the initial-
ization. The full iteration pipeline is summarized in the Algorithm 1.

5 EXPERIMENTS

Table 1: Comprehensive evaluation of the BFCL-v3 (last updated on 2025-06-14). FC denotes that
the model is tailored for functional calling. The best results in each category are highlighted in bold,
while the second-best are underlined.

Rank Overall Acc Model Single-Turn Multi-Turn Hallucination
Non-Live AST Acc Live Acc Overall Acc Relevance Irrelevance

1 78.45 xLAM-2-70b-fc-r (FC) 88.44 72.95 75.00 66.67 78.91
2 76.43 xLAM-2-32b-fc-r (FC) 89.27 74.23 67.12 88.89 76.74
3 74.93 LoopTool-8B (Ours) 89.52 84.72 50.88 61.11 87.67
4 73.57 watt-tool-70B (FC) 84.06 77.74 58.87 94.44 76.32
5 72.04 xLAM-2-8b-fc-r (FC) 84.40 66.90 69.12 77.78 64.34
6 71.71 GPT-4o-2024-11-20 (FC) 86.81 78.85 50.00 83.33 81.31
7 70.42 GPT-4o-2024-11-20 (Prompt) 87.67 79.88 43.00 72.22 85.36
8 70.32 GPT-4.5-Preview-2025-02-27 (FC) 86.12 79.34 45.38 66.67 83.64
9 69.25 Qwen3-32B (FC) 88.90 77.83 43.12 72.22 75.79
10 68.89 GPT-4.1-2025-04-14 (FC) 85.42 79.92 40.50 77.78 85.95
11 68.73 ToolACE-2-8B (FC) 87.58 80.05 37.00 72.22 90.11

. . . (Ranks 12–18 omitted for brevity)
19 66.34 Qwen3-8B (FC) 88.81 78.54 33.00 77.78 79.08
20 65.19 Qwen3-8B (FC, self-host) 87.06 78.50 31.25 77.78 78.74

5.1 EXPERIMENT SETUP

Benchmarks. We evaluate LoopTool by training LLMs with our data generation pipeline, us-
ing the open-source Qwen3-8B (Yang et al., 2025) as the backbone under pure RL fine-tuning2.
Experiments are conducted on two representative benchmarks: BFCL-v3 (Patil et al., 2025) and
ACEBench (Chen et al., 2025a), which provide comprehensive, executable function-call tasks for

2We also investigate the performance of the LoopTool framework on another model architecture,
Llama-3.1-8B-Instruct; detailed results are provided in the Appendix E.
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Table 2: Comprehensive evaluation of ACEBench for English Data (last updated on 2025-07-21).
LoopTool-8B (Ours) achieves the best result in the 8B scale.

Model Normal Special Agent OverallAtom Single-Turn Multi-Turn Similar API Perference Summary
Closed-Source Large Language Models

GPT-4o 90.0 78.0 68.0 80.0 78.0 82.5 92.7 56.0 81.1
Gemini-2.5-Pro-05-06 83.7 73.5 61.0 72.0 58.0 75.1 90.7 52.5 75.8

Qwen-Max 88.0 75.0 61.0 74.0 82.0 79.7 74.0 60.0 75.1
GPT-4o-Mini 84.3 73.5 59.0 74.0 72.0 76.4 76.7 27.5 68.9

Gemini-1.5-Pro 82.3 73.0 61.0 74.0 72.0 75.7 77.3 26.0 68.5
Claude-3-5-Sonnet 66.7 64.0 46.0 58.0 68.0 62.2 72.7 44.0 62.2
Doubao-Pro-32k 75.3 58.0 52.0 70.0 54.0 66.3 50.7 26.5 56.0

Open-Source Large Language Models
Kimi-k2-0711 87.0 78.5 62.0 70.0 74.0 78.9 81.3 65.0 77.4

Qwen2.5-Coder-32B-Instruct 86.0 73.5 59.0 76.0 72.0 77.4 80.0 50.0 73.9
LoopTool-8B (Ours) 86.0 76.0 58.0 74.0 78.0 78.0 80.7 43.3 73.4

ToolACE-2.5-Llama-3.1-8B 87.7 75.5 62.0 74.0 66.0 78.3 76.0 35.9 71.1
DeepSeek-V3 88.0 77.5 63.0 76.0 78.0 80.3 72.7 34.0 71.1

Qwen2.5-72B-Instruct 81.3 74.5 64.0 76.0 80.0 76.8 74.0 37.5 70.0
Qwen3-8B 80.3 68.5 52.0 70.0 58.0 70.9 78.0 34.2 67.1

Llama-3.1-70B-Instruct 83.7 71.5 61.0 74.0 66.0 75.6 29.3 41.0 57.9
Qwen2.5-7B-Instruct 70.3 57.0 49.0 62.0 58.0 62.8 49.3 15.0 51.8

Qwen2.5-Coder-7B-Instruct 73.3 63.5 52.0 70.0 58.0 66.6 25.3 18.5 48.1

assessing function invocation capability. We also perform ablation studies to examine the contribu-
tion of individual modules. Benchmark details and evaluation metrics are provided in Appendix B.1.

Implementation Details. GRPO training is implemented with the open-source RL library
Verl (Sheng et al., 2025), using a batch size of 128 and a learning rate of 1 × 10−6. Each it-
eration trains for two epochs, resetting optimizer parameters while initializing from the previous
checkpoint. To promote exploration, the actor rollout temperature is fixed at 1.0, with both entropy
coefficient and KL weight set to 0. We apply the Clip-Higher (Yu et al., 2025) strategy, increasing
Ehigh from 0.2 to 0.28 to encourage generation of high-entropy, low-probability tokens. In EDDE,
k is set to 4. Full hyperparameters are listed in Appendix B.2.

5.2 OVERALL PERFORMANCE ANALYSIS

Result on BFCL and ACEBench. We compare LoopTool-8B model with various representation
models in BFCL (Patil et al., 2025) and ACEBench (Chen et al., 2025a). We adopt the official evalu-
ation script and report the average accuracy across categories. The results are summarized in Table 1
and Table 2, respectively. On both BFCL-v3 and ACEBench leaderboards, LoopTool-8B achieves
SOTA performance among all 8B-scale open-source models and exceeds several larger counter-
parts. In BFCL-v3 (Table 1), our model attains an overall accuracy of 74.93%, ranking third across
all models and surpassing the original Qwen3-8B by +8.59 points, with the highest Single-Turn
and Live execution accuracy. Remarkably, LoopTool-8B also outperforms the 32B-scale Qwen3
model—used as both the data generator and judge in our pipeline, demonstrating the capability am-
plification achieved through our model-aware iterative data evolution. On ACEBench (Table 2),
LoopTool-8B obtains an overall accuracy of 73.4%, improving over Qwen3-8B by +6.3 points and
consistently delivering balanced gains across diverse evaluation categories.

5.3 ITERATIVE DETAILS AND ANALYSIS

5.3.1 ITERATIVE DATASET DISTRIBUTION

Table 3: Distribution of samples across iterative datasets in our LoopTool framework.

# Total # DES
j # DEE

j # DHPPL
j # DSeed-new

j

D1 18304 0 0 0 18304 (100%)
D2 18304 1919 (10.48%) 6566 (35.87%) 4187 (22.98%) 5632 (30.77%)
D3 18304 3386 (18.50%) 8066 (44.07%) 4036 (22.06%) 2816 (15.38%)
D4 18304 3731 (20.38%) 8169 (44.63%) 4996 (27.29%) 1408 (7.69%)

The initial seed dataset Dseed includes 28k tool call samples. The corpus Dj+1 at iteration j + 1
is constructed from four primary sources as illustrated in Eq (5). DSeed-new

j means the untrained
new seed samples randomly drawn from the seed dataset Dseed. In each iteration, we gradually
reduce the proportion of untrained seed samples, ensuring that each training round incorporates

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

C
at

eg
or

y 
A

cc
ur

ac
y 

 (%
)

20

40

60

80

100

Model Iterations
Original Iteration 1 Iteration 2 Iteration 3 Iteration 4

50.8849.7549.00
44.62

31.25

84.7284.0182.1081.2478.50

89.5289.7988.4287.1587.06

Non-Live Live Multi-Turn

O
ve

ra
ll 

A
cc

ur
ac

y 
(%

)

64

68

72

76

80
Overall Overall w/o Iterations

73.2673.45
72.18

71.16

65.19

74.9374.34
73.00

71.20

65.19

73.2673.45
72.18

71.16

65.19

74.9374.34
73.00

71.20

65.19

Figure 2: The Iterative Performance across four iterations evaluated in BFCL-v3. The left y-axis
represents Category Acc (bar chart), while the right y-axis denotes Overall Acc (line chart).“Overall
w/o Iterations” refers to the result obtained under the same number of iteration steps, where we train
solely on the initial seed dataset Dseed.

newly generalized queries, while gradually converging on increasingly challenging samples. The
detailed data statistics are presented in Table 3.

5.3.2 PERFORMANCE ANALYSIS OF ITERATIVE TRAINING FRAMEWORK

We evaluate the effectiveness of the iterative training paradigm against conventional static data
generation. As shown in Figure 2, the proposed LoopTool framework delivers consistent gains
in tool-calling accuracy across iterations. Starting from the initial model (“Original”), each itera-
tion leverages the closed-loop data evolution to uncover and remedy model deficiencies, leading to
steady improvements. In contrast, the static “Overall w/o Iterations” setting produces substantially
smaller improvements. Without the injection of newly synthesized hard cases or label refinements,
the model rapidly saturates on the limited supervision, exhausting the information content of Dseed.
Improvements plateau by Iteration 2 and decline after Iteration 3, indicating overfitting and a grow-
ing mismatch between the fixed training distribution and the model’s evolving inference behavior.
The detailed training curves of multiple iterations of GRPO are presented in Appendix F.

5.4 ABLATION STUDY

Table 4: We conduct the corresponding ablation experiments in Iteration 2 and Iteration 3, employ-
ing the data variants of D2 and D3. Overall accuracy and per-category accuracy are reported.

Configuration Overall Acc Non-Live Acc Live Acc Multi-Turn Acc
Iteration 1 (D1) 71.20 87.10 81.34 44.62
Iteration 2 (D2) 73.00 88.42 82.10 49.00

w/o High-PPL 72.31 88.17 81.59 46.25
w/o JGLV 71.30 87.90 82.05 43.88
Remove EDDE 71.50 88.06 81.47 45.00
HighPPL-Replace 72.50 88.10 82.36 47.88
Error-Seed Repetition 72.38 88.40 81.87 46.88

Iteration 3 (D3) 74.34 89.79 84.01 49.75
w/o High-PPL 73.50 89.12 82.79 48.90
w/o JGLV 72.61 89.17 82.59 46.25
Remove EDDE 73.12 88.75 82.45 48.75
HighPPL-Replace 73.28 89.40 83.96 46.88
Error-Seed Repetition 73.43 88.15 83.74 48.38

To assess the contributions of each key component in LoopTool, we perform ablation experiments
on BFCL-v3. Specifically, we design the following variants: (i) w/o High-PPL: Replace DHPPL

j
with randomly samples that the model predicted correctly; (ii) w/o JGLV: Skip verification and

8
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Figure 3: The Prediction Accuracy of Error
Seed across iterations.
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Figure 4: Scaling performance with different
model sizes.

treat all mismatches (at ̸= a∗t ) as model errors; keep original labels without refinement. (iii) Re-
move EDDE: Drop DEE

j entirely; (iv) HighPPL-Replace: Replace DEE
j with an equal number of

high-PPL samples selected via GCP; (v) Error-Seed Repetition: Remove DEE
j and duplicateDES

j
to match data scale. From the results in Table 4, several key observations can be made: From the
results in Table 4, several key observations can be made:
• Importance of high-PPL samples. w/o High-PPL lead to consistent accuracy drops, especially

in Multi-Turn cases. Even replacing EDDE samples with high-PPL ones (HighPPL-Replace)
sustains performance close to full configurations, confirming that high-PPL cases—though previ-
ously predicted correctly—lie near decision boundaries of current policy and drive further refine-
ment, in line with recent works (Liang et al., 2025; Shang et al., 2025).

• Necessity of JGLV. Skipping verification (w/o JGLV) significantly degrades accuracy, confirm-
ing that noisy or erroneous labels can mislead training. Without label refinement, such errors
persist and even propagate when used by EDDE to generate variants, exacerbating noise in sub-
sequent iterations.

• Effectiveness of EDDE The three variants of w/o EDDE in both Iteration 2 and Iteration 3, result
in consistent drops in overall accuracy. To further quantify the direct contribution of EDDE-
originated samples, we compare the three variants with full configuration, testing the accuracy
exclusively on this subset of historically wrong cases, with results shown in Figure 3. The result
illustrates that simply re-training the model on the original erroneous seeds is insufficient for
the model to master these difficult cases effectively. In contrast, EDDE synthesizes structurally
similar, error-informed variants that preserve the underlying challenges of the original failure
cases while offering additional diversity. This targeted augmentation enables the model to acquire
the relevant patterns more reliably, thereby improving its performance on the original hard seeds.

5.5 SCALING PERFORMANCE WITH MODEL SIZE

We evaluate LoopTool across backbone models from 0.6B to 8B parameters, measuring BFCL-v3
accuracy over two training iterations (Figure 4). Larger models consistently achieve higher accuracy
in both the initial (Iteration 1) and refined (Iteration 2) stages, with greater absolute improvements
in the second iteration. Specifically, the 0.6B model gains only +0.70 points, whereas the 8B model
achieves +1.80 points. This scaling trend stems from GRPO-based post-training, which depends on
the model’s ability to discover correct tool-use trajectories during rollout exploration. Larger models
tend to identify such trajectories earlier, thereby amplifying the benefits of iterative refinement.

6 CONCLUSION

We propose LoopTool, an automated, model-aware framework that unifies data synthesis, label
refinement, sample augmentation, and GRPO-based post-training in a closed loop to strengthen
tool-augmented LLMs. By using a single open-source model for both generation and judgment,
LoopTool produces progressively cleaner and more challenging data without relying on costly
closed-source APIs. Our 8B-scale model surpasses even its 32B-scale generator, demonstrating the
performance gains enabled by iterative, model-guided data evolution. Future work will investigate
online or streaming updates and parallelized iteration to accelerate and further adapt the data–model
co-evolution process.
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7 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics throughout the course of this work. Our
study does not involve any human subjects, crowdsourced annotations, or personal data; all datasets
used are either publicly available or synthetically generated by the open-source model. To mitigate
potential risks of generating harmful or biased content, we adopt standard safety measures in prompt
design and apply post-generation filtering on all synthetic data to remove instances that contain toxic,
discriminatory, or privacy-violating content.

8 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. The full implementation
of LoopTool, including the iterative pipeline for model-aware data generation, Greedy Capabil-
ity Probing, Judgement-Guided Label Verification, and Error-Driven Data Expansion, will be re-
leased in an open-source repository upon publication (with an anonymous pre-release link provided
for review https://anonymous.4open.science/r/LoopTool). Details on dataset construction, filtering,
and augmentation—including prompt templates, generation parameters, and annotation refinement
rules—are documented in Appendix.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the research process, we employed the open-source Language model as both the Judge Model
and the data Generator within our proposed LoopTool framework. During manuscript preparation,
we used general-purpose LLMs exclusively for grammar checking, phrasing refinement, and clarity
improvements in the English text. All conceptual contributions, experiment designs, analyses, and
claims in this paper are the responsibility of the authors.

B EXPERIMENTAL DETAILS

B.1 BENCHMARKS

BFCL The Berkeley Function-Calling Leaderboard (BFCL-V3) (Patil et al., 2025) constitutes a
broad and systematic framework designed to rigorously evaluate the function-calling proficiency of
large language models (LLMs) across a diverse spectrum of programming languages, application
domains, and intricate real-world scenarios. The benchmark encompasses tasks ranging from multi-
ple and parallel function invocations to multi-turn and multi-step function-call interactions. In total,
BFCL-V3 comprises 4,951 test instances—3,951 single-turn cases and 1,000 multi-turn samples-
carefully curated to reflect dynamic, authentic use cases. The assessment methodology in BFCL
incorporates several complementary metrics:
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• Abstract Syntax Tree (AST) Evaluation: This metric examines the structural correspon-
dence between the abstract syntax tree of the model-generated output, the ground-truth
reference, and the formal function specification. It evaluates the correctness of function
identification, the inclusion and accuracy of obligatory parameters, and the precision of
both parameter types and associated values.

• Executable Function Evaluation: Here, the produced API call is executed, and its runtime
output is compared directly against the expected ground-truth result, thereby measuring
practical execution accuracy.

• Multi-turn State-based Evaluation: The evaluation focus on comparing the backend sys-
tem’s state after all function calls are executed at the end of each turn of the conversation.
It capture the correctness of model executions that modify the internal state via write and
delete.

• Multi-turn Response-based Evaluation: It compares the model’s execution path against
the minimial viable execution result paths as labeled in ground truth. The minimial viable
execution result paths refer to a list of function calls that must be executed in order to
produce desired response as user requests.

• Irrelevance: This criterion quantifies the model’s capacity to avoid generating function
calls when presented with extraneous or unrelated user queries. The irrelevance score is
determined by dividing the number of accurate non-function-call responses by the total test
set size.

• Relevance: Relevance gauges the model’s adeptness at producing function calls that align
contextually with the user’s query, irrespective of parameter value accuracy. This score is
computed as the proportion of appropriate function-call responses within the entire evalua-
tion set.

ACEBench ACEBench (Chen et al., 2025a) is designed to evaluate tool-use capabilities with fine-
grained categorization which could be divided into three primary categories: Normal, Special,
Agent.“Normal” evaluates tool usage in basic scenarios;“Special” evaluates tool usage in situations
with ambiguous or incomplete instructions;“Agent” evaluates tool usage through multi-agent inter-
actions to simulate real-world, multi-turn dialogues:

• Normal Evaluation compares the model’s function call output with the ground truth using
AST parsing.

• Special Evaluation mainly assesses the ability of model in problem identification. Specif-
ically, the model must: (1) detect and alert missing parameters, (2) accurately locate erro-
neous parameters, and (3) recognize task-function mismatches.

• Agent Evaluation focus on the model’s proficiency in utilizing tools during human-agent
interactions, employing gpt-4o as a user simulator, incluing End-to-End Accuracy and Pro-
cess Accuracy.

B.2 HYPER-PARAMETERS

The detailed hyperparameters of GRPO training are illustrated in Table 5.

C THE ALGORITHM OF LOOPTOOL

We present the complete procedure of our LoopTool framework in Algorithm 1 , which couples
GRPO-based post-training, Greedy Capability Probing (GCP), Judgement-Guided Label Verifica-
tion (JGLV), and Error-Driven Data Expansion (EDDE) into a unified closed-loop data evolution
process.

D GENERALIZATION ABILITY EVALUATION

Beyond tool-use performance, we evaluate whether the LoopTool-8B model maintains or im-
proves generalization to non-tool-related domains. We compare LoopTool-8B with the vanilla
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Table 5: Configuration for Iterative GRPO training.
Category Hyperparameter

Data Configuration

Train Batch Size: 128
Validation Batch Size: 128
Max Prompt Length: 4096
Max Response Length: 1024

Optimization

Learning Rate: 1e-6
PPO Mini Batch Size: 128
KL Loss Used: False
Entropy Loss Used: False
Clip Ratio Low: 0.2
Clip Ratio High: 0.28

Rollout Configuration
Rollout Mini Batch Size: 2
GPU Memory Utilization: 0.5
Number of Rollouts: 12

Training & Logging Save Frequency (epoch): 1
Test Frequency (epoch): 1

Qwen3-8B (Yang et al., 2025) across six representative benchmarks: MMLU-redux (Gema et al.,
2025), IFEVAL (Zhou et al., 2023), LiveCodeBench (Jain et al., 2024), Math-500 (Lightman et al.,
2023), AIME24 and AIME25 AIM. The result is illustrated in Table 6.

LoopTool-8B consistently matches or surpasses Qwen3-8B across all domains, with no-
table improvements in instruction-following (+1.40 on IFEval), code generation (+3.84 on
LiveCodeBench), and mathematics (+1.20 on Math-500, and gains on both AIME sets.
These results indicate that the proposed iterative, model-aware data refinement and training
paradigm avoids overfitting to tool-calling tasks. Instead, it fosters improved general reasoning
and problem-solving skills, enhancing the model’s capacity to generalize across diverse scenarios.

Figure 5: The visualization of reward score across four iterations.
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Algorithm 1: LoopTool: Iterative Model-Aware Data Evolution Framework
Input: Initial seed dataset Dseed from Automated Tool-Augmented Data Construction; Initial

model parameters πθ0 .
Output: Final optimized tool-calling model πθJ after J iterations.

1 Initialize: j ← 1, D1 ← Subset(Dseed).
2 while j ≤ J do

// Step 1: GRPO-based Post-training
3 Train policy πθj−1 on Dj using GRPO in Eq.(2) with binary reward r(·), obtaining updated

parameters πθj .

// Step 2: Greedy Capability Probing (GCP)
4 foreach (T , ct, a∗t ) ∈ Dj do
5 Generate at via deterministic greedy decoding from πθj ;
6 if at ̸= a∗t then
7 Send (T , ct, a∗t ; at) to JGLV for evaluation;

8 Compute PPL(T ,ct) by Eq.(3) and retain high-PPL samples and at = a∗t into DHPPL
j ;

// Step 3: Judgement-Guided Label Verification (JGLV)
9 foreach mismatched case (T , ct, a∗t ; at) do

10 Obtain judgement result
yjudge ∈ {PRED WRONG,LABEL WRONG,BOTH CORRECT,BOTH WRONG} via
Qwen3-32B;

11 if yjudge = PRED WRONG then
12 Add to DMR

j ;
13 else if yjudge = LABEL WRONG then
14 Replace a∗t ← at and add to DLR

j ;
15 else if yjudge ∈ {BOTH CORRECT,BOTH WRONG} then
16 Discard sample;

// Step 4: Error-Driven Data Expansion (EDDE)
17 Construct error seed set DES

j ← DMR
j ∪ DLR

j ;
18 foreach error seed in DES

j do
19 Generate k new samples with scenario diversification constraints;

20 Validate generated set via rule-based + LLM-based evaluation to obtain DEE
j ;

// Step 5: Dataset Update for Next Iteration
21 Select untrained subset DSeed-new

j ⊂ Dseed;
22 Construct next-round dataset by Eq.(5):

Dj+1 = DES
j ∪ DEE

j ∪ DHPPL
j ∪ DSeed-new

j

23 j ← j + 1;
24 return πθJ

Table 6: Generalization benchmark performance comparison between vanilla Qwen3-8B and
LoopTool-8B. Bold indicates the better score for each task.

Model MMLU-redux IFEval LiveCodeBench Math-500 AIME24 AIME25
Qwen3-8B 87.72 83.30 42.31 91.40 60.00 56.67
LoopTool-8B 87.37 84.70 46.15 92.60 70.00 66.67

E THE PERFORMANCE OF LOOPTOOL ON LLAMA

LoopTool is essentially a model-agnostic framework for iterative evolution of data and models.
To further verify the effectiveness of the LoopTool framework for other model architectures, we
conducted additional experiments using Llama-3.1-8B-Instruct (Grattafiori et al., 2024) as the main
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Table 7: Performance comparison of Llama-3.1-8B-Instruct across iterations.

Model Version Overall Non-Live Acc Live Acc Multi-Turn Acc Irrelevance
Original 49.72 84.48 61.13 9.62 48.46
Iteration-1 53.99 85.46 71.97 11.75 75.29
Iteration-2 56.39 86.17 74.14 14.12 82.55
Iteration-3 61.00 86.73 77.74 18.13 83.93

updated policy, while keeping training budget, number of steps, and all LoopTool configurations
identical to the Qwen-based runs. We still employ the Qwen3-32B model as both the Generator and
the Evaluator. The results are illustrated in the Table 7. Results show clear iterative improvements:
overall accuracy rises from 49.72% (Original) to 61.00% (Iteration-3), with substantial metric-level
gains such as +8.51 points in Multi-Turn accuracy and +35.37 points in Irrelevance. These results
provide direct evidence that the LoopTool framework offers substantial benefits to a different model
family (Llama), demonstrating that the improvements are not specific to Qwen-based models.

F THE LEARNING CURVES IN ITERATIVE LEARNING

Figure 5 presents a detailed depiction of the reward curves for LoopTool-8B across multiple iter-
ative training cycles. These curves consistently exhibit two notable characteristics: (1) There is a
stable increase in reward scores across iterations. In all four training iterations, the model’s av-
erage binary reward score curves maintain a consistent upward trajectory, free from oscillations or
divergence. This stable improvement mirrors the benchmark results shown in Figure 2, thereby con-
firming a sustained enhancement in the model’s tool-use capability; (2) The reward trends reflect
the escalating difficulty of the data. As illustrated in Figure 5, the overall data complexity progres-
sively increases from one iteration to the next. Although the absolute reward scores tend to be lower
in later iterations due to this heightened difficulty, the curves within each training phase still display
a steady upward progression, indicating effective learning despite more challenging conditions.

G THE EXAMPLE OF HIERARCHICAL DUAL SUBTREES

The example subtrees of the Context Tree and Constraint Tree are illustrated in Figure 6 and Fig-
ure 7, respectively.

Context Tree

Science Finance Entertainme
nt

Message Travel

Transportati
on

Flight
Search

Bus Search

Flight
Booking

Accommod
ation

Hotel
Search

Vocation
Rentals

Make
Reservation

Local
Services

Currency
Exchange

Weather
Forecast

Local Event
Search

Movies Music Books

.....

Figure 6: The example subtree of Context Tree.

Constraint Tree

Name

Conventions

Simple
Naming

Snake Case

Camel Case

Kebab Case

Description
Parameters

Rules

Count

Zero

One-Three

More

Types

Simple

String

Numeric

Boolean

Complex

List

Dict

Tuple

…

Output
Format

Figure 7: The example subtree of Constraint
Tree.

H THE TRAINING SAMPLE FOR GRPO

The Instruction Prompt used in all GRPO samples is illustrated in Figure 8. The Single-Turn and
Multi-Turn samples are illustrated in Figure 9 and Figure 10.
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You are an expert in composing functions. You are given a question and a set of  possible functions. Based on the question, 
you will need to make one or more function/tool calls to achieve the purpose.
If  none of  the functions can be used, point it out. If  the given question lacks the parameters required by the function, also
point it out. If  the result of  tool calls has fulfilled the user’s request, summarize the answer.
Important Notes
1. When the tool call has fulfilled the user’s request, please provide a. concise summary in plain text without extra tool calls. 

If  no tool is suitable, state that explicitly. If  the user’s input lacks required parameters, ask for clarification
2. During each tool invocation, it is important to carefully examine the corresponding tool’s description and constraints. 

Ensure that the required fields of  the tool are strictly satisfied, and that parameter types conform to the definitions. If  a 
function call uses the default parameter value, it is not necessary to specify the value during the call.

3. If  the user’s request cannot be completed through a one-time function call, or if  the parameters of  subsequent function 
calls depend on the results of  previous calls, then decompose it into multi-step calls. You only need to return the result of  
the first step. The use of  fictitious parameters or placeholder is strictly prohibited.

4. In multi-turn dialogs, if  you encounter an error and the task remains unfinished, retry with more necessary tool calls until 
completion. Based on the tool feedback, reflect on whether the understanding or selection of  the tool is wrong, what tool 
calling step is missing, and how to achieve the task goal from now on.

The current time is {current_time}.
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>{tool_sets}</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML 
tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>."

The Full Instruction Content

Figure 8: The general instruction prompt employed in all GRPO samples. The variables
current time and tool sets are placeholders.

Input: <|im_start|>user\n I am planning a marketing campaign targeting men within age 25-30 in New York. I 
need to know the estimated size of my target audience. Also, I want to retrieve the media plan with the Campaign 
ID ‘CAM12345’. Can you help with these? <|im_end|>
Label: <tool_call>\n {“name: ”getAudienceSize“, ”arguments“: {”age_range“: ”25-
30“, ”gender“: ”male“, ”location“: ”New York“}} \n </tool_call>
<tool_call>\n {”name“: ”getMediaPlan“, ”arguments“: {”campaign_id“: ”CAM12345“}} \n</tool_call>

The Single-Turn GRPO Sample

Figure 9: The example of Single-Turn GRPO samples.

The Multi-Turn GRPO Sample
Input: <|im_start|>user\n I have an image at ‘images/satellite_view.png’ and I want to understand what the dominant 
features are in that image. Can you analyze it using a detailed question about its content? <|im_end|>
<|im_start|>assistant\n <tool_call>\n{“name”: “pipeline”, “arguments”: {“image_path”: “images/satellite_view.png”, 
“question”: “What are the dominant features visible in this satellite view, and how are they distributed across the
image?”}}\n</tool_call> <|im_end|>
<|im_start|>user\n <tool_response>\n{“caption”: “The satellite view reveals a diverse landscape dominated by dense 
forest regions, intersected by rivers flowing in a northwesterly direction. Urban clusters are sparsely distributed along the
riverbanks, with major infrastructure visible in the central part of  the image. Open land patches and agricultural fields are
scattered towards the southern quadrant.”}\n</tool_response> <|im_end|>
<|im_start|>assistant\n The satellite image analysis … <|im_end|>
<|im_start|>user\n I‘d like to calculate the area under the curve for the polynomial function defined by the coefficients [3, 
-4, 1] between the limits of  1 and 5. Also, can you search for the book ’Calculus: Early Transcendentals‘ in the library 
located in New York?” <|im_end|>

Label: <tool_call>\n {“name”: “mathematics.calculate_area_under_curve”, “arguments”: {“polynomial”: [3, -4,

1], “limits”: [1, 5]}} \n</tool_call>

<tool_call>\n {"name": "library.search_book", "arguments": {"book_name": "Calculus: Early Transcendentals",

“city”: “New York”}} \n</tool_call>

Figure 10: The example of Multi-Turn GRPO samples.
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I THE LABEL VERIFICATION PROMPT

The Prompt used in Judge-Guide Label Verification (JGLV) is concluded in Figure 11. Sample
examples with yjudge = PRED WRONG and yjudge = REF WRONG are respectively presented in
Figures 12 and 13.

The Prompt For Judgement-Guided Label Verification (JGLV)
System: You are an expert evaluator specialized in assessing function call responses. Your task is to compare two different 
function call responses and determine their correctness. Here are the available tools in the conversation:
<tools> {tool_str}\n </tools>
Evaluation Criteria:
1. Correctness: Whether the function calls properly address the user's request
2. Parameter Accuracy: Whether all parameters are correct and appropriate 
3. Function Selection: Whether the chosen functions are suitable for the task
4. Completeness: Whether the response fully satisfies the user's needs.
Please provide objective and thorough evaluations based on these criteria.

User: ## Task
Please evaluate two function call responses for the following conversation. The time of  the conversation is {date}.

Original Conversation:
{conversation_text}

## Responses to Compare
Response 1
{response1}

Response 2
{response2}

## Output Format
Strictly respond with the following formats (no additional text):
"[RESPONSE1_INCORRECT/RESPONSE2_INCORRECT/BOTH_CORRECT/BOTH_INCORRECT]
Error Analysis: [Only briefly describe the cause of  the incorrect response, without comparing it to the correct response - max 
2 sentences] Correct Approach: [Explain the right way to handle this task - max 2 sentences].”

The analysis should be brief  and focus on the key differentiating factor.

Figure 11: The Prompt used in Judge-Guide Label Verification for Judgement Model. The red text
corresponds to variables that are placeholders.

The PRED_WRONG Example Identified by JGLV
Input: I have a tweet in English that I want to analyze for sentiment. Also, I have a number 1456 that I want to spell out in 
French. Additionally, I want to check the metadata of  my company's website URL and lastly, I need a list of  available spell-
check rule sets for Dutch. Here is my tweet: "I just love the holidays! Best time of  the year!\". And my company’s website 
URL is "https://examplecompany.com".

Label (Correct): 
<tool_call>\n{"name": "Text Sentiment Analysis", "arguments": {"text": "I just love the holidays\"SpellOut\", "arguments": 
{"data": 1456, "lang": "fr", "ruleset":! Best time of  the year!"}}\n</tool_call>
<tool_call>\n{\"name\": \"SpellOut\", \"arguments\": {\"data\": 1456, \"lang\": \"fr\", \"ruleset\": 
\"cardinal\"}}\n</tool_call>
<tool_call>\n{"name": "parse", "arguments": {"url": "https://examplecompany.com"}}\n</tool_call>
<tool_call>\n{"name": "Get Rule Sets", "arguments": {"lang": "nl"}}\n</tool_call>

Response (Wrong): 
<tool_call>\n{"name": "Text Sentiment Analysis", "arguments": {"text": "I just love the holidays\"SpellOut\", 

"arguments": {"data": 1456, "lang": "fr", "ruleset":! Best time of  the year!"}}\n</tool_call>
<tool_call>\n{"name": "Get Rule Sets", "arguments": {"lang": ”fr"}}\n</tool_call>
<tool_call>\n{"name": "parse", "arguments": {"url": "https://examplecompany.com"}}\n</tool_call>
<tool_call>\n{"name": "Get Rule Sets", "arguments": {"lang": "nl"}}\n</tool_call>

Error Message (Generated From Judge Model):
Error Analysis: Response 2 incorrectly uses "Get Rule Sets" with `lang: "fr"` (French) instead of  `lang: "nl"` (Dutch) for the 
Dutch spell-check rule sets request. 
Correct Approach: Use "SpellOut" with `lang: "fr"` for the French number spelling and "Get Rule Sets" with `lang: "nl" to 
retrieve Dutch rule sets as specified.

Figure 12: The example with yjudge = PRED WRONG identified by JGLV.

J THE ERROR GENERATION PROMPT AND NEW ERROR SAMPLES

The system and user prompts for Error-Driven Data Expansion (EDDE) are illustrated in Figures 14
and 15, respecitively. The generated sample case is shown in Figure 16.
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The REF_WRONG Example Identified by JGLV
Input: Can you help me calculate the fluctuation in the exchange rate of  the Euro against the Dollar between January 1, 
2020, and January 1, 2021? Also find the fluctuation for the Pound against the Dollar for the same time period.

Label (Wrong): 
<tool_call>\n{\"name\": \"Fluctuation Endpoint\", \"arguments\": {\"start_string\": \"2020-01-01\", \"end_string\": 
\"2021-01-01\", \"base\": \"usd\", \"symbols\": \"eur\"}}\n</tool_call>
<tool_call>\n{\"name\": \"Fluctuation Endpoint\", \"arguments\": {\"start_string\": \"2020-01-01\", \"end_string\": 
\"2021-01-01\", \"base\": \"usd\", \"symbols\": \"gbp\"}}\n</tool_call>

Response (Correct): 
<tool_call>\n{\"name\": \"Fluctuation Endpoint\", \"arguments\": {\"start_string\": \"2020-01-01\", \"end_string\": 
\"2021-01-01\", \"base\": \"eur\", \"symbols\": \"usd\"}}\n</tool_call>
<tool_call>\n{\"name\": \"Fluctuation Endpoint\", \"arguments\": {\"start_string\": \"2020-01-01\", \"end_string\": 
\"2021-01-01\", \"base\": \"gbp\", \"symbols\": \"usd\"}}\n</tool_call>

Error Message (Generated From Judge Model):
Error Analysis: Response 1 incorrectly sets USD as the base currency and EUR/GBP as symbols, which calculates USD's 
fluctuation against EUR/GBP instead of  EUR/GBP's fluctuation against USD. The base and symbols parameters were 
reversed.

Correct Approach: Use EUR and GBP as the base currencies with USD as the symbol in separate calls to measure their 
respective fluctuations against the Dollar.

Figure 13: The example with yjudge = REF WRONG identified by JGLV.

The System Prompt for Error-Driven Data Expansion (EDDE)
System: You are an expert data engineer specialized in creating high-quality training samples for tool-calling language 
models. Your mission is to generate NEW training samples that help models learn correct tool usage patterns.
## Context Information

Current Date: {current_date}
Available Tools:
<tools> {tools_content} </tools>

## Your Task
You will analyze an error case and create a completely NEW sample that:

1. Demonstrates CORRECT tool usage in a similar scenario
2. Uses different parameters (names, amounts, symbols, etc.)
3. Maintains similar complexity and potential error patterns
4. Follows exact format requirements

## Critical Requirements

1. Generate a realistic but DIFFERENT scenario;
2. Show the CORRECT approach to handle such requests;
3. Use proper conversation format with role markers.
4. Output format must be: INPUT: [content] \n OUTPUT: [content];
5. INPUT could be a single turn or multiple turn request; OUTPUT must use <tool_call>\n...\n</tool_call> format 
6. NO additional explanations or text outside the INPUT/OUTPUT sections

Figure 14: The system prompt for Error-Driven Data Expansion (EDDE).

The User Prompt for Error-Driven Data Expansion (EDDE)
User: According to the original sample, generate a NEW training sample:

Original Sample: {converted_input}
Correct Response: {correct_response}
Incorrect Response: {incorrect_response}
Error Analysis: {error_analysis}

Format Requirements
Your response must ONLY contain:
INPUT: [New conversation with proper role markers like USER, ASSISTANT] 
OUTPUT: [Correct tool calls in <tool_call>\n...\n</tool_call> format]

Generation Instructions
Create a NEW sample that addresses the same type of  error but with maximum diversity:
- Apply the scenario focus: {scenario['focus']} 
- Follow parameter strategy: {scenario['parameters’]}
- The new sample should help the model recognize the error pattern from the original case and learn the correct approach for 
similar scenarios
- The correct invocation of  new samples does not need to use exactly the same tools as the original samples, and can further 
involve more complex user requests.

Format Requirements

Your response must ONLY contain:

INPUT: [New conversation with proper role markers like USER, ASSISTANT] 
OUTPUT: [Correct tool calls in <tool_call>\n...\n</tool_call> format]

Some Output Examples:

{sample_1}

{sample_2}
…

Figure 15: The user prompt for Error-Driven Data Expansion (EDDE).
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The Generated Single-Turn GRPO Sample from EDDE
Original Sample

Input: Log me in with username \"Customer Support\" and password \"P@ssw0rd2023\". Then, show me all tickets I’ve 
created

Label (Correct): <tool_call>\n{"name": "ticket_login", "arguments": {"username": "Customer Support", "password": 
"P@ssw0rd2023"}}\n</tool_call>\n<tool_call>\n{"name": "get_user_tickets", "arguments": {}}\n</tool_call>”

Response (Wrong): <tool_call>\n{"name": "ticket_login", "arguments": {"username": "Customer Support", "password":
“P@ssw0rd2023\”}} \n</tool_call>

New Generated Sample

Input: Please sign me in with username "jane.doe" and password "Secure#2024". After that, show me any tickets I have 
that are currently marked as "open".

Label: <tool_call>\n{“name”: “ticket_login”, “arguments”: {“username”: “jane.doe”, “password”:
“Secure#2024”}}\n</tool_call>\n<tool_call>\n{“name”: “get_user_tickets”, “arguments”: {“status”:
"open"}}\n</tool_call>

Figure 16: The new sample generated by EDDE according to the error in the model response.
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