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Abstract

A healthy human brain manifests a high variance in signals captured from different modal-
ities like EEG, MEG, and fMRI during ongoing activity. Further, there is brain signal
variability exhibited at the user level. The study of within-subject and cross-subject vari-
ance is essential to design general Brain-Computer Interfaces (BCI) that help interpret
these signals into intended outcomes. We propose that these variations can be studied
under the umbrella of Continual Learning (CL). We performed an empirical evaluation
to understand the impact of CL strategies on the benchmark dataset. Our findings in
within-subject and cross-subject scenarios suggest that CL strategies can outperform of-
fline learning and build robust models for BCI applications. In the cross-subject scenario,
CL can lead to learning invariant subject representation when transferring knowledge from
one subject to another. In the within-subject scenario, CL can enhance performance when
transferring knowledge from one session to another.
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1. Introduction

Noninvasive techniques that measure brain signals at the ensemble levels are sensitive to
dynamic changes in neural activity arising as a response to various stimuli or task condi-
tions(Faisal et al. (2008)). Study in individuals responding to stimuli suggests that specific
individuals maintain high baseline activity or lower baseline activity while performing differ-
ent tasks(Arazi et al. (2017a,b); Sheehan et al. (2018)). showcasing evidence of variability in
brain signal across task conditions and subjects. Furthermore, components of brain function
that vary across time lead to unreliable EEG signatures and show a lack of repeatability
within-subject across trials. (Meyer et al. (2013)). To build robust BCI systems, the ear-
liest attempts were to train users to modulate brain signals to overcome within-subject
variations. Later, machine learning models were calibrated for each session and user, re-
spectively. Recent studies have focused on transfer learning to provide a mechanism to
indirectly transfer knowledge pertaining to the sources of within-subject and cross-subject
variability (Saha and Baumert (2020)). Bakas et al. (2022), winners of the recent EEG
Transfer Learning Competition (NeurIPS 2021) address this difficulty by explicitly aligning
feature distributions at various layers of the deep learning model, using both simple statis-
tical techniques and trainable methods with more representational capacity. The feature
alignment process is either subject or session-specific. Gibson et al. (2022) demonstrate that
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the variation in EEG signal strength and variability was found across subjects rather than
across sessions. This was true across sessions that differed considerably in their behavioral
and cognitive demands on the same task—further suggesting that EEG variability can be
a sensitive subject-driven signal of interest.

In this work, we propose that continual learning strategies must form an integral part
of BCI systems because they are crucial for user adaptation. Especially considering cases of
mental imagery in which human learning is involved (Lotte et al. (2013); Pfurtscheller and
Neuper (2010)). Adaptation may not always assist; it may even be an impediment. Müller
et al. (2017) indicated that either too fast or too slow adaptation can be detrimental to user
learning. Thus, adaptive classifiers must be designed to ensure and favor human learning
(Lotte et al. (2018)). The combination of transfer learning and online adaptive learning for
BCI can be studied under the umbrella of CL as discussed in Mundt et al. (2021). The
unique challenges in the EEG modality can further lead to robust strategies in CL. In this
paper, we empirically evaluate CL strategies on the motor imagery dataset as a benchmark
and try to assess the following:

• The impact of catastrophic forgetting in transfer learning for cross-subject and within-
subject scenarios.

• The impact of existing CL strategies on classification accuracy for cross-subject and
within-subject scenarios.

2. Methodology

2.1. Benchmark Dataset

We focus on EEG brain signals captured during motor movements or imagery for this study.
Our benchmark is based on the existing dataset: EEGMMID (Goldberger et al. (2000),
Schalk et al. (2004)). EEGMMID provides 64-channel EEG recordings of 109 volunteers at
160Hz sampling frequency. Each subject performed three two-minute runs of each of the
four following tasks:

• Task 1 (open and close left or right fist)
• Task 2 (imagine opening and closing left or right fist)
• Task 3 (open and close both fists or both feet)
• Task 4 (imagine opening and closing both fists or both feet)

We merge the movement and imagery tasks (Task 3 and 4) to augment the dataset. Each
subject, on average, did 93 trials that ran for approximately 4 seconds. We divide each
4-second trials into 2 seconds, resulting in 320 sample recordings in each sequence and an
average of 185 sequences for each subject. Each sequence was labeled based on the activity:
0 for opening/closing of both fists and 1 for opening/closing of both feet. Train-test split
was 75%-25% respectively, maintaining class balance. For the within-subject and cross-
subject scenario, the training and test set were chosen accordingly. In both scenarios, the
training set was then divided into five experiences used to train the model employed with
CL strategy iteratively, each iteration followed by an evaluation on the test set.
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2.2. Experimental Setup

We conduct the empirical evaluation to understand CL strategies’ behavior in within-subject
and cross-subject scenarios. We follow the experimental setup and implementation of Mat-
teoni et al. (2022) for the empirical evaluation. We test CL strategies, namely:

• Replay (Hayes et al. (2021)): retains the previous dataset partially for the next expe-
rience.

• Elastic Weighted Consolidation (EWC) (Kirkpatrick et al. (2017)): restricts change
in model weights based on its importance value.

• Learning without Forgetting (LwF) (Li and Hoiem (2017)): uses a combination of
knowledge distillation and transfer learning.

• Gradient of Episodic Memory (GEM) (Lopez-Paz and Ranzato (2017)): projects the
gradient on the current minibatch by using an external episodic memory of patterns
from previous experiences.

Apart from these CL strategies, naive transfer learning and cumulative strategy (including
current and all previous experiences as the training set) are also considered. We also
compare the CL strategies with offline training, where the complete training dataset is
trained in a single phase. Offline training acts as a higher baseline for the given task. We
use an LSTM network with two layers and 64 hidden units. For Replay, the memory is
set to 25%. Every training phase and strategy uses the same hyperparameters for Adam
optimiser and cross-entropy loss as the loss criterion. We measure the accuracy on the
test set after every experience for each strategy and scenario. All the experiments use the
CL framework provided by Avalanche library(Lomonaco et al. (2021)) to manage dataset
benchmarks, training phases, and evaluations.

3. Results and Discussion

Table 1 and Table 2 report the accuracy achieved at the end of the training on all five
experiences for cross-subject and within-subject scenarios, respectively. Figure 1 and Fig-
ure 2 report the accuracy achieved after training on each experience for cross-subject and
within-subject scenarios, respectively.

3.1. CL strategies perform better than offline

Results reported in Table 1 and Table 2 show that in most cases except three cases, CL
strategies outperform offline learning by a considerable margin. While for Subject ID 8
(within-subject scenario), offline learning outperforms, suggesting considerable scope for
the CL in BCI applications.

3.2. Memory driven vs. Regularisation Strategy

For both cross-subject and within-subject scenarios, memory or replay-driven strategies,
namely Replay and Gradient of Episodic Memory(GEM), outperform other strategies. The
reason may be correlated with the finding that there is no catastrophic forgetting in this
case and other methods focus on avoiding forgetting by regularisation.
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3.3. Better performance in Cross-Subject

It is surprising to observe that cross-subject scenarios have greater accuracy than within-
subject scenarios for their respective subject ids. This finding needs further investigation
to understand the cause.

3.4. Stopping or control criteria for CL

Referring to Figure 1 and Figure 2, one can note a significant drop in accuracy after training
on specific experiences. It is crucial to define a control strategy or stopping criteria for CL
strategies in order to protect the model from deterioration by learning on new data. We
observe that further experimentation and theoretical framework is required to understand
this space.

Subject ID Offline Naive Cumulative Replay Episodic EWC LwF

3 65.96 55.32 48.94 68.09 59.57 55.32 63.83
4 36.96 50.00 45.65 52.17 52.17 36.96 39.13
5 65.22 65.22 45.65 47.83 58.70 60.87 58.70
6 60.87 60.87 56.52 65.22 63.04 54.35 63.04
7 63.83 61.70 63.83 48.94 65.96 57.45 70.21
8 50.00 63.04 45.65 56.52 50.00 60.87 60.87

Cum. Avg. 57.14 59.36 51.04 56.46 58.24 54.30 59.30

Table 1: Final accuracy evaluated on the test set of given subject id after training on five
experiences for the cross-subject scenario.

Subject ID Offline Naive Cumulative Replay Episodic EWC LwF

3 59.57 48.94 51.06 59.57 57.45 51.06 63.83
4 47.83 56.52 47.83 56.52 52.17 56.52 41.30
5 56.52 54.35 58.70 54.35 65.22 52.17 43.48
6 56.52 50.00 52.17 45.65 56.52 52.17 54.35
7 53.19 65.96 70.21 55.32 55.32 51.06 65.96
8 69.57 58.70 54.35 41.30 54.35 58.70 58.70

Cum. Avg. 57.20 55.74 55.72 52.12 56.84 53.62 54.60

Table 2: Final accuracy evaluated on the test set of given subject id after training on five
experiences for the within-subject scenario.

4. Conclusion and Future Work

We can conclude that there is a necessity and an opportunity for inducting continual learning
in Brain-computer interface(BCI) systems. These findings need to be corroborated on
remaining subjects and other datasets. Further studies to identify distributions and define
control strategies or stopping criteria for continual learning can be pursued. The work
can be extended by leveraging CL strategies for domain incremental and task incremental
scenarios on a large corpus of EEG data with multiple tasks and sessions.
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Figure 1: Accuracy on the test dataset of given subject id after training on each experience
for cross subject scenario.

Figure 2: Accuracy on the test dataset of given subject id after training on each experience
for within subject scenario.
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