Under review as a conference paper at ICLR 2026

SO-LAZY-BI1O: ACCELERATING BILEVEL OPTIMIZA -
TION WITH REDUCED SECOND-ORDER INFORMATION
COMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization has attracted significant attention recently due to its applica-
bility in various large-scale machine learning tasks (e.g., the large language model
(LLM) pretraining-finetuning pipeline). In the literature, one popular approach for
solving bilevel optimization problems is to use hypergradient-based methods. How-
ever, computing the hypergradients requires evaluating second-order information
(Hessians/Jacobians) of the lower-level objective function, which is computation-
ally expensive. To address this challenge, we propose SO-Lazy-BiO (Second-Order
Lazy Bilevel Optimization), an algorithmic framework that significantly accelerates
the state-of-the-art (SOTA) bilevel optimization methods by allowing infrequent
evaluation of second-order information. We theoretically establish the performance
of SO-Lazy-BiO and show that, despite the additional errors incurred by the infre-
quent evaluations of second-order information, SO-Lazy-BiO surprisingly matches
the computation complexity of existing non-lazy bilevel algorithms, while requir-
ing fewer second-order information evaluations. This leads to substantial savings
in both computational cost and wall-clock running time. We further conduct ex-
tensive experiments to demonstrate that SO-Lazy-BiO enjoys significant gains in
numerical performance compared to SOTA, especially for large-scale tasks. To our
knowledge, this is the first work to employ infrequent second-order computations
while still guaranteeing the convergence of stochastic bilevel algorithms.

1 INTRODUCTION

1) Background and Motivation: Bilevel optimization refers to the class of problems with two levels
of hierarchy, where the solution of the upper-level (UL) problem depends on the minimizer of the
lower-level (LL). Formally, we have

minezs {£() 2 f (%, 57 () 2 Benr, [ (x, ¥ (x): )]}

s.t. y*(x) =arg ming cp {g(x, ¥)EE¢mn, [9(%,y; C)]}, (1)

where f(x,y) : R“xR! = R and g(x,y) : R* xR! — R are UL and LL objectives, respectively.
Stochastic bilevel optimization in Problem (T]) has gained prominence due to its modeling versatility in
machine learning (ML) applications. Classical examples include hyperparameter optimization|[Shaban
et al. (2019);Bao et al.|(2021)), meta-learning Rajeswaran et al.|(2019); Ji et al.| (2020), adversarial
training [Tian et al.| (2021)); Zhang et al.| (2022), reinforcement learning [Hong et al.| (2020)), neural
architecture search Lian et al.[(2019); |Hu et al.| (2020), data hyper-cleaning [Franceschi et al.| (2018));
Shaban et al.|(2019)), and dictionary learning [Lecouat et al.[(2020ajb). Recently, bilevel optimization
has also found its applications in large language models (LLMs) (e.g., the pretraining-finetuning
pipeline L1 et al.| (2024); Wu et al.| (2024); |Ding et al.| (2024)), data weighting [Shen et al.| (2024));
Pan et al.|(2024), and adversarial attacks on LLMs Jiao et al.|(2025))). As a consequence, in the ML
research community, a major research effort has been focused on developing efficient algorithms for
solving stochastic bilevel optimization problems.

2) Technical Challenges: Among all existing methods (see Section 2] for detailed discussion), the
approximate implicit differentiation (AID) approach, where the approximate implicit gradient of
the UL objective ¢(-) is directly computed using the implicit function theorem Ghadimi & Wang



Under review as a conference paper at ICLR 2026

(2018)), is widely adopted due to its ease of implementation. In typical AID algorithms, while the
LL variable is updated via standard stochastic gradient descent (SGD), the UL variable is updated
using: x = x — ahf, where the descent direction i/ (also often referred to as hypergradient) is an
approximation of the implicit gradient V£(x), which can be computed as:

W & V(%) =V f(x,y" (%) = V2, (%, 7" () [V2,9(x, 7" ()] ' Vy f(xy*(x). @)

Second—order computation involving HVP and JVP

However, due to this hypergradient computation, AID-based bilevel algorithms face two major
challenges. First, the hypergradient in Eq. is a function of the optimal solution y*(x) of the
LL problem, which often requires an iterative method to solve. Thus, obtaining the exact value of
y*(x) can become computationally expensive, often rendering the algorithms infeasible in practice.
This challenge has been intensively studied in literature and addressed to some extent (e.g., the
hypergradient is approximated using y* ~ y*(x) Ghadimi & Wang| (2018)); Hong et al.{(2020); (Chen
et al.|(2021)). The second challenge, which is the main focus of this paper, is that computing the
hypergradient requires second-order information. Since Hessian inversion and Jacobian computation
in Eq. have computation complexities of O(I3) and O(ul), respectively, where [ and u are
the dimensions of x- and y-variables in Problem (I), evaluating them makes bilevel algorithms
computationally expensive even for moderately sized problems.

To mitigate the second challenge, Hessian-vector products (HVPs) and Jacobian-vector products
(JVPs) are commonly used to approximate the Hessian inverse and the Jacobian, respectively. Some
modern automatic differentiation tools (e.g., Pearlmutter’s trick |[Pearlmutter] (1994)) enable both
HVP and JVP computations with O(I) complexity. Despite using HVPs and JVPs, computing
hypergradients is still computationally expensive in many practical scenarios, especially in resource
and computation-constrained settings (e.g., edge-based devices with no access to GPUs). It is known
that each HVP computation is still at least two to six times more expensive than gradient computation
using optimized library Jax Bradbury et al.|(2018)) when performed on CPUs. Moreover, when
the model size scales, as particularly shown in LLMs, the computation cost of HVPs and JVPs
significantly increases, even on high-performance GPUs. These computation costs can dominate the
runtime of bilevel algorithms and severely limit their scalability. What exacerbates the problem is the
fact that a single Hessian inverse estimation requires multiple HVP computations |Ghadimi & Wang
(2018); Hong et al.| (2020), which can easily multiply the total cost for the desired approximation
accuracy. This compounds the overall cost and poses a serious challenge in reducing the computation
cost of bilevel optimization algorithms in practical settings. To tackle this challenge, first-order
methods (i.e., Hessian/Jacobian-free) have been proposed for bilevel optimization; however, they
often exhibit inferior convergence guarantees and degraded practical performance due to the absence
of second-order information (see Section [2]for a detailed discussion). This underscores the critical
role of second-order information in bilevel optimization and leads to a foundational open problem:

(Q): Can we design novel bilevel optimization algorithms that require fewer second-order informa-
tion evaluations, while being able to guarantee theoretical convergence performance?

In this paper, we answer the above question by developing a new algorithmic framework called
SO-Lazy-BiO (Second-Order Lazy Bilevel Optimization), which allows infrequent second-order
information (HVP/JVP) evaluations to alleviate the computational bottleneck when solving stochastic
bilevel optimization problems. In our framework, stale second-order information is used for multiple
iterations, and only new gradients are computed at each step for computational savings. The
intuition behind SO-Lazy-BiO is that, for iterations that are not far from each other, the second-order
information remains highly correlated and do not vary significantly. Therefore, stale second-order
information may be used to approximate the new value.

However, it is unclear whether SO-Lazy-BiO still converges due to the following factors: 1) the use
of stale Hessians (HVPs), 2) the use of stale Jacobians (JVPs), 3) the “multiplicative” structure of
JVP, which is coupled with HVP and may amplify the error from lazy evaluations, 4) approximations
of the Hessian-inverse, and 5) the coupled hierarchical structure of bilevel problems. Somewhat
surprisingly, we prove that, despite the potential errors accumulated by the aforementioned factors,
SO-Lazy-BiO not only converges but also attains a convergence rate comparable to that of the SOTA
non-lazy bilevel algorithms. To our knowledge, this is the first work that uses infrequent second-order
information computations for computational savings and still achieves a convergence guarantee in
solving stochastic bilevel problems. We summarize our major contributions as follows:



Under review as a conference paper at ICLR 2026

* We develop a new algorithmic framework SO-Lazy-BiO that allows infrequent second-order
information computations in stochastic bilevel optimization. Specifically, SO-Lazy-BiO achieves a
dual reduction in computational cost: 1) by using single-step SGD to estimate each Hessian-inverse
vector product, avoiding the need for multiple HVP computations per approximation; and 2) by
incorporating a lazy update strategy that updates second-order information (HVPs/JVPs) only at
selected iterations while reusing stale information in the rest of the iterations. These innovations
collectively lead to substantial computational savings over existing methods.

e We theoretically establish the performance of SO-Lazy-BiO. Specifically, we show that the
proposed lazy approach, which is supposed to perform worse due to stale second-order information,
can actually match the convergence performance of the SOTA bilevel algorithms. We show that, to
achieve an e-stationary point, SO-Lazy-BiO requires O(e~?2) second-order information evaluations,
which is fewer than non-lazy bilevel algorithms that incur multiple HVP computations per iteration.
Moreover, thanks to the less frequent second-order information evaluations, the wall-clock time
(i.e., running time) of SO-Lazy-BiO is significantly reduced compared to the SOTA approaches.

* We extensively evaluate the performance of our proposed SO-Lazy-BiO algorithm via numerical
experiments, including three highly non-trivial tasks: 1) data weighting for reinforcement learning
from human feedback (RLHF) reward model training, 2) data weighting for LLM alignment,
and 3) deep hyper-representation. Our results verify that the infrequent evaluations of second-order
information lead to considerable computational savings, particularly for large-scale models, even
when using high-performance GPUs.

2 RELATED WORK

In this section, we provide an overview on three closely related areas: @ AID-based bilevel optimiza-
tion, @ Hessian/Jacobian-free bilevel optimization, and ® Other uses of infrequent evaluations. Due
to space limitations, we give a summary of other related bilevel optimization methods in Appendix

®AID-Based Bilevel Optimization: AID-based bilevel optimization has gained popularity due to
its ease of implementation. BSA |Ghadimi & Wang| (2018) provided the first finite-time convergence
guarantees for bilevel optimization. The stochastic bilevel algorithms that either use vanilla-SGD
updates (e.g., stocBiO in[Ji et al|(2021), ALSET in|Chen et al.|(2021)), AmIGO in|Arbel & Mairal
(2022)), and SOBA in|Dagréou et al.| (2022)) or use momentum-based SGD for updating the UL pa-
rameters (e.g., MA-SOBA in|Chen et al.|(2024))) require O (6_2) for both partial gradient evaluations
and second-order information (HVP/JVP) evaluations to reach an e-stationary point. Although these
works guarantee finite-time convergence, their practical performance is often limited due to high
per-iteration computation costs: they require one or even multiple Hessian (or HVP) evaluations of
the LL objective in each iteration to approximate the Hessian inverse, as well as one Jacobian (or
JVP) evaluation per iteration to approximate the hypergradient of the UL problem. In this work,
we show that both Hessian and Jacobian computations can be skipped and stale Hessian and Jaco-
bian information computed from previous iterations can be reused without hurting the convergence
performance. This significantly reduces computational cost and enables much faster execution.

@ Hessian/Jacobian-Free Bilevel Optimization: To avoid the expensive Hessian/Jacobian (or
HVP/JVP) evaluations, several Hessian/Jacobian-free methods have been proposed. For example,
FO-MAML [Finn et al.|(2017); Nichol et al.| (2018)) directly ignores the second-order information
computation but does not offer any performance guarantee |Antoniou et al.|(2018); |Fallah et al.
(2020). Several approaches have also been proposed to replace the LL problem with optimality-based
constraints (Chen et al. (2023b)); |[L1u et al.| (2022a); Shen & Chen|(2023). However, these methods
mostly focus on deterministic settings rather than stochastic ones. Several zeroth-order methods have
been proposed to approximate the hypergradient (e.g., ES-MAML Song et al.|(2019), HOZOG|Gu
et al.[(2021), and PZOBO Sow et al.| (2022)). However, ES-MAML and HOZOG do not provide any
theoretical convergence guarantee, while PZOBO achieves O (uze’z) to reach an e-stationary point,
where u is the UL problem dimension. Recently, F?SA and F?SA (momentum-based version of
F2SA) Kwon et al.[(2023) have been proposed, which are two first-order methods based on the value-
function-based lower-level problem reformulation. To reach an e-stationary point, F>SA and F?SA
require O (¢7%5) and O (e~2?) iterations, respectively. The work in Chen et al.|(2023a) improves
the convergence rate for F2SA, resulting in a rate of O (6_2 log(1/ e)) Unfortunately, achieving this
rate requires computation of very large batch gradients (depending on solution accuracy). Compared



Under review as a conference paper at ICLR 2026

to/Kwon et al.|(2023)), our proposed SO-Lazy-BiO algorithm strikes a good balance in terms of the
use of second-order information: On one hand, we leverage second-order information to maintain
good convergence performance; on the other hand, we infrequently use second-order information to
significantly reduce the wall-clock time.

@ Other Uses of Infrequent Evaluations: Infrequent Hessian evaluations have also been used
for speeding up second-order methods for single-level optimization [Shamanskii| (1967); |Adler|
et al.| (2020); ILampariello & Sciandrone| (2001); Wang et al.| (2006); |[Fan| (2013)); Doikov et al.
(2023). However, in bilevel optimization, the Hessian information necessarily emerges due to the
hypergradient computation, rather than as a “second-order” option in single-level optimization.
Importantly, the multiplicative structure of the JVP coupled with the HVP in bilevel optimization
further increases the complexity of the analysis. Moreover, to the best of our knowledge, we are
the first to incorporate infrequent Hessian/Jacobian evaluations into algorithm design to reduce
computation cost in bilevel optimization.

3 PRELIMINARIES

In this section, we provide some preliminaries for solving Problem (1)) and highlight the challenges
that arise from using second-order information.

1) Hessian-Inverse Approximation: As mentioned earlier, using the implicit function theo-
rem Rudin et al.{(1976), the hypergradient of the UL objective £(-) can be computed as: V{(x) =
Vo 5,y (%)) — VZ,9(x,y" (x))[V2,9(x, y*(x))] "1V f(x,y"(x)). Instead of computing the
Hessian inverse explicitly, there exist different ways to approximate the Hessian inverse or HVPs in
bilevel optimization, such as conjugate gradient (CG) |Pedregosal (2016)), Neumann series (Ghadimi
& Wang| (2018)), and SGD methods. In this paper, we use SGD to efficiently estimate the Hessian-

inverse vector products (HIVP) ([V3, g (x,y*(x))] “'V, f (x,y*(x))), which finds the minimizer
of a quadratic function by solving a linear system as:

min .y (), 8) 2 557 V06, y" (0)s+ 2 Vy ey (). )
zER! 2

The admitted unique minimizer z* (x, y*(x)) of Eq. (3) can then be utilized to compute the hypergra-

dient estimate as V/(x) = Vy f (x,y*(x))+ V2,9 (X,y*(x)) z* (x,y*(x)). Since it is challenging

to obtain y* (x) and z* (x,y*(x)) in closed form, it is natural to consider their approximations.

Specifically, let y and z be some approximations of y* (x) and z* (x, y*(x)), respectively. Then, we

have the approximation for V/(x) defined as follows:

Vf(x,¥.2) = Vxf (x,¥) + Vay9 (X, ) Z. 4

Since Problem (/1)) can potentially be a large-scale stochastic optimization problem, computing a full
gradient approximation in Eq. () can be computationally expensive. To address this challenge, a com-
mon approach for evaluating Eq. (@) is to build a stochastic gradient estimator. Define stochastic ap-

proximations as f (x,y; DY) £ 157 Yecps f(x,y:€) and g (x,y: D) £ 1557 Y ceps 9(X,¥3 )
where D/ and DY are the batches of independent and identically distributed samples with sizes
|Df } > 1land |DY| > 1, respectively. Then, a stochastic estimator of Eq. can be computed as:

Vf(X,y7Z;'Df):vxf (X,Y,DfT)+v)2(yg (X7y;D9my) Z,

where D/ £ {Df= D9=v}. Here, for simplicity, we slightly abuse the notations y and z as y and z
in the above equation and the rest of the paper, as long as there is no confusion from the context.

2) Challenges due to Second-Order Information: Although HIVP can be relatively more efficiently
approximated by solving a quadratic optimization problem and the Jacobian can be evaluated via
JVP, several challenges remain: i) The approximation error in y* (x) propagates and exacerbates the
error in approximating z* (x, y* (x)) due to the dependency of the latter on the former. ii) While
HVPs and JVPs have been introduced to reduce complexity, their practical implementation still
demands considerable computational resources, particularly in resource-constrained environments
or when deploying large-scale models such as LLMs. iii) Achieving an accurate approximation of
HIVP requires multiple iterations to solve Problem (3), which further increases computational cost,
especially due to repeated HVP evaluations.



Under review as a conference paper at ICLR 2026

4 THE SO-Lazy-BiO ALGORITHM

In this section, we propose SO-Lazy-BiO to solve the bilevel optimization problem in Eq. (I). Our
goal is to reduce the computation of second-order information (HVPs/JVPs), and the key idea is to
update the second-order information periodically on a subset of the entire training iterations while
using stale second-order information in the remaining iterations.

We illustrate SO-Lazy—BiO in Algorithm No- Algorithm 1 The SO—Lazy—BiO Algorithm.
tably, SO-Lazy-BiO uses a single-loop structure

and constructs the iterates of x;, y; and z;, where
the iteration counter £ runs from 0 to 7" — 1. Note
that y; and z, keep track of the quantities y* (x;)
and z* (x¢,y* (x¢)). The algorithm updates x;

and y; using the stochastic gradient estimators h{

Input: Initial parameters Xo, yo, Zo, stepsizes
{au, Be, e}y » momentum coefficient {7u¢}, ',
and flag Lazy_JVP € {True, False}
fort=0toT — 1do
if t mod N = 0 then
Sample data batches D7*?, and th Y

and h{ defined as:
W = VS (xuysD) +vi, )

Compute the gradient estimate h{ using
Update Zit1 = 2t — "}/zhg

else
h = - DI 6 Ziy1 = Zt > Reuse stale HVP
t = Vyg (xt,y,D}), (6) end if
where v, denotes the JVP and it is updated lazily if Lazy_JVP == True then
every N iterations (Option I in SO-Lazy-BiO): Coomooc Option I: Lazy JVP - - - - - - >

7 if t mod N = 0 then
Sample data batches DY
Compute the JVP using

2 s
Vi = vxyg (xt,yt;Df '/) Zy.
Every N iterations, variable z; in (7) is updated

lazily using a stochastic gradient estimator h{: else
Vi = Vi_1 > Reuse stale JVP
hi :viyg(xt Y6;D{ )2tV f (Xe, v %thy )-(®) elseend if

Note that, compared to h{ and h¢, only h? and <----Option II: Regular JVP - - - ->

v; contain the HVP and JVP, respectively, and are Sample data batches DY

computed infrequently in a lazy fashion after ev- Compute the JVP using

ery N iterations. Since z; is the HVP estimator, end if ¢

reducing the frequency of JVP computations also Sample data batches D and D; Z )
inherently reduces the frequency of HVP computa- Sor;lzute the g_radlegt ;sz;nate h{ using (6)
tions. Therefore, the reductions in computational paate yuar =y = Pulti P

cost for JVPs and HVPs are intrinsically coupled. Compute the gradient estimate /; fusmg
In addition, N needs to be appropriately chosen Compute the momentum-based h{ using (9
with a tolerable approximation error. If IV is too Update X;+1 = Xt — ash;

large, the error of the second-order information end for

approximation could increase too dramatically, thus decaying the performance of SO-Lazy-BiO.

Before updating the UL parameter x, we integrate a standard momentum approach into the update
step (see Section [5.3]for a discussion of its necessity), defined as follows:

htor = pehl + (1= pe) B, ©
where p; € [0, 1] is the momentum coefficient. Setting iy = 1 recovers the standard SGD update.

To balance the trade-off between reducing the overall computational cost in bilevel optimization
and controlling the error introduced by stale HVP and JVP, we also consider a special case of
the SO-Lazy-BiO framework, which is shown as Option II in SO-Lazy-BiO and referred to as
SO-Lazy-BiO-II. In SO-Lazy-BiO-Il, only the computation of h{, which involves the HVP, is
performed infrequently once every N iterations, while the JVP is computed at every iteration.
Although SO-Lazy-BiO-II contains additional computation from the non-lazy JVP evaluations, this
reduced laziness may actually improve overall implementation wall-clock time compared to Option I
in SO-Lazy-BiO, due to a trade-off between per-iteration cost and overall convergence speed.

It is worth noting that while most existing bilevel algorithms compute only one single JVP per
iteration, they typically require multiple HVP computations in each iteration Arbel & Mairal| (2022);
Ji et al.|(2021), even in some single-loop bilevel algorithms (e.g., SUSTAIN Khanduri et al.| (2021b),
TTSA [Hong et al.| (2020), BSA |Ghadimi & Wang| (2018)), and ALSET |Chen et al.| (2021))). In
contrast, our proposed SO-Lazy-BiO achieves a two-fold reduction in computational costs: (1)



Under review as a conference paper at ICLR 2026

A single-step SGD to estimate each Hessian-inverse vector product, thereby eliminating the need
for multiple HVP computations per approximation; and (2) A lazy update strategy that evaluates
second-order information (HVPs/JVPs) infrequently. Combined together, these two new algorithmic
techniques lead to significant overall computational savings and reduced implementation wall-clock
time compared to existing non-lazy methods.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we first focus on conduct the theoretical convergence analysis for the most-lazy
scenario within the SO-Lazy-BiO framework, specifically Option I (referred to as SO-Lazy-BiO-I),
for solving the bilevel optimization problem in (I). We relegate the theoretical convergence analysis
of Option II in the SO-Lazy-BiO framework to Appendix G} since the proofs for the two options are
similar and Option II can be viewed as a special case of Option I, where no errors are introduced
by JVP updates. We note that both Option I and Option II share the same convergence guarantees.
Note that, although SO-Lazy-BiO executes faster per iteration, we have a noisier hypergradient due
to the use of stale second-order information, particularly in SO-Lazy-BiO-I| where both stale Hessian
and stale Jacobian evaluations are used. As a result, it remains unclear whether SO-Lazy-BiO-I can
converge and, if yes, what theoretical convergence rate (i.e., iteration complexity) it will achieve.
Intuitively, due to the lazy second-order information updates, one can expect that the convergence rate
of SO-Lazy-BiO-I cannot outperform its non-lazy counterpart. Surprisingly, in this paper, we show
that SO-Lazy-BiO-1 achieves a convergence rate comparable to that of its non-lazy counterpart. This,
together with significantly fewer HVP/JVP computations and much lower per-iteration wall-clock
time, implies that SO-Lazy-BiO-| will enjoy a much faster speed in terms of wall-clock time. This
will also be verified by our experiments in Section [6]

We note that the convergence analysis for SO-Lazy-BiO-I is highly non-trivial due to the following
technical challenges: 1) The use of lazy Hessian and Jacobian evaluations increases the error of
the stochastic gradient estimator h,{ for the upper-level function; 2) The “multiplicative” structure
of v; in SO-Lazy-BiO-I, which couples the JVP with the HVP, significantly complicates the error
analysis introduced by the lazy computations; 3) Due to the hierarchical and coupled structure of
bilevel optimization problems, the error resulting from the stochastic gradient estimator hf with stale
Hessian and Jacobian information further propagates to and increases the approximation error of
y* (x) and the approximation error of z* (x,y* (x)). What is even worse is that the approximation
error in y* (x) further exacerbates the error in z* (x, y* (x)), since z* (x,y* (x)) is also associated
with y* (x). All the complex couplings of laziness-induced errors above and the complications
associated with these approximation errors are unseen in bilevel optimization algorithm analysis,
which significantly increases the difficulty of analyzing the convergence of SO-Lazy-BiO.

5.1 ASSUMPTIONS

We first state a set of assumptions that are needed to establish the convergence of SO-Lazy-BiO-l:
Assumption 5.1 (UL Objective). f (x,y) satisfies: /) The map y — Vi f(x,y) is Lipschitz
Vx € R* with Ly, > 0, and the map (x,y) — Vy f(x,y) is Lipschitz with Ly > 0. 2) For all
x € R*, we have ||V, f (x,y*(x))|| < By, for some By, > 0.

Assumption 5.2 (LL Objective). g (x,y) satisfies: /) For any x € R*, y — g(x,y) is pq-strongly
convex for some y, > 0. 2) The map y — Vyg(x,y) is Lipschitz Vx € R* with L, > 0, and the
maps (x,y) — Vi, g(x,y) and (x,y) — V2 g(x,y) are Lipschitz with Ly, > 0and Ly, >0,
resp. 3) Forall (x,y) € R* x R', we have | V2, g (x,y)|| < By,, for some By, > 0.

Note that, aside from the boundedness assumption on Vy, f (x,y*(x)), all other assumptions are
standard in the analysis of bilevel optimization problems (e.g., (Ghadimi & Wang| (2018)); Hong
et al.| (2020); Khanduri et al.| (2021b)); [Liu et al.| (2022b)); Q1u et al.|(2022)). Our analysis assumes
the boundedness of Vy, f (x,y*(x)), which differs from the more commonly used assumption on
Vy f (x,y) in previous works and is comparatively more relaxed.

Next, for the stochastic gradient estimators V f(x, y, z; Dfz, D9%+) and Vy g(x,y; D% ), we make
the following typical assumption in stochastic optimization analysis:

Assumption 5.3 (Stochastic Gradients). For any (x,y) € R* x R’ and data batch D=, Dfs,
DYv, D9=v and DIvv, the gradient estimates Vy f(x,y; D/), Vy f(x,y; D/v), Vyg(x,y; D),



Under review as a conference paper at ICLR 2026

V2,9(x,y; D9%v) and V3 g(x,y; D) are unbiased and have bounded variances:
E[|Vxf(x,y; D) = Vy f(x,¥)IIP] < Jff, E[|Vyf(x,y; D7) = Vy f(x,¥)|°] < Ui/
E[[[Vyg(x,y;D%) = Vyg(x,¥)II’) < o7, El|Vayg(x,y; D%) = Vi g(x,y)[?] <
E[||V3yg(x,y; D) = Vi g(x,y)|I’] < o}
Lastly, we define e-stationarity as a performance measure for an algorithm for solving Problem (T)):

97‘1/

Jyy*

Definition 5.4 (e-Stationarity). X is an e-stationary solution if E[ || V¢ x)|? | <€, where x is the
output of a stochastic algorithm, and the expectation is taken over all randomness of the algorithm.

5.2 MAIN CONVERGENCE RESULTS

We now state the main convergence result of the “most-lazy” scenario of the proposed
SO-Lazy-BiO framework, i.e., SO-Lazy-BiO-I, for non-convex ¢ (x) in Theorem

Theorem 5.5 (Convergence Rate of SO-Lazy-BiO-l). Under Assumptions choose step-
sizesap = a = O((VNT)™Y), B = B = O(VNT)™), 4 = v = OVNKT)™'), and the
momentum coefficient as ji; = p = O((VNT)™Y) forallt = 0,...,T — 1. Then, the iterates
generated by SO-Lazy-BiO-I satisfy:

\/7A0 Ugy £ 2 @ 2 Ugly U.?‘I‘
TZE{‘W(’“)” | =077+ v+ Troh ok et )

Where Ao = (U(x0) = €*) + |lyo — y* (x0)[I* + l|20 — z* (%0, y*(x0))]*.

The proof of Theorem [5.5]is included in Appendix [E] Theorem [5.5] establishes the convergence
of SO-Lazy-BiO-| under the most general and most lazy settings, where the function £(-) is non-
convex and both HVP and JVP are stale. The result characterizes the effect of different parameters
on the convergence of SO-Lazy-BiO-I. Specifically, as N increases, the performance in terms of
iteration complexity of SO-Lazy-BiO-I degrades. This is unsurprising since more stale second-order
information is expected to slow the convergence. Interestingly, under an appropriate N -value, the
N-dependent slowdown effect in SO-Lazy-BiO-| can be offset by skipping second-order information
computations, allowing SO-Lazy-BiO-I to run even faster than non-lazy approaches in terms of wall-
clock time. The computation complexity of SO-Lazy-BiO-I follows immediately from Theorem 5.5}
Corollary 5.6 (Computation Complexity of SO-Lazy-BiO-l). Under the setting of Theorem

choose the batch size as O(1). Then, SO-Lazy-BiO-I requires O(Ne~?) partial gradient evaluations
and O(e=2) second-order information evaluations to reach an e-stationary solution.

We note that the computation complexity of second-order information evaluations in Corollary [5.6]is
lower than that of standard non-lazy bilevel algorithms, which require multiple HVP computations in
each iteration, such as AmIGO |Arbel & Mairal| (2022), stocBiO[J1 et al.| (2021, ALSET |Chen et al.
(2021), and BSA |Ghadimi & Wang|(2018). Specifically, these algorithms incur a total of O(Ke~?)
HVP computations, where K denotes the number of HVP evaluations per iteration, whereas our
proposed SO-Lazy-BiO-I algorithm requires only O(e~2) HVP computations. In addition, our
proposed SO-Lazy-BiO-I converges significantly faster than standard non-lazy bilevel algorithms in
terms of wall-clock time, further demonstrating the effectiveness of SO-Lazy-BiO-I.

5.3 PERFORMANCE WITHOUT THE MOMENTUM

To show the benefit of incorporating the momentum information in the updates of the upper-level pa-
rameter x, we conduct a theoretical analysis of the vanilla SGD-based SO-Lazy-BiO-I, where the mo-
mentum coefficient is set to 1, = 1. We refer to this variant of SO-Lazy-BiO as SO-Lazy-BiO-SGD.

For a fair comparison, the convergence analysis is conducted under the same assumptions as
SO-Lazy-BiO-l, and the main convergence result for SO-Lazy-BiO-SGD is presented in Theorem[5.7]

Theorem 5.7 (Convergence Rate of SO-Lazy-BiO-SGD). Under Assumptions choose con-
stant step-sizes oy = a =0 (1), B ==01),and vy =v=O(N) forallt =0,1,...,T — 1.
Then, the zterates generated by SO-Lazy-BiO-SGD satisfy:

—ZE[HVK x¢)|| ] <+N0 JrNU Ton +N012”y+0§my+0)2‘x>3

where Ao = (£(x0) — £*) + [lyo — y* (x0)[|* + [1z0 — 2" (%0, ¥ (x0))I|*.



Under review as a conference paper at ICLR 2026

o\ AmIGO

N\
\
\ \ \ —— SOBA
X . —— MA-SOBA
\‘w\\ w.‘\ oy,
\

5.
— SO-Lazy-BiO-II
— SO-Lazy-BiO-1

_‘\ —— SO-Lazy-BiO-1 N —— SO-Lazy-BiO-1
125 \ —— SO-Lazy-BIO-II 25 ™\ — s
\ \ SO-Lazy-BIO-II
0 \ z
\
\

Validation Loss

50 200 250 300 0 0 100 200
Run 5) Number of (HVP+JVP) Computat

2 0 5000 10000 I 0
Run (s) Number of (HVP+JVP) Computationss

(a) Wall-clock time (b) HVP+JVP evaluations (a) Wall-clock time (b) HVP+JVP evaluations

Figure 1: Validation loss comparison for data Figure 2: Validation loss comparison for data
weighting in RLHF reward model training. weighting in LLM alignment.

The proof of Theorem is provided in Appendix [ The computation complexity of
SO-Lazy-BiO-SGD immediately follows from Theorem[5.7;

Corollary 5.8 (Computation Complexity of SO-Lazy-BiO-SGD). Under the setting of Theo-
rem choose |DJ=|,|D9v| = O (¢7'), and |D9|,|D/s|,|D9w| = © (Ne'). Then,
SO-Lazy-BiO requires O(Ne~2) partial gradient evaluations and O(e~2) second-order information
evaluations to reach an e-stationary point.

Both SO-Lazy-BiO-land SO-Lazy-BiO-SGD exhibit the same computation complexity in terms
of partial gradient evaluations and second-order information evaluations, with the latter being
lower than that of non-lazy bilevel algorithms that perform multiple HVP evaluations per iter-
ation. This confirms the effectiveness of our proposed framework, as both SO-Lazy-BiO-I and
SO-Lazy-BiO-SGD leverage lazy second-order information evaluations. Moreover, our proposed
framework SO-Lazy-BiO achieves substantially faster convergence in terms of wall-clock time com-
pared to standard non-lazy bilevel algorithms, further validating the efficiency of SO-Lazy-BiO.
However, unlike SO-Lazy-BiO-I, which requires a batch size of O (1), SO-Lazy-BiO-SGD requires
significantly larger batch sizes. This highlights the benefits of incorporating momentum into the
updates of the upper-level parameter x.

6 NUMERICAL EXPERIMENTS

In this section, we verify the performance of SO-Lazy-BiO with three complex bilevel optimization
tasks: 1) data weighting for RLHF |Ouyang et al.|(2022) reward model training; 2) data weighting for
LLM alignment; and 3) deep hyper-representation with ResNet network. Due to space limitations,
some experimental details and additional results are relegated to Appendix [C|

We compare our proposed SO-Lazy-BiO with standard second-order stochastic bilevel algorithms:
AmIGO |Arbel & Mairal| (2022), SOBA |Dagréou et al.| (2022), and MA-SOBA |Chen et al.[(2024)). Es-
pecially for Tasks 1 and 3, we also compare SO-Lazy-BiO with two fully first-order (Hessian/Jacobian-
free) stochastic bilevel algorithms F2SA |Kwon et al. (2023)) and FSA Kwon et al.[(2023) to assess
the importance of second-order information during training.

Task 1) Data weighting for RLHF reward model training: The goal of data weighting is to
determine optimal sampling weights on training data that maximize validation performance. We train
the reward model on the HelpSteer dataset|Wang et al.| (2023), where each prompt-response pair is
labeled according to different score criteria.

As shown in Fig.[lal despite having more errors due to infrequent HVP and/or JVP computations,
SO-Lazy-BiO-I converges the fastest in terms of wall-clock time among all algorithms, including
two fully first-order algorithms F2SA and F3SA, and achieves the lowest validation loss, which
corresponds to our UL objective, within the same runtime. This is attributed to infrequent second-
order computations of SO-Lazy-BiO-I, which allows the shortest per-iteration time and consequently
the ability to perform more updates for a given runtime. In addition, leveraging second-order
information introduces fewer errors compared to fully first-order algorithms.

Also, Fig.[Tb|shows that the convergence speed with respect to the cumulative number of HVP and JVP
evaluations for SO-Lazy-BiO-I is much faster compared to all other algorithms. Table|[l|also demon-
strates that, to reach the same validation loss, both SO-Lazy-BiO-I and SO-Lazy-BiO-Il require 600
HVP computations at most, which is at least 3.72x fewer than those required by other non-lazy meth-
ods. In addition, compared to SO-Lazy-BiO-Il, the infrequent JVP design in SO-Lazy-BiO-I reduces
JVP computations by a factor of 5, resulting in further reduced running time.



Under review as a conference paper at ICLR 2026

Task 2) Data weighting for LLM alignment: In this task, we aim to determine weights on dataset
used during LLM alignment. We use Llama-3.2-1B-Instruct|Meta (2024) as the base model and align
it on HH-RLHF dataset Bai et al.|(2022), where each sample is labeled as either chosen or rejected.

In Figs. 2a] and we observe the same performance trend as in Task 1, with SO-Lazy-BiO-I
converging the fastest. The performance gaps across the algorithms, however, become more noticeable
than in Task 1. This is because, as the LLM model size increases, the computational savings from
infrequent second-order evaluations become more significant. These results verify that our algorithm
provides greater computational advantages for large-scale problems.

Task 3) Deep hyper-representation with ResNet network: We conduct experiments on a deep
hyper-representation task |Sow et al.|(2022) with the ResNet-20 model |He et al.[{(2016) on CIFAR-10
dataset Krizhevsky et al.|(2009), which aims to classify CIFAR-10 images.

As shown in Fig. [3a] the validation loss for
both SO-Lazy-BiO-I and SO-Lazy-BiO-Il is
comparable to those of second-order base-
line algorithms, and is notably lower

Table 1: Number of HVP/JVP computations and run-
time required by various algorithms to achieve the
same validation loss (averaged over 5 repetitions).

than those of the fully first-order base- ALGORITHM I#I\(;IF) ?\(7)15 RUNTIME
line methods. The superior performance (8)
. . AMIGO 12,195 12,195| 110.28
of SO-Lazy-BiO-l, SO-Lazy-BiO-Il, and SOBA 2931 2650 | 4992
other sec'ond—orde'r methodszcompare(é‘l 0 Task1| MA-SOBA 2: 402 2: 402 | 61.07
the “Hessian/Jacobian-free” F*SA and F°SA SO-Lazy-BiO-I | 526 526 26.64
highlights the benefits of Hessian/Jacobian SO-Lazy-BiO-II| 600 3,000 11.99
information in bilevel optimization. With- AMIGO 170 34 131.71
out them, both the convergence speed and SOBA 176 176 192.49
validation loss would degrade. Moreover, TASK2| MA-SOBA 176 176 194.42
SO-Lazy-BiO-Il converges fastest in terms SO-Lazy-BiO-I | 35 35 66.89
of wall-clock time among all baselines. SO-Lazy-BiO-II| 35 173 106.85
Fig. Bb] demonstrates that SO-Lazy-BiO-I| Asl\ggf 2(1)513 gg? }gggg
whiowes ejutes omergencsmong all 15| wXSowa | | IS
. SO-Lazy-BiO-I | 353 353 188.73
ber of HVP and JVP computations. Further- SO-Lazy-BiO-1I 116 232 63.93

more, as shown in Table[T] to reach the same
validation loss, SO-Lazy-BiO-Il requires the fewest HVP computations and JVP computations. This
significantly reduces computational costs and wall-clock running time.

It is not surprising that SO-Lazy-BiO-I ex- "
hibits longer wall-clock time, as infrequent N
JVP evaluations introduce more error com- g
pared to SO-Lazy-BiO-Il, potentially requir- z

ing more iterations to reach convergence. -
As a result, the cumulative number of HVP 0s
and JVP computations increases, as shown
in Fig. @ Nevertheless, as demonstrated
in Table |1} despite requiring more itera-
tions, SO-Lazy-BiO-I still requires fewer
HVP evaluations to reach the same validation loss compared to the non-lazy algorithms.

-

—— SO-Lazy-BiO-1
—— SO-Lazy-BiO-Il
AmIGO

—— SO-Lazy-BiO-1
—— SO-Lazy-BiO-II
AmIGO

—— SOBA
—— MA-SOBA

o

—— SOBA
25 —— MA-SOBA
\(\ F2SA

ST :

50 100 150 200 250 300
Running Time (s)

(a) Wall-clock time

on L

£20

i

Validation Loss

0 250 500 730 1000 1250 1500 1750 2000
Number of (HVP+JVP) Computations

(b) HVP+JVP evaluations

Figure 3: Validation loss for deep hyper-representation.

7 CONCLUSION

In this paper, we proposed the SO-Lazy-BiO algorithmic framework for solving bilevel optimiza-
tion problems. Compared to existing works, SO-Lazy-BiO reduces the evaluations of second-order
information (Hessian/Jacobian-vector products) by updating them periodically and less frequently. Al-
though SO-Lazy-BiO uses stale second-order information that introduce additional errors, our theoreti-
cal analysis demonstrated that SO-Lazy-BiO not only surprisingly enjoys convergence rate guarantees
comparable to those of state-of-the-art (SOTA) non-lazy bilevel methods, but also achieves a much
faster wall-clock time performance. Specifically, to reach an e-stationary point, SO-Lazy-BiO requires
O(e~?2) second-order information evaluations, which is fewer than those required by non-lazy bilevel
algorithms that perform multiple HVP evaluations per iteration. We validated the effectiveness and
efficiency of our proposed SO-Lazy-BiO through experiments on multiple bilevel optimization tasks.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that the ICLR Code of Ethics has been reviewed and that this work fully adheres to it.
It involves no human subjects, sensitive data, or foreseeable risks. There are no ethical, legal, or
conflict-of-interest concerns.

REPRODUCIBILITY STATEMENT

We confirm the reproducibility of this work. Specifically, for the theoretical results, we state all
assumptions in Section[5]and provide detailed proofs in Appendix For the experimental results,
we include the source code in the supplementary material and describe implementation details in

Appendix [C]

REFERENCES

Ilan Adler, Zhiyue T Hu, and Tianyi Lin. New proximal newton-type methods for convex optimization.
In 2020 59th IEEE Conference on Decision and Control (CDC), pp. 4828-4835. IEEE, 2020.

Gemayqzel Bouza Allende and Georg Still. Solving bilevel programs with the kkt-approach. Mathe-
matical programming, 138(1):309-332, 2013.

G Anandalingam and DJ White. A solution method for the linear static stackelberg problem using
penalty functions. IEEE Transactions on automatic control, 35(10):1170-1173, 1990.

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. arXiv preprint
arXiv:1810.09502, 2018.

Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel optimization.
In International Conference on Learning Representations, 2022.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of
bilevel programming in hyperparameter optimization. Advances in neural information processing
systems, 34:4529-4541, 2021.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
constraints. Operations Research, 21(1):37-44, 1973.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jaxk

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for finding
stationary points in bilevel optimization. arXiv preprint arXiv:2306.14853,2023a.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023b.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems, 34:
25294-25307, 2021.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for stochastic

bilevel optimization under relaxed smoothness conditions. Journal of Machine Learning Research,
25(151):1-51, 2024.

10


http://github.com/google/jax

Under review as a conference paper at ICLR 2026

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. arXiv preprint
arXiv:2201.13409, 2022.

Stephan Dempe and Jonathan F Bard. Bundle trust-region algorithm for bilinear bilevel programming.
Journal of Optimization Theory and Applications, 110(2):265-288, 2001.

Mucong Ding, Souradip Chakraborty, Vibhu Agrawal, Zora Che, Alec Koppel, Mengdi Wang, Amrit
Bedi, and Furong Huang. Sail: Self-improving efficient online alignment of large language models.
arXiv preprint arXiv:2406.15567, 2024.

Nikita Doikov, Martin Jaggi, et al. Second-order optimization with lazy hessians. In International
Conference on Machine Learning, pp. 8138-8161. PMLR, 2023.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318-326. PMLR, 2012.

Bothina El-Sobky and Yousria Abo-Elnaga. A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem. Journal of Computational and Applied Mathematics, 340:
360-374, 2018.

James E Falk and Jiming Liu. On bilevel programming, part i: general nonlinear cases. Mathematical
Programming, 70(1):47-72, 1995.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-based

model-agnostic meta-learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1082-1092. PMLR, 2020.

Jinyan Fan. A shamanskii-like levenberg-marquardt method for nonlinear equations. Computational
Optimization and Applications, 56(1):63-80, 2013.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126-1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp- 1165-1173. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pp. 1568-1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration com-
plexity of hypergradient computation. In International Conference on Machine Learning, pp.
3748-3758. PMLR, 2020.

Bin Gu, Guodong Liu, Yanfu Zhang, Xiang Geng, and Heng Huang. Optimizing large-scale
hyperparameters via automated learning algorithm. arXiv preprint arXiv:2102.09026, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 770-778, 2016.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing, 2021.

11



Under review as a conference paper at ICLR 2026

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170,
2020.

Yibo Hu, Xiang Wu, and Ran He. Tf-nas: Rethinking three search freedoms of latency-constrained
differentiable neural architecture search. In European Conference on Computer Vision, pp. 123—139.
Springer, 2020.

Kaiyi Ji and Yingbin Liang. Lower bounds and accelerated algorithms for bilevel optimization. arXiv
preprint arXiv:2102.03926, 2021.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning with
task-specific adaptation over partial parameters. Advances in Neural Information Processing
Systems, 33:11490-11500, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International Conference on Machine Learning, pp. 4882-4892. PMLR, 2021.

Yang Jiao, Xiaodong Wang, and Kai Yang. Pr-attack: Coordinated prompt-rag attacks on
retrieval-augmented generation in large language models via bilevel optimization. arXiv preprint
arXiv:2504.07717, 2025.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
momentum-assisted single-timescale stochastic approximation algorithm for bilevel optimization.
arXiv preprint arXiv:2102.07367v1, 2021a.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
Neural Information Processing Systems, 34:30271-30283, 2021b.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083—
18113. PMLR, 2023.

Francesco Lampariello and Marco Sciandrone. Global convergence technique for the newton method
with periodic hessian evaluation. Journal of optimization theory and applications, 111:341-358,
2001.

Bruno Lecouat, Jean Ponce, and Julien Mairal. Designing and learning trainable priors with non-
cooperative games. 2020a.

Bruno Lecouat, Jean Ponce, and Julien Mairal. A flexible framework for designing trainable priors
with adaptive smoothing and game encoding. Advances in Neural Information Processing Systems,
33:15664-15675, 2020b.

Jiaxiang Li, Siliang Zeng, Hoi To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Getting
more juice out of the SFT data: Reward learning from human demonstration improves SFT for
LLM alignment. In ICML 2024 Workshop on Theoretical Foundations of Foundation Models,
2024.

Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou Huang, and
Shenghua Gao. Towards fast adaptation of neural architectures with meta learning. In International
Conference on Learning Representations, 2019.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, and
Richard Zemel. Reviving and improving recurrent back-propagation. In International Conference
on Machine Learning, pp. 3082-3091. PMLR, 2018.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in Neural Information Processing Systems, 35:
17248-17262, 2022a.

12



Under review as a conference paper at ICLR 2026

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based
interior-point method for non-convex bi-level optimization. In International Conference on
Machine Learning, pp. 6882-6892. PMLR, 2021.

Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. Interact: achieving low sample
and communication complexities in decentralized bilevel learning over networks. In Proceedings
of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, pp. 61-70, 2022b.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540-1552. PMLR, 2020.

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions. arXiv
preprint arXiv:1903.03088, 2019.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pp. 2113-2122.
PMLR, 2015.

Meta. meta-llama/llama-3.2-1b-instruct, 2024. URL https://huggingface.co/
meta-llama/Llama-3.2-1B-Instructl

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow

instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022.

Rui Pan, Jipeng Zhang, Xingyuan Pan, Renjie Pi, Xiaoyu Wang, and Tong Zhang. Scalebio: Scalable
bilevel optimization for llm data reweighting. arXiv preprint arXiv:2406.19976, 2024.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pp. 737-746. PMLR, 2016.

Peiwen Qiu, Yining Li, Zhuqing Liu, Prashant Khanduri, Jia Liu, Ness B Shroff, Elizabeth Ser-
ena Bentley, and Kurt Turck. Diamond: Taming sample and communication complexities in
decentralized bilevel optimization. arXiv preprint arXiv:2212.02376, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit
gradients. Advances in neural information processing systems, 32, 2019.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1723-1732. PMLR, 2019.

VE Shamanskii. A modification of newton’s method. Ukrainian Mathematical Journal, 19(1):
118-122, 1967.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

Han Shen, Pin-Yu Chen, Payel Das, and Tianyi Chen. Seal: Safety-enhanced aligned 1lm fine-tuning
via bilevel data selection. arXiv preprint arXiv:2410.07471, 2024.

13


https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct

Under review as a conference paper at ICLR 2026

Ankur Sinha, Samish Bedi, and Kalyanmoy Deb. Bilevel optimization based on kriging approxima-
tions of lower level optimal value function. In 2018 IEEE congress on evolutionary computation
(CEC), pp. 1-8. IEEE, 2018.

Ankur Sinha, Tharo Soun, and Kalyanmoy Deb. Using karush-kuhn-tucker proximity measure for
solving bilevel optimization problems. Swarm and evolutionary computation, 44:496-510, 2019.

Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski, Aldo Pacchiano, and Yunhao
Tang. Es-maml: Simple hessian-free meta learning. arXiv preprint arXiv:1910.01215, 2019.

Daouda Sow, Kaiyi Ji, and Yingbin Liang. On the convergence theory for hessian-free bilevel
algorithms. Advances in Neural Information Processing Systems, 35:4136—4149, 2022.

Yuesong Tian, Li Shen, Guinan Su, Zhifeng Li, and Wei Liu. Alphagan: Fully differentiable
architecture search for generative adversarial networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(10):6752-6766, 2021.

Luis Vicente, Gilles Savard, and Joaquim Judice. Descent approaches for quadratic bilevel program-
ming. Journal of Optimization theory and applications, 81(2):379-399, 1994.

Zhongping Wan, Lijun Mao, and Guangmin Wang. Estimation of distribution algorithm for a class of
nonlinear bilevel programming problems. Information Sciences, 256:184-196, 2014.

Chang-yu Wang, Yuan-yuan Chen, and Shou-qiang Du. Further insight into the shamanskii modifica-
tion of newton method. Applied mathematics and computation, 180(1):46-52, 2006.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer:
Multi-attribute helpfulness dataset for steerlm, 2023.

Douglas J White and G Anandalingam. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization, 3(4):397-419, 1993.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: LIm local fine-tuning in federated
learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3345-3355, 2024.

Alain B Zemkoho and Shenglong Zhou. Theoretical and numerical comparison of the karush—kuhn—

tucker and value function reformulations in bilevel optimization. Computational Optimization and
Applications, 78(2):625-674, 2021.

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In
International Conference on Machine Learning, pp. 26693-26712. PMLR, 2022.

14



Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to assist with grammar correction and language polishing during the writing process.
They did not contribute to research ideation.

B ADDITIONAL RELATED WORK

Bilevel Optimization: The history of bilevel optimization dates back to 1973 |Bracken & McGill
(1973). Some early attempts for solving bilevel problems include: value function |Liu et al.|(2021);
Sinha et al.| (2018)); Zemkoho & Zhou| (2021)), Karush—Kuhn-Tucker conditions based reformula-
tions |Allende & Still| (2013); Sinha et al.| (2019); Zemkoho & Zhou|(2021)), penalty function White &
/Anandalingam|(1993)); /Anandalingam & White| (1990); |Wan et al.|(2014), approximate descent |[Falk
& Liu| (19935)); [Vicente et al.| (1994)), and trust region methods Dempe & Bard| (2001)); [EI-Sobky &
Abo-Elnagal (2018)). Among these approaches, approximate descent methods have gained promi-
nence recently because of their ease of implementation as well as strong theoretical and empirical
performance in many machine learning applications. Two standard descent-based approaches to
tackle problems of form are iterative differentiation (ITD)|Domke|(2012); Maclaurin et al.| (2015));
Franceschi et al.| (2017} |2018)); Shaban et al.|(2019); |Grazzi et al.[(2020); | MacKay et al.|(2019) and
approximate implicit differentiation (AID) Domke| (2012)); Pedregosal (2016)); |[Liao et al.| (2018));
Ghadimi & Wang| (2018)); |Grazzi et al.| (2020); Lorraine et al.|(2020); |Gould et al.|(2016);|J1 & Liang
(2021); MacKay et al.| (2019); Khanduri et al.|(2021a); Hong et al.| (2020). The basic idea of ITD
is to obtain an approximate hypergradient of the loss function ¢(x) in Eq. (1)) by differentiating the
unrolled iterates of the LL problem. Consequently, ITD-based approaches need to store all the LL
iterates in the memory [Shaban et al.| (2019). On the other hand, AID relies on the implicit function
theorem to compute the implicit gradient of £(x) without the need to maintain the sequence of LL
iterates. Instead of differentiating the iterates of the LL problem, AID computes the implicit gradient
by approximately solving a linear system of equations using HVPs. In this work, we focus on
AID-based approaches for solving stochastic bilevel problems.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we present additional experimental results, which are not included in the main text,
and provide a detailed description of the experimental setup.

C.1 ADDITIONAL EXPERIMENTAL RESULTS

Task 1) Data weighting for RLHF reward model training

We first evaluate the effect of IV on the performance of SO-Lazy-BiO-| algorithm for Task 1. Fig.
captures the effect of different values of N on the performance of SO-Lazy-BiO-I . Note that when
N =1, SO-Lazy-BiO-I becomes a non-lazy algorithm, which is equivalent to SOBA. We observe
that as we increase the value of IV, the execution of the algorithm becomes faster. The fact that the
validation loss remains stable as N increases suggests that the HVP and JVP information evolves
gradually during training. This indicates that using stale HVP and JVP can still yield accurate
approximations of the hypergradient in bilevel optimization.

10 60 80 100 “0
Running Time (s)

(a) Wall-clock time  (b) HVP+JVP evaluations (a) HVP evaluations (b) JVP evaluations

2000 4000 6000 0 1000 2000 3
Number of HVP Computations Number of JVP Con ation:

00 3000 4000 5000 GOOD

Figure 4: Validation loss comparison with dif- Figure 5: Validation loss comparison with dif-
ferent values of IV for data weighting in RLHF ferent bilevel algorithms for data weighting in
reward model training (Task 1). RLHF reward model training (Task 1).

15



Under review as a conference paper at ICLR 2026

— SO-Lazy-BiO-T AmIGO
— SO-Lazy-BIOII — F3SA 5} — SO-Lazy-BIO1 — MASOBA k — SOLazy-BIOT — MASOBA
— soBA — F2sA = — SO-Lazy-BiO-II AmIGO — SO-Lazy-BiO-II AmIGO

— SO-Lazy-BiO-I — MA-SOBA
— S0-Lazy-BiO-II AmIGO
— MA-SOBA — s0BA — s0BA — soBA

50 100 150 200 250 0 2000 1000 6000 ) 1000 2000 3000 4000 5000 6000
mning Time (s) Number of JVP C

5000 10000 15000 20000
Running Time (s Number of HVP Computations f JVP Computations Number of (HVP

>+ JVP) Computationss

(a) Wall-clock time (b) HVP evaluations (c) JVP evaluations (d) HVP+JVP evaluations

Figure 6: Comparison of weights assigned on the dataset corresponding to the validation set for data
weighting in RLHF reward model training (Task 1).

In Fig. 5] we compare the convergence speed of different bilevel optimization algorithms with
respect to the number of HVP and JVP computations. In Fig. [5a] both SO-Lazy-BiO-I and
SO-Lazy-BiO-Il achieve significantly faster convergence due to their infrequent HVP updates. Simi-
larly, Fig. [5b|shows that SO-Lazy-BiO-I converges faster than the other algorithms, which is attributed
to its infrequent JVP computations. Although SO-Lazy-BiO-l and AmIGO demonstrate similar con-
vergence performance, SO-Lazy-BiO-| requires substantially fewer HVP evaluations compared to
AmIGO. These results verify that both HVP and JVP computations significantly impact the over-
all computational cost in bilevel optimization, and thus using stale second-order information can
efficiently accelerate the convergence.

Fig.[6]shows the data weighting result for different bilevel optimization algorithms. All algorithms
successfully assign higher weights to dataset 1, which is labeled using the same score criterion as the
validation set. This validates the effectiveness of bilevel optimization framework when addressing
the data weighting problem for RLHF reward model training. We observe that, while the weight
value from every algorithm converges to 1, our SO-Lazy-BiO-| and SO-Lazy-BiO-1 algorithms show
faster convergence within the same runtime. This confirms the computational efficiency of our
proposed SO-Lazy-BiO framework in bilevel optimization. In addition, by leveraging second-order
information, our SO-Lazy-BiO-I and SO-Lazy-BiO-Il algorithms assign higher weights compared to
the fully first-order methods F?SA and F>SA, thereby validating the effectiveness of our proposed
algorithms.

Task 2) Data weighting for LLM alignment

15.0 150
—— SO-Lazy-BiO-1 \ —— SO-Lazy-BiO-1
—— SO-Lazy-BiO-Il 125 \ —— SO-Lazy-BiO-II
AmlGO % 100 | AmlGO
—— SOBA = \ —— SOBA
—— MA-SOBA : 7 \ —— MA-SOBA
=2 50| |
~ |
251\
y
ety
0.0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of HVP Computations Number of JVP Computations
(a) HVP evaluations (b) JVP evaluations

Figure 7: Validation loss comparison for data weighting in LLM alignment (Task 2).

Fig.[7]compares the convergence speed of various bilevel optimization algorithms with respect to
the number of HVP and JVP computations. As anticipated, we observe a similar trend to that in
Fig.[5} SO-Lazy-BiO-I and SO-Lazy-BiO-II converge faster in terms of HVP computations (Fig.[7al),
while SO-Lazy-BiO-I shows faster convergence with JVP computations (Fig. [/b). However, for
the case of LLM alignment, the performance gap becomes significantly larger. This is because the
optimization variables for this problem are high-dimensional LLM parameters, making the overall
bilevel optimization computationally intensive. Our results indicate that the computational advantage
of our SO-Lazy-BiO algorithm becomes more significant when the scale of the bilevel problem
becomes large.

Task 3) Deep hyper-representation with ResNet network

Fig. [§ illustrates the impact of HVP and JVP evaluations during training. Fig. [8a] shows that
SO-Lazy-BiO-l and SO-Lazy-BiO-II achieve faster convergence in terms of HVP evaluations com-
pared to the other algorithms. Since SO-Lazy-BiO-Il introduces less error than SO-Lazy-BiO-l, it

16



Under review as a conference paper at ICLR 2026

»
>

—— SO-Lazy-BiO-1 —— SO-Lazy-BiO-1

.5 —— SO-Lazy-BiO-II 35 —— SO-Lazy-BiO-II
0 AmIGO g 30 /‘\mlGO
—— SOBA S L —— SOBA

—— MA-SOBA =25 ! —— MA-SOBA

Validation Loss
- = o WL oW
S

= n

S

o
3
5
3

0 200 400 600 800 1000 1200 0 200 400 600 800 1000
Number of HVP Computations Number of JVP Computations

(a) HVP evaluations (b) JVP evaluations
Figure 8: Validation loss comparison for deep hyper-representation (Task 3).

requires fewer iterations to converge and thus significantly fewer HVP evaluations. In Fig. [8b]
we observe that SO-Lazy-BiO-Il also requires fewer JVP computations to converge. Although
SO-Lazy-BiO-1l and AmIGO have comparable JVP computation costs, SO-Lazy-BiO-II achieves this
with substantially fewer HVP evaluations than AmIGO. These findings validate the effectiveness of
our lazy update design in reducing second-order information computation while maintaining strong
convergence performance.

C.2 SPECIFICATIONS OF THE BASELINE ALGORITHMS IN SECTION
In this subsection, we describe the baseline algorithms used in our experiments, which are as follows:

* AmIGO |Arbel & Mairall (2022): A double-loop stochastic AID-based bilevel algorithm that
employs SGD to estimate the Hessian inverse.

* SOBA Dagréou et al.|(2022)): A single-loop stochastic AID-based bilevel algorithm that also uses
SGD to approximate the Hessian inverse.

* MA-SOBA Chen et al.|(2024): A single-loop stochastic AID-based bilevel algorithm that maintains
an additional sequence of averaged hypergradients and uses SGD to estimate the Hessian inverse.

* F2SA |Kwon et al|(2023): A fully first-order (Hessian/Jacobian-free) stochastic bilevel algorithm
with a double-loop structure.

» F3SA Kwon et al.|(2023): A fully first-order stochastic bilevel method that employs momentum-
based SGD to accelerate convergence and operates on a single timescale.

C.3 EXPERIMENTAL DETAILS OF DATA WEIGHTING IN RLHF REWARD MODEL TRAINING

In this subsection, we provide the experimental details for the data weighting task in RLHF reward
model training. In RLHF |Ouyang et al.|(2022), the reward model evaluates LLM prompt-response
pairs using scores based on human-valued criteria like helpfulness, correctness, and verbosity. It is
thus important to train the reward model using a carefully selected dataset. As considered in|Shen
et al.| (2024); Pan et al.|(2024), we determine dataset preferences through numerical weights and
apply bilevel optimization to solve the problem.

Let Nt be the number of datasets available for training. Each dataset 7,,, where n = 1,2,..., N,
contains |7,| samples, and each data sample ¢ = 1,2,...,|7,| consists of a prompt-response
pair {p, i, } and its associated labeled score s, ;. The goal of data weighting is to assign
a weight on each dataset such that validation loss on a dataset V is minimized. We introduce
X = [21,%2,...,7N,]  tobe a vector of raw dataset weights, to which we apply a softmax function
to derive the normalized weights. We also define y € R! as the parameter vector of the reward model
to be trained.

The bilevel optimization problem for our data weighting task in RLHF reward model training is then
formulated as:
V]
min » L(50,i,S0,:; ¥ (x))
x€RNT Py
| 7nl

st y*(x) —argmmz ZE (8nisSni3Y),

T,
yER! n=1 n’ 16 v

17



Under review as a conference paper at ICLR 2026

where L£(8,i, Sn,:;y) is the loss between the true score label s, ; and the predicted score §,, ;
generated by the reward model with parameters y. In the problem, y*(x) represents the optimal
model parameters trained under data weights x.

We configure our experimental setting as follows. We use the HelpSteer datasetWang et al.| (2023))
(CC-by-4.0 License), where each prompt-response pair is labeled according to six different score
criteria. We first filter the dataset to only include samples that have fewer than 1, 000 characters in
total. Then, we select the two most uncorrelated criteria: coherence and complexity, and construct a
mixed training dataset (i.e., N7 = 2). For the validation set, we exclusively label all samples with
coherence scores, from which we expect the data weighting algorithm to assign greater weights on
data labeled with coherence.

We use the DeBERTaV3 tokenizer |He et al.| (2021) (MIT License) to embed the text inputs. For the
reward model, we implement a multi-layer perceptron (MLP) with width 500 and depth 5. The input
dimension is set to 500 to ensure that the tokenized texts are fully covered without truncation. We use
mean squared error (MSE) as our loss function for both the UL and LL problem objectives. For our
proposed SO-Lazy-BiO algorithms, we set N =5, =1x 1076, 3 =5x10"",andy = 5 x 10~ ".
For AmIGO |Arbel & Mairal| (2022), we use 5 update steps for both y and z, with o = 1 X 109,
B=1x10"",andy = 1 x 10~". For both SOBA |Dagréou et al.| (2022) and MA-SOBA |Chen
et al[(2024), weseta = 1 x 1076, 8 = 5 x 1077, v =5x 107", and p = 0.8. For first-order
methods, weset« =5 x 107°, 8 =2 x 1078, and v = 2 x 1078 for F2SA and o = 5 x 1072,
B=1x10"7,y=1x 1077, and s = 0.8 for F3SA. All algorithms are trained with a batch size of
256 and normalized gradient clipping with norm 1000. We run the experiment on NVIDIA H100
NVL GPU.

C.4 EXPERIMENTAL DETAILS OF DATA WEIGHTING IN LLM ALIGNMENT

In this subsection, we describe the experimental setup for the data weighting task in LLM alignment.
Similar to the data weighting task in Section the goal is to find training sample weights that
minimize the validation loss. However, instead of training a reward model on scalar reward labels,
we fine-tune an LLM directly on prompt-response pairs that reflect human preferences.

We assume that each prompt-response sample for training has been categorized into one of Np
distinct groups. Taking the notation from Section[C.3] the bilevel optimization problem for our data
weighting task in LLM alignment is formulated as:

4
min L(T0,i,70,i3 00,5,y (X))
x€RNT =1
Nrp eTn [Tnl
st y*(x) = argmin ; Zﬁ Tris i Pnyis ¥ )

y€eR! n= IZ = lel’n

where L(Ty, i, Tn,i; Pn,i,y) denotes the loss between the true response 7, ; and the response 7, ;
generated by the LLM of parameters y with given prompt p,, ;.

We use Llama-3.2-1B-Instruct [Metal (2024)) (Llama3.2 License) as the base LLM and apply the low-
rank adaptation (LoRA) technique of rank 8. We train the LLM on Anthropic HH-RLHF dataset Bai
et al.[(2022) (MIT License), where each text sample is labeled as either chosen or rejected (i.e.,
Nt = 2). For the validation set, we only include samples that have been chosen. In this setting,
we anticipate that the validation loss can be further minimized when higher weights are assigned
on training samples that have been chosen. We use cross-entropy as our loss function for both
the UL and LL problem objectives. For our proposed SO-Lazy-BiO algorithms, we set N = 5.
For AmIGO |Arbel & Mairal (2022), we set both the number of y and z update steps as 5. For
MA-SOBA |Chen et al.|(2024), we set © = 0.8. All algorithms use the same update parameter values
a=5x10"3,3=2x10"% v =3 x 107, and a batch size of 32. We run the experiment on
NVIDIA H100 NVL GPU.

18



Under review as a conference paper at ICLR 2026

C.5 EXPERIMENTAL DETAILS FOR DEEP HYPER-REPRESENTATION WITH RESNET NETWORK

In this subsection, we show the details of the experiments on deep hyper-representation, which aims
to classify the images. The objective function is given by:

1

min Lo, (') = 5 > L f(Nxi),yi)
val (%:,¥:1)€EDvai
s.t.  w* = argmin Lwf(\x%X),y:),
Eming 30 L(wf (x5

(xi,y:)€Dyr

where (x;,y;) denotes the data samples, D,,q; and Dy, are the validation data and the training data, £
corresponds to the cross-entropy loss, f (\; x;) represents the features extracted from the data sample.
We run the experiments with ResNet-20 network |[He et al.|(2016)) on CIFAT-10 dataset Krizhevsky
et al.| (2009) using a batch size of 128. We treat the last two layers in ResNet-20 as the LL parameters
w with a dimension of 5, 130, and all remaining layers as the UL parameters A with a dimension of
11,168, 832.

We compare SO-Lazy-BiO-1 and SO-Lazy-BiO-Il with AmIGO |Arbel & Mairal| (2022),
SOBA Dagréou et al.|(2022), MA-SOBA |Chen et al.[(2024), F2SA Kwon et al.[(2023) and F°SA [Kwon
et al.[(2023). To ensure the best performance of all the algorithms, we fine-tune the parameters
using grid search with the goal of finding the lowest validation loss, which corresponds to the
upper-level objective. Consequently, for SO-Lazy-BiO-I and SO-Lazy-BiO-Il, we choose the step
sizes to a = 0.005, 8 = 0.05, and v = 0.01, and choose a lazy update frequency of N = 2. The
momentum coefficient is set to ;1 = 0.8 for SO-Lazy-BiO-I and p = 1.0 for SO-Lazy-BiO-Il. For
AmIGO, SOBA, and MA-SOBA, we choose all the step-sizes for updating x, y, and z to 0.01. For
AmIGO, we set the number of y-update iterations to be 8 and the number of z-update iterations to be
2. For MA-SOBA, we choose the momentum coefficient to be 0.9. Following the same notations as
in|Kwon et al.[(2023), for F?SA, we choose the step-sizes & = 0.1 and v = 0.05. We use the step-size
ratio £ = 0.5 and the Lagrangian multiplier A = 0.1. We choose the number of inner-loop iterations
to be 1. For F3SA, we set 0.05 as «, 0.01 as v,0.1as &, 0.5 as A, and 0.9 as momentum-weight 7.
We repeat the experiments 5 times with different random seeds, where the solid line represents the
average validation loss, and the shaded area shows the variance containing the maximum and the
minimum values. We run the deep hyper-representation experiments using NVIDIA GeForce RTX
3060 GPU.

D SUPPORTING LEMMAS

Lemma D.1 (Lemma 2.2 in|Ghadimi & Wang|(2018)). Under Assumptions[5.1|and we have
[VE(x1) = VE(x2)[| < Ly [lx1 — %2, [ly" (x1) —y" (x2)|| < Ly [Ix1 — %2,

forall x,x1,x2 € RY, where the Lipschitz constants above are defined as:

Ly = L,/f + (L}Bgzy/ﬂg) v Ly = Bwa/M!]’
and where L/f =Ly, + (Lfyngy//v‘g) + By, [(ngy/ﬂg) + (LgyyBg:vy /M;)]
Lemma D.2 (Lemma 3.4 in[Dagréou et al.| (2022))). Under Assumptionsand we have
IVf(x,y,2) = VIx)| < Ly (ly =y &) + Iz — 2" (%, y* (X)I]) ,
forallx € R%, andy,z € R, where the Lipschitz constants above are defined as:
Ly =max{Ly, + (Ly,,By,/1tg)  By., } -

Lemma D.3 (Lemma C.1 in |Dagréou et al.| (2022)), Lemma 10 in |Chen et al.| (2024)). Under
Assumptions and VX,X1,X2 € R and y € R', we have

l2* (x1,¥"(x1)) = 2" (%2, y" (%))l < L [Ix1 =2l [|2" (6, ¥)[| < By, /ng;

where L. = (1+ Ly) ((Lg,, By, /12) + Ly, / 1tg)-

Lemma D.4 (Quadratic Problem). For any (x,y) € R* x R, the map z + q(x,y, z) is fhg-strongly
convex and Ly-Lipschitz smooth with constants 15 > 0 and Ly > 0.

19



Under review as a conference paper at ICLR 2026

E THEORETICAL ANALYSIS OF OPTION I IN SO-Lazy-BiO FRAMEWORK

E.1 REFORMULATION OF OPTION I IN ALGORITHM [I]FOR THEORETICAL ANALYSIS

In order to analyze the theoretical performance of SO-Lazy-BiO-I, we reformulate SO-Lazy-BiO-I as
follows. We note that Option I in Algorithm [I]is equivalent to Algorithm [2] when the number of
iterations 7" in Algorithm [2]is set to T'/N.

Algorithm 2 The SO-Lazy-BiO-I Algorithm.

T-1

Input: Initial parameters xJ, y3, zo, stepsizes {aw, Bt, 'yt}z:ol, and momentum coefficient {z1+},

fort =0toT — 1do
Initialize x? = x ; and y? = y¥ 4
Sample data batches D*Y D;¥, and DI
Compute the gradient estimate h{ using h{ = V2, g(x?,y; D" )z + Vy f(x{, ¥ Df”)
Update Zi41 = Zt — ’}/thg
Compute the JVP using v¢ = Viy g (x7,y¢; D{™) z
forn =0to N —1do
Sample data batches Dy, D%, and D{%"
Compute the gradient estimate h{ ,, using hf,n =Vyg (x?7 v Dfn)
Update y} "' = yi' — Bihi,,
Compute the gradient estimate htf,n using hfm = Vif (x?, v D[ﬁl) + vy
Compute the momentum-based E{nﬂ using I_z,{,nle = Mth{,n + (1 — pe) ﬁ{yn
Update x7 1 = xJ' — aJL{m
end for
end for

E.2 DETAILED PROOF OF THEOREM 5.5} NON-CONVEX / (x)

E.2.1 PROOF OF PRELIMINARY LEMMAS

Lemma E.1. Under Assumptions[5.2|and the following inequality holds:
E[[[02,,]°] < 2L2E [Ilys -y () I1P] +202,,

forallt € {0,1,..., T — 1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

Proof. We get

E|[[a]"] = B[ |18, = Vyg (i, 37) + Vyg (o3|
(@)
< E (20, — Vyg (2, y0)||* + 21 9y9 (<2, 37) = Vg (xiy" (i)

®) 2 n * (M2 2
< 2L2E [ly; - y* (x| + 20

gy’

where (a) is because of Vyg (x7',y*(x}")) = 0, and (b) uses Assumptions[5.2]and[5.3] O

E.2.2 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

W W

Lemma E.2. Under Assumptions[5.1|and[5.2} the following inequality holds for successive iterations
of Algorithm 2}

2 27, 2

| ===l ]

E[0(x") — ()]
forallt € {0,1,...,T —1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

< S [1vee] - 58 R |+ S |[ve e AL

20



Under review as a conference paper at ICLR 2026

Proof. We have
E [Z (X;H_l) -/ (X?)]

L
E[(Vﬁ(xt) x|

_ 210 11—
(b)E|: <VE(X?),h,{)n> + OétQ 1 Hh{’n

X;Hrl X?HQ]
]

+ 5w

2 2 ozt Ll

© M ny 2 _ Yt ||zf
Og |- IveeI? - 5

[P

]

where (a) uses the Lipschitz continuous gradients of ¢ (see Lemma[D.I). (b) follows from the update
rule ofAlgorithm () is because of (z,y) = 3 ||z||> + 3 |yl = L = — y|*. O

E.2.3 DESCENT IN THE APPROXIMATION ERROR OF V/ (x)

Lemma E.3. Under Assumptions the approximation error of V{ (x) of Algorithm|2]satisfies
the following inequality:

e [fveteee) #a]

< (- mE|[vee)

2
L[|+ amzze fise - oI + S e - 521°)
]
]

forallt € {0, 1,...,T—1}andn € {0,1,...,N — 1}, where z; = z* (x},y*(x})), and the
expectation is taken over the stochasticity of the algorithm.

n—1
160222, 5200 Y B [Ivi -y ()] + 2 LFalE U 2

n—1 _ 2 n—1 B
+ 84, Bloin 3 ] + etz zzazn Y o,
i =0

+4Blo;  u; +2af pi +16L7  B2Bin’o; ui,

Proof. We have
2
E[Hw(xg“) h{nHH] IEU

<E {(1 = 1)

pehd o+ (1= ) B, — Ve (it M

2

T

2 2 f n o.n 2
+ 1y Hht,n - Vf (Xt 'Yt 7Zt)H

7 f 2 2
ht,n = Vx| + g

Wi, — VP ye, 2)

Vf(xgyg,zt)—vux;lwui(W(xt) Ve (xp)
t

+ i

< [(1 — ) [ — v (xp)

2
12, |V f (X7, y7, 7) —W<x?>||2+f Ve (xp) = Ve (xpt) || }
(a)

2

E[h—ut) e[+ || - Vs )

n * n 2 n n 2
20, L7 (ly7 =y ()| + 2 — 2° (<7, y" (<)) s L2 (B | ]

<E [(1 ||~ v e[+ 0 o - 01 <x?,y?,zt>HQ

* * n * 2 7 2
L 7 =y GO 4l e 7 Oy ()P + L [, ] (10)

21



Under review as a conference paper at ICLR 2026

where (a) utilizes the Lipschitzness of V/ (x) (see Lemma|D.1) and the Lipschitzness of V f (x,y, z)
(see Lemma|D.2).

Then, we bound th _XtH and HYt —YtH

(b) n—1 B 9 N—-1 B 9
S| Catn et <ot X o,
=0 =0

where (a) is because of the update rule of Algorithm (b)isdueto ||z 4 - + z||> < k21| +
e £

Similarly,

||Xt *XtH = O‘t

; (1)

Iy =Y <ﬁtnz ng,|* < BEN Z [ (12)

2
We bound the term E [Hh{n -Vf (x?,yf,zt)H } in Eq. ||

[t -sses st

(a) n ,n = = n n n o n
= E [Hvxf (xt Vi ,Df,n) + V2,9 (x4, y0, D) 2 — Vi f (X7, ¥7) = Viayg (X7 y1) 2

n— V(XY ze)

]
2
<E |: Hvxf (Xtayt aDﬂr) _VXf (X?’y?)

2 aal]* [ Vg (0, ¥2, DE) = V20 (xi' v ]
<E{4||zt|| HV2yg(xt,yt,Dg”’) V2yg(xt7yt H

4zl (| V39 (x,59) = Vg (xiyi)|*] + 203,

(©)
<E [4Hzt” o5, +ALG, zl|* (< = ¢ + [ly7 = ¥?[]) ] +20%,
@ = =
E |4l o2, + 82, ol oin 3[R +8L2 el 620 Y [0, +207,

=0 =0
(©) = =, ,
<E|8L2 B2y ‘ h{ﬂ +16L3L; B2Bin > ||y —y*(Xi)Hﬂ

=0 =0

+4Blo} +20% +16L7 BZfin o, | (13)

where (a) uses the definitions of htf n and Vf (xP y? z;:). (b) utilizes the bounded variance in
Assumption[5.3] (c) uses Assumptions[5.2]and[5.3] (d) follows from Eq. (IT) and (T2), and (e) is due
to ||z¢|| < B. and Lemmal[E-1}

Then, we bound the term E [||zt —z* (x7, y*(x?))”ﬂ in Eq. .

E{llze — 2 (i, (xi))1]

<E {2 2 —z° (x0,y* (x)) ||’

(a)
2 ol (<o) 222t ]

(v)
<E

2 (x{,y" (<) = 2 (v (x)) ]

2|z — 2 (x.y" () |* + 2220 nZHh

1 ; (14)

22



Under review as a conference paper at ICLR 2026

where (a) follows from the Lipschitzness of z* (x, y*(x)) (see Lemma|[D.3)), and (b) uses Eq. (TT).
Combining Eq. (10, (13, and (14) completes the proof of the lemma. O

E.2.4 DESCENT IN THE APPROXIMATION ERROR OF y* (x)

Lemma E.4. Under Assumptions and the approximation error of y* (x) of Algorithm
satisfies the following inequality:

E [yt -y (g )]

< (1-242) B lvp -y G0I7) + 5 Bhoe | AL,

forallt € {0,1,..., T —1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

2
] + 45303

Proof. We have

U|yn+1 y*(X?H)HQ}

(a) ntl o |2 1 * (n+1Y (|2
SE\@L+e) [y -yt D7+ (1 ) Mly" ) —y™ (|
b) n+1 * ny |2 2 n+1 n||2

SE|(4e) [y =y 6 + 1+;'L!k =7

<E[(1+c1 |yt —y* (x?)H +(1+ )L2

2
tn ], 15)

where (a) results from Young’s inequality. (b) is because of the Lipschitzness of y* () (see
Lemma [D.T). (c) follows from the update rule of Algorithm 2]

To bound the first term on the right, we have
E [y -y )]
—E[lly? —y" GO + 82 [ful” = 260 (o v =y ()]
CE [lyr -y GO + 8 17— 268 (Vg (ki ¥2) o yi =y ()]

(b) y * n * n
SE|ly? —y" I+ B2 |1 = 28emy ly? =" I (16)

where (a) results from the unbiasedness of the stochastic gradient hf’n (see Assumption . (b) is
due to p4-strongly convexity of the lower-level function g (x,y) (see Assumption .

By substituting (T6) into (T3], we get

E [yt -y ()]

n * n 2 1
SE (14 (1= 260) IyF — " G114 e) 82 it + (14 2 ) 232

2
t,n

2

@ [ o 1 _
L[ (- 20 Iy v DI+ (14 1 ) L2 AL,

$2(1 4 e) BLYE v GNP+ 21+ en) B0, ]

®) ‘ion 1
SE|(L+e1) (1= Bupg) llyy — y* )|1° + <1 + Cl) Lyoi

2
tn +2(1+c1)5§a§y} :

where (a) uses Lemma and (b) holds due to the choice 3; < 2‘292 .

Letc) = 5 f ggfu and choose §; < z=—. This completes the proof. O

23



Under review as a conference paper at ICLR 2026

E.2.5 DESCENT IN THE APPROXIMATION ERROR OF z* (X, y*(x))

Lemma E.5. Under Assumptions|5.1H5.3} the following inequality of the approximation error of
z* (x,y*(x)) holds for Algorithm|2}

B [Jas — il ]

< (k%)E {Hzﬁztn } +—L NJ:X:;IE Mﬁt{n

forallt € {0,1,..., T —1} and n € {0,1,...,N — 1}, where z; = z* (x},y*(x?)). The
expectation is taken over the stochasticity of the algorithm.

2 B2
fy 2 2 2
] + 160gyy ng Y + 80fy’yt,

Proof. We have

E [Joes — 5]

(@)

[ 1
QB[+ o)z — 212 + (1 n

) 2" (2, 7" (<2, 1)) — 2 (2, 37 ()

Q
[ V)

: * ; 2
SE|(L+ca) e — 2| + (1+ ) L2t = 7| ]
2

© [ 1 N, g2
SE|(1+c) [z — 2] + (1+c) 120N Y AL | (17
2
n=0

where (a) follows from Young’s inequality. (b) is due to the Lipschitzness of z* (-, -) (see Lemma|D.3).
(c) is because of Eq. (TT).

Next, we bound the first term on the right:
)2
E [llze41 - 21°]
=K ||zt — zf || + 22 [|h)° — 2 (h!, 2 — 2
=E |||zt — 2z I” + ¢ 1ALl Ve (his 2 — 27)

D E Iz — 21 + 97 I~ 230 (Taq (<537, 22) 22— 27|

(b) . 9 .
< E [z — 21”2 1AL — 270 122 — 27 7] (18)

where (a) results from the unbiasedness of the stochastic gradient h{ (see Assumption , and (b)
uses [1g-strongly convexity of ¢ (x,y,z) (see Lemma|D.4).

To bound E [thHﬂ in Eq. , we have

E [I51°] < B [2]|n - Vaa (x0,59,2) |* +2 | Vaa (x0, 97, 2.) |

W E [2]|f = Vaq (<58 20)[|* +2[[Vag (0. 97, 21) = Vag (0.7, 27) ]
DB [2]|nf - Vug (2,58, 2) | + 2|2y 9 (62,59 [ 120 — ]

Yk 210 = Vaa (<090 2)||* + 22, o — 1) (19)

where (a) is because of V,q (x,y?,z;) = 0. (b) follows from the definition of V,q (x,y,z), and
(c) results from Assumption

Then, we bound the first term on the right in Eq. (I9) as follows:
E |:Hvzq (ngygvzt) - th2:|

o [Hvyyg (b 3?) 209y S (xh9?) = (Vg (6325 DP) 209 f (X?’Y%ny))uz]

24



Under review as a conference paper at ICLR 2026

(b)

< E[2 | V2ya (0. 59) — Ty (v D1 |
2

12|V 7 (0. 59) — Vs (0,53 00)| }

©)

<E [QUzyy lz: —z; + ZIH2 + QU?J

CE[40? |z -z +402 2] + 207
< 0, 1%t — 2 os |z ¥,

y Gyy
(e) B2
<402 E [||zt - z’;HQ] +402 M{} +202 (20)
g

where (a) follows from the definitions of h? and V¢ (x,y, z). (b) and (d) are because of ||z + y||* <

2|z)|” + 2 |ly||. (c) results from the bounded variances in Assumption (e) utilizes the bound of
z*(x,y) in Lemma[D.3]

Substituting Eq.(20) into Eq.(T9), we get

B2
E [||hg||2] < (sa_gw n 233yy> E [Hzt _ Zf”ﬂ +802 uj;y +40% . 1)
g

Substituting (Z1)) in (I8) and then substituting the result in (I7), we get

E [Hztﬂ - zfﬂ”ﬂ

<E

N—-1
* 1 7 2
(1 ca) (1= ) [ =+ (14 ) 22028 5 [
n=0
2

B
+(1+ ) v? (80§yy + 2B§yy) |zt — 27 ]|* + 8 (1 + c2) fyfcrjyy ’uf;y +4(1+c) “Yf%%y]
g
21

(a)
<E

N-1
* 1 7
(1) (1= ) o 3+ (14 ) 22628 Y [l
n=0

BQ
J;y +4(1 +02)%20J2fy7
Hg

+8(1 + ca)yio?

Gyy

: Hg
where (a) follows from the choice v; < 507 3257
— Yt 2 .
Letcy = 272%9% and choose y; < e This completes the proof. O

E.2.6 DESCENT IN THE POTENTIAL FUNCTION
We define the potential function W as follows:
2
We =€ () + K, [[y? =y ()| + K. [l — 27 (" ) [P+ K ||V (x8) = |

Lemma E.6. Under the same conditions as described in Theorem[E.7|and using Lemmas|[E2}[E3)]
the iterates generated by Algorithmsatisﬁes: forallt € {0,1,...,T — 1},

N-1
E([Wyy1— W) <— % S E [Hw (xy)ﬂ +4B%0% 2aiNK,+16L2 BX3N%0? Ealky,
n=0
2
B}

+ ZJ?ZCZQ?NK}L + 4c%a?a§yNKy + 160§yy 2 ciafKZ + SJ?yciasz,
9

_ \/iLf _ \/§Lf _ 1
where K, = sL, K= = 5. , and K, = 3L

25



Under review as a conference paper at ICLR 2026

Proof. From Lemma|[E2] we have

N-—1
E[(x*) — ()] =E[£(x}41) — £(x7)]
n=0
a N—-1 o N-1 2 a N—-1 2
t n t - t
<-5 Y E[iveenit] - 5 X e|[al] ]+ Xe||veen -l
n=0 n=0 n=0
N at2Ll E {Hh{n 2}. (22)
n=0

Based on Lemma[E.3] we have

B[ 6r*) - [ - [0

2
t,n :|

2 2 n * romy |2 2 %12
Lal| |+ 4 L3 [y =y )] + 8 L3E | l120 — 27 7]
n—1 2:|

161233, B0 3 [Ivi -y ()] + 2 Lfate [Hh{

i=0
2 272 2 « 2f |12
+8uthLzathIE Hhm
i=0

< —wE U]W () -

n—1
#8uLG, Blain 3B Mﬁ,{i

+4B%0 2 ut +20f p? + 16L2 3253n202 uz.

This implies that

S [7e ) Al - e -

0 T oy _ 7/ |I°
—E {Hw (x01) = yral| = || V¢ (x0) = Lo ]

N-1 9
S | e -af ]+4uthZ [y =y 6e)1?]
n=0

N—-1
) 2
AL, BN Y B [y -y ()] + 22t e ]
n=0 n=0
N—-1 B 2 N—-1 B 5
+ 8L, B2a?N* Y E [Hh{n } + 8 LA L20? N2 Z E [Hh{n }
n=0 =
+ 8, L2NE [Hzt —z;\ﬂ +4B%0% (2N +20% (2N + 1612 B2IN0? 12, (23)
With the result from Lemma[E.4] we have
N-1 )
n * n * 2
SB[yt -yt | - e -yt )]
n=0

=E|[[yte =" () II" = 37 =y (<D)]
<- ﬂt“gz E[Iye -y 6] + 5

According to Lemma[E.3] we have

2
i ]+4ﬁ§a§y1\7. (24)

E {21 — 25 [ = 12 — %]

26



Under review as a conference paper at ICLR 2026

:EWmffwwwwmwfmffwwwmﬂ

Tt * 7
S—TQE[||zt—zt||}+—L NZ {Hh{n

2 2 B]%y 2 2 .2
+ 160y, /ﬂ Y +80%, v (25)
g

Adding Eq. (22), 23), (24) and (25), we get
[Wt-‘rl - Wt]
N—1

Z (vl ]+CyZE[Hy?—y* 0] + C I}z — 2711

n=0 n=0

N- 2 2
vy =i, }+a 5 e -]
+ 4B§a§my pi NKy + 207, quKh +16L; BB} N°0) uiKy +4pi0; NK,
B2
+ 16a§yy 2 LK. + 807 VK-,
where
Cy =4 LKy +16L3u; L BB N?K), — Bt;gKy,
C. =8 LANK, — M,
ar ofl 2 9 9 272 P2, 2772 272 2712
Cp =— ? + 5 + —Ll oy Kp +8ug Ly, Biay N Kjp + 8 Ly L oy N™ K,
Lio;Ky+ ——L20;NK.,
ﬁt Vektg
«
Ci th — K.

A A A
Define 3; = cga, v+ = cyay, and py = ¢ 04.
To ensure Cyy < 0, we have

Btﬂg K,

Cy = 4u LKy +16Lu7 L BB N?K), —

(@) cgap cpoup cponp
= Ty Ryt TRy - TG =0

16¢, L2 K) oK,
where (a) uses K, = —~—f 2 and oy < 42 93 .
(a) Yy LgCh t L2cZLZ  B2cgN2K,

To ensure C, < 0, we have

(a)
C. = SuI3NK, - MUK, < 9% g, - SO R g, g,

16c“L2}NKh

where (a) utilizes K, = oc
gty

To ensure C}, < 0, we have

2
L
Cp = _% + atQ Ly Lz oKy + SM%LQ 32 INZ K + SML?‘LiagAﬂKh
u
+ —L2o;K, + —L2o;NK,

6tu Velbg
(Z) oo 2L

2
+ —L?atKh +16¢, L7 L2 0} N’ K}, + —— Ly oy K, +

< L*a;NK,
2 2 Cu Cplg Cylg

27



Under review as a conference paper at ICLR 2026

() 25, 4
< 2t M D 20Ky + —L2atK 1 LQatNK

o2 2 Cu CoHg CyHg
© o o o oy
<——=4+=4+=4+=+—==0
- 2 8 8 + 8 + 8 ’
L3L2 . L

where (a) results from a; < (b) is because of o; < (c) follows from

CuLngyBg‘ 2\/§c”LszN'
2 2
1 B 9 _ 16L2K, __16L2NK,

Qg S TLZ’ CN = 32Ll Kh, CIB = T, and CV = ;7g
To ensure C; < 0, we have

Qg

Cr=— — Ky < 0,

2

where (a) is due to Kj, = 5.
"

Towards this end, the lemma is proved. O

E.2.7 PROOF OF THEOREM[3.3|

Theorem E.7 (Non-Convex £(x)). Under Assumptions choose constant step-sizes oy =
a A A ; A
o= 5 Be = B = cga, v = v = ¢y, and the momentum coefficient as py = |1 = c o for all

te{0,1,..., T} withcg = 1%114, Cy = 16{’/%ifN, and ¢, = 4L;. Moreover, choose & such that
g g
272
G<min{ -t 2 ] R

2L%cs’ 3uges’ (802 +2B2 ) . Bhgcy AL ¢, L2 B2’
Jyy Gyy v

L \3/ 322 L, VE, }

22, Ly LN \| L2212 B2L2N?’2\/K,L,, B.Nc,

Then, the iterates generated by SO-Lazy-BiO-I| in Algorithm[2 satisfy:

T—1N-1 AO 0.2 0.527 0.2 0527 2
7 2 2 B[IVt] - (5t st um et )

n

0
where Ag = (£(x0) — £*) + |ly§ — y*(x0)1* + l|zo — 2* (%0, ¥ (x0) |

Proof. Choose ay as a constant stepsize iy = «. Summing the result in Lemmal[E.6|from ¢ = 0 to
T — 1, and then dividing by N'T' on both sides, we get

T—-1N-1

IE[VVT—WO 2,2 2,2
< 2NT;7;) [||w X7 H+4Bz 02 2a’K) + 203, Aa’K),

2

1
2 2 2 2
MECWO[KN—FSUfcaKN

+16L; BlciN’0) cia'Ky + 4cza’o; K, + 1607

Rearranging the terms and multiplying by 2/« on both sides and let o < VR L. B.Nc. % we have

'ﬂ

N—-1
E [Hw

n=0

1
TN

t

} S2(VV0—€*)

ONT —1—83503 c aKh+4Jf c aKh

Il
o

B2
+16c3a02 K, + 3202, Mfy oK.~ ~ T 1603, Gak. -
g
where Wy = ¢ (x)) + K, Hy8 —y* (=) ||2 + K, Hzo —z* (x0,y*(x])) ||2

28



Under review as a conference paper at ICLR 2026

Therefore,
] ToiN-d ,
> Y E[IveE)?]
t=0 n=0
o (L) - Ily8 — v (<)’ 120 — z* (xB,y* (x5))||”
O( NTo >+O< NTo +0 NTo

+0 (Uiya +of o+ ajya + U;nyOé + UfzyNoz> :

By selecting a = O ( ~ \F) the proof of the theorem is completed. O

F THEORETICAL ANALYSIS OF SO-Lazy-BiO-SGD

F.1 REFORMULATION OF OPTION I IN ALGORITHM [I]WITH VANILLA SGD UPDATES FOR
THEORETICAL ANALYSIS

In order to analyze the theoretical performance of SO-Lazy-BiO-SGD, we reformulate
SO-Lazy-BiO-SGD as follows. We note that Option I in Algorithm[I] with vanilla SGD updates and
Algorlthml are equivalent when choosing 7" in Algorithm Ito be T/N.

Algorithm 3 The SO-Lazy-BiO-SGD Algorithm.

Input: Initial parameters x, y3, Zo, and stepsizes {cv, B¢, %}3:01
fort=0to 7T — 1do
Initialize x{ = x¥ ; and y¥ =y,
Sample data batches DY*? D*, and DI
Compute the gradient estimate h} using h] = Vf,yg(x?, v DIz, + Vy, F(xY, vY; D{y)
Update Zi+1 = Zy — "}/zhg
Compute the JVP using v; = Viyg (x?, v Dtgzy) Z¢
forn =0to N — 1do
Sample data batches D7, Df z,and Dg b
Compute the gradient estimate h{ ,, using h{,, = Vyg (x7,y7; D{,,)
Update y;'t' = yi — Bih{,,
Compute the gradient estimate h{yn using h{,n = Vxf (Xt ,Yi ,DfL ) + vy

Update x7 = x7 — ath,{;n
end for
end for

F.2  DETAILED PROOF OF THEOREM[5.7} NON-CONVEX / (x)
F.2.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma F.1. Under Assumptions the following inequality holds for successive iterations of

Algorithm 3}
t2Ll f 2 2 * 2
SR |||nf || + 200238 [y = v )17

E [6 (X?'H) 4 (X?)]
2 n—1 2
} +8L2, B2ain Y E {Hh{ }
i=0
n—1

: N
+16L20,L2, B28in > E |[|lyi -y (xi)[°] + 4B202, 1+ 20% 0y + 1612 B2BEn%02 o,
i=0
forallt € {0,1,...,T —1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

< _%E [||W (X?)IIQ] - *E [Hh

+ 4oy 2K [Hzt g ﬂ + 4121200 Z E {Hh{
1=0

29



Under review as a conference paper at ICLR 2026

Proof. We have
E [6( "H) — €(x§‘)}

(a)
L [(veen -+ 3 x|
n 2y )

YE |- <vz(xg),h{n> o }

c i « 2 2 2L 2

De |2 e )P CORM IRy T FeD
where (a) uses the Lipschitz continuous gradlents of / (see Lemma- (b) follows from the update
rule ofAlgonthm (c) is because of (z,y) = 3 Lz|? + 3 Lyl - 2z — yll?.

To bound the third term on the right-hand side of Eq. (26), we have

2
t.n

<E|2|Ve() = VF by m) P +2 |95 v m) - b,

B |[vee) -

|
(a)

2 * m * 7 * 2
e |2l - vyt + 223yt -y G+ - 2y DD

I 2
<E (2|0, = V7 (v z)|| 4L} lyi =y ()P + 413 |z — 2° <x;‘,y*<xz>>|ﬂ ,
' @7
where (a) utilizes the Lipschitzness of V f (x,y, z) (see Lemma|D.2).
2
Similar to Eq. , we bound the term E [Hhtfn - Vf &,y zt)H ] in Eq. and get
, 2
E |:’ tn_vf (X;L7ygazt) :|
n—1 2 n—1 )
<E SLEWBiath Z ‘ h{i + 16L3L3wy33ﬂ?n Z Hyi — y*(xé)“ ]
i=0 1=0
+4BZo, +20% +16L; B2Bin’o; . (28)
Then, similar to Eq. , we bound the term E {Hzt —z* (x7, y*(x?))”ﬂ in Eq. 1i and get
¥ (Tt o P (2 0 #(40 2
E [l — 2 6,y GE)IP] < B (2] — 2 (v ()| + 2220 nz [z ] . 9)
Combining Eq. (26), 27), (28), and (29) completes the proof of the lemma. O

F.2.2 DESCENT IN THE APPROXIMATION ERROR OF y* (x)

Following the similar proof of Lemma[E-4] we get the following lemma:

Lemma F.2. Under Assumptions and the approximation error of y* (x) of Algorithm
satisfies the following inequality:

E|[lyi+! -y ()]
< (1- 220 Y & [lyr v o0 1?] + 52 Lo ol

forallt € {0,1,...,T —1} andn € {0,1,..., N — 1}, where the expectation is taken over the
stochasticity of the algorithm.

2
] + 46303

30



Under review as a conference paper at ICLR 2026

F.2.3 DESCENT IN THE APPROXIMATION ERROR OF z* (x,y* (X))

Following the similar proof of Lemma[E.3] we obtain the following lemma:

Lemma F.3. Under Assumptions the following inequality of the approximation error of
z* (x,y*(x)) holds for Algorithm|3}

E [Hzt—i-l - Z?+1||2}
< (1- 22) gl it?] + 22t S

forallt € {0,1,...,T—1} and n € {0,1,...,N — 1}, where z; = z* (x},y*(x?)). The
expectation is taken over the stochasticity of the algorithm.

Y

2 Bfu 2 2
+ 16Ugy N2 ,)/t + 80‘ny1§7

F.2.4 DESCENT IN THE POTENTIAL FUNCTION
We define the potential function W as follows:
1 * 2 % % 2
Wi = (x0) + Ky [ly? =y" ()7 + K [|ze =27 (x¢, 5" D) |7
Lemma F4. Under the same conditions as described in Theorem @and using Lemmas[FINF3| the

iterates generated by Algorlthmlsatlsﬁes forallt € {0,1,...,T — 1},
B B o Vol
E Wit — W] < - ?‘f Y E [Hw (X?)HQ} +4B%0} N + 207 a;N + 807 2ofK,
n=0

2
fy 2 2
oK,

g

+16L; Blc3N°o; o} +4ciajo; NK, + 160,

and K, ——-

where K, = 2L , I

Proof. From Lemma[F1] we have

N-1

DB )] =B [0 () = € ()]

n=0
2] | oL "= f
]+2 ;()]E ‘h

<——ZE{||V£ HEE Z]EU

|

- 2 Nl 2
+ 40, IANE [||zt - z:||2] +4L2L23N? Z E U K } +8L% Ba}N>3 E U . }
n=0 n=0
N—-1 N—-1
+16L2a, L2 BN Y E[lyf -y ()] + 20023 YO E [lyi - y* (x)IP)]
n=0 n=0
+4BZo, ;N +20% ayN +16L;  BZB}N°0) . (30)

With the result from Lemma|E2] we have

N-1

SE [yt -y ()P = e -y )]

n=0
= E[Iy0 -y () [ ly? -yt D]

gﬁygﬁwﬂwmhﬁ ZW

2] +480; N. (1)

31



Under review as a conference paper at ICLR 2026

According to Lemma[F3] we have

E [||ze1 =z | — 1z — 21°]
=B [lar1 - 2 (v L) [ = 2~ 27 (837 )]

2 BJQ‘y 2 2 .2
+ 160gyy 2 Vi +80%,7 - (32)

N-1
Vekg [ *2} 2 15 9 {H
< - E |||zt — 2z —|——Lo¢NE E ||[hf,
2 ” t t” Vetlg z& Pt t,n

Adding Eq. (30), (1) and (32), we get

E (Wi — Wi]
N—1 N-—
g—%;) (V1G] + ¢ g [Iy7 —* GIIF] + CoE [l — 2]

~ N-1
+C. S E [Hh[n
n=0

2
} + 4B§a§ ar N + 2af ay N + 16L2 BzﬁanUQ ar N

2

B?
+4p%02 NK, + 1602, —1 2 LK.+ 80% Y K-,

where

Cy =204 +16L%oy L} BZBIN® — 'Btg‘g Ky,

C. =4, 12N - Mo g

A ay ale 2712 3872 2 2 3a72 2 2

Cph=——+ +4L3L7a; N+ 8L, BiayN”+ Lo K + — L« NKZ.
2 2 o Bipg Y Vibg

Define (3, = cgay, and v £ Cy Q.

To ensure C’y < 0, we have

Cy =20, L} +16Ljc, L BB N* — BWQK < day L% — CBO;WQK < 0,

where (a) uses oy < VL and (b) follows from cg = SL;
i = 4LgyyBzcgNLg’ s pg Ky

To ensure C, < 0, we have

_ (a)
C. = 4 I2N — %2“9 K. <0,

8L2N
.. _ 8L%
where (a) utilizes ¢, = KL

To ensure C}, < 0, we have

_ o?L
Cpo=—2t 4 M2 4121203N? + 812 B2l N2 L202K, + ——L2a?NK,
D) 2 FreTt Gy 2T Btug ety 7
(@) @ « o « 6 «
< Sttt T T

S R TR TR TR TR

; 1 1 V2 — CBlyg — Sty
where (a) results from a; < mm{QLt, SL;L.N’ 6L, B N}, K, = 3aL8 and K, = BLIN

Towards this end, the lemma is proved. O

32



Under review as a conference paper at ICLR 2026

F.2.5 PROOF OF THEOREM [3.7]

Theorem F.5 (Non-Convex £(x)). Under Assumptions choose constant step-sizes oy =

a=a B =B 2 cga, andy, = v = cyaforalt € {0,1,...,T} with cg = % and
Y = % Moreover, choose & such that
= : Hg 2 2 Hg 1
@ < min ) ) ’ Y o1 0
- {2L§c§ 3ugcs’ 3pgey’ (807 +2B7 ey 2Ly
1 1 V2L
8LfLZN’ SﬂngszN’ 4ngyBZCBLgN .

Then, the iterates generated by SO-Lazy-BiO-SGD in Algorithm [3]satisfy:

T-1N-1 Ao
Z Z E [|V€ } O(T + Ugy + crgw + va + O'gw + J?»m),

t=0 n=0
where Ao = (£(x0) — ) + [lyg — y* (x0)II” + |20 — 2" (x5, y* (x5)) 1%

Proof. Choose oy as a constant stepsize a; = . Summing the result in Lemma[F.4]from ¢ = 0 to
T — 1, and then dividing by N'T" on both sides, we get

E [Wr — W] a e (12 2 2 2 3 2 27 1
e ; z;o E[IVea)IF] +4B202 a+ 20 a+80%, 2K+

B2 1

2 2.2 \12,2 3 2 2 2 2 fy 2 2
+16Lg“B 2N 0y, +405a agyKerlﬁogyy p; cya K.—.
g N

Rearranging the terms and multiplying by 2/« on both sides, we have

TNszlNz:l {va } < M

1
2,2
oNT +8Bo,, —|—4crf —|—160'fcaK N

B?
+ 3202 BQC NQO' a + 8¢% aa Ky + 32072 Ty 2ozK
Gazy B Gyy /‘Lg N

where Wy = ¢ (x)) + K, Hy8 —y* (=) ||2 + K, Hzo —z* (x0,y*(x])) ||2

Therefore,

l(xgp) —0* 9 —y* (x5 2 zo — 2" (%,
) <<N>Ta ) o (I 00 o = (el

+0 (Uiy +U]2cz + UzyNoz—Fainyoz—FafcyNa) .

By selecting oo = O (%) the proof of the theorem is completed. O

G THEORETICAL ANALYSIS OF OPTION II IN SO-Lazy-BiO FRAMEWORK

The theoretical analyses of SO-Lazy-BiO-1 and SO-Lazy-BiO-Il are similar, with the primary
difference arising from the approximation error in the hypergradient V¢(x) (see Lemma [G.3).
SO-Lazy-BiO-II can be viewed as a special case of SO-Lazy-BiO-I, in which no errors are incurred
from the JVP updates.

Both SO-Lazy-BiO-l and SO-Lazy-BiO-I| share the same convergence guarantees, and the main
result for SO-Lazy-BiO-Il is stated in Theorem

33



Under review as a conference paper at ICLR 2026

Theorem G.1 (Convergence Rate of SO-Lazy-BiO-Il). Under Assumptions choose constant
step-sizes oy = o = O((VNT)™), By = 8 = O(VNT)™'), v = v = OVNKT)™"), and
the momentum coefficient as p; = p = O((NVT)™ 1) forallt = 0,...,T — 1. Then, the iterates
generated by SO-Lazy-BiO-II satisfy:

T-1 2 2 2

1 VNA o VN VN Tg, o

T E E [||v12(xt)||2}:0( 0 9y 2 2 oy 4 Jx )7
t=0

+ +—=0, +—=0% +
VT VNT T %' T "' VNT VNT

where Ag = (£(x0) — £*) + [lyo — y*(x0)[I* + llzo — 2* (%0, ¥* (x0)) >

Moreover, the computation complexity of SO-Lazy-BiO-1l immediately follows from Theorem |G.1

Corollary G.2 (Computation Complexity of SO-Lazy-BiO-Il). Under the setting of Theorem|G.1}
choose the batch size as O(1). Then, SO-Lazy-BiO-ll requires O(Ne~?) partial gradient evaluations
and JVP evaluations and O(e~2) HVP evaluations to reach an e-stationary solution.

G.1 REFORMULATION OF OPTION II IN ALGORITHM [[]FOR THEORETICAL ANALYSIS

In order to analyze the theoretical performance of SO-Lazy-BiO-Il, we reformulate SO-Lazy-BiO-Il as
follows. We note that Option II in Algorithm[I]is equivalent to Algorithm 4] when the number of
iterations 7" in Algorithmd]is set to T//N.

Algorithm 4 The SO-Lazy-BiO-II Algorithm.

T-1

Input: Initial parameters xJ, y3, zo, stepsizes {aw, Bt, 'yt}z:ol, and momentum coefficient {z1+}, ",

fort =0to 7' — 1do
Initialize x? = x ; and y? = y¥ 4
Sample data batches DY¥¥ and D‘tf Y
Compute the gradient estimate h{ using hf = V2, g(x?,y; D" )z + Vy f(x{, ¥ Df”)
Update Zi41 = Zt — ’}/thg
forn =0to N — 1do
Sample data batches Dy, DJ% , and D}%"
Compute the gradient estimate h{ , using h{,, = Vyg (x7,y7; D{,,)
Update y;'t' = yi' — Bih{,,

Compute the gradient estimate h{m using !, = Vi f (x{ﬂ v D{i “;l) + Vayg (xi',y1: DY) ze

t,n

Compute the momentum-based B{,HH using E{,nJrl = ,uth{’n +(1— ) I:L{,n

Update x7 ! = x7 — Oétf_L{m
end for
end for

G.2 DETAILED PROOF OF THEOREM|G.1} NON-CONVEX / (x)
G.2.1 DESCENT IN THE APPROXIMATION ERROR OF V/ (x)

Lemma G.3. Under Assumptions the approximation error of VI (x) of Algorithmsatisﬁes
the following inequality:

E[[ve+) -]

< (- || vee) - i,

2
| + 4z (i 7 GeI7] + 3 [l = ]

n—1
2 Tk i
+ EL%O[%E U h;{)n ] + 8/~LtL?fL§Oé%nZE [Hhtfz oy
i=0

2
| 28202 2 20t

forallt € {0,1,....,T =1} and n € {0,1,...,N — 1}, where z; = z* (x{,y*(x})), and the
expectation is taken over the stochasticity of the algorithm.

34



Under review as a conference paper at ICLR 2026

Proof. Same as Eq. (T0), we have

2

_ 2 2
E [Hw () = A ] <E [(1-,@ Wl = Ve 4 2 ||nf, -V vz

n k(LN * (SN GK (LT 2 7
4L} |y =y (I + 4pe LG 2 — 2° (7, y (xt))Hz%f;;L?a? h

2
}. (33)

2
We bound the term E [Hh{n -Vf (x?,yf,zt)H } in Eq. .

dl ]

(a) n n = n n @y n n n o n
=E |:HVXf (Xt Yt 7D{,n> + viyg (Xt 'Yt 7Di] J) Zi — fo (Xt 'Yt ) - Viyg (Xt 'Yt ) Zy

htf,n - vf (X;La y;L7 Zt)

2
< |20t (x0 ¥, DL5) - Vaf (13D)

]
(b)

12 lzall* V3o (xi,y2, D) = Vigg (vl < 2B202, +203,, (34)

where (a) uses the definitions of h{, nand Vf (x},y?, 2z:). (b) utilizes the bounded variance in
Assumption[5.3]and ||z,|| < B..

Same as Eq. (T4), we have

E[llz: - 2" (i, y* (xi)I] <E

f
ht,i

n—1 9
2 Hzt —z" (x?,y*(x?))H2 + 2L§a?nz ‘ 1 , (35)
i=0

Combining Eq. (33), (34), and (33)) completes the proof of the lemma. O

G.2.2 DESCENT IN THE POTENTIAL FUNCTION

We define the potential function W, as follows:
R 2
W= (x0) + Ky 39 = y* ()|* + K [lze = 2 (x5 (x0)||* + K [ 9 (x2) = B |

Lemma G.4. Under the same conditions as described in Theorem|G.3| and using Lemmas[E2)]
and the iterates generated by Algorithmsatisﬁes: forallt € {0,1,...,T — 1},
0 N1
2 5 ¢ ny )12
E [Wt+1 - Wt] <-SYE [||w (x| } +2B202 AaiNK), +20% AaiNK,
n=0
BQ
fy
2 cﬁasz + 8afcycgyat2KZ,

2 2 2 2
+4cgajoy NK, + 160y

where K, = %, K, = \/ﬂf, and K, =

1
2L, SL;

Proof. Based on Lemma|G.3] we have

n—+1 f 2 n 7 f 2
IE{HVE(X{ )= Bl || = ||V i)~ B, ]

_ 2
< —uE [Hw (t) =Bl } + 4 L3E [y} - y* (<)I1P] + 8 L3E [z — 2311

hi

n—1
9 2 L2
+ - IfolE U } + 8 LiL%ain Y E {Hh{ ] +2B207 yi3 +20% 17,
¢ i=0

35



Under review as a conference paper at ICLR 2026

This implies that
Z E [HW KAl m+1H - HW () = b 2]
_ 2 7 2
=E {HVﬁ (xP11) — h{+1,0H - HV@ (x¥) - h{’OH }

N-1
< e 3 [ veo) ~ it ] + s Z (It~ " Gl
n=0

9 N-1 B 2
na YR Mh{n ]
Ht n=0 7

2 - _
] + 8 LA L20? N2 Z E {Hh{n
n=0

+ 8, L2NE [||zt —z ||2} +2B%0% N +20% @2 N. (36)
Adding Eq. (22), (24), (25) and (36), we get
E [Wt—i-l - Wt}

<——ZE[|W X' ||]+c ZE[nyt — 3 G)IP] + CE [l — 7]
n=0
+éhZEU}_l{n t,n 1
n=0

B}
+ 2B§U§W i NKy + 203 pi NKj + 4530; NK, + 160§yy u2

) B
}+Cl ) {Hw X7

2

’YtK +8C’f 'YtKZ7

K, a’NK.,

Bu

PO
C th — p K.

A A A
Define 3¢ = cgoy, ¢ = ¢y, and piy = 0.

To ensure C'y < 0, we have

(a)
K, <0,

Cy = 4 LKy — 52”9

8cy L3 K

HgCp

where (a) uses K, =

To ensure C’Z < 0, we have

N (a)
C. = 8w LINK, - 2K, < 2Pk, - 2Bk, —,

16CML?¢NK;1

where (a) utilizes K, = c
9=

To ensure éh < 0, we have

2
A oy  orly
Cp=—=t
h 2 T

2
+ = L7} Kp + 8 L7 L2a; N° Ky, + Lio}K,+ ——L?0;NK,
He Tthg

2
5t/‘g

36



Under review as a conference paper at ICLR 2026

(a) 20, 4
< QL My LlatKh—l——LQatK i LQatNK

-2 2 Cp CBHg CyHg

®) Qi Qi Qi Qi Qi

< -ttt Tty Tty T,

- 2 8 8 + 8 + 8

. L 16L2 K,
where (a) is because of a; < m (b) follows from «; < 4L »Cp = 32L Ky, cp = 7,
m z Hg

__ 16L2NK,

and ¢, = ;7q

To ensure C‘l < 0, we have

R (a)
G = % — K, <0,

1

2¢c; "

where (a) is due to K}, =

Towards this end, the lemma is proved. O

G.2.3 PROOF OF THEOREM[G.]

Theorem G.5 (Non-Convex ¢(x)). Under Assumptions choose constant step-sizes o =
a A A . A
O = G By = B = cga, v = v = cya, and the momentum coefficient as [, = p = c, o for all

t€{0,1,...,T} withcg = 1%:£f, Y = 163%%1\], and ¢, = 4L;. Moreover, choose & such that
2 e 2 1 L

a < min

Hg L
2L2c5’ 3pges’ (803,” + QBSW) ¢, Bigcy AL 20, LyL:N

Then, the iterates generated by SO-Lazy-BiO-Il in AlgorithmH|satisfy:

v & I = o G i e o T T ),

t=0 n=0

where Ag = (£(xg) = £*) + |ly§ — y*(x0)1* + llzo — 2" (x4, ¥ (x0) %

Proof. Choose «; as a constant stepsize oy, = . Summing the result in Lemma[G.4]from ¢ = 0 to
T — 1, and then dividing by N'T" on both sides, we get

T—1N-1
EWT—WO
[ NT < 2NTZZ {|V€ xy ||}—|—QB§§ caKh+20fc2oz2Kh
t=0 n=0

B2 1 1
420202 K, + 1602, 020’ K,— + 803 2ok, .
+4dczao + 0’ /l?, —5 N + 0%, ChQ N

Rearranging the terms and multiplying by 2/« on both sides, we have

T—1N-1 9 (W _ z*)
TN 2 ) E ['W } < S HABloy Gk, + 40f oK),
t=0 n=0

B2
+ 8c2ﬂaa§ K, + 3203 Ty 2aK + 160f o aK
y yy ug

where Wy = £ (x)) + K, Hyg —y* () H2 + K. HZO — 2" (x4, y*(x9)) H2

Therefore,

H

1 N-1

TN

t

E (V¢ o))

I
o

n=0

37



Under review as a conference paper at ICLR 2026

NTo NTao

o <W> +o (Hyy<>n> Lo <Hzo (x8,y*(x8))HQ>

+ o (Ugmya + O—;ma + O'gy()é + ngy Na+ O-}%yNa> !

1
NVT

By selecting a = O ( ), the proof of the theorem is completed.

38



	Introduction
	Related work
	Preliminaries
	The SO-Lazy-BiO algorithm
	Theoretical performance analysis
	Assumptions
	Main convergence results
	Performance without the Momentum

	Numerical experiments
	Conclusion
	The Use of Large Language Models (LLMs)
	Additional Related Work
	Experimental Details and Additional Results
	Additional experimental results
	Specifications of the baseline algorithms in Section 6
	Experimental details of data weighting in RLHF reward model training
	Experimental details of data weighting in LLM alignment
	Experimental details for deep hyper-representation with ResNet network

	Supporting Lemmas
	Theoretical Analysis of Option I in SO-Lazy-BiO Framework
	Reformulation of Option I in Algorithm 1 for theoretical analysis
	Detailed proof of Theorem 5.5: non-convex ( x)
	Proof of preliminary lemmas
	Descent in the upper-level objective function
	Descent in the approximation error of ( x)
	Descent in the approximation error of y*( x)
	Descent in the approximation error of z*( x,y*(x) )
	Descent in the potential function
	Proof of Theorem 5.5


	Theoretical Analysis of SO-Lazy-BiO-SGD 
	Reformulation of Option I in Algorithm 1 with vanilla SGD updates for theoretical analysis
	Detailed proof of Theorem 5.7: non-convex ( x)
	Descent in the upper-level objective function
	Descent in the approximation error of y*( x)
	Descent in the approximation error of z*( x,y*(x) )
	Descent in the potential function
	Proof of Theorem 5.7


	Theoretical Analysis of Option II in SO-Lazy-BiO Framework
	Reformulation of Option II in Algorithm 1 for theoretical analysis
	Detailed proof of Theorem G.1: non-convex ( x)
	Descent in the approximation error of ( x)
	Descent in the potential function
	Proof of Theorem G.1



