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ABSTRACT

Bilevel optimization has attracted significant attention recently due to its applica-
bility in various large-scale machine learning tasks (e.g., the large language model
(LLM) pretraining-finetuning pipeline). In the literature, one popular approach for
solving bilevel optimization problems is to use hypergradient-based methods. How-
ever, computing the hypergradients requires evaluating second-order information
(Hessians/Jacobians) of the lower-level objective function, which is computation-
ally expensive. To address this challenge, we propose SO-Lazy-BiO (Second-Order
Lazy Bilevel Optimization), an algorithmic framework that significantly accelerates
the state-of-the-art (SOTA) bilevel optimization methods by allowing infrequent
evaluation of second-order information. We theoretically establish the performance
of SO-Lazy-BiO and show that, despite the additional errors incurred by the infre-
quent evaluations of second-order information, SO-Lazy-BiO surprisingly matches
the computation complexity of existing non-lazy bilevel algorithms, while requir-
ing fewer second-order information evaluations. This leads to substantial savings
in both computational cost and wall-clock running time. We further conduct ex-
tensive experiments to demonstrate that SO-Lazy-BiO enjoys significant gains in
numerical performance compared to SOTA, especially for large-scale tasks. To our
knowledge, this is the first work to employ infrequent second-order computations
while still guaranteeing the convergence of stochastic bilevel algorithms.

1 INTRODUCTION

1) Background and Motivation: Bilevel optimization refers to the class of problems with two levels
of hierarchy, where the solution of the upper-level (UL) problem depends on the minimizer of the
lower-level (LL). Formally, we have

minx∈Ru

{
ℓ(x)≜f (x,y∗(x))≜Eξ∼πf

[f (x,y∗(x); ξ)]
}

s.t. y∗(x)=argminy∈Rl

{
g(x,y)≜Eζ∼πg

[g(x,y; ζ)]
}
, (1)

where f(x,y) : Ru×Rl →R and g(x,y) : Ru×Rl →R are UL and LL objectives, respectively.
Stochastic bilevel optimization in Problem (1) has gained prominence due to its modeling versatility in
machine learning (ML) applications. Classical examples include hyperparameter optimization Shaban
et al. (2019); Bao et al. (2021), meta-learning Rajeswaran et al. (2019); Ji et al. (2020), adversarial
training Tian et al. (2021); Zhang et al. (2022), reinforcement learning Hong et al. (2020), neural
architecture search Lian et al. (2019); Hu et al. (2020), data hyper-cleaning Franceschi et al. (2018);
Shaban et al. (2019), and dictionary learning Lecouat et al. (2020a;b). Recently, bilevel optimization
has also found its applications in large language models (LLMs) (e.g., the pretraining-finetuning
pipeline Li et al. (2024); Wu et al. (2024); Ding et al. (2024), data weighting Shen et al. (2024);
Pan et al. (2024), and adversarial attacks on LLMs Jiao et al. (2025)). As a consequence, in the ML
research community, a major research effort has been focused on developing efficient algorithms for
solving stochastic bilevel optimization problems.

2) Technical Challenges: Among all existing methods (see Section 2 for detailed discussion), the
approximate implicit differentiation (AID) approach, where the approximate implicit gradient of
the UL objective ℓ(·) is directly computed using the implicit function theorem Ghadimi & Wang
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(2018), is widely adopted due to its ease of implementation. In typical AID algorithms, while the
LL variable is updated via standard stochastic gradient descent (SGD), the UL variable is updated
using: x+ = x− αhf , where the descent direction hf (also often referred to as hypergradient) is an
approximation of the implicit gradient ∇ℓ(x), which can be computed as:

hf ≈ ∇ℓ(x) =∇xf(x,y
∗(x))−∇2

xyg(x,y
∗(x))

[
∇2

yyg(x,y
∗(x))

]−1∇yf(x,y
∗(x))︸ ︷︷ ︸

Second−order computation involving HVP and JVP

. (2)

However, due to this hypergradient computation, AID-based bilevel algorithms face two major
challenges. First, the hypergradient in Eq. (2) is a function of the optimal solution y∗(x) of the
LL problem, which often requires an iterative method to solve. Thus, obtaining the exact value of
y∗(x) can become computationally expensive, often rendering the algorithms infeasible in practice.
This challenge has been intensively studied in literature and addressed to some extent (e.g., the
hypergradient is approximated using y+ ≈ y∗(x) Ghadimi & Wang (2018); Hong et al. (2020); Chen
et al. (2021)). The second challenge, which is the main focus of this paper, is that computing the
hypergradient requires second-order information. Since Hessian inversion and Jacobian computation
in Eq. (2) have computation complexities of O(l3) and O(ul), respectively, where l and u are
the dimensions of x- and y-variables in Problem (1), evaluating them makes bilevel algorithms
computationally expensive even for moderately sized problems.

To mitigate the second challenge, Hessian-vector products (HVPs) and Jacobian-vector products
(JVPs) are commonly used to approximate the Hessian inverse and the Jacobian, respectively. Some
modern automatic differentiation tools (e.g., Pearlmutter’s trick Pearlmutter (1994)) enable both
HVP and JVP computations with O(l) complexity. Despite using HVPs and JVPs, computing
hypergradients is still computationally expensive in many practical scenarios, especially in resource
and computation-constrained settings (e.g., edge-based devices with no access to GPUs). It is known
that each HVP computation is still at least two to six times more expensive than gradient computation
using optimized library Jax Bradbury et al. (2018) when performed on CPUs. Moreover, when
the model size scales, as particularly shown in LLMs, the computation cost of HVPs and JVPs
significantly increases, even on high-performance GPUs. These computation costs can dominate the
runtime of bilevel algorithms and severely limit their scalability. What exacerbates the problem is the
fact that a single Hessian inverse estimation requires multiple HVP computations Ghadimi & Wang
(2018); Hong et al. (2020), which can easily multiply the total cost for the desired approximation
accuracy. This compounds the overall cost and poses a serious challenge in reducing the computation
cost of bilevel optimization algorithms in practical settings. To tackle this challenge, first-order
methods (i.e., Hessian/Jacobian-free) have been proposed for bilevel optimization; however, they
often exhibit inferior convergence guarantees and degraded practical performance due to the absence
of second-order information (see Section 2 for a detailed discussion). This underscores the critical
role of second-order information in bilevel optimization and leads to a foundational open problem:

(Q): Can we design novel bilevel optimization algorithms that require fewer second-order informa-
tion evaluations, while being able to guarantee theoretical convergence performance?

In this paper, we answer the above question by developing a new algorithmic framework called
SO-Lazy-BiO (Second-Order Lazy Bilevel Optimization), which allows infrequent second-order
information (HVP/JVP) evaluations to alleviate the computational bottleneck when solving stochastic
bilevel optimization problems. In our framework, stale second-order information is used for multiple
iterations, and only new gradients are computed at each step for computational savings. The
intuition behind SO-Lazy-BiO is that, for iterations that are not far from each other, the second-order
information remains highly correlated and do not vary significantly. Therefore, stale second-order
information may be used to approximate the new value.

However, it is unclear whether SO-Lazy-BiO still converges due to the following factors: 1) the use
of stale Hessians (HVPs), 2) the use of stale Jacobians (JVPs), 3) the ”multiplicative” structure of
JVP, which is coupled with HVP and may amplify the error from lazy evaluations, 4) approximations
of the Hessian-inverse, and 5) the coupled hierarchical structure of bilevel problems. Somewhat
surprisingly, we prove that, despite the potential errors accumulated by the aforementioned factors,
SO-Lazy-BiO not only converges but also attains a convergence rate comparable to that of the SOTA
non-lazy bilevel algorithms. To our knowledge, this is the first work that uses infrequent second-order
information computations for computational savings and still achieves a convergence guarantee in
solving stochastic bilevel problems. We summarize our major contributions as follows:
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• We develop a new algorithmic framework SO-Lazy-BiO that allows infrequent second-order
information computations in stochastic bilevel optimization. Specifically, SO-Lazy-BiO achieves a
dual reduction in computational cost: 1) by using single-step SGD to estimate each Hessian-inverse
vector product, avoiding the need for multiple HVP computations per approximation; and 2) by
incorporating a lazy update strategy that updates second-order information (HVPs/JVPs) only at
selected iterations while reusing stale information in the rest of the iterations. These innovations
collectively lead to substantial computational savings over existing methods.

• We theoretically establish the performance of SO-Lazy-BiO. Specifically, we show that the
proposed lazy approach, which is supposed to perform worse due to stale second-order information,
can actually match the convergence performance of the SOTA bilevel algorithms. We show that, to
achieve an ϵ-stationary point, SO-Lazy-BiO requires O(ϵ−2) second-order information evaluations,
which is fewer than non-lazy bilevel algorithms that incur multiple HVP computations per iteration.
Moreover, thanks to the less frequent second-order information evaluations, the wall-clock time
(i.e., running time) of SO-Lazy-BiO is significantly reduced compared to the SOTA approaches.

• We extensively evaluate the performance of our proposed SO-Lazy-BiO algorithm via numerical
experiments, including three highly non-trivial tasks: 1) data weighting for reinforcement learning
from human feedback (RLHF) reward model training, 2) data weighting for LLM alignment,
and 3) deep hyper-representation. Our results verify that the infrequent evaluations of second-order
information lead to considerable computational savings, particularly for large-scale models, even
when using high-performance GPUs.

2 RELATED WORK

In this section, we provide an overview on three closely related areas: ①AID-based bilevel optimiza-
tion, ② Hessian/Jacobian-free bilevel optimization, and ③ Other uses of infrequent evaluations. Due
to space limitations, we give a summary of other related bilevel optimization methods in Appendix B.

①AID-Based Bilevel Optimization: AID-based bilevel optimization has gained popularity due to
its ease of implementation. BSA Ghadimi & Wang (2018) provided the first finite-time convergence
guarantees for bilevel optimization. The stochastic bilevel algorithms that either use vanilla-SGD
updates (e.g., stocBiO in Ji et al. (2021), ALSET in Chen et al. (2021), AmIGO in Arbel & Mairal
(2022), and SOBA in Dagréou et al. (2022)) or use momentum-based SGD for updating the UL pa-
rameters (e.g., MA-SOBA in Chen et al. (2024)) require O

(
ϵ−2
)

for both partial gradient evaluations
and second-order information (HVP/JVP) evaluations to reach an ϵ-stationary point. Although these
works guarantee finite-time convergence, their practical performance is often limited due to high
per-iteration computation costs: they require one or even multiple Hessian (or HVP) evaluations of
the LL objective in each iteration to approximate the Hessian inverse, as well as one Jacobian (or
JVP) evaluation per iteration to approximate the hypergradient of the UL problem. In this work,
we show that both Hessian and Jacobian computations can be skipped and stale Hessian and Jaco-
bian information computed from previous iterations can be reused without hurting the convergence
performance. This significantly reduces computational cost and enables much faster execution.

② Hessian/Jacobian-Free Bilevel Optimization: To avoid the expensive Hessian/Jacobian (or
HVP/JVP) evaluations, several Hessian/Jacobian-free methods have been proposed. For example,
FO-MAML Finn et al. (2017); Nichol et al. (2018) directly ignores the second-order information
computation but does not offer any performance guarantee Antoniou et al. (2018); Fallah et al.
(2020). Several approaches have also been proposed to replace the LL problem with optimality-based
constraints Chen et al. (2023b); Liu et al. (2022a); Shen & Chen (2023). However, these methods
mostly focus on deterministic settings rather than stochastic ones. Several zeroth-order methods have
been proposed to approximate the hypergradient (e.g., ES-MAML Song et al. (2019), HOZOG Gu
et al. (2021), and PZOBO Sow et al. (2022)). However, ES-MAML and HOZOG do not provide any
theoretical convergence guarantee, while PZOBO achieves O

(
u2ϵ−2

)
to reach an ϵ-stationary point,

where u is the UL problem dimension. Recently, F2SA and F3SA (momentum-based version of
F2SA) Kwon et al. (2023) have been proposed, which are two first-order methods based on the value-
function-based lower-level problem reformulation. To reach an ϵ-stationary point, F2SA and F3SA
require O

(
ϵ−3.5

)
and O

(
ϵ−2.5

)
iterations, respectively. The work in Chen et al. (2023a) improves

the convergence rate for F2SA, resulting in a rate of O
(
ϵ−2 log(1/ϵ)

)
. Unfortunately, achieving this

rate requires computation of very large batch gradients (depending on solution accuracy). Compared
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to Kwon et al. (2023), our proposed SO-Lazy-BiO algorithm strikes a good balance in terms of the
use of second-order information: On one hand, we leverage second-order information to maintain
good convergence performance; on the other hand, we infrequently use second-order information to
significantly reduce the wall-clock time.

③ Other Uses of Infrequent Evaluations: Infrequent Hessian evaluations have also been used
for speeding up second-order methods for single-level optimization Shamanskii (1967); Adler
et al. (2020); Lampariello & Sciandrone (2001); Wang et al. (2006); Fan (2013); Doikov et al.
(2023). However, in bilevel optimization, the Hessian information necessarily emerges due to the
hypergradient computation, rather than as a “second-order” option in single-level optimization.
Importantly, the multiplicative structure of the JVP coupled with the HVP in bilevel optimization
further increases the complexity of the analysis. Moreover, to the best of our knowledge, we are
the first to incorporate infrequent Hessian/Jacobian evaluations into algorithm design to reduce
computation cost in bilevel optimization.

3 PRELIMINARIES

In this section, we provide some preliminaries for solving Problem (1) and highlight the challenges
that arise from using second-order information.

1) Hessian-Inverse Approximation: As mentioned earlier, using the implicit function theo-
rem Rudin et al. (1976), the hypergradient of the UL objective ℓ(·) can be computed as: ∇ℓ(x) =
∇xf(x,y

∗(x)) − ∇2
xyg(x,y

∗(x))[∇2
yyg(x,y

∗(x))]−1∇yf(x,y
∗(x)). Instead of computing the

Hessian inverse explicitly, there exist different ways to approximate the Hessian inverse or HVPs in
bilevel optimization, such as conjugate gradient (CG) Pedregosa (2016), Neumann series Ghadimi
& Wang (2018), and SGD methods. In this paper, we use SGD to efficiently estimate the Hessian-
inverse vector products (HIVP) (

[
∇2

yyg (x,y
∗(x))

]−1 ∇yf (x,y∗(x))), which finds the minimizer
of a quadratic function by solving a linear system as:

min
z∈Rl

q(x,y∗(x), z) ≜
1

2
z⊤∇2

yyg(x,y
∗(x))z+ z⊤∇yf(x,y

∗(x)). (3)

The admitted unique minimizer z∗ (x,y∗(x)) of Eq. (3) can then be utilized to compute the hypergra-
dient estimate as ∇ℓ(x) = ∇xf (x,y∗(x))+∇2

xyg (x,y
∗(x)) z∗ (x,y∗(x)). Since it is challenging

to obtain y∗ (x) and z∗ (x,y∗(x)) in closed form, it is natural to consider their approximations.
Specifically, let ȳ and z̄ be some approximations of y∗ (x) and z∗ (x,y∗(x)), respectively. Then, we
have the approximation for ∇ℓ(x) defined as follows:

∇f(x, ȳ, z̄) = ∇xf (x, ȳ) +∇2
xyg (x, ȳ) z̄. (4)

Since Problem (1) can potentially be a large-scale stochastic optimization problem, computing a full
gradient approximation in Eq. (4) can be computationally expensive. To address this challenge, a com-
mon approach for evaluating Eq. (4) is to build a stochastic gradient estimator. Define stochastic ap-
proximations as f

(
x,y;Df

)
≜ 1

|Df |
∑

ξ∈Df f(x,y; ξ) and g (x,y;Dg) ≜ 1
|Dg|

∑
ζ∈Dg g(x,y; ζ),

where Df and Dg are the batches of independent and identically distributed samples with sizes∣∣Df
∣∣ ≥ 1 and |Dg| ≥ 1, respectively. Then, a stochastic estimator of Eq. (4) can be computed as:

∇f(x,y, z; D̄f )=∇xf
(
x,y;Dfx

)
+∇2

xyg (x,y;Dgxy ) z,

where D̄f ≜
{
Dfx ,Dgxy

}
. Here, for simplicity, we slightly abuse the notations ȳ and z̄ as y and z

in the above equation and the rest of the paper, as long as there is no confusion from the context.

2) Challenges due to Second-Order Information: Although HIVP can be relatively more efficiently
approximated by solving a quadratic optimization problem and the Jacobian can be evaluated via
JVP, several challenges remain: i) The approximation error in y∗ (x) propagates and exacerbates the
error in approximating z∗ (x,y∗ (x)) due to the dependency of the latter on the former. ii) While
HVPs and JVPs have been introduced to reduce complexity, their practical implementation still
demands considerable computational resources, particularly in resource-constrained environments
or when deploying large-scale models such as LLMs. iii) Achieving an accurate approximation of
HIVP requires multiple iterations to solve Problem (3), which further increases computational cost,
especially due to repeated HVP evaluations.
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4 THE SO-Lazy-BiO ALGORITHM

In this section, we propose SO-Lazy-BiO to solve the bilevel optimization problem in Eq. (1). Our
goal is to reduce the computation of second-order information (HVPs/JVPs), and the key idea is to
update the second-order information periodically on a subset of the entire training iterations while
using stale second-order information in the remaining iterations.

Algorithm 1 The SO-Lazy-BiO Algorithm.
Input: Initial parameters x0, y0, z0, stepsizes
{αt, βt, γt}T−1

t=0 , momentum coefficient {µt}T−1
t=0 ,

and flag Lazy JVP ∈ {True, False}
for t = 0 to T − 1 do

if t mod N = 0 then
Sample data batches Dgyy

t , and Dfy
t

Compute the gradient estimate hq
t using (8)

Update zt+1 = zt − γth
q
t

else
zt+1 = zt ▷ Reuse stale HVP

end if
if Lazy JVP == True then

<- - - - - - Option I: Lazy JVP - - - - - ->
if t mod N = 0 then

Sample data batches Dgxy
t

Compute the JVP using (7)
else

vt = vt−1 ▷ Reuse stale JVP
end if

else
<- - - - Option II: Regular JVP - - - ->

Sample data batches Dgxy
t

Compute the JVP using (7)
end if
Sample data batches Dg

t and Dfx
t

Compute the gradient estimate hg
t using (6)

Update yt+1 = yt − βth
g
t

Compute the gradient estimate hf
t using (5)

Compute the momentum-based h̄f
t using (9)

Update xt+1 = xt − αth̄
f
t

end for

We illustrate SO-Lazy-BiO in Algorithm 1. No-
tably, SO-Lazy-BiO uses a single-loop structure
and constructs the iterates of xt, yt and zt, where
the iteration counter t runs from 0 to T − 1. Note
that yt and zt keep track of the quantities y∗ (xt)
and z∗ (xt,y

∗ (xt)). The algorithm updates xt

and yt using the stochastic gradient estimators hf
t

and hg
t defined as:

hf
t = ∇xf

(
xt,yt;Dfx

t

)
+ vt, (5)

hg
t = ∇yg (xt,yt;Dg

t ) , (6)

where vt denotes the JVP and it is updated lazily
every N iterations (Option I in SO-Lazy-BiO):

vt = ∇2
xyg

(
xt,yt;D

gxy

t

)
zt. (7)

Every N iterations, variable zt in (7) is updated
lazily using a stochastic gradient estimator hq

t :

hq
t =∇2

yyg(xt,yt;D
gyy

t )zt+∇yf(xt,yt;D
fy
t ). (8)

Note that, compared to hf
t and hg

t , only hq
t and

vt contain the HVP and JVP, respectively, and are
computed infrequently in a lazy fashion after ev-
ery N iterations. Since zt is the HVP estimator,
reducing the frequency of JVP computations also
inherently reduces the frequency of HVP computa-
tions. Therefore, the reductions in computational
cost for JVPs and HVPs are intrinsically coupled.
In addition, N needs to be appropriately chosen
with a tolerable approximation error. If N is too
large, the error of the second-order information
approximation could increase too dramatically, thus decaying the performance of SO-Lazy-BiO.

Before updating the UL parameter x, we integrate a standard momentum approach into the update
step (see Section 5.3 for a discussion of its necessity), defined as follows:

h̄f
t+1 = µth

f
t + (1− µt) h̄

f
t , (9)

where µt ∈ [0, 1] is the momentum coefficient. Setting µt = 1 recovers the standard SGD update.

To balance the trade-off between reducing the overall computational cost in bilevel optimization
and controlling the error introduced by stale HVP and JVP, we also consider a special case of
the SO-Lazy-BiO framework, which is shown as Option II in SO-Lazy-BiO and referred to as
SO-Lazy-BiO-II. In SO-Lazy-BiO-II, only the computation of hq

t , which involves the HVP, is
performed infrequently once every N iterations, while the JVP is computed at every iteration.
Although SO-Lazy-BiO-II contains additional computation from the non-lazy JVP evaluations, this
reduced laziness may actually improve overall implementation wall-clock time compared to Option I
in SO-Lazy-BiO, due to a trade-off between per-iteration cost and overall convergence speed.

It is worth noting that while most existing bilevel algorithms compute only one single JVP per
iteration, they typically require multiple HVP computations in each iteration Arbel & Mairal (2022);
Ji et al. (2021), even in some single-loop bilevel algorithms (e.g., SUSTAIN Khanduri et al. (2021b),
TTSA Hong et al. (2020), BSA Ghadimi & Wang (2018), and ALSET Chen et al. (2021)). In
contrast, our proposed SO-Lazy-BiO achieves a two-fold reduction in computational costs: (1)

5
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A single-step SGD to estimate each Hessian-inverse vector product, thereby eliminating the need
for multiple HVP computations per approximation; and (2) A lazy update strategy that evaluates
second-order information (HVPs/JVPs) infrequently. Combined together, these two new algorithmic
techniques lead to significant overall computational savings and reduced implementation wall-clock
time compared to existing non-lazy methods.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we first focus on conduct the theoretical convergence analysis for the most-lazy
scenario within the SO-Lazy-BiO framework, specifically Option I (referred to as SO-Lazy-BiO-I),
for solving the bilevel optimization problem in (1). We relegate the theoretical convergence analysis
of Option II in the SO-Lazy-BiO framework to Appendix G, since the proofs for the two options are
similar and Option II can be viewed as a special case of Option I, where no errors are introduced
by JVP updates. We note that both Option I and Option II share the same convergence guarantees.
Note that, although SO-Lazy-BiO executes faster per iteration, we have a noisier hypergradient due
to the use of stale second-order information, particularly in SO-Lazy-BiO-I where both stale Hessian
and stale Jacobian evaluations are used. As a result, it remains unclear whether SO-Lazy-BiO-I can
converge and, if yes, what theoretical convergence rate (i.e., iteration complexity) it will achieve.
Intuitively, due to the lazy second-order information updates, one can expect that the convergence rate
of SO-Lazy-BiO-I cannot outperform its non-lazy counterpart. Surprisingly, in this paper, we show
that SO-Lazy-BiO-I achieves a convergence rate comparable to that of its non-lazy counterpart. This,
together with significantly fewer HVP/JVP computations and much lower per-iteration wall-clock
time, implies that SO-Lazy-BiO-I will enjoy a much faster speed in terms of wall-clock time. This
will also be verified by our experiments in Section 6.

We note that the convergence analysis for SO-Lazy-BiO-I is highly non-trivial due to the following
technical challenges: 1) The use of lazy Hessian and Jacobian evaluations increases the error of
the stochastic gradient estimator hf

t for the upper-level function; 2) The “multiplicative” structure
of vt in SO-Lazy-BiO-I, which couples the JVP with the HVP, significantly complicates the error
analysis introduced by the lazy computations; 3) Due to the hierarchical and coupled structure of
bilevel optimization problems, the error resulting from the stochastic gradient estimator hf

t with stale
Hessian and Jacobian information further propagates to and increases the approximation error of
y∗ (x) and the approximation error of z∗ (x,y∗ (x)). What is even worse is that the approximation
error in y∗ (x) further exacerbates the error in z∗ (x,y∗ (x)), since z∗ (x,y∗ (x)) is also associated
with y∗ (x). All the complex couplings of laziness-induced errors above and the complications
associated with these approximation errors are unseen in bilevel optimization algorithm analysis,
which significantly increases the difficulty of analyzing the convergence of SO-Lazy-BiO.

5.1 ASSUMPTIONS

We first state a set of assumptions that are needed to establish the convergence of SO-Lazy-BiO-I:
Assumption 5.1 (UL Objective). f (x,y) satisfies: 1) The map y 7→ ∇xf(x,y) is Lipschitz
∀x ∈ Ru with Lfx ≥ 0, and the map (x,y) 7→ ∇yf(x,y) is Lipschitz with Lfy ≥ 0. 2) For all
x ∈ Ru, we have ∥∇yf (x,y∗(x))∥ ≤ Bfy for some Bfy ≥ 0.
Assumption 5.2 (LL Objective). g (x,y) satisfies: 1) For any x ∈ Ru, y 7→ g(x,y) is µg-strongly
convex for some µg > 0. 2) The map y 7→ ∇yg(x,y) is Lipschitz ∀x ∈ Ru with Lg ≥ 0, and the
maps (x,y) 7→ ∇2

xyg(x,y) and (x,y) 7→ ∇2
yyg(x,y) are Lipschitz with Lgxy

≥ 0 and Lgyy
≥ 0,

resp. 3) For all (x,y) ∈ Ru × Rl, we have
∥∥∇2

xyg (x,y)
∥∥ ≤ Bgxy for some Bgxy > 0.

Note that, aside from the boundedness assumption on ∇yf (x,y∗(x)), all other assumptions are
standard in the analysis of bilevel optimization problems (e.g., Ghadimi & Wang (2018); Hong
et al. (2020); Khanduri et al. (2021b); Liu et al. (2022b); Qiu et al. (2022)). Our analysis assumes
the boundedness of ∇yf (x,y∗(x)), which differs from the more commonly used assumption on
∇yf (x,y) in previous works and is comparatively more relaxed.

Next, for the stochastic gradient estimators ∇f(x,y, z;Dfx ,Dgxy ) and ∇yg(x,y;Dgy ), we make
the following typical assumption in stochastic optimization analysis:
Assumption 5.3 (Stochastic Gradients). For any (x,y) ∈ Ru × Rl and data batch Dfx , Dfy ,
Dgy , Dgxy and Dgyy , the gradient estimates ∇xf(x,y;Dfx), ∇yf(x,y;Dfy ), ∇yg(x,y;Dgy ),
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∇2
xyg(x,y;Dgxy ) and ∇2

yyg(x,y;Dgyy ) are unbiased and have bounded variances:
E[∥∇xf(x,y;Dfx)−∇yf(x,y)∥2] ≤ σ2

fx , E[∥∇yf(x,y;Dfy )−∇yf(x,y)∥2] ≤ σ2
fy ,

E[∥∇yg(x,y;Dgy )−∇yg(x,y)∥2] ≤ σ2
gy , E[∥∇2

xyg(x,y;Dgxy )−∇2
xyg(x,y)∥2] ≤ σ2

gxy
,

E[∥∇2
yyg(x,y;Dgyy )−∇2

yyg(x,y)∥2] ≤ σ2
gyy

.

Lastly, we define ϵ-stationarity as a performance measure for an algorithm for solving Problem (1):

Definition 5.4 (ϵ-Stationarity). x is an ϵ-stationary solution if E
[
∥∇ℓ (x)∥2

]
≤ ϵ, where x is the

output of a stochastic algorithm, and the expectation is taken over all randomness of the algorithm.

5.2 MAIN CONVERGENCE RESULTS

We now state the main convergence result of the “most-lazy” scenario of the proposed
SO-Lazy-BiO framework, i.e., SO-Lazy-BiO-I, for non-convex ℓ (x) in Theorem 5.5:
Theorem 5.5 (Convergence Rate of SO-Lazy-BiO-I). Under Assumptions 5.1–5.3, choose step-
sizes αt = α = O((

√
NT )−1), βt = β = O((

√
NT )−1), γt = γ = O(

√
N(

√
T )−1), and the

momentum coefficient as µt = µ = O((
√
NT )−1) for all t = 0, . . . , T − 1. Then, the iterates

generated by SO-Lazy-BiO-I satisfy:
1

T

T−1∑
t=0

E
[
∥∇ℓ (xt)∥2

]
= O

(√
N∆0√
T

+
σ2
gy√
NT

+

√
N√
T
σ2
gyy

+

√
N√
T
σ2
fy +

σ2
gxy√
NT

+
σ2
fx√
NT

)
,

where ∆0 = (ℓ(x0)− ℓ∗) + ∥y0 − y∗(x0)∥2 + ∥z0 − z∗(x0,y
∗(x0))∥2.

The proof of Theorem 5.5 is included in Appendix E. Theorem 5.5 establishes the convergence
of SO-Lazy-BiO-I under the most general and most lazy settings, where the function ℓ(·) is non-
convex and both HVP and JVP are stale. The result characterizes the effect of different parameters
on the convergence of SO-Lazy-BiO-I. Specifically, as N increases, the performance in terms of
iteration complexity of SO-Lazy-BiO-I degrades. This is unsurprising since more stale second-order
information is expected to slow the convergence. Interestingly, under an appropriate N -value, the
N -dependent slowdown effect in SO-Lazy-BiO-I can be offset by skipping second-order information
computations, allowing SO-Lazy-BiO-I to run even faster than non-lazy approaches in terms of wall-
clock time. The computation complexity of SO-Lazy-BiO-I follows immediately from Theorem 5.5:
Corollary 5.6 (Computation Complexity of SO-Lazy-BiO-I). Under the setting of Theorem 5.5,
choose the batch size as O(1). Then, SO-Lazy-BiO-I requires O(Nϵ−2) partial gradient evaluations
and O(ϵ−2) second-order information evaluations to reach an ϵ-stationary solution.

We note that the computation complexity of second-order information evaluations in Corollary 5.6 is
lower than that of standard non-lazy bilevel algorithms, which require multiple HVP computations in
each iteration, such as AmIGO Arbel & Mairal (2022), stocBiO Ji et al. (2021), ALSET Chen et al.
(2021), and BSA Ghadimi & Wang (2018). Specifically, these algorithms incur a total of O(Kϵ−2)
HVP computations, where K denotes the number of HVP evaluations per iteration, whereas our
proposed SO-Lazy-BiO-I algorithm requires only O(ϵ−2) HVP computations. In addition, our
proposed SO-Lazy-BiO-I converges significantly faster than standard non-lazy bilevel algorithms in
terms of wall-clock time, further demonstrating the effectiveness of SO-Lazy-BiO-I.

5.3 PERFORMANCE WITHOUT THE MOMENTUM

To show the benefit of incorporating the momentum information in the updates of the upper-level pa-
rameter x, we conduct a theoretical analysis of the vanilla SGD-based SO-Lazy-BiO-I, where the mo-
mentum coefficient is set to µt = 1. We refer to this variant of SO-Lazy-BiO as SO-Lazy-BiO-SGD.

For a fair comparison, the convergence analysis is conducted under the same assumptions as
SO-Lazy-BiO-I, and the main convergence result for SO-Lazy-BiO-SGD is presented in Theorem 5.7.
Theorem 5.7 (Convergence Rate of SO-Lazy-BiO-SGD). Under Assumptions 5.1–5.3, choose con-
stant step-sizes αt = α = O (1), βt = β = O (1), and γt = γ = O (N) for all t = 0, 1, . . . , T − 1.
Then, the iterates generated by SO-Lazy-BiO-SGD satisfy:

1

T

T−1∑
t=0

E
[
∥∇ℓ (xt)∥2

]
= O

(
∆0

T
+Nσ2

gy +Nσ2
gyy

+Nσ2
fy + σ2

gxy
+ σ2

fx

)
,

where ∆0 = (ℓ(x0)− ℓ∗) + ∥y0 − y∗(x0)∥2 + ∥z0 − z∗(x0,y
∗(x0))∥2.
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Figure 1: Validation loss comparison for data
weighting in RLHF reward model training.

0 50 100 150 200 250 300

Running Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

V
al

id
at

io
n

L
os

s

SO-Lazy-BiO-I

SO-Lazy-BiO-II

AmIGO

SOBA

MA-SOBA

(a) Wall-clock time

0 100 200 300 400 500

Number of (HVP+JVP) Computationss

0.0

2.5

5.0

7.5

10.0

12.5

15.0

V
al

id
at

io
n

L
os

s

SO-Lazy-BiO-I

SO-Lazy-BiO-II

AmIGO

SOBA

MA-SOBA

(b) HVP+JVP evaluations

Figure 2: Validation loss comparison for data
weighting in LLM alignment.

The proof of Theorem 5.7 is provided in Appendix F. The computation complexity of
SO-Lazy-BiO-SGD immediately follows from Theorem 5.7:

Corollary 5.8 (Computation Complexity of SO-Lazy-BiO-SGD). Under the setting of Theo-
rem 5.7, choose

∣∣Dfx
∣∣ , |Dgxy | = Θ

(
ϵ−1
)
, and |Dgy | ,

∣∣Dfy
∣∣ , |Dgyy | = Θ

(
Nϵ−1

)
. Then,

SO-Lazy-BiO requires O(Nϵ−2) partial gradient evaluations and O(ϵ−2) second-order information
evaluations to reach an ϵ-stationary point.

Both SO-Lazy-BiO-Iand SO-Lazy-BiO-SGD exhibit the same computation complexity in terms
of partial gradient evaluations and second-order information evaluations, with the latter being
lower than that of non-lazy bilevel algorithms that perform multiple HVP evaluations per iter-
ation. This confirms the effectiveness of our proposed framework, as both SO-Lazy-BiO-I and
SO-Lazy-BiO-SGD leverage lazy second-order information evaluations. Moreover, our proposed
framework SO-Lazy-BiO achieves substantially faster convergence in terms of wall-clock time com-
pared to standard non-lazy bilevel algorithms, further validating the efficiency of SO-Lazy-BiO.
However, unlike SO-Lazy-BiO-I, which requires a batch size of O (1), SO-Lazy-BiO-SGD requires
significantly larger batch sizes. This highlights the benefits of incorporating momentum into the
updates of the upper-level parameter x.

6 NUMERICAL EXPERIMENTS

In this section, we verify the performance of SO-Lazy-BiO with three complex bilevel optimization
tasks: 1) data weighting for RLHF Ouyang et al. (2022) reward model training; 2) data weighting for
LLM alignment; and 3) deep hyper-representation with ResNet network. Due to space limitations,
some experimental details and additional results are relegated to Appendix C.

We compare our proposed SO-Lazy-BiO with standard second-order stochastic bilevel algorithms:
AmIGO Arbel & Mairal (2022), SOBA Dagréou et al. (2022), and MA-SOBA Chen et al. (2024). Es-
pecially for Tasks 1 and 3, we also compare SO-Lazy-BiO with two fully first-order (Hessian/Jacobian-
free) stochastic bilevel algorithms F2SA Kwon et al. (2023) and F3SA Kwon et al. (2023) to assess
the importance of second-order information during training.

Task 1) Data weighting for RLHF reward model training: The goal of data weighting is to
determine optimal sampling weights on training data that maximize validation performance. We train
the reward model on the HelpSteer dataset Wang et al. (2023), where each prompt-response pair is
labeled according to different score criteria.

As shown in Fig. 1a, despite having more errors due to infrequent HVP and/or JVP computations,
SO-Lazy-BiO-I converges the fastest in terms of wall-clock time among all algorithms, including
two fully first-order algorithms F2SA and F3SA, and achieves the lowest validation loss, which
corresponds to our UL objective, within the same runtime. This is attributed to infrequent second-
order computations of SO-Lazy-BiO-I, which allows the shortest per-iteration time and consequently
the ability to perform more updates for a given runtime. In addition, leveraging second-order
information introduces fewer errors compared to fully first-order algorithms.

Also, Fig. 1b shows that the convergence speed with respect to the cumulative number of HVP and JVP
evaluations for SO-Lazy-BiO-I is much faster compared to all other algorithms. Table 1 also demon-
strates that, to reach the same validation loss, both SO-Lazy-BiO-I and SO-Lazy-BiO-II require 600
HVP computations at most, which is at least 3.72× fewer than those required by other non-lazy meth-
ods. In addition, compared to SO-Lazy-BiO-II, the infrequent JVP design in SO-Lazy-BiO-I reduces
JVP computations by a factor of 5, resulting in further reduced running time.
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Task 2) Data weighting for LLM alignment: In this task, we aim to determine weights on dataset
used during LLM alignment. We use Llama-3.2-1B-Instruct Meta (2024) as the base model and align
it on HH-RLHF dataset Bai et al. (2022), where each sample is labeled as either chosen or rejected.

In Figs. 2a and 2b, we observe the same performance trend as in Task 1, with SO-Lazy-BiO-I
converging the fastest. The performance gaps across the algorithms, however, become more noticeable
than in Task 1. This is because, as the LLM model size increases, the computational savings from
infrequent second-order evaluations become more significant. These results verify that our algorithm
provides greater computational advantages for large-scale problems.

Task 3) Deep hyper-representation with ResNet network: We conduct experiments on a deep
hyper-representation task Sow et al. (2022) with the ResNet-20 model He et al. (2016) on CIFAR-10
dataset Krizhevsky et al. (2009), which aims to classify CIFAR-10 images.

Table 1: Number of HVP/JVP computations and run-
time required by various algorithms to achieve the
same validation loss (averaged over 5 repetitions).

ALGORITHM
# OF # OF RUNTIME
HVP JVP (S)

TASK 1

AMIGO 12,195 12,195 110.28
SOBA 2,231 2,650 49.92

MA-SOBA 2,402 2,402 61.07
SO-Lazy-BiO-I 526 526 26.64
SO-Lazy-BiO-II 600 3,000 11.99

TASK 2

AMIGO 170 34 131.71
SOBA 176 176 192.49

MA-SOBA 176 176 194.42
SO-Lazy-BiO-I 35 35 66.89
SO-Lazy-BiO-II 35 173 106.85

TASK 3

AMIGO 518 259 129.04
SOBA 501 501 163.86

MA-SOBA 471 471 153.54
SO-Lazy-BiO-I 353 353 188.73
SO-Lazy-BiO-II 116 232 63.93

As shown in Fig. 3a, the validation loss for
both SO-Lazy-BiO-I and SO-Lazy-BiO-II is
comparable to those of second-order base-
line algorithms, and is notably lower
than those of the fully first-order base-
line methods. The superior performance
of SO-Lazy-BiO-I, SO-Lazy-BiO-II, and
other second-order methods compared to
the “Hessian/Jacobian-free” F2SA and F3SA
highlights the benefits of Hessian/Jacobian
information in bilevel optimization. With-
out them, both the convergence speed and
validation loss would degrade. Moreover,
SO-Lazy-BiO-II converges fastest in terms
of wall-clock time among all baselines.
Fig. 3b demonstrates that SO-Lazy-BiO-II
achieves the fastest convergence among all
baselines in terms of the cumulative num-
ber of HVP and JVP computations. Further-
more, as shown in Table 1, to reach the same
validation loss, SO-Lazy-BiO-II requires the fewest HVP computations and JVP computations. This
significantly reduces computational costs and wall-clock running time.
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Figure 3: Validation loss for deep hyper-representation.

It is not surprising that SO-Lazy-BiO-I ex-
hibits longer wall-clock time, as infrequent
JVP evaluations introduce more error com-
pared to SO-Lazy-BiO-II, potentially requir-
ing more iterations to reach convergence.
As a result, the cumulative number of HVP
and JVP computations increases, as shown
in Fig. 3b. Nevertheless, as demonstrated
in Table 1, despite requiring more itera-
tions, SO-Lazy-BiO-I still requires fewer
HVP evaluations to reach the same validation loss compared to the non-lazy algorithms.

7 CONCLUSION

In this paper, we proposed the SO-Lazy-BiO algorithmic framework for solving bilevel optimiza-
tion problems. Compared to existing works, SO-Lazy-BiO reduces the evaluations of second-order
information (Hessian/Jacobian-vector products) by updating them periodically and less frequently. Al-
though SO-Lazy-BiO uses stale second-order information that introduce additional errors, our theoreti-
cal analysis demonstrated that SO-Lazy-BiO not only surprisingly enjoys convergence rate guarantees
comparable to those of state-of-the-art (SOTA) non-lazy bilevel methods, but also achieves a much
faster wall-clock time performance. Specifically, to reach an ϵ-stationary point, SO-Lazy-BiO requires
O(ϵ−2) second-order information evaluations, which is fewer than those required by non-lazy bilevel
algorithms that perform multiple HVP evaluations per iteration. We validated the effectiveness and
efficiency of our proposed SO-Lazy-BiO through experiments on multiple bilevel optimization tasks.
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Luis Vicente, Gilles Savard, and Joaquim Júdice. Descent approaches for quadratic bilevel program-
ming. Journal of Optimization theory and applications, 81(2):379–399, 1994.

Zhongping Wan, Lijun Mao, and Guangmin Wang. Estimation of distribution algorithm for a class of
nonlinear bilevel programming problems. Information Sciences, 256:184–196, 2014.

Chang-yu Wang, Yuan-yuan Chen, and Shou-qiang Du. Further insight into the shamanskii modifica-
tion of newton method. Applied mathematics and computation, 180(1):46–52, 2006.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel Egert,
Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer:
Multi-attribute helpfulness dataset for steerlm, 2023.

Douglas J White and G Anandalingam. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization, 3(4):397–419, 1993.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in federated
learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3345–3355, 2024.

Alain B Zemkoho and Shenglong Zhou. Theoretical and numerical comparison of the karush–kuhn–
tucker and value function reformulations in bilevel optimization. Computational Optimization and
Applications, 78(2):625–674, 2021.

Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization. In
International Conference on Machine Learning, pp. 26693–26712. PMLR, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to assist with grammar correction and language polishing during the writing process.
They did not contribute to research ideation.

B ADDITIONAL RELATED WORK

Bilevel Optimization: The history of bilevel optimization dates back to 1973 Bracken & McGill
(1973). Some early attempts for solving bilevel problems include: value function Liu et al. (2021);
Sinha et al. (2018); Zemkoho & Zhou (2021), Karush–Kuhn–Tucker conditions based reformula-
tions Allende & Still (2013); Sinha et al. (2019); Zemkoho & Zhou (2021), penalty function White &
Anandalingam (1993); Anandalingam & White (1990); Wan et al. (2014), approximate descent Falk
& Liu (1995); Vicente et al. (1994), and trust region methods Dempe & Bard (2001); El-Sobky &
Abo-Elnaga (2018). Among these approaches, approximate descent methods have gained promi-
nence recently because of their ease of implementation as well as strong theoretical and empirical
performance in many machine learning applications. Two standard descent-based approaches to
tackle problems of form (1) are iterative differentiation (ITD) Domke (2012); Maclaurin et al. (2015);
Franceschi et al. (2017; 2018); Shaban et al. (2019); Grazzi et al. (2020); MacKay et al. (2019) and
approximate implicit differentiation (AID) Domke (2012); Pedregosa (2016); Liao et al. (2018);
Ghadimi & Wang (2018); Grazzi et al. (2020); Lorraine et al. (2020); Gould et al. (2016); Ji & Liang
(2021); MacKay et al. (2019); Khanduri et al. (2021a); Hong et al. (2020). The basic idea of ITD
is to obtain an approximate hypergradient of the loss function ℓ(x) in Eq. (1) by differentiating the
unrolled iterates of the LL problem. Consequently, ITD-based approaches need to store all the LL
iterates in the memory Shaban et al. (2019). On the other hand, AID relies on the implicit function
theorem to compute the implicit gradient of ℓ(x) without the need to maintain the sequence of LL
iterates. Instead of differentiating the iterates of the LL problem, AID computes the implicit gradient
by approximately solving a linear system of equations using HVPs. In this work, we focus on
AID-based approaches for solving stochastic bilevel problems.

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we present additional experimental results, which are not included in the main text,
and provide a detailed description of the experimental setup.

C.1 ADDITIONAL EXPERIMENTAL RESULTS

Task 1) Data weighting for RLHF reward model training

We first evaluate the effect of N on the performance of SO-Lazy-BiO-I algorithm for Task 1. Fig. 4
captures the effect of different values of N on the performance of SO-Lazy-BiO-I . Note that when
N = 1, SO-Lazy-BiO-I becomes a non-lazy algorithm, which is equivalent to SOBA. We observe
that as we increase the value of N , the execution of the algorithm becomes faster. The fact that the
validation loss remains stable as N increases suggests that the HVP and JVP information evolves
gradually during training. This indicates that using stale HVP and JVP can still yield accurate
approximations of the hypergradient in bilevel optimization.
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Figure 4: Validation loss comparison with dif-
ferent values of N for data weighting in RLHF
reward model training (Task 1).
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Figure 5: Validation loss comparison with dif-
ferent bilevel algorithms for data weighting in
RLHF reward model training (Task 1).
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Figure 6: Comparison of weights assigned on the dataset corresponding to the validation set for data
weighting in RLHF reward model training (Task 1).

In Fig. 5, we compare the convergence speed of different bilevel optimization algorithms with
respect to the number of HVP and JVP computations. In Fig. 5a, both SO-Lazy-BiO-I and
SO-Lazy-BiO-II achieve significantly faster convergence due to their infrequent HVP updates. Simi-
larly, Fig. 5b shows that SO-Lazy-BiO-I converges faster than the other algorithms, which is attributed
to its infrequent JVP computations. Although SO-Lazy-BiO-I and AmIGO demonstrate similar con-
vergence performance, SO-Lazy-BiO-I requires substantially fewer HVP evaluations compared to
AmIGO. These results verify that both HVP and JVP computations significantly impact the over-
all computational cost in bilevel optimization, and thus using stale second-order information can
efficiently accelerate the convergence.

Fig. 6 shows the data weighting result for different bilevel optimization algorithms. All algorithms
successfully assign higher weights to dataset 1, which is labeled using the same score criterion as the
validation set. This validates the effectiveness of bilevel optimization framework when addressing
the data weighting problem for RLHF reward model training. We observe that, while the weight
value from every algorithm converges to 1, our SO-Lazy-BiO-I and SO-Lazy-BiO-II algorithms show
faster convergence within the same runtime. This confirms the computational efficiency of our
proposed SO-Lazy-BiO framework in bilevel optimization. In addition, by leveraging second-order
information, our SO-Lazy-BiO-I and SO-Lazy-BiO-II algorithms assign higher weights compared to
the fully first-order methods F2SA and F3SA, thereby validating the effectiveness of our proposed
algorithms.

Task 2) Data weighting for LLM alignment
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Figure 7: Validation loss comparison for data weighting in LLM alignment (Task 2).

Fig. 7 compares the convergence speed of various bilevel optimization algorithms with respect to
the number of HVP and JVP computations. As anticipated, we observe a similar trend to that in
Fig. 5: SO-Lazy-BiO-I and SO-Lazy-BiO-II converge faster in terms of HVP computations (Fig. 7a),
while SO-Lazy-BiO-I shows faster convergence with JVP computations (Fig. 7b). However, for
the case of LLM alignment, the performance gap becomes significantly larger. This is because the
optimization variables for this problem are high-dimensional LLM parameters, making the overall
bilevel optimization computationally intensive. Our results indicate that the computational advantage
of our SO-Lazy-BiO algorithm becomes more significant when the scale of the bilevel problem
becomes large.

Task 3) Deep hyper-representation with ResNet network

Fig. 8 illustrates the impact of HVP and JVP evaluations during training. Fig. 8a shows that
SO-Lazy-BiO-I and SO-Lazy-BiO-II achieve faster convergence in terms of HVP evaluations com-
pared to the other algorithms. Since SO-Lazy-BiO-II introduces less error than SO-Lazy-BiO-I, it
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Figure 8: Validation loss comparison for deep hyper-representation (Task 3).

requires fewer iterations to converge and thus significantly fewer HVP evaluations. In Fig. 8b,
we observe that SO-Lazy-BiO-II also requires fewer JVP computations to converge. Although
SO-Lazy-BiO-II and AmIGO have comparable JVP computation costs, SO-Lazy-BiO-II achieves this
with substantially fewer HVP evaluations than AmIGO. These findings validate the effectiveness of
our lazy update design in reducing second-order information computation while maintaining strong
convergence performance.

C.2 SPECIFICATIONS OF THE BASELINE ALGORITHMS IN SECTION 6

In this subsection, we describe the baseline algorithms used in our experiments, which are as follows:

• AmIGO Arbel & Mairal (2022): A double-loop stochastic AID-based bilevel algorithm that
employs SGD to estimate the Hessian inverse.

• SOBA Dagréou et al. (2022): A single-loop stochastic AID-based bilevel algorithm that also uses
SGD to approximate the Hessian inverse.

• MA-SOBA Chen et al. (2024): A single-loop stochastic AID-based bilevel algorithm that maintains
an additional sequence of averaged hypergradients and uses SGD to estimate the Hessian inverse.

• F2SA Kwon et al. (2023): A fully first-order (Hessian/Jacobian-free) stochastic bilevel algorithm
with a double-loop structure.

• F3SA Kwon et al. (2023): A fully first-order stochastic bilevel method that employs momentum-
based SGD to accelerate convergence and operates on a single timescale.

C.3 EXPERIMENTAL DETAILS OF DATA WEIGHTING IN RLHF REWARD MODEL TRAINING

In this subsection, we provide the experimental details for the data weighting task in RLHF reward
model training. In RLHF Ouyang et al. (2022), the reward model evaluates LLM prompt–response
pairs using scores based on human-valued criteria like helpfulness, correctness, and verbosity. It is
thus important to train the reward model using a carefully selected dataset. As considered in Shen
et al. (2024); Pan et al. (2024), we determine dataset preferences through numerical weights and
apply bilevel optimization to solve the problem.

Let NT be the number of datasets available for training. Each dataset Tn, where n = 1, 2, . . . , NT ,
contains |Tn| samples, and each data sample i = 1, 2, . . . , |Tn| consists of a prompt-response
pair {pn,i, rn,i} and its associated labeled score sn,i. The goal of data weighting is to assign
a weight on each dataset such that validation loss on a dataset V is minimized. We introduce
x = [x1, x2, . . . , xNT

]⊤ to be a vector of raw dataset weights, to which we apply a softmax function
to derive the normalized weights. We also define y ∈ Rl as the parameter vector of the reward model
to be trained.

The bilevel optimization problem for our data weighting task in RLHF reward model training is then
formulated as:

min
x∈RNT

|V|∑
i=1

L(s̃0,i, s0,i;y∗(x))

s.t. y∗(x) = argmin
y∈Rl

NT∑
n=1

exn∑NT

n′=1 e
xn′

|Tn|∑
i=1

L(s̃n,i, sn,i;y),
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where L(s̃n,i, sn,i;y) is the loss between the true score label sn,i and the predicted score s̃n,i
generated by the reward model with parameters y. In the problem, y∗(x) represents the optimal
model parameters trained under data weights x.

We configure our experimental setting as follows. We use the HelpSteer dataset Wang et al. (2023)
(CC-by-4.0 License), where each prompt-response pair is labeled according to six different score
criteria. We first filter the dataset to only include samples that have fewer than 1, 000 characters in
total. Then, we select the two most uncorrelated criteria: coherence and complexity, and construct a
mixed training dataset (i.e., NT = 2). For the validation set, we exclusively label all samples with
coherence scores, from which we expect the data weighting algorithm to assign greater weights on
data labeled with coherence.

We use the DeBERTaV3 tokenizer He et al. (2021) (MIT License) to embed the text inputs. For the
reward model, we implement a multi-layer perceptron (MLP) with width 500 and depth 5. The input
dimension is set to 500 to ensure that the tokenized texts are fully covered without truncation. We use
mean squared error (MSE) as our loss function for both the UL and LL problem objectives. For our
proposed SO-Lazy-BiO algorithms, we set N = 5, α = 1× 10−6, β = 5× 10−7, and γ = 5× 10−7.
For AmIGO Arbel & Mairal (2022), we use 5 update steps for both y and z, with α = 1 × 10−6,
β = 1 × 10−7, and γ = 1 × 10−7. For both SOBA Dagréou et al. (2022) and MA-SOBA Chen
et al. (2024), we set α = 1 × 10−6, β = 5 × 10−7, γ = 5 × 10−7, and µ = 0.8. For first-order
methods, we set α = 5 × 10−5, β = 2 × 10−8, and γ = 2 × 10−8 for F2SA and α = 5 × 10−5,
β = 1× 10−7, γ = 1× 10−7, and µ = 0.8 for F3SA. All algorithms are trained with a batch size of
256 and normalized gradient clipping with norm 1000. We run the experiment on NVIDIA H100
NVL GPU.

C.4 EXPERIMENTAL DETAILS OF DATA WEIGHTING IN LLM ALIGNMENT

In this subsection, we describe the experimental setup for the data weighting task in LLM alignment.
Similar to the data weighting task in Section C.3, the goal is to find training sample weights that
minimize the validation loss. However, instead of training a reward model on scalar reward labels,
we fine-tune an LLM directly on prompt-response pairs that reflect human preferences.

We assume that each prompt-response sample for training has been categorized into one of NT

distinct groups. Taking the notation from Section C.3, the bilevel optimization problem for our data
weighting task in LLM alignment is formulated as:

min
x∈RNT

|V|∑
i=1

L(r̃0,i, r0,i; p0,i,y∗(x))

s.t. y∗(x) = argmin
y∈Rl

NT∑
n=1

exn∑NT

n′=1 e
xn′

|Tn|∑
i=1

L(r̃n,i, rn,i; pn,i,y),

where L(r̃n,i, rn,i; pn,i,y) denotes the loss between the true response rn,i and the response r̃n,i
generated by the LLM of parameters y with given prompt pn,i.

We use Llama-3.2-1B-Instruct Meta (2024) (Llama3.2 License) as the base LLM and apply the low-
rank adaptation (LoRA) technique of rank 8. We train the LLM on Anthropic HH-RLHF dataset Bai
et al. (2022) (MIT License), where each text sample is labeled as either chosen or rejected (i.e.,
NT = 2). For the validation set, we only include samples that have been chosen. In this setting,
we anticipate that the validation loss can be further minimized when higher weights are assigned
on training samples that have been chosen. We use cross-entropy as our loss function for both
the UL and LL problem objectives. For our proposed SO-Lazy-BiO algorithms, we set N = 5.
For AmIGO Arbel & Mairal (2022), we set both the number of y and z update steps as 5. For
MA-SOBA Chen et al. (2024), we set µ = 0.8. All algorithms use the same update parameter values
α = 5 × 10−3, β = 2 × 10−4, γ = 3 × 10−4, and a batch size of 32. We run the experiment on
NVIDIA H100 NVL GPU.
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C.5 EXPERIMENTAL DETAILS FOR DEEP HYPER-REPRESENTATION WITH RESNET NETWORK

In this subsection, we show the details of the experiments on deep hyper-representation, which aims
to classify the images. The objective function is given by:

min
λ

LDval
(λ,w∗) =

1

|Dval|
∑

(xi,yi)∈Dval

L (w∗f (λ;xi) ,yi)

s.t. w∗ = argmin
w

1

|Dtr|
∑

(xi,yi)∈Dtr

L (wf (λ,xi) ,yi) ,

where (xi,yi) denotes the data samples, Dval and Dtr are the validation data and the training data, L
corresponds to the cross-entropy loss, f (λ;xi) represents the features extracted from the data sample.
We run the experiments with ResNet-20 network He et al. (2016) on CIFAT-10 dataset Krizhevsky
et al. (2009) using a batch size of 128. We treat the last two layers in ResNet-20 as the LL parameters
w with a dimension of 5, 130, and all remaining layers as the UL parameters λ with a dimension of
11, 168, 832.

We compare SO-Lazy-BiO-I and SO-Lazy-BiO-II with AmIGO Arbel & Mairal (2022),
SOBA Dagréou et al. (2022), MA-SOBA Chen et al. (2024), F2SA Kwon et al. (2023) and F3SA Kwon
et al. (2023). To ensure the best performance of all the algorithms, we fine-tune the parameters
using grid search with the goal of finding the lowest validation loss, which corresponds to the
upper-level objective. Consequently, for SO-Lazy-BiO-I and SO-Lazy-BiO-II, we choose the step
sizes to α = 0.005, β = 0.05, and γ = 0.01, and choose a lazy update frequency of N = 2. The
momentum coefficient is set to µ = 0.8 for SO-Lazy-BiO-I and µ = 1.0 for SO-Lazy-BiO-II. For
AmIGO, SOBA, and MA-SOBA, we choose all the step-sizes for updating x, y, and z to 0.01. For
AmIGO, we set the number of y-update iterations to be 8 and the number of z-update iterations to be
2. For MA-SOBA, we choose the momentum coefficient to be 0.9. Following the same notations as
in Kwon et al. (2023), for F2SA, we choose the step-sizes α = 0.1 and γ = 0.05. We use the step-size
ratio ξ = 0.5 and the Lagrangian multiplier λ = 0.1. We choose the number of inner-loop iterations
to be 1. For F3SA, we set 0.05 as α, 0.01 as γ, 0.1 as ξ, 0.5 as λ, and 0.9 as momentum-weight η.
We repeat the experiments 5 times with different random seeds, where the solid line represents the
average validation loss, and the shaded area shows the variance containing the maximum and the
minimum values. We run the deep hyper-representation experiments using NVIDIA GeForce RTX
3060 GPU.

D SUPPORTING LEMMAS

Lemma D.1 (Lemma 2.2 in Ghadimi & Wang (2018)). Under Assumptions 5.1 and 5.2, we have

∥∇ℓ (x1)−∇ℓ (x2)∥ ≤ Ll ∥x1 − x2∥ , ∥y∗ (x1)− y∗ (x2)∥ ≤ Ly ∥x1 − x2∥ ,
for all x,x1,x2 ∈ Ru, where the Lipschitz constants above are defined as:

Ll = L
′

f +
(
L

′

fBgxy
/µg

)
, Ly = Bgxy

/µg,

and where L
′

f = Lfx + (LfyBgxy/µg) +Bfy

[
(Lgxy/µg) + (LgyyBgxy/µ

2
g)
]
.

Lemma D.2 (Lemma 3.4 in Dagréou et al. (2022)). Under Assumptions 5.1 and 5.2, we have

∥∇f(x,y, z)−∇ℓ(x)∥ ≤ Lf (∥y − y∗(x)∥+ ∥z− z∗(x,y∗(x)∥) ,

for all x ∈ Ru, and y, z ∈ Rl, where the Lipschitz constants above are defined as:

Lf = max
{
Lfx +

(
LgxyBfy/µg

)
, Bgxy

}
.

Lemma D.3 (Lemma C.1 in Dagréou et al. (2022), Lemma 10 in Chen et al. (2024)). Under
Assumptions 5.1 and 5.2, ∀ x,x1,x2 ∈ Ru and y ∈ Rl , we have

∥z∗ (x1,y
∗(x1))− z∗ (x2,y

∗(x2))∥ ≤ Lz ∥x1 − x2∥ , ∥z∗ (x,y)∥ ≤ Bfy/µg,

where Lz = (1 + Ly)
((
LgyyBfy/µ

2
g

)
+ Lfy/µg

)
.

Lemma D.4 (Quadratic Problem). For any (x,y) ∈ Ru ×Rl, the map z 7→ q(x,y, z) is µg-strongly
convex and Lq-Lipschitz smooth with constants µg > 0 and Lq ≥ 0.
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E THEORETICAL ANALYSIS OF OPTION I IN SO-Lazy-BiO FRAMEWORK

E.1 REFORMULATION OF OPTION I IN ALGORITHM 1 FOR THEORETICAL ANALYSIS

In order to analyze the theoretical performance of SO-Lazy-BiO-I, we reformulate SO-Lazy-BiO-I as
follows. We note that Option I in Algorithm 1 is equivalent to Algorithm 2 when the number of
iterations T in Algorithm 2 is set to T/N .

Algorithm 2 The SO-Lazy-BiO-I Algorithm.

Input: Initial parameters x0
0, y0

0, z0, stepsizes {αt, βt, γt}T−1
t=0 , and momentum coefficient {µt}T−1

t=0
for t = 0 to T − 1 do

Initialize x0
t = xN

t−1 and y0
t = yN

t−1

Sample data batches Dgyy
t Dfy

t , and Dgxy
t

Compute the gradient estimate hq
t using hq

t = ∇2
yyg(x

0
t ,y

0
t ;D

gyy
t )zt +∇yf(x

0
t ,y

0
t ;D

fy
t )

Update zt+1 = zt − γth
q
t

Compute the JVP using vt = ∇2
xyg

(
x0
t ,y

0
t ;D

gxy
t

)
zt

for n = 0 to N − 1 do
Sample data batches Dg

t,n, Dfx
t,n, and Dgxy

t,n

Compute the gradient estimate hg
t,n using hg

t,n = ∇yg
(
xn
t ,y

n
t ;Dg

t,n

)
Update yn+1

t = yn
t − βth

g
t,n

Compute the gradient estimate hf
t,n using hf

t,n = ∇xf
(
xn
t ,y

n
t ;Dfx

t,n

)
+ vt

Compute the momentum-based h̄f
t,n+1 using h̄f

t,n+1 = µth
f
t,n + (1− µt) h̄

f
t,n

Update xn+1
t = xn

t − αth̄
f
t,n

end for
end for

E.2 DETAILED PROOF OF THEOREM 5.5: NON-CONVEX ℓ (x)

E.2.1 PROOF OF PRELIMINARY LEMMAS

Lemma E.1. Under Assumptions 5.2 and 5.3, the following inequality holds:

E
[∥∥hg

t,n

∥∥2] ≤ 2L2
gE
[
∥yn

t − y∗(xn
t )∥

2
]
+ 2σ2

gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

Proof. We get

E
[∥∥hg

t,n

∥∥2] = E
[∥∥hg

t,n −∇yg (x
n
t ,y

n
t ) +∇yg (x

n
t ,y

n
t )
∥∥2]

(a)

≤ E
[
2
∥∥hg

t,n −∇yg (x
n
t ,y

n
t )
∥∥2 + 2 ∥∇yg (x

n
t ,y

n
t )−∇yg (x

n
t ,y

∗(xn
t ))∥

2
]

(b)

≤ 2L2
gE
[
∥yn

t − y∗(xn
t )∥

2
]
+ 2σ2

gy ,

where (a) is because of ∇yg (x
n
t ,y

∗(xn
t )) = 0, and (b) uses Assumptions 5.2 and 5.3.

E.2.2 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma E.2. Under Assumptions 5.1 and 5.2, the following inequality holds for successive iterations
of Algorithm 2:

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]

≤ −αt

2
E
[
∥∇ℓ (xn

t )∥
2
]
− αt

2
E
[∥∥∥h̄f

t,n

∥∥∥2]+ αt

2
E
[∥∥∥∇ℓ (xn

t )− h̄f
t,n

∥∥∥2]+ α2
tLl

2
E
[∥∥∥h̄f

t,n

∥∥∥2] ,
for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.
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Proof. We have

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]

(a)

≤ E
[〈
∇ℓ (xn

t ) ,x
n+1
t − xn

t

〉
+

Ll

2

∥∥xn+1
t − xn

t

∥∥2]
(b)
= E

[
−αt

〈
∇ℓ (xn

t ) , h̄
f
t,n

〉
+

α2
tLl

2

∥∥∥h̄f
t,n

∥∥∥2]
(c)
= E

[
−αt

2
∥∇ℓ (xn

t )∥
2 − αt

2

∥∥∥h̄f
t,n

∥∥∥2 + αt

2

∥∥∥∇ℓ (xn
t )− h̄f

t,n

∥∥∥2 + α2
tLl

2

∥∥∥h̄f
t,n

∥∥∥2] ,
where (a) uses the Lipschitz continuous gradients of ℓ (see Lemma D.1). (b) follows from the update
rule of Algorithm 2. (c) is because of ⟨x, y⟩ = 1

2 ∥x∥
2
+ 1

2 ∥y∥
2 − 1

2 ∥x− y∥2.

E.2.3 DESCENT IN THE APPROXIMATION ERROR OF ∇ℓ (x)

Lemma E.3. Under Assumptions 5.1–5.3, the approximation error of ∇ℓ (x) of Algorithm 2 satisfies
the following inequality:

E
[∥∥∥∇ℓ

(
xn+1
t

)
− h̄f

t,n+1

∥∥∥2]
≤ (1− µt)E

[∥∥∥∇ℓ (xn
t )− h̄f

t,n

∥∥∥2]+ 4µtL
2
fE
[
∥yn

t − y∗ (xn
t )∥

2
]
+ 8µtL

2
fE
[
∥zt − z∗t ∥

2
]

+ 16L2
gµ

2
tL

2
gxy

B2
zβ

2
t n

n−1∑
i=0

E
[∥∥yi

t − y∗ (xi
t

)∥∥2]+ 2

µt
L2
l α

2
tE
[∥∥∥h̄f

t,n

∥∥∥2]

+ 8µ2
tL

2
gxy

B2
zα

2
tn

n−1∑
i=0

E
[∥∥∥h̄f

t,i

∥∥∥2]+ 8µtL
2
fL

2
zα

2
tn

n−1∑
i=0

E
[∥∥∥h̄f

t,i

∥∥∥2]
+ 4B2

zσ
2
gxy

µ2
t + 2σ2

fxµ
2
t + 16L2

gxy
B2

zβ
2
t n

2σ2
gyµ

2
t ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where z∗t = z∗
(
x0
t ,y

∗(x0
t )
)
, and the

expectation is taken over the stochasticity of the algorithm.

Proof. We have

E
[∥∥∥∇ℓ

(
xn+1
t

)
− h̄f

t,n+1

∥∥∥2] = E
[∥∥∥µth

f
t,n + (1− µt) h̄

f
t,n −∇ℓ

(
xn+1
t

)∥∥∥2]
≤ E

[
(1− µt)

∥∥∥h̄f
t,n −∇ℓ (xn

t )
∥∥∥2 + µ2

t

∥∥∥hf
t,n −∇f (xn

t ,y
n
t , zt)

∥∥∥2
+µt

∥∥∥∥∇f (xn
t ,y

n
t , zt)−∇ℓ (xn

t ) +
1

µt

(
∇ℓ (xn

t )−∇ℓ
(
xn+1
t

))∥∥∥∥2
]

≤ E
[
(1− µt)

∥∥∥h̄f
t,n −∇ℓ (xn

t )
∥∥∥2 + µ2

t

∥∥∥hf
t,n −∇f (xn

t ,y
n
t , zt)

∥∥∥2
+2µt ∥∇f (xn

t ,y
n
t , zt)−∇ℓ (xn

t )∥
2
+

2

µt

∥∥∇ℓ (xn
t )−∇ℓ

(
xn+1
t

)∥∥2]
(a)

≤ E
[
(1− µt)

∥∥∥h̄f
t,n −∇ℓ (xn

t )
∥∥∥2 + µ2

t

∥∥∥hf
t,n −∇f (xn

t ,y
n
t , zt)

∥∥∥2
+2µtL

2
f (∥yn

t − y∗(xn
t )∥+ ∥zt − z∗ (xn

t ,y
∗(xn

t ))∥)
2
+

2

µt
L2
l

∥∥xn+1
t − xn

t

∥∥2]
≤ E

[
(1− µt)

∥∥∥h̄f
t,n −∇ℓ (xn

t )
∥∥∥2 + µ2

t

∥∥∥hf
t,n −∇f (xn

t ,y
n
t , zt)

∥∥∥2
+4µtL

2
f ∥yn

t − y∗(xn
t )∥

2
+ 4µtL

2
f ∥zt − z∗ (xn

t ,y
∗(xn

t ))∥
2
+

2

µt
L2
l α

2
t

∥∥∥h̄f
t,n

∥∥∥2] , (10)
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where (a) utilizes the Lipschitzness of ∇ℓ (x) (see Lemma D.1) and the Lipschitzness of ∇f (x,y, z)
(see Lemma D.2).

Then, we bound
∥∥xn

t − x0
t

∥∥2 and
∥∥yn

t − y0
t

∥∥2.

∥∥xn
t − x0

t

∥∥2 (a)
= α2

t

∥∥∥∥∥
n−1∑
i=0

h̄f
t,i

∥∥∥∥∥
2

(b)

≤ α2
tn

n−1∑
i=0

∥∥∥h̄f
t,i

∥∥∥2 ≤ α2
tN

N−1∑
i=0

∥∥∥h̄f
t,i

∥∥∥2 , (11)

where (a) is because of the update rule of Algorithm 2. (b) is due to ∥z1 + · · ·+ zk∥2 ≤ k ∥z1∥2 +
· · ·+ k ∥zk∥2.

Similarly,

∥∥yn
t − y0

t

∥∥2 ≤ β2
t n

n−1∑
i=0

∥∥hg
t,i

∥∥2 ≤ β2
tN

N−1∑
i=0

∥∥hg
t,i

∥∥2 . (12)

We bound the term E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2] in Eq. (10).

E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2]
(a)
= E

[∥∥∥∇xf
(
xn
t ,y

n
t ,D

fx
t,n

)
+∇2

xyg
(
x0
t ,y

0
t ,D

gxy

t

)
zt −∇xf (xn

t ,y
n
t )−∇2

xyg (x
n
t ,y

n
t ) zt

∥∥∥2]
≤ E

[
2
∥∥∥∇xf

(
xn
t ,y

n
t ,D

fx
t,n

)
−∇xf (xn

t ,y
n
t )
∥∥∥2

+2 ∥zt∥2
∥∥∇2

xyg
(
x0
t ,y

0
t ,D

gxy

t

)
−∇2

xyg (x
n
t ,y

n
t )
∥∥2]

(b)

≤ E
[
4 ∥zt∥2

∥∥∇2
xyg

(
x0
t ,y

0
t ,D

gxy

t

)
−∇2

xyg
(
x0
t ,y

0
t

)∥∥2
+4 ∥zt∥2

∥∥∇2
xyg

(
x0
t ,y

0
t

)
−∇2

xyg (x
n
t ,y

n
t )
∥∥2]+ 2σ2

fx

(c)

≤ E
[
4 ∥zt∥2 σ2

gxy
+ 4L2

gxy
∥zt∥2

(∥∥xn
t − x0

t

∥∥+ ∥∥yn
t − y0

t

∥∥)2]+ 2σ2
fx

(d)

≤ E

[
4 ∥zt∥2 σ2

gxy
+ 8L2

gxy
∥zt∥2 α2

tn

n−1∑
i=0

∥∥∥h̄f
t,i

∥∥∥2 + 8L2
gxy

∥zt∥2 β2
t n

n−1∑
i=0

∥∥hg
t,i

∥∥2]+ 2σ2
fx

(e)

≤ E

[
8L2

gxy
B2

zα
2
tn

n−1∑
i=0

∥∥∥h̄f
t,i

∥∥∥2 + 16L2
gL

2
gxy

B2
zβ

2
t n

n−1∑
i=0

∥∥yi
t − y∗(xi

t)
∥∥2]

+ 4B2
zσ

2
gxy

+ 2σ2
fx + 16L2

gxy
B2

zβ
2
t n

2σ2
gy , (13)

where (a) uses the definitions of hf
t,n and ∇f (xn

t ,y
n
t , zt). (b) utilizes the bounded variance in

Assumption 5.3. (c) uses Assumptions 5.2 and 5.3. (d) follows from Eq. (11) and (12), and (e) is due
to ∥zt∥ ≤ Bz and Lemma E.1.

Then, we bound the term E
[
∥zt − z∗ (xn

t ,y
∗(xn

t ))∥
2
]

in Eq. (10).

E
[
∥zt − z∗ (xn

t ,y
∗(xn

t ))∥
2
]

≤ E
[
2
∥∥zt − z∗

(
x0
t ,y

∗(x0
t )
)∥∥2 + 2

∥∥z∗ (x0
t ,y

∗(x0
t )
)
− z∗ (xn

t ,y
∗(xn

t ))
∥∥2]

(a)

≤ E
[
2
∥∥zt − z∗

(
x0
t ,y

∗(x0
t )
)∥∥2 + 2L2

z

∥∥xn
t − x0

t

∥∥2]
(b)

≤ E

[
2
∥∥zt − z∗

(
x0
t ,y

∗(x0
t )
)∥∥2 + 2L2

zα
2
tn

n−1∑
i=0

∥∥∥h̄f
t,i

∥∥∥2] , (14)
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where (a) follows from the Lipschitzness of z∗ (x,y∗(x)) (see Lemma D.3), and (b) uses Eq. (11).

Combining Eq. (10), (13), and (14) completes the proof of the lemma.

E.2.4 DESCENT IN THE APPROXIMATION ERROR OF y∗ (x)

Lemma E.4. Under Assumptions 5.2 and 5.3, the approximation error of y∗ (x) of Algorithm 2
satisfies the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
≤
(
1− βtµg

2

)
E
[
∥yn

t − y∗ (xn
t )∥

2
]
+

2

βtµg
L2
yα

2
tE
[∥∥∥h̄f

t,n

∥∥∥2]+ 4β2
t σ

2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.

Proof. We have

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
(a)

≤ E
[
(1 + c1)

∥∥yn+1
t − y∗ (xn

t )
∥∥2 + (1 + 1

c1

)∥∥y∗ (xn
t )− y∗ (xn+1

t

)∥∥2]
(b)

≤ E
[
(1 + c1)

∥∥yn+1
t − y∗ (xn

t )
∥∥2 + (1 + 1

c1

)
L2
y

∥∥xn+1
t − xn

t

∥∥2]
(c)

≤ E
[
(1 + c1)

∥∥yn+1
t − y∗ (xn

t )
∥∥2 + (1 + 1

c1

)
L2
yα

2
t

∥∥∥h̄f
t,n

∥∥∥2] , (15)

where (a) results from Young’s inequality. (b) is because of the Lipschitzness of y∗ (·) (see
Lemma D.1). (c) follows from the update rule of Algorithm 2.

To bound the first term on the right, we have

E
[∥∥yn+1

t − y∗ (xn
t )
∥∥2]

= E
[
∥yn

t − y∗ (xn
t )∥

2
+ β2

t

∥∥hg
t,n

∥∥2 − 2βt

〈
hg
t,n,y

n
t − y∗ (xn

t )
〉]

(a)
= E

[
∥yn

t − y∗ (xn
t )∥

2
+ β2

t

∥∥hg
t,n

∥∥2 − 2βt ⟨∇yg (x
n
t ,y

n
t ) ,y

n
t − y∗ (xn

t )⟩
]

(b)

≤ E
[
∥yn

t − y∗ (xn
t )∥

2
+ β2

t

∥∥hg
t,n

∥∥2 − 2βtµg ∥yn
t − y∗ (xn

t )∥
2
]
, (16)

where (a) results from the unbiasedness of the stochastic gradient hg
t,n (see Assumption 5.3). (b) is

due to µg-strongly convexity of the lower-level function g (x,y) (see Assumption 5.2).

By substituting (16) into (15), we get

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
≤ E

[
(1 + c1) (1− 2βtµg) ∥yn

t − y∗ (xn
t )∥

2
+ (1 + c1)β

2
t

∥∥hg
t,n

∥∥2 + (1 + 1

c1

)
L2
yα

2
t

∥∥∥h̄f
t,n

∥∥∥2]
(a)

≤ E
[
(1 + c1) (1− 2βtµg) ∥yn

t − y∗ (xn
t )∥

2
+

(
1 +

1

c1

)
L2
yα

2
t

∥∥∥h̄f
t,n

∥∥∥2
+2 (1 + c1)β

2
tL

2
g ∥yn

t − y∗ (xn
t )∥

2
+ 2 (1 + c1)β

2
t σ

2
gy

]
(b)

≤ E
[
(1 + c1) (1− βtµg) ∥yn

t − y∗ (xn
t )∥

2
+

(
1 +

1

c1

)
L2
yα

2
t

∥∥∥h̄f
t,n

∥∥∥2 + 2 (1 + c1)β
2
t σ

2
gy

]
,

where (a) uses Lemma E.1, and (b) holds due to the choice βt ≤ µg

2L2
g

.

Let c1 =
βtµg

2−2βtµg
and choose βt ≤ 2

3µg
. This completes the proof.
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E.2.5 DESCENT IN THE APPROXIMATION ERROR OF z∗ (x,y∗(x))

Lemma E.5. Under Assumptions 5.1–5.3, the following inequality of the approximation error of
z∗ (x,y∗(x)) holds for Algorithm 2:

E
[∥∥zt+1 − z∗t+1

∥∥2]
≤
(
1− γtµg

2

)
E
[
∥zt − z∗t ∥

2
]
+

2

γtµg
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ 16σ2
gyy

B2
fy

µ2
g

γ2
t + 8σ2

fyγ
2
t ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where z∗t = z∗
(
x0
t ,y

∗(x0
t )
)
. The

expectation is taken over the stochasticity of the algorithm.

Proof. We have

E
[∥∥zt+1 − z∗t+1

∥∥2]
(a)

≤ E
[
(1 + c2) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c2

)∥∥z∗ (x0
t+1,y

∗(x0
t+1)

)
− z∗

(
x0
t ,y

∗(x0
t )
)∥∥2]

(b)

≤ E
[
(1 + c2) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c2

)
L2
z

∥∥x0
t+1 − x0

t

∥∥2]
(c)

≤ E

[
(1 + c2) ∥zt+1 − z∗t ∥

2
+

(
1 +

1

c2

)
L2
zα

2
tN

N−1∑
n=0

∥∥∥h̄f
t,n

∥∥∥2] , (17)

where (a) follows from Young’s inequality. (b) is due to the Lipschitzness of z∗ (·, ·) (see Lemma D.3).
(c) is because of Eq. (11).

Next, we bound the first term on the right:

E
[
∥zt+1 − z∗t ∥

2
]

= E
[
∥zt − z∗t ∥

2
+ γ2

t ∥h
q
t∥

2 − 2γt ⟨hq
t , zt − z∗t ⟩

]
(a)
= E

[
∥zt − z∗t ∥

2
+ γ2

t ∥h
q
t∥

2 − 2γt
〈
∇zq

(
x0
t ,y

0
t , zt

)
, zt − z∗t

〉]
(b)

≤ E
[
∥zt − z∗t ∥

2
+ γ2

t ∥h
q
t∥

2 − 2γtµg ∥zt − z∗t ∥
2
]

(18)

where (a) results from the unbiasedness of the stochastic gradient hq
t (see Assumption 5.3), and (b)

uses µg-strongly convexity of q (x,y, z) (see Lemma D.4).

To bound E
[
∥hq

t∥
2
]

in Eq. (18), we have

E
[
∥hq

t∥
2
]
≤ E

[
2
∥∥hq

t −∇zq
(
x0
t ,y

0
t , zt

)∥∥2 + 2
∥∥∇zq

(
x0
t ,y

0
t , zt

)∥∥2]
(a)
= E

[
2
∥∥hq

t −∇zq
(
x0
t ,y

0
t , zt

)∥∥2 + 2
∥∥∇zq

(
x0
t ,y

0
t , zt

)
−∇zq

(
x0
t ,y

0
t , z

∗
t

)∥∥2]
(b)
= E

[
2
∥∥hq

t −∇zq
(
x0
t ,y

0
t , zt

)∥∥2 + 2
∥∥∇2

yyg
(
x0
t ,y

0
t

)∥∥2 ∥zt − z∗t ∥
2
]

(c)

≤ E
[
2
∥∥hq

t −∇zq
(
x0
t ,y

0
t , zt

)∥∥2 + 2B2
gyy

∥zt − z∗t ∥
2
]
, (19)

where (a) is because of ∇zq
(
x0
t ,y

0
t , z

∗
t

)
= 0. (b) follows from the definition of ∇zq (x,y, z), and

(c) results from Assumption 5.2.

Then, we bound the first term on the right in Eq. (19) as follows:

E
[∥∥∇zq

(
x0
t ,y

0
t , zt

)
− hq

t

∥∥2]
(a)
= E

[∥∥∥∇2
yyg

(
x0
t ,y

0
t

)
zt+∇yf

(
x0
t ,y

0
t

)
−
(
∇2

yyg
(
x0
t ,y

0
t ;D

gyy

t

)
zt+∇yf

(
x0
t ,y

0
t ;D

fy
t

))∥∥∥2]
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(b)

≤ E
[
2 ∥zt∥2

∥∥∇2
yyg

(
x0
t ,y

0
t

)
−∇2

yyg
(
x0
t ,y

0
t ;D

gyy

t

)∥∥2
+2
∥∥∥∇yf

(
x0
t ,y

0
t

)
−∇yf

(
x0
t ,y

0
t ;D

fy
t

)∥∥∥2]
(c)

≤ E
[
2σ2

gyy
∥zt − z∗t + z∗t ∥

2
+ 2σ2

fy

]
(d)

≤ E
[
4σ2

gyy
∥zt − z∗t ∥

2
+ 4σ2

gyy
∥z∗t ∥

2
+ 2σ2

fy

]
(e)

≤ 4σ2
gyy

E
[
∥zt − z∗t ∥

2
]
+ 4σ2

gyy

B2
fy

µ2
g

+ 2σ2
fy , (20)

where (a) follows from the definitions of hq
t and ∇zq (x,y, z). (b) and (d) are because of ∥x+ y∥2 ≤

2 ∥x∥2 + 2 ∥y∥2. (c) results from the bounded variances in Assumption 5.3. (e) utilizes the bound of
z∗(x,y) in Lemma D.3.

Substituting Eq.(20) into Eq.(19), we get

E
[
∥hq

t∥
2
]
≤
(
8σ2

gyy
+ 2B2

gyy

)
E
[
∥zt − z∗t ∥

2
]
+ 8σ2

gyy

B2
fy

µ2
g

+ 4σ2
fy . (21)

Substituting (21) in (18) and then substituting the result in (17), we get

E
[∥∥zt+1 − z∗t+1

∥∥2]
≤ E

[
(1 + c2) (1− 2γtµg) ∥zt − z∗t ∥

2
+

(
1 +

1

c2

)
L2
zα

2
tN

N−1∑
n=0

∥∥∥h̄f
t,n

∥∥∥2
+(1 + c2) γ

2
t

(
8σ2

gyy
+ 2B2

gyy

)
∥zt − z∗t ∥

2
+ 8 (1 + c2) γ

2
t σ

2
gyy

B2
fy

µ2
g

+ 4 (1 + c2) γ
2
t σ

2
fy

]
(a)

≤ E

[
(1 + c2) (1− γtµg) ∥zt − z∗t ∥

2
+

(
1 +

1

c2

)
L2
zα

2
tN

N−1∑
n=0

∥∥∥h̄f
t,n

∥∥∥2]

+ 8 (1 + c2) γ
2
t σ

2
gyy

B2
fy

µ2
g

+ 4 (1 + c2) γ
2
t σ

2
fy ,

where (a) follows from the choice γt ≤ µg

8σ2
gyy

+2B2
gyy

.

Let c2 =
γtµg

2−2γtµg
and choose γt ≤ 2

3µg
. This completes the proof.

E.2.6 DESCENT IN THE POTENTIAL FUNCTION

We define the potential function Wt as follows:

Wt = ℓ
(
x0
t

)
+Ky

∥∥y0
t − y∗ (x0

t

)∥∥2 +Kz

∥∥zt − z∗
(
x0
t ,y

∗(x0
t )
)∥∥2 +Kh

∥∥∥∇ℓ
(
x0
t

)
− h̄f

t,0

∥∥∥2 .
Lemma E.6. Under the same conditions as described in Theorem E.7 and using Lemmas E.2-E.5,
the iterates generated by Algorithm 2 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E [Wt+1−Wt] ≤−αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+4B2

zσ
2
gxy

c2µα
2
tNKh+16L2

gxy
B2

zc
2
βN

3σ2
gyc

2
µα

4
tKh

+ 2σ2
fxc

2
µα

2
tNKh + 4c2βα

2
tσ

2
gyNKy + 16σ2

gyy

B2
fy

µ2
g

c2γα
2
tKz + 8σ2

fyc
2
γα

2
tKz,

where Ky =
√
2Lf

2Ly
, Kz =

√
2Lf

2Lz
, and Kh = 1

8Ll
.
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Proof. From Lemma E.2, we have
N−1∑
n=0

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]
= E

[
ℓ
(
x0
t+1

)
− ℓ

(
x0
t

)]
≤ −αt

2

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
− αt

2

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ αt

2

N−1∑
n=0

E
[∥∥∥∇ℓ (xn

t )− h̄f
t,n

∥∥∥2]

+
α2
tLl

2

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2] . (22)

Based on Lemma E.3, we have

E
[∥∥∥∇ℓ

(
xn+1
t

)
− h̄f

t,n+1

∥∥∥2 − ∥∥∥∇ℓ (xn
t )− h̄f

t,n

∥∥∥2]
≤ −µtE

[∥∥∥∇ℓ (xn
t )− h̄f

t,n

∥∥∥2]+ 4µtL
2
fE
[
∥yn

t − y∗ (xn
t )∥

2
]
+ 8µtL

2
fE
[
∥zt − z∗t ∥

2
]

+ 16L2
gµ

2
tL

2
gxy

B2
zβ

2
t n

n−1∑
i=0

E
[∥∥yi

t − y∗ (xi
t

)∥∥2]+ 2

µt
L2
l α

2
tE
[∥∥∥h̄f

t,n

∥∥∥2]

+ 8µ2
tL

2
gxy

B2
zα

2
tn

n−1∑
i=0

E
[∥∥∥h̄f

t,i

∥∥∥2]+ 8µtL
2
fL

2
zα

2
tn

n−1∑
i=0

E
[∥∥∥h̄f

t,i

∥∥∥2]
+ 4B2

zσ
2
gxy

µ2
t + 2σ2

fxµ
2
t + 16L2

gxy
B2

zβ
2
t n

2σ2
gyµ

2
t .

This implies that
N−1∑
n=0

E
[∥∥∥∇ℓ

(
xn+1
t

)
− h̄f

t,n+1

∥∥∥2 − ∥∥∥∇ℓ (xn
t )− h̄f

t,n

∥∥∥2]
= E

[∥∥∥∇ℓ
(
x0
t+1

)
− h̄f

t+1,0

∥∥∥2 − ∥∥∥∇ℓ
(
x0
t

)
− h̄f

t,0

∥∥∥2]
≤ −µt

N−1∑
n=0

E
[∥∥∥∇ℓ (xn

t )− h̄f
t,n

∥∥∥2]+ 4µtL
2
f

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]

+ 16L2
gµ

2
tL

2
gxy

B2
zβ

2
tN

2
N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]
+

2

µt
L2
l α

2
t

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]

+ 8µ2
tL

2
gxy

B2
zα

2
tN

2
N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ 8µtL
2
fL

2
zα

2
tN

2
N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]
+ 8µtL

2
fNE

[
∥zt − z∗t ∥

2
]
+ 4B2

zσ
2
gxy

µ2
tN + 2σ2

fxµ
2
tN + 16L2

gxy
B2

zβ
2
tN

3σ2
gyµ

2
t . (23)

With the result from Lemma E.4, we have
N−1∑
n=0

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2 − ∥yn
t − y∗ (xn

t )∥
2
]

= E
[∥∥y0

t+1 − y∗ (x0
t+1

)∥∥2 − ∥∥y0
t − y∗ (x0

t

)∥∥2]
≤ −βtµg

2

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]
+

2

βtµg
L2
yα

2
t

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ 4β2
t σ

2
gyN. (24)

According to Lemma E.5, we have

E
[∥∥zt+1 − z∗t+1

∥∥2 − ∥zt − z∗t ∥
2
]
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= E
[∥∥zt+1 − z∗

(
x0
t+1,y

∗(x0
t+1)

)∥∥2 − ∥∥zt − z∗
(
x0
t ,y

∗(x0
t )
)∥∥2]

≤ −γtµg

2
E
[
∥zt − z∗t ∥

2
]
+

2

γtµg
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ 16σ2
gyy

B2
fy

µ2
g

γ2
t + 8σ2

fyγ
2
t . (25)

Adding Eq. (22), (23), (24) and (25), we get

E [Wt+1 −Wt]

≤ −αt

2

N−1∑
n=0

E
[
∥∇l (xn

t )∥
2
]
+ Cy

N−1∑
n=0

E
[
∥yn

t − y∗ (xn
t )∥

2
]
+ CzE

[
∥zt − z∗t ∥

2
]
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N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ Cl
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n=0

E
[∥∥∥∇ℓ (xn

t )− h̄f
t,n

∥∥∥2]
+ 4B2

zσ
2
gxy
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tNKh + 2σ2

fxµ
2
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2
tN

3σ2
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2
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t σ
2
gyNKy

+ 16σ2
gyy

B2
fy

µ2
g

γ2
tKz + 8σ2

fyγ
2
tKz,

where

Cy =4µtL
2
fKh + 16L2

gµ
2
tL

2
gxy

B2
zβ

2
tN

2Kh − βtµg

2
Ky,

Cz =8µtL
2
fNKh − γtµg

2
Kz,

Ch =− αt

2
+

α2
tLl

2
+

2

µt
L2
l α

2
tKh + 8µ2

tL
2
gxy

B2
zα

2
tN

2Kh + 8µtL
2
fL

2
zα

2
tN

2Kh

+
2

βtµg
L2
yα

2
tKy +

2

γtµg
L2
zα

2
tNKz,

Cl =
αt

2
− µtKh.

Define βt ≜ cβαt, γt ≜ cγαt, and µt ≜ cµαt.

To ensure Cy ≤ 0, we have

Cy = 4µtL
2
fKh + 16L2

gµ
2
tL

2
gxy

B2
zβ

2
tN

2Kh − βtµg

2
Ky

(a)

≤ cβαtµg

4
Ky +

cβαtµg

4
Ky −

cβαtµg

2
Ky = 0,

where (a) uses Ky =
16cµL

2
fKh

µgcβ
and αt ≤ 4 3

√
µgKy

L2
gc

2
µL

2
gxy

B2
zcβN

2Kh
.

To ensure Cz ≤ 0, we have

Cz = 8µtL
2
fNKh − γtµg

2
Kz

(a)

≤ cγαtµg

2
Kz −

cγαtµg

2
Kz = 0,

where (a) utilizes Kz =
16cµL

2
fNKh

µgcγ
.

To ensure Ch ≤ 0, we have

Ch = −αt

2
+

α2
tLl

2
+

2

µt
L2
l α

2
tKh + 8µ2

tL
2
gxy

B2
zα

2
tN

2Kh + 8µtL
2
fL

2
zα

2
tN

2Kh

+
2

βtµg
L2
yα

2
tKy +

2

γtµg
L2
zα

2
tNKz

(a)

≤ −αt

2
+

α2
tLl

2
+

2

cµ
L2
l αtKh + 16cµL

2
fL

2
zα

3
tN

2Kh +
2

cβµg
L2
yαtKy +

2

cγµg
L2
zαtNKz
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(b)

≤ −αt

2
+

α2
tLl

2
+

4

cµ
L2
l αtKh +

2

cβµg
L2
yαtKy +

2

cγµg
L2
zαtNKz

(c)

≤ −αt

2
+

αt

8
+

αt

8
+

αt

8
+

αt

8
= 0,

where (a) results from αt ≤ L2
fL

2
z

cµLL2
gxy

B2
z

. (b) is because of αt ≤ Ll

2
√
2cµLfLzN

. (c) follows from

αt ≤ 1
4Ll

, cµ = 32L2
lKh, cβ =

16L2
yKy

µg
, and cγ =

16L2
zNKz

µg
.

To ensure Cl ≤ 0, we have

Cl =
αt

2
− µtKh

(a)

≤ 0,

where (a) is due to Kh = 1
2cµ

.

Towards this end, the lemma is proved.

E.2.7 PROOF OF THEOREM 5.5

Theorem E.7 (Non-Convex ℓ(x)). Under Assumptions 5.1–5.3, choose constant step-sizes αt =

α = ᾱ
N

√
T

, βt = β ≜ cβα, γt = γ ≜ cγα, and the momentum coefficient as µt = µ ≜ cµα for all

t ∈ {0, 1, . . . , T} with cβ =
16LyLf√

2µg
, cγ =

16LzLfN√
2µg

, and cµ = 4Ll. Moreover, choose ᾱ such that

ᾱ ≤ min

 µg

2L2
gcβ

,
2

3µgcβ
,

µg(
8σ2

gyy
+ 2B2

gyy

)
cγ

,
2

3µgcγ
,

1

4Ll
,

L2
fL

2
z

cµL2
gxy

B2
z

,

Ll

2
√
2cµLfLzN

, 3

√
32µ2

gLl

L2
gc

2
µL

2
gxy

B2
zL

2
yN

2
,

√
Ky

2
√
KhLgxy

BzNcµ

}
.

Then, the iterates generated by SO-Lazy-BiO-I in Algorithm 2 satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
= O

(
∆0√
T

+
σ2
gy

N
√
T

+
σ2
gyy√
T

+
σ2
fy√
T

+
σ2
gxy

N
√
T

+
σ2
fx

N
√
T

)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
∗(x0

0))∥2.

Proof. Choose αt as a constant stepsize αt = α. Summing the result in Lemma E.6 from t = 0 to
T − 1, and then dividing by NT on both sides, we get

E [WT −W0]

NT
≤ − α

2NT

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+ 4B2

zσ
2
gxy

c2µα
2Kh + 2σ2

fxc
2
µα

2Kh

+ 16L2
gxy

B2
zc

2
βN

2σ2
gyc

2
µα

4Kh + 4c2βα
2σ2

gyKy + 16σ2
gyy

B2
fy

µ2
g

c2γα
2Kz

1

N
+ 8σ2

fyc
2
γα

2Kz
1

N
.

Rearranging the terms and multiplying by 2/α on both sides and let α ≤
√

Ky

2
√
KhLgxyBzNcµ

, we have

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
≤2 (W0 − ℓ∗)

αNT
+ 8B2

zσ
2
gxy

c2µαKh + 4σ2
fxc

2
µαKh

+ 16c2βασ
2
gyKy + 32σ2

gyy

B2
fy

µ2
g

c2γαKz
1

N
+ 16σ2

fyc
2
γαKz

1

N
,

where W0 = ℓ
(
x0
0

)
+Ky

∥∥y0
0 − y∗ (x0

0

)∥∥2 +Kz

∥∥z0 − z∗
(
x0
0,y

∗(x0
0)
)∥∥2.
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Therefore,

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]

= O

(
ℓ
(
x0
0

)
− ℓ∗

NTα

)
+O

(∥∥y0
0 − y∗ (x0

0

)∥∥2
NTα

)
+O

(∥∥z0 − z∗
(
x0
0,y

∗(x0
0)
)∥∥2

NTα

)
+O

(
σ2
gxy

α+ σ2
fxα+ σ2

gyα+ σ2
gyy

Nα+ σ2
fyNα

)
.

By selecting α = O
(

1
N

√
T

)
, the proof of the theorem is completed.

F THEORETICAL ANALYSIS OF SO-Lazy-BiO-SGD

F.1 REFORMULATION OF OPTION I IN ALGORITHM 1 WITH VANILLA SGD UPDATES FOR
THEORETICAL ANALYSIS

In order to analyze the theoretical performance of SO-Lazy-BiO-SGD, we reformulate
SO-Lazy-BiO-SGD as follows. We note that Option I in Algorithm 1 with vanilla SGD updates and
Algorithm 3 are equivalent when choosing T in Algorithm 3 to be T/N .

Algorithm 3 The SO-Lazy-BiO-SGD Algorithm.

Input: Initial parameters x0
0, y0

0, z0, and stepsizes {αt, βt, γt}T−1
t=0

for t = 0 to T − 1 do
Initialize x0

t = xN
t−1 and y0

t = yN
t−1

Sample data batches Dgyy
t Dfy

t , and Dgxy
t

Compute the gradient estimate hq
t using hq

t = ∇2
yyg(x

0
t ,y

0
t ;D

gyy
t )zt +∇yf(x

0
t ,y

0
t ;D

fy
t )

Update zt+1 = zt − γth
q
t

Compute the JVP using vt = ∇2
xyg

(
x0
t ,y

0
t ;D

gxy
t

)
zt

for n = 0 to N − 1 do
Sample data batches Dg

t,n, Dfx
t,n, and Dgxy

t,n

Compute the gradient estimate hg
t,n using hg

t,n = ∇yg
(
xn
t ,y

n
t ;Dg

t,n

)
Update yn+1

t = yn
t − βth

g
t,n

Compute the gradient estimate hf
t,n using hf

t,n = ∇xf
(
xn
t ,y

n
t ;Dfx

t,n

)
+ vt

Update xn+1
t = xn

t − αth
f
t,n

end for
end for

F.2 DETAILED PROOF OF THEOREM 5.7: NON-CONVEX ℓ (x)

F.2.1 DESCENT IN THE UPPER-LEVEL OBJECTIVE FUNCTION

Lemma F.1. Under Assumptions 5.1–5.3, the following inequality holds for successive iterations of
Algorithm 3:
E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]

≤ −αt

2
E
[
∥∇ℓ (xn

t )∥
2
]
− αt

2
E
[∥∥∥hf

t,n

∥∥∥2]+ α2
tLl

2
E
[∥∥∥hf

t,n

∥∥∥2]+ 2αtL
2
fE
[
∥yn

t − y∗ (xn
t )∥

2
]

+ 4αtL
2
fE
[
∥zt − z∗t ∥

2
]
+ 4L2

fL
2
zα

3
tn

n−1∑
i=0

E
[∥∥∥hf

t,i

∥∥∥2]+ 8L2
gxy

B2
zα

3
tn

n−1∑
i=0

E
[∥∥∥hf

t,i

∥∥∥2]

+ 16L2
gαtL

2
gxy

B2
zβ

2
t n

n−1∑
i=0

E
[∥∥yi

t − y∗ (xi
t

)∥∥2]+ 4B2
zσ

2
gxy

αt + 2σ2
fxαt + 16L2

gxy
B2

zβ
2
t n

2σ2
gyαt,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.
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Proof. We have

E
[
ℓ
(
xn+1
t

)
− ℓ (xn

t )
]

(a)

≤ E
[〈
∇ℓ (xn

t ) ,x
n+1
t − xn

t

〉
+

Ll

2

∥∥xn+1
t − xn

t

∥∥2]
(b)
= E

[
−αt

〈
∇ℓ (xn

t ) , h
f
t,n

〉
+

α2
tLl

2

∥∥∥hf
t,n

∥∥∥2]
(c)
= E

[
−αt

2
∥∇ℓ (xn

t )∥
2 − αt

2

∥∥∥hf
t,n

∥∥∥2 + αt

2

∥∥∥∇ℓ (xn
t )− hf

t,n

∥∥∥2 + α2
tLl

2

∥∥∥hf
t,n

∥∥∥2] , (26)

where (a) uses the Lipschitz continuous gradients of ℓ (see Lemma D.1). (b) follows from the update
rule of Algorithm 2. (c) is because of ⟨x, y⟩ = 1

2 ∥x∥
2
+ 1

2 ∥y∥
2 − 1

2 ∥x− y∥2.

To bound the third term on the right-hand side of Eq. (26), we have

E
[∥∥∥∇ℓ (xn

t )− hf
t,n

∥∥∥2]
≤ E

[
2 ∥∇ℓ (xn

t )−∇f (xn
t ,y

n
t , zt)∥

2
+ 2

∥∥∥∇f (xn
t ,y

n
t , zt)− hf

t,n

∥∥∥2]
(a)

≤ E
[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 2L2
f (∥yn

t − y∗(xn
t )∥+ ∥zt − z∗ (xn

t ,y
∗(xn

t ))∥)
2

]
≤ E

[
2
∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2 + 4L2
f ∥yn

t − y∗(xn
t )∥

2
+ 4L2

f ∥zt − z∗ (xn
t ,y

∗(xn
t ))∥

2

]
,

(27)

where (a) utilizes the Lipschitzness of ∇f (x,y, z) (see Lemma D.2).

Similar to Eq. (13), we bound the term E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2] in Eq. (27) and get

E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2]
≤ E

[
8L2

gxy
B2

zα
2
tn

n−1∑
i=0

∥∥∥hf
t,i

∥∥∥2 + 16L2
gL

2
gxy

B2
zβ

2
t n

n−1∑
i=0

∥∥yi
t − y∗(xi

t)
∥∥2]

+ 4B2
zσ

2
gxy

+ 2σ2
fx + 16L2

gxy
B2

zβ
2
t n

2σ2
gy . (28)

Then, similar to Eq. (14), we bound the term E
[
∥zt − z∗ (xn

t ,y
∗(xn

t ))∥
2
]

in Eq. (27) and get

E
[
∥zt − z∗ (xn

t ,y
∗(xn

t ))∥
2
]
≤ E

[
2
∥∥zt − z∗

(
x0
t ,y

∗(x0
t )
)∥∥2 + 2L2

zα
2
tn

n−1∑
i=0

∥∥∥hf
t,i

∥∥∥2] . (29)

Combining Eq. (26), (27), (28), and (29) completes the proof of the lemma.

F.2.2 DESCENT IN THE APPROXIMATION ERROR OF y∗ (x)

Following the similar proof of Lemma E.4, we get the following lemma:
Lemma F.2. Under Assumptions 5.2 and 5.3, the approximation error of y∗ (x) of Algorithm 3
satisfies the following inequality:

E
[∥∥yn+1

t − y∗ (xn+1
t

)∥∥2]
≤
(
1− βtµg

2

)
E
[
∥yn

t − y∗ (xn
t )∥

2
]
+

2

βtµg
L2
yα

2
tE
[∥∥∥hf

t,n

∥∥∥2]+ 4β2
t σ

2
gy ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where the expectation is taken over the
stochasticity of the algorithm.
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F.2.3 DESCENT IN THE APPROXIMATION ERROR OF z∗ (x,y∗(x))

Following the similar proof of Lemma E.5, we obtain the following lemma:

Lemma F.3. Under Assumptions 5.1–5.3, the following inequality of the approximation error of
z∗ (x,y∗(x)) holds for Algorithm 3:

E
[∥∥zt+1 − z∗t+1

∥∥2]
≤
(
1− γtµg

2

)
E
[
∥zt − z∗t ∥

2
]
+

2

γtµg
L2
zα

2
tN

N−1∑
n=0

E
[∥∥∥hf

t,n

∥∥∥2]+ 16σ2
gyy

B2
fy

µ2
g

γ2
t + 8σ2

fyγ
2
t ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where z∗t = z∗
(
x0
t ,y

∗(x0
t )
)
. The

expectation is taken over the stochasticity of the algorithm.

F.2.4 DESCENT IN THE POTENTIAL FUNCTION

We define the potential function W̄t as follows:

W̄t = ℓ
(
x0
t

)
+Ky

∥∥y0
t − y∗ (x0

t

)∥∥2 +Kz

∥∥zt − z∗
(
x0
t ,y

∗(x0
t )
)∥∥2 .

Lemma F.4. Under the same conditions as described in Theorem F.5 and using Lemmas F.1-F.3, the
iterates generated by Algorithm 3 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E
[
W̄t+1 − W̄t

]
≤− αt

2

N−1∑
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E
[
∥∇ℓ (xn
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2
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2
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2
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3
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2
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2
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B2
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g
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2
tKz,

where Ky =
Lf

2Ly
, and Kz =

Lf

2Lz
.

Proof. From Lemma F.1, we have
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With the result from Lemma F.2, we have
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n=0

E
[∥∥yn+1

t − y∗ (xn+1
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2
]
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According to Lemma F.3, we have

E
[∥∥zt+1 − z∗t+1
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2
]

= E
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∗(x0
t )
)∥∥2]

≤ −γtµg

2
E
[
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2
]
+

2
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L2
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2
tN
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E
[∥∥∥hf

t,n

∥∥∥2]+ 16σ2
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B2
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µ2
g

γ2
t + 8σ2

fyγ
2
t . (32)

Adding Eq. (30), (31) and (32), we get

E
[
W̄t+1 − W̄t

]
≤ −αt

2
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n=0

E
[
∥∇l (xn

t )∥
2
]
+ C̄y
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n=0

E
[
∥yn
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t )∥

2
]
+ C̄zE

[
∥zt − z∗t ∥

2
]
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E
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2
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g
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tKz + 8σ2

fyγ
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where

C̄y =2αtL
2
f + 16L2

gαtL
2
gxy

B2
zβ

2
tN

2 − βtµg

2
Ky,

C̄z =4αtL
2
fN − γtµg

2
Kz,

C̄h =− αt

2
+

α2
tLl

2
+ 4L2

fL
2
zα

3
tN

2 + 8L2
gxy

B2
zα

3
tN

2 +
2

βtµg
L2
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2
tKy +

2

γtµg
L2
zα

2
tNKz.

Define βt ≜ cβαt, and γt ≜ cγαt.

To ensure C̄y ≤ 0, we have

C̄y = 2αtL
2
f + 16L2

gαtL
2
gxy

B2
zβ

2
tN

2 − βtµg

2
Ky

(a)

≤ 4αtL
2
f − cβαtµg

2
Ky

(b)

≤ 0,

where (a) uses αt ≤
√
2Lf

4LgxyBzcβNLg
, and (b) follows from cβ =

8L2
f

µgKy
.

To ensure C̄z ≤ 0, we have

C̄z = 4αtL
2
fN − γtµg

2
Kz

(a)

≤ 0,

where (a) utilizes cγ =
8L2

fN

µgKz
.

To ensure C̄h ≤ 0, we have

C̄h = −αt

2
+
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tLl

2
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2
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3
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3
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2 +
2
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2
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2
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(a)

≤ −αt

2
+

αt

4
+

αt

16
+

αt

16
+

αt

16
+

αt

16
= 0,

where (a) results from αt ≤ min
{

1
2Lt

, 1
8LfLzN

,
√
2

16LgxyBzN

}
, Ky =

cβµg

32L2
y

, and Kz =
cγµg

32L2
zN

.

Towards this end, the lemma is proved.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

F.2.5 PROOF OF THEOREM 5.7

Theorem F.5 (Non-Convex ℓ(x)). Under Assumptions 5.1–5.3, choose constant step-sizes αt =

α = ᾱ, βt = β ≜ cβα, and γt = γ ≜ cγα for all t ∈ {0, 1, . . . , T} with cβ =
16LfLy

µg
and

cγ =
16LfLzN

µg
. Moreover, choose ᾱ such that

ᾱ ≤ min

{
µg

2L2
gcβ

,
2

3µgcβ
,

2

3µgcγ
,

µg

(8σ2
gyy

+2B2
gyy

)cγ
,

1

2Ll
,

1

8LfLzN
,

1

8
√
2LgxyBzN

,

√
2Lf

4Lgxy
BzcβLgN

}
.

Then, the iterates generated by SO-Lazy-BiO-SGD in Algorithm 3 satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
= O

(
∆0

T
+ σ2

gy + σ2
gyy

+ σ2
fy + σ2

gxy
+ σ2

fx

)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
∗(x0

0))∥2.

Proof. Choose αt as a constant stepsize αt = α. Summing the result in Lemma F.4 from t = 0 to
T − 1, and then dividing by NT on both sides, we get

E
[
W̄T − W̄0

]
NT

≤− α

2NT

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+ 4B2

zσ
2
gxy

α+ 2σ2
fxα+ 8σ2

fyc
2
γα

2Kz
1

N

+ 16L2
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B2
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2
βN

2σ2
gyα

3 + 4c2βα
2σ2

gyKy + 16σ2
gyy

B2
fy

µ2
g

c2γα
2Kz

1

N
.

Rearranging the terms and multiplying by 2/α on both sides, we have

1
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T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
≤

2
(
W̄0 − ℓ∗

)
αNT

+ 8B2
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2
gxy

+ 4σ2
fx + 16σ2

fyc
2
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1

N

+ 32L2
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B2
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2
βN

2σ2
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2 + 8c2βασ
2
gyKy + 32σ2
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B2
fy

µ2
g

c2γαKz
1

N
,

where W0 = ℓ
(
x0
0

)
+Ky

∥∥y0
0 − y∗ (x0

0

)∥∥2 +Kz

∥∥z0 − z∗
(
x0
0,y

∗(x0
0)
)∥∥2.

Therefore,

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]

= O

(
ℓ
(
x0
0

)
− ℓ∗

NTα

)
+O

(∥∥y0
0 − y∗ (x0

0

)∥∥2
NTα

)
+O

(∥∥z0 − z∗
(
x0
0,y

∗(x0
0)
)∥∥2

NTα

)
+O

(
σ2
gxy

+ σ2
fx + σ2

gyNα+ σ2
gyy

Nα+ σ2
fyNα

)
.

By selecting α = O
(

1
N

)
, the proof of the theorem is completed.

G THEORETICAL ANALYSIS OF OPTION II IN SO-Lazy-BiO FRAMEWORK

The theoretical analyses of SO-Lazy-BiO-I and SO-Lazy-BiO-II are similar, with the primary
difference arising from the approximation error in the hypergradient ∇ℓ(x) (see Lemma G.3).
SO-Lazy-BiO-II can be viewed as a special case of SO-Lazy-BiO-I , in which no errors are incurred
from the JVP updates.

Both SO-Lazy-BiO-I and SO-Lazy-BiO-II share the same convergence guarantees, and the main
result for SO-Lazy-BiO-II is stated in Theorem G.1.
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Theorem G.1 (Convergence Rate of SO-Lazy-BiO-II). Under Assumptions 5.1–5.3, choose constant
step-sizes αt = α = O((

√
NT )−1), βt = β = O((

√
NT )−1), γt = γ = O(

√
N(

√
T )−1), and

the momentum coefficient as µt = µ = O((N
√
T )−1) for all t = 0, . . . , T − 1. Then, the iterates

generated by SO-Lazy-BiO-II satisfy:

1

T

T−1∑
t=0

E
[
∥∇ℓ (xt)∥2

]
=O

(√
N∆0√
T

+
σ2
gy√
NT

+

√
N√
T
σ2
gyy

+

√
N√
T
σ2
fy+

σ2
gxy√
NT

+
σ2
fx√
NT

)
,

where ∆0 = (ℓ(x0)− ℓ∗) + ∥y0 − y∗(x0)∥2 + ∥z0 − z∗(x0,y
∗(x0))∥2.

Moreover, the computation complexity of SO-Lazy-BiO-II immediately follows from Theorem G.1:

Corollary G.2 (Computation Complexity of SO-Lazy-BiO-II). Under the setting of Theorem G.1,
choose the batch size as O(1). Then, SO-Lazy-BiO-II requires O(Nϵ−2) partial gradient evaluations
and JVP evaluations and O(ϵ−2) HVP evaluations to reach an ϵ-stationary solution.

G.1 REFORMULATION OF OPTION II IN ALGORITHM 1 FOR THEORETICAL ANALYSIS

In order to analyze the theoretical performance of SO-Lazy-BiO-II, we reformulate SO-Lazy-BiO-II as
follows. We note that Option II in Algorithm 1 is equivalent to Algorithm 4 when the number of
iterations T in Algorithm 4 is set to T/N .

Algorithm 4 The SO-Lazy-BiO-II Algorithm.

Input: Initial parameters x0
0, y0

0, z0, stepsizes {αt, βt, γt}T−1
t=0 , and momentum coefficient {µt}T−1

t=0
for t = 0 to T − 1 do

Initialize x0
t = xN

t−1 and y0
t = yN

t−1

Sample data batches Dgyy
t and Dfy

t

Compute the gradient estimate hq
t using hq

t = ∇2
yyg(x

0
t ,y

0
t ;D

gyy
t )zt +∇yf(x

0
t ,y

0
t ;D

fy
t )

Update zt+1 = zt − γth
q
t

for n = 0 to N − 1 do
Sample data batches Dg

t,n, Dfx
t,n, and Dgxy

t,n

Compute the gradient estimate hg
t,n using hg

t,n = ∇yg
(
xn
t ,y

n
t ;Dg

t,n

)
Update yn+1

t = yn
t − βth

g
t,n

Compute the gradient estimate hf
t,n using hf

t,n = ∇xf
(
xn
t ,y

n
t ;Dfx

t,n

)
+∇2

xyg
(
xn
t ,y

n
t ;D

gxy
t,n

)
zt

Compute the momentum-based h̄f
t,n+1 using h̄f

t,n+1 = µth
f
t,n + (1− µt) h̄

f
t,n

Update xn+1
t = xn

t − αth̄
f
t,n

end for
end for

G.2 DETAILED PROOF OF THEOREM G.1: NON-CONVEX ℓ (x)

G.2.1 DESCENT IN THE APPROXIMATION ERROR OF ∇ℓ (x)

Lemma G.3. Under Assumptions 5.1–5.3, the approximation error of ∇ℓ (x) of Algorithm 4 satisfies
the following inequality:

E
[∥∥∥∇ℓ

(
xn+1
t

)
− h̄f
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∥∥∥2]
≤ (1− µt)E
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2
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2
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2
tE
[∥∥∥h̄f
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∥∥∥2]+ 8µtL
2
fL

2
zα

2
tn
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i=0

E
[∥∥∥h̄f

t,i

∥∥∥2]+ 2B2
zσ

2
gxy

µ2
t + 2σ2

fxµ
2
t ,

for all t ∈ {0, 1, . . . , T − 1} and n ∈ {0, 1, . . . , N − 1}, where z∗t = z∗
(
x0
t ,y

∗(x0
t )
)
, and the

expectation is taken over the stochasticity of the algorithm.
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Proof. Same as Eq. (10), we have

E
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(
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)
− h̄f
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∥∥∥2] ≤ E
[
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∥∥∥2] . (33)

We bound the term E
[∥∥∥hf

t,n −∇f (xn
t ,y

n
t , zt)

∥∥∥2] in Eq. (33).
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2
gxy
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where (a) uses the definitions of hf
t,n and ∇f (xn

t ,y
n
t , zt). (b) utilizes the bounded variance in

Assumption 5.3 and ∥zt∥ ≤ Bz .

Same as Eq. (14), we have

E
[
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Combining Eq. (33), (34), and (35) completes the proof of the lemma.

G.2.2 DESCENT IN THE POTENTIAL FUNCTION

We define the potential function Ŵt as follows:

Ŵt = ℓ
(
x0
t

)
+Ky

∥∥y0
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∥∥∥2 .
Lemma G.4. Under the same conditions as described in Theorem G.5 and using Lemmas E.2, E.4,
E.5, and G.3, the iterates generated by Algorithm 4 satisfies: for all t ∈ {0, 1, . . . , T − 1},

E
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where Ky =
√
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4Ly
, Kz =

√
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2Lz
, and Kh = 1

8Ll
.

Proof. Based on Lemma G.3, we have
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This implies that
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Adding Eq. (22), (24), (25) and (36), we get
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+ Ĉh

N−1∑
n=0

E
[∥∥∥h̄f

t,n

∥∥∥2]+ Ĉl
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Define βt ≜ cβαt, γt ≜ cγαt, and µt ≜ cµαt.
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+

2

µt
L2
l α

2
tKh + 8µtL

2
fL

2
zα

2
tN

2Kh +
2

βtµg
L2
yα

2
tKy +

2

γtµg
L2
zα

2
tNKz
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(a)

≤ −αt

2
+

α2
tLl

2
+

4

cµ
L2
l αtKh +

2

cβµg
L2
yαtKy +

2

cγµg
L2
zαtNKz

(b)

≤ −αt

2
+

αt

8
+

αt

8
+

αt

8
+

αt

8
= 0,

where (a) is because of αt ≤ Ll

2cµLfLzN
. (b) follows from αt ≤ 1

4Ll
, cµ = 32L2

lKh, cβ =
16L2

yKy

µg
,

and cγ =
16L2

zNKz

µg
.

To ensure Ĉl ≤ 0, we have

Ĉl =
αt

2
− µtKh

(a)

≤ 0,

where (a) is due to Kh = 1
2cµ

.

Towards this end, the lemma is proved.

G.2.3 PROOF OF THEOREM G.1

Theorem G.5 (Non-Convex ℓ(x)). Under Assumptions 5.1–5.3, choose constant step-sizes αt =

α = ᾱ
N

√
T

, βt = β ≜ cβα, γt = γ ≜ cγα, and the momentum coefficient as µt = µ ≜ cµα for all

t ∈ {0, 1, . . . , T} with cβ =
16LyLf√

2µg
, cγ =

16LzLfN√
2µg

, and cµ = 4Ll. Moreover, choose ᾱ such that

ᾱ ≤ min

 µg

2L2
gcβ

,
2

3µgcβ
,

µg(
8σ2

gyy
+ 2B2

gyy

)
cγ

,
2

3µgcγ
,

1

4Ll
,

Ll

2cµLfLzN

 .

Then, the iterates generated by SO-Lazy-BiO-II in Algorithm 4 satisfy:

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
= O

(
∆0√
T

+
σ2
gy

N
√
T

+
σ2
gyy√
T

+
σ2
fy√
T

+
σ2
gxy

N
√
T

+
σ2
fx

N
√
T

)
,

where ∆0 = (ℓ(x0
0)− ℓ∗) + ∥y0

0 − y∗(x0
0)∥2 + ∥z0 − z∗(x0

0,y
∗(x0

0))∥2.

Proof. Choose αt as a constant stepsize αt = α. Summing the result in Lemma G.4 from t = 0 to
T − 1, and then dividing by NT on both sides, we get

E [WT −W0]

NT
≤ − α

2NT

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
+ 2B2

zσ
2
gxy

c2µα
2Kh + 2σ2

fxc
2
µα

2Kh

+ 4c2βα
2σ2

gyKy + 16σ2
gyy

B2
fy

µ2
g

c2γα
2Kz

1

N
+ 8σ2

fyc
2
γα

2Kz
1

N
.

Rearranging the terms and multiplying by 2/α on both sides, we have

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
≤ 2 (W0 − ℓ∗)

αNT
+ 4B2

zσ
2
gxy

c2µαKh + 4σ2
fxc

2
µαKh

+ 8c2βασ
2
gyKy + 32σ2

gyy

B2
fy

µ2
g

c2γαKz
1

N
+ 16σ2

fyc
2
γαKz

1

N
,

where W0 = ℓ
(
x0
0

)
+Ky

∥∥y0
0 − y∗ (x0

0

)∥∥2 +Kz

∥∥z0 − z∗
(
x0
0,y

∗(x0
0)
)∥∥2.

Therefore,

1

TN

T−1∑
t=0

N−1∑
n=0

E
[
∥∇ℓ (xn

t )∥
2
]
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= O

(
ℓ
(
x0
0

)
− ℓ∗

NTα

)
+O

(∥∥y0
0 − y∗ (x0

0

)∥∥2
NTα

)
+O

(∥∥z0 − z∗
(
x0
0,y

∗(x0
0)
)∥∥2

NTα

)
+O

(
σ2
gxy

α+ σ2
fxα+ σ2

gyα+ σ2
gyy

Nα+ σ2
fyNα

)
.

By selecting α = O
(

1
N

√
T

)
, the proof of the theorem is completed.
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