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ABSTRACT
Layered images have long served as a crucial representation for creative edit-
ing, and the advent of large-scale generative models has recently spurred inter-
est in their automatic generation. Nevertheless, existing approaches remain lim-
ited. Decomposition-based methods often struggle to achieve clean separation of
layers in complex scenes, while generation-based methods face challenges stem-
ming from their training data construction pipeline, which lead to suboptimal vi-
sual quality and limited scene diversity. In this paper, we propose BFS, a novel
generation-based framework for layered image synthesis. We approaches the task
through the highly practical background-to-foreground formulation. Specifically,
given a background layer and user guidance, it synthesizes a foreground layer
that incorporates visual effects such as shadow and reflection while harmonizing
with the background to form a coherent composite image. Since constructing suit-
able training data is difficult, we instead leverage the comparatively easy-to-learn
knowledge of composite synthesis for the foreground synthesis. To this end, we
design a dual-branch framework that jointly generates a composite image and a
foreground layer, enabling knowledge transfer through bidirectional information
exchange between the two branches. To promote this transfer, we also propose
a two-stage training scheme that does not rely on ground-truth foreground layer,
main dataset bottleneck. Extensive experiments show that BFS produces high-
quality layered images, consistently outperforming prior methods.

1 INTRODUCTION

Layered images, typically organized as a stack of multiple RGBA layers, have long been a standard
representation in professional image creation and editing. Such a representation enables independent
manipulation of visual elements without affecting the rest of the image, and this non-destructive
property not only streamlines iterative creative workflows but also enables dynamic reuse of visual
elements across different compositions.

Recent advances in image generative models (Ramesh et al., 2022; Saharia et al., 2022; Rombach
et al., 2022; Podell et al., 2023) have opened new opportunities for automatic layered image synthe-
sis. According to their layer construction strategy, existing approaches can be broadly categorized
into two paradigms: decomposition- and generation-based methods. Decomposition-based meth-
ods (Kang et al., 2025; Yang et al., 2025) extend traditional image matting approaches. They break
down an existing composite image into its constituent foreground and background layers, typically
guided by user-provided foreground masks. However, these methods often struggle to accurately
extract foreground objects together with their associated visual effects, such as shadows and reflec-
tions, when applied to complex scenes. Moreover, they are inherently limited to separating existing
images and lack the ability to synthesize new layers to construct novel compositions.

In contrast, generation-based methods (Zhang et al., 2023b; Huang et al., 2024; Zhang & Agrawala,
2024; Dalva et al., 2024; Huang et al., 2025b; Pu et al., 2025; Huang et al., 2025a) directly synthesize
layers from random noise and text descriptions. They produce sharp and accurate alpha masks and
allow the straightforward creation of new layered images using text description, which has driven
growing research interest. However, since learning the distribution of layered images demands a
large-scale layered image dataset, which is difficult to obtain, developing a scalable training data
construction pipeline has emerged as a central challenge.

For example, Text2Layer (Zhang et al., 2023b), the MuLAn dataset (Tudosiu et al., 2024), and
DreamLayer (Huang et al., 2025b) propose separation-based data construction pipelines. Starting
from a composite image dataset, they extract foreground layers and then inpaint the residual regions
to produce background layers. Starting from a composite image dataset, they extract foreground
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layers and then inpaint the residual regions to produce background layers. However, this process
often leaves visual effects in the background instead of the foreground, which in turn causes the
trained model to generate incorrect outputs. Although DreamLayer (Huang et al., 2025b) filters
out low-quality layered images through manual review, such reliance on human labor makes the
approach unsuitable for scalable dataset construction.

Other pipelines proposed by Zhang & Agrawala (2024) and Huang et al. (2025a), start from an
RGBA foreground dataset. Specifically, Zhang & Agrawala (2024) first apply outpainting outside
the foreground regions to obtain composite images, then remove the foregrounds and inpaint the
regions to produce background layers. While this approach allows foreground layers to retain their
visual effects, these effects are typically not harmonized with the background. As a result, the gen-
erated layered images, and therefore the output trained model often exhibit poor harmonization
between foreground and background layers. Moreover, the initial RGBA foreground set is limited
in both diversity and scale, making the resulting composite images less representative of real-world
imagery. Consequently, the generated layered images are confined to a narrow range of object cate-
gories and scene variations, limiting their applicability to broader real-world scenarios. Meanwhile,
PSDiffusion (Huang et al., 2025a) hires professional designers to select assets from foreground and
background datasets and carefully combine them, but this labor-intensive curation is prohibitively
costly. These limitations of previous works highlight that layered image synthesis remains challeng-
ing, particularly the collecting high-quality data at scale without heavy reliance on human labor.

In this paper, we propose BFS (Back-to-Front layered image Synthesis), a novel generation-based
framework for high-quality layered image synthesis. Specifically, we focus on BG2FG (background-
to-foreground) synthesis, i.e., synthesizing a new foreground layer conditioned on a given back-
ground image. While alternative strategies exist such as generating all layers at once or foreground-
to-background synthesis, BG2FG synthesis holds a couple of distinct practical importance. Firstly, it
closely aligns with the common design process where additional objects are introduced into a scene
one at a time to explore diverse layer compositions. Secondly, it naturally extends to multi-layered
image generation by sequentially adding new layers.

Constructing a suitable training dataset for this task, however, is challenging. Such a dataset should
be sufficiently large to provide reliable supervision for the scale, position, and pose of the foreground
objects relative to the background. In addition, the foreground layers should faithfully incorporate
realistic visual effects consistent with the background’s contextual semantics, but collecting such
foreground-background pairs remains extremely difficult.

To overcome this dataset challenge, we reduce reliance on ground-truth foreground layers and in-
stead leverage the comparatively easier-to-learn knowledge of composite synthesis for the fore-
ground synthesis. To this end, we first design a dual-branch generation framework that jointly
synthesizes the composite image and the foreground layer, facilitating the knowledge transfer by
aligning their generation pathways with bidirectional information exchange. Concretely, on a shared
pretrained diffusion transformer, we attach two content LoRA modules dedicated to each modality
and an information-sharing module that couples the two branches.

This dual-branch framework enables effective knowledge transfer in two respects. First, the fore-
ground layer is generated in conjunction with the composite image rather than in isolation, allowing
composition-aware synthesis that naturally incorporates realistic visual effects. Second, learning
the composite branch is relatively easy, as composite generation closely aligns with the pretrained
knowledge of producing high-quality images. By conditioning on the composite branch, the fore-
ground branch can be trained stably and efficiently, even with limited data.

Furthermore, we propose a two-stage training strategy to promote knowledge transfer, without the
reliance on ground-truth foreground layers. In the first stage, we learn the representations of the
outputs of both branches and their compositional relationships. Specifically, we train on a synthetic
dataset of well-aligned triplets of foregrounds with simulated effects, backgrounds, and compos-
ite images, using a diffusion loss and our composition loss. In the second stage, we enhance the
realism of the composite branch, which naturally transfers to the foreground branch through the
information-sharing learned in the previous stage. Specifically, we supervise the composite branch
using a realism-rich dataset composed of backgrounds and composites, which are much easier to
obtain than ground-truth foreground layers. We also introduce a regularization scheme for the fore-
ground branch to keep its distribution during this stage.
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With extensive experiments, we demonstrate that BFS achieves high-quality layered image synthe-
sis, in which foreground and background layers are well harmonized, along with strong general-
ization capability compared to existing approaches. In addition, our method proves effective across
diverse practical applications such as reference-based foreground generation and foreground layer
extraction from composite and background images.

2 RELATED WORK: LAYERED IMAGE SYNTHESIS

Motivated by the practical value of layered image representations, interest in their automatic genera-
tion has grown rapidly. In this section, we review the architectural designs adopted by existing meth-
ods. Beyond early CLIP-based attempt of Text2Live (Bar-Tal et al., 2022), most contemporary meth-
ods leverage the generative power of pretrained diffusion models via fine-tuning. Decomposition-
based methods (Kang et al., 2025; Yang et al., 2025) adapt the input/output layers of diffusion models
to decompose a composite image into its constituent layers, thereby producing separate foreground
and background layers.

Generative-based methods directly synthesize layers from random noise and text descriptions.
Text2Layer (Zhang et al., 2023b) introduces a unified latent space in which foreground and back-
ground are jointly embedded, enabling both layers to be generated in a single pass. Subsequent
methods (Huang et al., 2024; Zhang & Agrawala, 2024; Dalva et al., 2024; Huang et al., 2025b;a)
have established a dominant paradigm of multi-pass joint synthesis, allocating a dedicated gener-
ative pathway to each layer. For instance, LayerDiff (Huang et al., 2024) synthesizes layers from
layer-specific text prompts while promoting both intra- and inter-layer interactions via a collabo-
rative attention block, and LayerDiffuse (Zhang & Agrawala, 2024) leverages layer-specific LoRA
adapters for each layer and aggregates all attention vectors across all pathways to form a unified
model. More recent works (Dalva et al., 2024; Huang et al., 2025b;a) augment the multi-pass design
with an additional composite branch, leveraging cross-attention maps to inject global scene con-
text into the individual layers. Despite these advances, they remain tied to U-Net–based diffusion
backbones and depend heavily on cross-attention maps, with only limited exploration of emerging
diffusion transformer (DiT) architectures. In contrast, the only DiT-based work, ART (Pu et al.,
2025), adopts a fundamentally different strategy. It first generates a global layout, assigns latent to-
kens to spatial regions, and then synthesizes all layers simultaneously using a diffusion transformer.
While this design enables efficient region-wise generation, it inherently limits the ability to capture
holistic visual effects that span across multiple regions.

3 BFS (BACK-TO-FRONT LAYERED IMAGE SYNTHESIS

As introduced in Sec. 1, we tackle the BG2FG problem in layered image synthesis by proposing
BFS, which is illustrated in Fig. 1. Specifically, given a background image B, a bounding-box mask
M , and a foreground text description T , it generates a foreground RGBA layer F = (Frgb, Fα)
that contains the object specified by T within M . The generated foreground layer is expected to (1)
incorporate associated visual effects such as shadow and reflections, and (2) naturally harmonize
with the background B, thereby producing a natural-looking composite image C. The composition
follows the standard alpha blending equation:

C = Fα · Frgb + (1− Fα) ·B, (1)
where Frgb and Fα represent the RGB color components and opacity map of F , respectively, and ·
denotes element-wise multiplication.

The core contribution of BFS lies in transferring the relatively easier-to-learn knowledge of com-
posite synthesis to guide more challenging foreground synthesis, thereby effectively bypassing the
difficulty of constructing training data. To this end, we design a dual-branch framework that facil-
itates this transfer. Specifically, it simultaneously synthesizes both a composite image and a fore-
ground layer through two dedicated branches. At the same time, it enables bidirectional information
exchange between the two generation pathways, which ensures that the two modalities remain well
aligned, effectively guiding the foreground branch to follow the composite branch. Architecturally,
we take inspiration from UniCon (Li et al., 2024), a UNet-based joint generation framework, and
adapt it to our diffusion transformer backbone.

BFS builds on Flux-Fill, an image inpainting model chosen for its task similarity. We attach two
content LoRA modules (a composite LoRA and a foreground LoRA) to all the transformer blocks in
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Figure 1: Overall framework of BFS. Given a background image B, a bounding-box M , and a fore-
ground text description T , the model generates a foreground RGBA layer F . To enhance generation
quality, it simultaneously synthesizes a composite image and transfers knowledge from composite
generation to foreground generation. We train only the modules highlighted in yellow.

Flux-Fill. Each LoRA operates exclusively on its corresponding pathway, guiding the synthesis of
each modality. To enable bidirectional information exchange between the pathways, thereby aligning
both modalities, we introduce an information-sharing module featuring a symmetric cross-attention
layer. For efficiency, this module is inserted only into the 38 single-stream blocks that follow the
initial 19 dual-stream blocks.

The information-sharing module operates as follows. Let HC and HF be the intermediate features
before the self-attention layer of the composite and foreground pathways at a single-stream block,
respectively. We compute two cross-attentions by querying one pathway with keys/values from the
other:

ZC→F = softmax

(
QF (KC)⊤√

d

)
V C , ZF→C = softmax

(
QC(KF )⊤√

d

)
V F , (2)

where Q, K, and V denote the query, key, and value embeddings of each branch, and d is the embed-
ding dimension. The two cross-attention messages are concatenated, passed through a lightweight
MLP g(·), and split into each branch via residual updates:

[∆HC ,∆HF ] = g
(
concat(ZF→C , ZC→F )

)
, H̃C = HC +∆HC , H̃F = HF +∆HF . (3)

For cross-attention projection, we use shared and frozen base matrices WQ, WK , and WV , and
introduce two direction-specific LoRAs. The resulting feature embeddings are computed as:

QF = HF
(
WQ +∆W C→F

Q

)
, KC = HC

(
WK +∆W C→F

K

)
, V C = HC

(
WV +∆W C→F

V

)
,

QC = HC
(
WQ +∆W F→C

Q

)
, KF = HF

(
WK +∆W F→C

K

)
, V F = HF

(
WV +∆W F→C

V

)
.

(4)

The base projections (WQ,WK ,WV ) are initialized from the pretrained self-attention weights of
each block. The final trainable components of BFS are the two content LoRAs, the two direction-
specific information-sharing LoRAs {∆W C→F

{·} ,∆W F→C
{·} }, and the lightweight MLP.

At inference time, the diffusion denoising process operates in the latent space of the pretrained VAE.
Two same random noise tensors are first channel-wise concatenated with the conditioning inputs (the
background latent and a bounding box mask reshaped following Flux-Fill). The concatenated ten-
sors are then stacked along the batch dimension and passed through the diffusion transformer with
text embeddings computed from foreground descriptions. The two content LoRAs are applied inde-
pendently to different batch elements, while the information-sharing module attends jointly to both.
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Figure 2: Training dataset samples used in each training stage.

After iterative denoising, the model produces a composite latent and a foreground latent. Finally,
the only foreground latent is decoded to image domain using RGBA VAE introduced in LayerDif-
fuse (Zhang & Agrawala, 2024). Further implementation details are provided in the appendix.

4 TWO-STAGE TRAINING STRATEGY

To train BFS, the most straightforward dataset would comprise foreground, background, composite
images, and bounding-box masks. Such a dataset must be sufficiently large to provide reliable super-
vision for the scale, position, and pose of the foreground object, while the foreground layers should
be represented in RGBA format and faithfully capture realistic visual effects. Yet, as discussed in
Sec. 1, constructing a layered image dataset in practice is highly challenging. Although background
and composite image pairs can be obtained relatively easily through recent object removal tech-
niques, acquiring corresponding foreground representations remains extremely difficult. To address
this challenge, we propose a two-stage training strategy that avoids reliance on explicit ground-truth
foreground layers. In brief, we first train our model on a simulation-based synthetic dataset contain-
ing all modalities, and then fine-tune it on realism-rich background and composite pairs to enhance
visual fidelity and contextual harmonization of the composites, which in turn improves the quality
of the foreground layers through the information-sharing module. The following paragraphs provide
details of the datasets and the training losses used in each stage.

Representation Learning with Compositional Consistency BFS first learns modality-specific
representations and their compositional relationships using a simulation-based synthetic dataset
composed of triplets of foreground, background, composite images, along with bounding-box
masks. To construct the dataset, we adopt an approach similar to LayerDecomp (Yang et al., 2025)
on the RORem object removal dataset (Li et al., 2025), which provides composite images, object
masks, and background images where both objects and their visual effects have been removed. For
each composite image C, we first extract a foreground layer F from the object mask M using a
matting technique (Yao et al., 2024), then augment it to include simulated shadows using an internal
shadow generation network. The augmented foreground layer F̂ is recomposited with the back-
ground layer B to form a new composite image Ĉ. Finally, we replace the original object mask with
a bounding-box mask M̂ , resulting in a training corpus of {F̂ , B, M̂ , Ĉ}, as shown in the left side
in Fig. 2. We also provide visual examples of the dataset construction pipeline in the appendix. For
notational simplicity, we drop the hat in the rest of the paper.

Our data construction pipeline produces image layers with precise pixel-level alignment and embeds
simulated visual effect into the foreground layer, even though these effects are less realistic and not
harmonized with the background layer. In contrast to LayerDecomp, which constructs composites
by randomly pairing foregrounds with backgrounds, our method derives foregrounds directly from
real composite images, thereby offering more reliable supervision for object placement and scale.

Using the synthetic dataset, we employ a flow-matching loss. Let zF , zB , zC denote the VAE latents
of the foreground, background, and composite images, respectively. At each training iteration, we
sample Gaussian noise z0 ∼ N (0, I) and linearly interpolate it with each data latent z1 ∈ {zF , zC}
at a random time step t ∼ U(0, 1): z(t) = (1 − t)z0 + tz1 The flow-matching objective is then
defined as:

Lflow = Et,z0,z1

[∥∥v∗C − vCθ (z
(t)
C , z

(t)
F , t, κ)

∥∥2
2
+
∥∥v∗F − vFθ (z

(t)
C , z

(t)
F , t, κ)

∥∥2
2

]
, (5)

where v∗C and v∗F are the ground-truth velocity fields (given by v∗ = z1 − z0). vCθ and vFθ are
velocity fields predicted by the composite and foreground branches, respectively. Note that vCθ and
vFθ are computed from both z

(t)
C and z

(t)
F , since the composite and foreground branches are con-

nected through information-sharing modules. Here, κ represents the conditioning inputs, including
the foreground text description T , the background latent zB , and a down-sampled mask M .
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To further enforce compositional consistency between the branches, we introduce a composition
loss, which is defined as:

Lcomp =
∥∥Φ(ẑF , zB)− ẑC

∥∥
1
, (6)

where ẑC and ẑF are the model’s one-step denoised estimates at time t, (i.e., the predicted clean
latents from z

(t)
C and z

(t)
F ). Φ is a function that computes a composite of ẑF and zB in the latent

space. Φ is modeled as a neural network with learnable parameters and trained in advance to train
our framework. Finally, the overall objective of the first stage is defined as:

Lfirst = Lflow + 0.1Lcomp. (7)

Details of the auxiliary networks used during training are provided in the appendix.

Realism Enhancement with Distribution Regularization In this stage, we enhance the realism
of the generated images using a realism-rich dataset that captures diverse real-world visual effects.
Specifically, we utilize paired background and composite images to supervise only the composite
LoRA so that the generated composite latent better matches realistic image statistics. The resulting
improvements then propagate to the foreground branch through the information-sharing modules,
aligning the foreground with the refined composite and calibrating its visual effects.

For the second stage, we construct a dataset based on the object-removal dataset RORem (Li et al.,
2025), which provides background and composite images and bounding-box masks. The background
images of RORem are generated by inpainting the masked regions in the composite images, but
they often retain residual visual effects of foreground objects such as shadows and reflections. To
obtain cleaner backgrounds, we instead synthesize background images using ObjectClear (Zhao
et al., 2025), a more advanced object-removal method that removes both objects and their associated
visual effects. This dataset construction pipeline is scalable and readily allows further expansion of
the training corpus in the future.

Based on the dataset, we define a realism-boosting loss that supervises only the composite LoRA:

Lreal = Et

[∥∥v∗C − vCθ (z
(t)
C , z

(t)

F̃
, t, κ)

∥∥2
2

]
, (8)

where v∗ = z1 − z0. As no ground-truth foreground layer F is available, we instead use a surrogate
input for the foreground branch, specifically F̃ = C ·M , obtained by masking the composite image
C with the binary mask M . We empirically find that this surrogate input has negligible influence on
learning dynamics.

While the composite supervision improves realism, relying on it alone may cause the foreground
distribution to drift away from the distribution established in the previous stage, degrading the qual-
ity of the foreground layer. To mitigate this, we introduce additional supervision for the foreground
LoRA and the information-sharing module using the synthetic dataset of the previous stage. Al-
though the dataset is not fully realistic, it benefits from the pixel-wise alignment across {F,B,C}.
Specifically, when we feed the clean composite latent (without adding noise) as the input of the
composite branch with timestep t = 0, the branch is expected to faithfully reconstruct the clean
composite latent. At the same time, the foreground branch should estimate the residual between C
and B (i.e., F ) to satisfy the compositional relationship. To encourage this behavior, we introduce a
regularization loss:

Lreg = Et

[∥∥v∗F − vFθ (zC , z
(t)
F , (0, t), κ)

∥∥2
2

]
(9)

where (0, t) indicates that we use different timesteps for the composite and foreground branches,
i.e., we set the timestep to 0 for the composite branch, while setting it to t for the foreground branch.
During training iterations, we alternate between optimizing the realism-boosting loss and the fore-
ground regularization loss, each combined with the composition loss. Specifically, we optimize Lreal

and Lreg + 0.1Lcomp in turn.

5 EXPERIMENTS

5.1 COMPARISON WITH OTHER LAYERED IMAGE SYNTHESIS METHODS

Baselines We compare the quality of the layered images generated by BFS and existing approaches
on multiple datasets, including SAM-FB (He et al., 2024), RORem (Li et al., 2025), and AnyInser-
tion (Song et al., 2025). Each dataset provides background images and masks specifying the regions

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Quantitative evaluation of existing layered image synthesis methods on SAM-FB dataset.
FG Recomposite (or Background for LayeringDiff + ObjectClear)

Method CLIP (↑) MUSIQ (↑) MANIQA (↑) KID×1000 (↓) DINO (↑)
LayeringDiff + ObjectClear 0.59 70.33 0.430 0.72 1.00

LayerDiffuse 0.78 70.47 0.411 10.89 0.50
Ours 0.63 70.99 0.432 0.62 0.96
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Figure 3: Qualitative comparison with existing layered image synthesis approaches. For better visual
comparison, we present zoom-in views of the generated foreground layer except for LayerDiffuse,
as its foreground spans the entire region.

where foreground objects should be placed. For consistency, all masks are converted into bounding-
box form. All input images (backgrounds and masks) are resized such that the shorter side is 512
pixels before being fed into the models. For the target foreground text descriptions, we use the cap-
tions provided by the SAM-FB and AnyInsertion datasets, while those for the RORem dataset are
generated using BLIP2 (Li et al., 2023).

As the decomposition-based methods cannot generate new foreground layers, we instead use them to
decompose the ground-truth composite images into layered images and evaluate them. Specifically,
we compute foreground masks using SAM (Ravi et al., 2024) based on the bounding boxes of
the object masks, and employ LayeringDiff (Kang et al., 2025) to estimate the foreground layers.
Background layers are generated with ObjectClear (Zhao et al., 2025), since LayeringDiff often
leaves residual visual effects in the background. For LayeringDiff, we use the code provided by the
authors, while for ObjectClear we use the official implementation. LayerDecomp (Yang et al., 2025)
could not be evaluated because its code is not publicly available, but the quality of its generated
background layers can be reasonably assumed to be comparable to that of ObjectClear, given the
close similarity in their training strategies.

For generation-based methods, we compare only with LayerDiffuse (Zhang & Agrawala, 2024), as
it is the only method with publicly available code. Specifically, we adopt its strongest SDXL-based
two-stage variant, which first generates a composite image and then estimates the foreground layer
conditioned on the background and the composite.

Qualitative Comparison Fig. 3 presents a qualitative comparison. For clearer visualization, we
enlarge the foreground regions generated by our method and by LayeringDiff combined with Ob-
jectClear. As shown in the figure, LayeringDiff fails to disentangle fine details in complex scenes,
such as the whiskers of a seal or the side mirror of a car. The generated foreground objects by Lay-
erDiffuse are frequently oversized and inconsistent with the background context, leading to poor
visual harmony. This indicates that the synthetic dataset used for training does not generalize well to
real-world backgrounds, leaving the model uncertain about how to position objects, and simply pro-
ducing large, centrally placed ones that follow the typical distribution of RGBA images. In contrast,
our method generates foreground objects that are contextually appropriate, visually consistent, and
equipped with proper visual effects, even in complex scenes, yielding more coherent composites.

Quantitative Comparison Quantitative evaluation of generated layered images is inherently chal-
lenging, as ground-truth layered images are not available. In this work, we evaluate both the gener-
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Figure 4: Qualitative comparison with an object insertion method PaintByInpaint (Wasserman et al.,
2025) and a image inpainting method FluxFill (Labs, 2024)

Table 2: Quantitative evaluation with an object insertion method FluxFill and an image inpainting
method PaintByInpaint on SAM-FB datset.

Method MUSIQ (↑) MANIQA (↑) KID×1000 (↓) DINO (↑)

PaintByInpaint (Wasserman et al., 2025) 70.89 0.41 0.76 0.93
FluxFill (Labs, 2024) 70.71 0.42 0.79 0.96
Ours 70.99 0.43 0.62 0.96

ated foreground layer and the recomposite image obtained by combining the generated foreground
with the input background. We report results on the SAM-FB dataset, while results on two additional
datasets are provided in the appendix. For decomposition-based methods, where the input is a com-
posite image, we instead evaluate the estimated background layers rather than the composite image.
For evaluation metrics, the quality of the foreground layers is assessed using the CLIP score (Hes-
sel et al., 2021), which measures the alignment between the generated (or decomposed) foreground
and the input foreground caption. For recomposite evaluation, we employ non-reference aesthetic
quality metrics, MUSIQ (Yu et al., 2025), MANIQA (Yu et al., 2025), as well as FID (Heusel et al.,
2017) to measure distributional similarity against the target distribution. In addition, we report the
DINO score (Oquab et al., 2023) to directly compare with ground-truth composite images. The re-
sults are summarized in Tab. 1. LayerDiffuse attains the highest CLIP scores, as it often generates
large foreground objects that dominate the image and are therefore favored by the metrics. However,
its performance on recomposite evaluation is notably worse than other methods, especially in KID
and DINO, where the generated results deviate substantially from the ground-truth distribution. Our
method achieves a higher CLIP score than LayeringDiff, while also producing foreground layers that
yield recomposite images with superior aesthetic quality and closer alignment to the ground-truth.

5.2 COMPARATIVE WITH OTHER OBJECT INSERTION METHODS

BFS is conceptually related to naturally adding new objects into a given scene. To evaluate this
capability, we compare it against two recent models designed for related tasks: the image inpainting
model Flux-Fill (Labs, 2024) and the object insertion method PaintByInpaint (Wasserman et al.,
2025). For Flux-Fill, we adopt the default configuration. Since PaintByInpaint does not take an
input mask and follows an instruction-based text description, we prepend the word “add” to the
foreground caption before providing it to the model.

Fig. 4 presents a qualitative comparison of the composites generated by these baselines and recom-
posite image by our approach. For reference, we also show the foreground layers produced by BFS.
As shown in the figure, Our method synthesizes high-quality recomposite images comparable to
existing approaches, while additionally generating explicit and reusable foreground layers that facil-
itate further editing and composition. Tab. 2 summarizes the quantitative evaluation on the SAM-FB
dataset. The results show that our method achieves slightly higher scores than existing approaches,
demonstrating that BFS produces highly natural recomposite images comparable to those of state-
of-the-art insertion models trained solely with real-world supervision.
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inset in the top-left shows the output of the composite branch for reference.

Input
background

Input
reference

Output
foreground

Output
recomposite

Input
composite

Input
background

Output
foreground
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Figure 6: Practical applications of BFS. (a) Reference-based foreground layer synthesis guided by a
reference image. (b) Foreground layer extraction from a composite and its background.

5.3 ABLATION STUDY

We conduct an extensive ablation study to evaluate the contribution of each component in BFS.
Fig. 5 presents qualitative comparisons of the results obtained by different model variants, given a
background image and a bounding-box mask (highlighted in yellow). We also include the outputs
of the composite branch for each variant in the figure inset. Without Stage 1 representation learning,
directly training Stage 2 completely fails to capture the foreground distribution. In contrast, omitting
Stage 2 synthesize foreground layers that lack realism showing unnatural shadow effect. Removing
the composition loss in Stage 1 severely degrades both branches, as effective knowledge transfer
does not occur, which diminishes the quality of the foreground layers and the low-quality informa-
tion is passed to the composite branch, which consequently harms the composite branch. Excluding
the regularization step in Stage 2 causes the RGBA distribution of the foreground layer to collapse,
introducing irrelevant visual effects into the representation. By contrast, our full model successfully
aligns the two branches and produces high-quality RGBA layers.

5.4 FURTHER APPLICATIONS

We present practical applications of BFS. It enables reference-based foreground synthesis: by sub-
stituting the caption embedding with that of a reference image via a Flux-Redux adapter, the syn-
thesized foreground inherits the reference characteristics (Fig. 6 (a)). BFS also supports foreground
extraction from existing images. Given a composite and its background, we input the composite into
the composite branch (instead of random noise) with its timestep fixed to zero, yielding a resid-
ual layer corresponding to the foreground. Unlike conventional matting, this produces a layer that
preserves both the object and realistic visual effects (Fig. 6 (b)).

6 CONCLUSION

We present BFS, a generation-based framework for high-quality layered image synthesis. To over-
come the difficulty of constructing a suitable training dataset, we transfers the easier-to-learn knowl-
edge of composite synthesis to foreground synthesis, by using a dual-branch framework that jointly
generates composite images and foreground layers, with bidirectional information exchange align-
ing the two branches. To further promote effective knowledge transfer, we also propose two-stage
training scheme avoids reliance on ground-truth foreground supervision, which is the main dataset
bottleneck. Through extensive experiments, we demonstrated that BFS produces high-quality lay-
ered images with strong generalization ability, consistently surpassing prior methods.

BFS has certain limitations. The dual-branch design increases inference time, as generating a single
output with BFS takes 31 seconds compared to 12 seconds with Flux-Fill backbone. Furthermore,
the visual effects are not guaranteed to be physically correct. We will integrate rendering toolchains
to capture complex, physically valid effects and use them to supervise future models.
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Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.00714, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Jaskirat Singh, Jianming Zhang, Qing Liu, Cameron Smith, Zhe Lin, and Liang Zheng. Smartmask:
Context aware high-fidelity mask generation for fine-grained object insertion and layout control.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6497–6506, 2024.

Wensong Song, Hong Jiang, Zongxing Yang, Ruijie Quan, and Yi Yang. Insert anything: Image
insertion via in-context editing in dit. arXiv preprint arXiv:2504.15009, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim, and
Daniel Aliaga. Objectstitch: Object compositing with diffusion model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18310–18319, 2023.

Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim,
He Zhang, Wei Xiong, and Daniel Aliaga. Imprint: Generative object compositing by learning
identity-preserving representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8048–8058, 2024.

Gemma Canet Tarrés, Zhe Lin, Zhifei Zhang, He Zhang, Andrew Gilbert, John Collomosse, and
Soo Ye Kim. Multitwine: Multi-object compositing with text and layout control. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 8094–8104, 2025.

Onur Tasar, Clément Chadebec, and Benjamin Aubin. Controllable shadow generation with single-
step diffusion models from synthetic data. arXiv preprint arXiv:2412.11972, 2024.

Yoad Tewel, Rinon Gal, Dvir Samuel, Yuval Atzmon, Lior Wolf, and Gal Chechik. Add-
it: Training-free object insertion in images with pretrained diffusion models. arXiv preprint
arXiv:2411.07232, 2024.

Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei Chen, Steven McDonagh, Gerasimos
Lampouras, Ignacio Iacobacci, and Sarah Parisot. Mulan: A multi layer annotated dataset for
controllable text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22413–22422, 2024.

Weicheng Wang, Guoli Jia, Zhongqi Zhang, Liang Lin, and Jufeng Yang. Ps-diffusion: Photore-
alistic subject-driven image editing with disentangled control and attention. In 2025 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18302–18312. IEEE Com-
puter Society, 2025.

Navve Wasserman, Noam Rotstein, Roy Ganz, and Ron Kimmel. Paint by inpaint: Learning to
add image objects by removing them first. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 18313–18324, 2025.

Daniel Winter, Matan Cohen, Shlomi Fruchter, Yael Pritch, Alex Rav-Acha, and Yedid Hoshen.
Objectdrop: Bootstrapping counterfactuals for photorealistic object removal and insertion. In
European Conference on Computer Vision, pp. 112–129. Springer, 2024a.

Daniel Winter, Asaf Shul, Matan Cohen, Dana Berman, Yael Pritch, Alex Rav-Acha, and Yedid
Hoshen. Objectmate: A recurrence prior for object insertion and subject-driven generation. arXiv
preprint arXiv:2412.08645, 2024b.

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and
Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 18381–18391,
2023.

Jinrui Yang, Qing Liu, Yijun Li, Soo Ye Kim, Daniil Pakhomov, Mengwei Ren, Jianming Zhang, Zhe
Lin, Cihang Xie, and Yuyin Zhou. Generative image layer decomposition with visual effects. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7643–7653, 2025.

Jingfeng Yao, Xinggang Wang, Shusheng Yang, and Baoyuan Wang. Vitmatte: Boosting image
matting with pre-trained plain vision transformers. Information Fusion, 103:102091, 2024.

Yongsheng Yu, Ziyun Zeng, Haitian Zheng, and Jiebo Luo. Omnipaint: Mastering object-oriented
editing via disentangled insertion-removal inpainting. arXiv preprint arXiv:2503.08677, 2025.

Jooyeol Yun, Davide Abati, Mohamed Omran, Jaegul Choo, Amirhossein Habibian, and Auke
Wiggers. Generative location modeling for spatially aware object insertion. arXiv preprint
arXiv:2410.13564, 2024.

Bo Zhang, Yuxuan Duan, Jun Lan, Yan Hong, Huijia Zhu, Weiqiang Wang, and Li Niu. Controlcom:
Controllable image composition using diffusion model. arXiv preprint arXiv:2308.10040, 2023a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Lvmin Zhang and Maneesh Agrawala. Transparent image layer diffusion using latent transparency.
arXiv preprint arXiv:2402.17113, 2024.

Xinyang Zhang, Wentian Zhao, Xin Lu, and Jeff Chien. Text2layer: Layered image generation using
latent diffusion model. arXiv preprint arXiv:2307.09781, 2023b.

Jixin Zhao, Shangchen Zhou, Zhouxia Wang, Peiqing Yang, and Chen Change Loy. Objectclear:
Complete object removal via object-effect attention. arXiv preprint arXiv:2505.22636, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX
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A.1 RELATED WORK: OBJECT INSERTION

Another closely related line of research is object insertion, which aims to integrate an object into
a target scene while ensuring object-level plausibility (pose, scale, and identity) and scene-level
consistency (lighting, shadows, reflections, and other visual effects). Recently, large-scale image
generative models have motivated single framework solutions that address all the subproblems si-
multaneously, directly producing composite images in a single synthesis. Among them, training-free
methods (Lu et al., 2023b; Tewel et al., 2024) demonstrate that high-quality insertion results can be
achieved by guiding the diffusion model generation process. A more mainstream direction is to
fine-tune diffusion models to insert a reference image into a given background. Early studies (Yang
et al., 2023; Song et al., 2023) replace text embeddings with embeddings of a given reference image
to reproduce the target instance, while subsequent methods (Zhang et al., 2023a; Chen et al., 2024;
Song et al., 2024) place greater emphasis on identity preservation by devising more effective identity
injection strategies.

More recent researches (Huang et al., 2025c; He et al., 2024; Song et al., 2025; Canet Tarrés et al.,
2024; Liang et al., 2024; Wang et al., 2025; Winter et al., 2024a; Canberk et al., 2024; Yu et al.,
2025) have shifted their focus toward enhancing the realism of generated composites. To this end,
some works (Huang et al., 2025c; He et al., 2024; Song et al., 2025; Canet Tarrés et al., 2024) cu-
rate dataset that explicitly capture object–scene interactions. Others, such as ObjectDrop (Winter
et al., 2024a), EraseDraw (Canberk et al., 2024), ORIDa (Kim et al., 2025), and Omnipaint (Yu
et al., 2025), leverage object removal data to strengthen the fidelity of inserted objects. Meanwhile,
Multitwine (Tarrés et al., 2025) extends the task to multi-object insertion, and ObjectMate (Win-
ter et al., 2024b) and DreamCom (Lu et al., 2023a) leverage multiple reference images to utilize
richer view-dependent information. Finally, layout estimation and then inpaint approaches, such as
SmartMask (Singh et al., 2024) and Generative Location Modeling (Yun et al., 2024), first estimate
insertion layouts and exploit pretrained inpainting models to generate natural composite results.

Despite these efforts, most object insertion methods concentrate on composite image generation
rather than learning disentangled representations. As a result, the inserted objects cannot be easily
separated, reused, or independently edited after synthesis, limiting post-hoc editing flexibility. In
contrast, our approach explicitly generates a foreground RGBA layer preserving contextual realism
while providing an editable and reusable representation of the inserted object.

A.2 IMPLEMENTATION DETAILS

For inference, we use the flow-matching Euler discrete sampler with 50 steps and a guidance scale
of 30. We summarize the training configurations for both training stages of BFS in Tab. A1.

A.3 SIMULATION-BASED SYNTHETIC DATASET CONSTRUCTION PIPELINE

We describe in detail the pipeline for constructing our simulation-based synthetic dataset used in
the training Stage 1, with visual examples in Fig. A1. We begin with the RORem (Li et al., 2025)
dataset, an object removal dataset that contains a composite image C, a rough binary mask M of
an object in the composite, and a background image B where the object has been removed together
with its visual effects.
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Table A1: Training setup for Stage 1 and Stage 2 of BFS.
Item Stage 1 Stage 2
Datasets Synthetic dataset RORem dataset

from the RORem dataset
Number of Samples 57,304 114,352
Image Resolution 512× 512 512× 512
RANK 64 64
Optimizer AdamW 8bit (β1 = 0.9, β2 = 0.999) AdamW 8bit (β1 = 0.9, β2 = 0.999)
Learning Rate 8e− 6 8e− 6
Weight Decay 1e− 2 1e− 2
Batch Size 32 32
Training Steps 3, 000 9, 000
LR Schedule Cosine with restarts Cosine with restarts
Gradient Clipping 1.0 1.0
Hardware 4×A100 80GB 4×A100 80GB
Precision BF16 BF16

(a) Composite 𝐶 (b) Background 𝐵 (c) Mask 𝑀 (d) Matting Mask 𝑀୫ୟ୲୲ୣ

(e) FG RGB 𝐹୵୦୧୲ୣ (f) FG RGB with Shadow 
𝐹ୱ୦ୟୢ୭୵ୣୢ

(g) FG RGBA with 
Shadow 𝐹෠

(h) Recomposite 𝐶መ

Figure A1: Visual examples from the pipeline used to construct the synthetic dataset.

Starting from the rough mask M , we first convert it into a bounding-box form Mbbox and apply
SAM2 (Ravi et al., 2024) to detect an object mask Msam based on the bounding-box mask Mbbox.
Since SAM2 may capture regions misaligned with the original rough mask M , we filter out cases
where the intersection-over-union (IoU) between the two masks (M and Msam) is below 0.8, result-
ing in 57,304 valid samples out of the initial 114,352 images. For the retained masks, we perform
an 11-pixel morphological dilation and erosion operations to construct a trimap, where pixels out-
side the dilated region are set to 0, those inside the eroded region to 1, and the intermediate band
to 0.5. Based on the trimap, we estimate a detailed fine mask Mmatte using a image matting method,
ViTMatte (Yao et al., 2024). Based on the matting mask Mmatte, we extract the foreground object
from the composite C and place it on a white background (Fwhite). We then apply a shadow gen-
eration network Gshadow to synthesize shadows cast by the object, producing a shadow-augmented
foreground Fshadowed (the details of Gshadow are provided in Sec. A.4).

Lastly, we compute the alpha channel to form the final RGBA representation F̂ from the shadow-
augmented foreground Fshadowed. Specifically, we assume that the synthesized shadow can be rep-
resented as the product of the shadow opacity αshadow and a pure black image Iblack. Accordingly,
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Fshadowed can be expressed as

Fshadowed = αFF + αshadowIblack + (1− αF − αshadow)Iwhite (10)

where F denotes the foreground object, αF is the object opacity, and Iwhite is the pure white back-
ground. Substituting Iblack = 0 and Iwhite = 1 simplifies the equation to

Fshadowed = αFF + 1− αF − αshadow, (11)

which can be rearranged as

αF + αshadow = αFF + 1− Fshadowed. (12)

The left-hand side represents the combined opacity of the object and its shadow, which we denote as
α. The right-hand side is fully computable, since αFF corresponds to Fblack, i.e., the object placed
on a black background. Based on this, we can derive the foreground RGBA representation with the
computed alpha α as

F̂ = (F̂color, α), (13)
where the color component is obtained by normalizing the shadowed foreground with its opacity,

F̂color =
Fshadowed − (1− α)

α+ ϵ
, (14)

and ϵ is a small constant to avoid division by zero. Finally, the recomposite image can be produced
by alpha blending the RGBA foreground with the background B:

Ĉ = α · F̂color + (1− α) ·B. (15)

A.4 SHADOW GENERATION NETWORK

We introduce our shadow generation network Gshadow, which takes as input an object composited on
a white background together with a fine-grained object mask, and outputs a shadow-casted image.
Since no publicly available model and dataset align with our target scenario, we train our own
network using a two-stage fine-tuning strategy.

In Stage 1, the model is trained to generate shadows that harmonize with the surrounding scene,
given an input image and a fine-grained object mask. For this purpose, we leverage the large-scale
DESOBAv2 dataset (Liu et al., 2024), which consists of 28, 573 triplets containing (i) an object
copy-pasted onto a background without shadows, (ii) the corresponding scene with naturally cast
shadows, and (iii) a fine-grained object mask. We fine-tune the Flux backbone (Labs, 2024) by
attaching a LoRA adapter, modifying the input layer to jointly process the image and mask, and
optimizing the LoRA parameters with an ℓ2 loss between the model outputs and the ground-truth
shadowed images.

Although the Stage 1 model can produce realistic shadows, its outputs are not directly aligned with
our target scenario, where objects are placed on a uniform white background. To address this mis-
match, Stage 2 performs additional fine-tuning on a smaller dataset (Tasar et al., 2024) specifically
tailored to white-background scenes. This dataset is constructed using Blender and provides 555
pairs of (i) an object composited on a white background with rendered shadows and (ii) a fine-
grained object mask. From these pairs, we construct training triplets by extracting the object using
the mask and placing it onto a white background. The network is trained with the same ℓ2 loss as in
Stage 1. This refinement enables the model to generate shadows consistent with objects placed on a
white background.

Through this two-stage training, we obtain a robust shadow generation network, which serves as a
crucial component in constructing the simulation-based dataset used in our synthetic dataset con-
struction pipeline. We summarize the training configurations for both stages in Tab. A2.

A.5 LATENT COMPOSITION NETWORK

In this section, we introduce the latent composition network Φ used in the training Stage 1. Learning
the compositional relationship where the output of the composite branch should equal the compo-
sition of the input background latent and the output of the foreground branch is crucial, as also
demonstrated in the ablation study of the main paper.
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Table A2: Training setup for Stage 1 and Stage 2 of the shadow generation network Gshadow.
Item Stage 1 Stage 2
Datasets DESOVAv2 (Liu et al., 2024) Tasar et al. (2024)
Number of Samples 28,573 555
Image Resolution 512× 512 512× 512
RANK 128 128
Optimizer AdamW 8bit (β1 = 0.9, β2 = 0.999) AdamW 8bit (β1 = 0.9, β2 = 0.999)
Learning Rate 3e− 5 3e− 5
Weight Decay 1e− 2 1e− 2
Batch Size 32 32
Training Steps 22, 000 2, 000
LR Schedule Cosine with restarts Cosine with restarts
Gradient Clipping 1.0 1.0
Hardware 1×A100 80GB 1×A100 80GB
Precision BF16 BF16

However, since both branches operate in the latent space of the pretrained VAE rather than directly
in the image domain, the standard alpha blending equation cannot be applied. Furthermore, the
encoding and decoding of the foreground latent rely on the RGBA VAE introduced in LayerDif-
fuse (Zhang & Agrawala, 2024), which projects transparency information into the latent represen-
tation, meaning that no explicit blending mask is available. While one could follow the approach of
LayerDecomp (Yang et al., 2025) and design a composition loss in the image domain using the VAE
decodings of the generated latents of both branches, this requires backpropagation through the VAE
decoder. Such a strategy is computationally expensive and carries the risk of inaccurate gradient
propagation due to the long backpropagation path.

To address this, we introduce the latent composition network Φ, which performs composition di-
rectly in the latent space. This network adopts a simple U-Net architecture and is trained to map
the channel-wise concatenation of a foreground latent and a background latent to the corresponding
composite latent. To this end, the training objective is defined as the reconstruction error between
the predicted composite latent ẑC and the ground-truth composite latent zC :

Lcomp = ∥zC − Φ(zB , zF )∥22. (16)

Below, we provide the code for constructing the network architecture using the Diffusers library,
along with details of the training setup (Tab. A3).

1 from diffusers import UNet2DModel
2 composition_net = UNet2DModel(
3 sample_size=128, # latent resolution
4 in_channels=32, # foreground + background latents channels
5 out_channels=16, # composite latent channels
6 layers_per_block=2,
7 block_out_channels=[320, 640],
8 down_block_types=("DownBlock2D", "DownBlock2D"),
9 up_block_types=("UpBlock2D", "UpBlock2D"),

10 )

A.6 EXTENDED EXPERIMENTAL RESULTS

We present additional qualitative comparison examples with layered image synthesis methods in
Fig. A2 and Fig. A3.

We present additional qualitative comparison examples with inpainting methods in Fig. A4, Fig. A5,
Fig. A6, Fig. A7, and Fig. A8.

We present additional quantitative comparisons on the RORem dataset (Li et al., 2025), comparing
existing layered image synthesis methods in Tab. A4, and object insertion methods in Tab. A5.
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We present additional quantitative comparisons on the AnyInsertion dataset (Song et al., 2025),
comparing existing layered image synthesis methods in Tab. A6, and object insertion methods in
Tab. A7.

A.7 LLM USAGE DISCLOSURE

We used OpenAI’s ChatGPT as a writing assistant during the preparation of this paper. Specifically,
ChatGPT was employed for language refinement, grammar correction, and improving the clarity
of exposition. It did not contribute to research ideation, experimental design, data analysis, or the
derivation of technical results. All scientific content, including the conceptual framework, method-
ology, experiments, and conclusions, was created entirely by the authors.

Table A3: Training setup for the latent composition network Φ.
Item Setting

Datasets Foreground from MAGICK dataset (Burgert et al., 2024)
Background from BG20k dataset (Li et al., 2022)

Number of Samples 20,000
Latent Resolution 64× 64
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Learning Rate 5× 10−6

Weight Decay 1e− 2
Batch Size 32
LR Schedule Cosine with restarts
Training Steps 10, 000
Gradient Clipping 1.0
Hardware 1×A100 80GB
Precision Float32

Table A4: Quantitative evaluation of existing layered image synthesis methods on RORem dataset.
FG Recomposite (or Background for LayeringDiff + ObjectClear)

Method CLIP (↑) MUSIQ (↑) MANIQA (↑) KID×1000 (↓) DINO (↑)
LayeringDiff + ObjectClear 0.63 66.98 0.41 5.19 0.99

LayerDiffuse 0.77 70.05 0.43 9.04 0.50
Ours 0.70 68.34 0.43 4.73 0.94

Table A5: Quantitative evaluation with an object insertion method FluxFill and an image inpainting
method PaintByInpaint on RORem datset.

Method MUSIQ (↑) MANIQA (↑) KID×1000 (↓) DINO (↑)

PaintByInpaint (Wasserman et al., 2025) 68.08 0.38 4.60 0.93
FluxFill (Labs, 2024) 67.72 0.42 4.59 0.93
Ours 68.34 0.43 4.73 0.94

Table A6: Quantitative evaluation of existing layered image synthesis methods on AnyInsertion
dataset.

FG Recomposite (or Background for LayeringDiff + ObjectClear)
Method CLIP (↑) MUSIQ (↑) MANIQA (↑) KID×1000 (↓) DINO (↑)

LayeringDiff + ObjectClear 0.70 54.18 0.35 10.47 0.71
LayerDiffuse 0.73 65.36 0.40 8.51 0.41

Ours 0.71 55.54 0.32 3.88 0.45
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Table A7: Quantitative evaluation with an object insertion method FluxFill and an image inpainting
method PaintByInpaint on AnyInsertion datset.

Method MUSIQ (↑) MANIQA (↑) KID×1000 (↓) DINO (↑)

PaintByInpaint (Wasserman et al., 2025) 58.10 0.33 5.49 0.49
FluxFill (Labs, 2024) 55.01 0.33 3.02 0.56
Ours 55.54 0.32 3.88 0.45
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Figure A2: Qualitative comparison with existing layered image synthesis approaches.
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Figure A3: Qualitative comparison with existing layered image synthesis approaches.
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Figure A4: Qualitative comparison with an object insertion method PaintByInpaint (Wasserman
et al., 2025) and a image inpainting method FluxFill (Labs, 2024)
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Figure A5: Qualitative comparison with an object insertion method PaintByInpaint (Wasserman
et al., 2025) and a image inpainting method FluxFill (Labs, 2024)
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Figure A6: Qualitative comparison with an object insertion method PaintByInpaint (Wasserman
et al., 2025) and a image inpainting method FluxFill (Labs, 2024)
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Figure A7: Qualitative comparison with an object insertion method PaintByInpaint (Wasserman
et al., 2025) and a image inpainting method FluxFill (Labs, 2024)
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Figure A8: Qualitative comparison with an object insertion method PaintByInpaint (Wasserman
et al., 2025) and a image inpainting method FluxFill (Labs, 2024)
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