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ABSTRACT

Classifiers in machine learning are often brittle when deployed. Particularly con-
cerning are models with inconsistent performance on specific subgroups of a class,
e.g., exhibiting disparities in skin cancer classification in the presence or absence
of a spurious bandage. To mitigate these performance differences, we introduce
model patching, a two-stage framework for improving robustness that encourages
the model to be invariant to subgroup differences, and focus on class information
shared by subgroups. Model patching first models subgroup features within a class
and learns semantic transformations between them, and then trains a classifier with
data augmentations that deliberately manipulate subgroup features. We instantiate
model patching with CAMEL, which (1) uses a CycleGAN to learn the intra-class,
inter-subgroup augmentations, and (2) balances subgroup performance using a
theoretically-motivated subgroup consistency regularizer, accompanied by a new
robust objective. We demonstrate CAMEL’s effectiveness on 3 benchmark datasets,
with reductions in robust error of up to 33% relative to the best baseline. Lastly,
CAMEL successfully patches a model that fails due to spurious features on a
real-world skin cancer dataset.

1 INTRODUCTION

Machine learning models typically optimize for average performance, and when deployed, can yield
inaccurate predictions on important subgroups of a class. For example, practitioners have noted that
on the ISIC skin cancer detection dataset (Codella et al., 2018), classifiers are more accurate on
images of benign skin lesions with visible bandages, when compared to benign images where no
bandage is present (Bissoto et al., 2019; Rieger et al., 2019).

This subgroup performance gap is an undesirable consequence of a classifier’s reliance on subgroup-
specific features, e.g. spuriously associating colorful bandages with a benign cancer class (Figure 1).
A common strategy to side-step this issue is to use manual data augmentation to erase the differences
between subgroups, e.g., using Photoshop (Winkler et al., 2019) or image tools (Rieger et al., 2019)
to remove markings on skin cancer data before retraining a classifier. However, hand-crafting these
augmentations may be impossible if the subgroup differences are difficult to manually express.

Ideally, we would automatically learn the features differentiating the subgroups of a class, and then
encourage a classifier to be invariant to these features when making its prediction. To this end, we
introduce model patching, a framework that encapsulates this solution in two stages:

• Learn inter-subgroup transformations. Isolate features that differentiate subgroups within a
class, learning inter-subgroup transformations between them. These transformations change
an example’s subgroup identity but preserve the class label.
• Train to patch the model. Leverage the transformations as controlled data augmentations

that manipulate subgroup features, encouraging the classifier to be robust to their variation.

In the first stage of model patching (Section 2.1), we learn, rather than specify, the differences between
the subgroups of a class. We assume that these subgroups are known to the user, e.g. this is common
when users perform error analysis (Oakden-Rayner et al., 2019). Our key insight here is to learn these
differences as inter-subgroup transformations that modify the subgroup membership of examples,
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while preserving class membership. Applying these semantic transformations as data augmentations
in the second stage allows us to generate “imagined” versions of an example in the other subgroups
of its class. This contrasts with conventional data augmentation, where heuristics such as rotations,
flips, MixUp or CutOut (DeVries & Taylor, 2017; Zhang et al., 2017) are hand-crafted rather than
learned. While these heuristics have been shown to improve robustness (Hendrycks et al., 2019), the
invariances they target are not well understood. Even when augmentations are learned (Ratner et al.,
2017a), they are used to address data scarcity, rather than manipulate examples to improve robustness
in a prescribed way. Model patching is the first framework for data augmentation that directly targets
subgroup robustness. colored spot

no colored spot

✓ ❌❌❌
vanilla model model patching

✅ ✅

✅❌

✅✅
✅
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Figure 1: A vanilla model trained on a skin can-
cer dataset exhibits a subgroup performance gap
between images of malignant cancers with and
without colored bandages. GradCAM (Selvaraju
et al., 2017) illustrates that the vanilla model spuri-
ously associates the colored spot with benign skin
lesions. With model patching, the malignancy is
predicted correctly for both subgroups.

The goal of the second stage (Section 2.2) is to ap-
propriately use the transformations to remove the
classifier’s dependence on subgroup-specific features.
We introduce two algorithmic innovations that target
subgroup robustness: (i) a subgroup robust objective
and; (ii) a subgroup consistency regularizer. Our sub-
group robust objective extends prior work on group
robustness (Sagawa et al., 2020) to our subgroup
setting, where classes and subgroups form a hierar-
chy (Figure 2 left). Our new subgroup consistency
regularizer constrains the predictions on original and
augmented examples to be similar. While recent work
on consistency training (Hendrycks et al., 2019; Xie
et al., 2019) has been empirically successful in con-
structing models that are robust to perturbations, our
consistency loss carries theoretical guarantees on the
model’s robustness. We note that our changes are
easy to add on top of standard classifier training.

We contribute a theoretical analysis (Section 3) to
motivate our end-to-end framework. Our analysis codifies the distributional assumptions underlying
the class-subgroup hierarchy and motivates our new consistency regularizer, which has a simple
information theoretic interpretation under this framework. First, we introduce a natural model for the
data generating process that decouples an example from its subgroup. Under this model, we prove
that our consistency loss in Stage 2, when applied to subgroup augmentations from Stage 1, bounds
the mutual information between the classifier output and the subgroup labels. Thus, training with our
end-to-end framework forces the classifier to be invariant to subgroup-specific features.

We conduct an extensive empirical study (Section 4) that validates CycleGAN Augmented Model
Patching (CAMEL)’s ability to improve subgroup invariance and robustness. We first evaluate
CAMEL on a controlled MNIST setup, where it cuts robust error rate to a third of other approaches
while learning representations that are far more invariant, as measured by mutual information
estimates. On two machine learning benchmarks CelebA and Waterbirds, CAMEL consistently
outperforms state-of-the-art approaches that rely on robust optimization, with reductions in subgroup
performance gap by up to 10%. Next, we perform ablations on each stage of our framework:
(i) replacing the CycleGAN with state-of-the-art heuristic augmentations worsens the subgroup
performance gap by 3.35%; (ii) our subgroup consistency regularizer improves robust accuracy by
up to 2.5% over prior consistency losses. As an extension, we demonstrate that CAMEL can be
used in combination with heuristic augmentations, providing further gains in robust accuracy of
1.5%. Besides CycleGANs, we show that other GAN-based augmentation methods can also be
made significantly more robust by combining them with Stage 2 of model patching. Lastly, on
the challenging real-world skin cancer dataset ISIC, CAMEL improves robust accuracy by 11.7%
compared to a group robustness baseline.

Our results suggest that model patching is a promising direction for improving subgroup robustness
in real applications. Code for reproducing our results is available on GitHub.
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Figure 2: The model patching framework. (Left) The class-subgroup hierarchy with each class Y divided
into subgroups (e.g. Y = blonde hair into Z ∈ {male, female}). We learn inter-subgroup augmentations to
transform examples between subgroups of a class. (Right) To patch the classifier, we augment examples by
changing their subgroup membership and then train with our subgroup consistency loss and robust objective.

2 CAMEL: CYCLEGAN AUGMENTED MODEL PATCHING

In this section, we walk through CAMEL’s two-stage framework (Figure 2) in detail. In Section 2.1,
we introduce Stage 1 of model patching, learning class-conditional transformations between sub-
groups. In Section 2.2, Stage 2 uses these transformations as black-box augmentations to train
a classifier using our new subgroup robust objective (Section 2.2.1) and consistency regularizer
(Section 2.2.2). Section 3 outlines our theoretical analysis on the invariance guarantees of our method.
A glossary for all notation is included in Appendix A.

Setup. We consider a classification problem where X ⊂ Rn is the input space, and Y =
{1, 2, . . . , C} is a set of labels over C classes. Each class y ∈ Y may be divided into disjoint
subgroups Zy ⊆ Z1. Jointly, there is a distribution P over examples, class labels, and subgroups
labels (X,Y, Z). Given a dataset {(xi, yi, zi)}mi=1, our goal is to learn a class prediction model
fθ : X → ∆C parameterized by θ, where ∆C denotes a probability distribution over Y .

2.1 STAGE 1: LEARNING INTER-SUBGROUP TRANSFORMATIONS

The goal of the first stage is to learn transformations Fz→z′ : Xz → Xz′ that translate examples in
subgroup z to subgroup z′, for every pair of subgroups z, z′ ∈ Zy in the same class y.

Recent work has made impressive progress on such cross-domain generative models, where examples
from one domain are translated to another, ideally preserving shared semantics while only changing
domain-specific features. In this work, we use the popular CycleGAN model (Zhu et al., 2017) to learn
mappings between pairs of subgroups, although we show that it is possible to substitute other models
(see Section 4.2.4). Given datasets {xz}pi=1, {xz′}p

′

i=1 from a pair of subgroups z, z′ ∈ Zy , we train a
CycleGAN Fz→z′ to transform between them. When classes have more than two subgroups, pairwise
models can be trained between subgroups, or multi-domain models such as the StarGAN (Choi et al.,
2018) can be used. We include a review of CycleGANs in Appendix C.1.

Given these transformations {Fz→z′}z,z′∈Zy , we generate augmented data for every training example
(x, y, z) by passing it through all Fz→z′ , z′ ∈ Zy. We denote these generated examples x̃Zy :=
{x̃z′}z′∈Zy where x̃z′ = Fz→z′(x). For convenience, k denotes the number of subgroups |Zy|.
Prior work that uses data augmentation to improve robustness has mostly relied on heuristic aug-
mentations, and focused on robustness to out-of-distribution examples (Hendrycks et al., 2019) with

1Note that this allows each class to have the same subgroups, or for classes to have overlapping subgroups as
special cases. Many of the datasets we consider in our experiments (Section 4) have this property.
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Table 1: Comparison of metrics and losses for classifier training. Here Pz and P̂z are marginal distributions of
(x, y) for the subgroup z, and αθ(x, y) = I[(arg max fθ(x)) = y] denotes correct prediction on an example.

Metric of Interest Loss L(θ)

ERM EPαθ(x, y) EP̂ `(fθ(x), y)
GDRO minz∈Z EPzαθ(x, y) maxz∈Z EP̂z

`(fθ(x), y)
SGDRO |maxz∈Zy EPzαθ(x, y)−minz∈Zy EPzαθ(x, y)| Ey∈Y {maxz∈Zy EP̂z

`(fθ(x), y)}

empirical studies. In contrast, we learn to transform examples rather than specifying augmentations
directly, and focus on improving worst-case subgroup robustness. We emphasize that while others
have used cross-domain generative models for data augmentation, our novelty lies in targeting in-
variance to subgroup features using this style of augmentation. Past work has focused on domain
adaptation (Huang et al., 2018), few-shot learning (Antoniou et al., 2017), and data scarcity (Bowles
et al., 2018; Ratner et al., 2017b), but has not attempted to explicitly control the invariance of the
classifier using the learned augmentations. As we describe in our theoretical analysis (Section 3), our
use of cross-domain models is a natural consequence of the class-subgroup setting.

2.2 STAGE 2: SUBGROUP ROBUSTNESS WITH DATA AUGMENTATION

The goal of the second stage is to learn a classifier fθ on both the original and augmented data
from Stage 1, using our subgroup robust objective (Section 2.2.1) and consistency regularizer (Sec-
tion 2.2.2). Our robustness objective targets worst-case subgroup robustness, while our consistency
regularizer forces the learned classifier to be invariant to subgroup features. Where relevant, we
include discussion here on differences to prior work, with an extended related work in Appendix B.

2.2.1 A SUBGROUP ROBUSTNESS OBJECTIVE

We review two established objectives for training classifiers with their associated metrics and loss
functions, and introduce our new objective to target subgroup robustness (cf. Table 1).

Prior work: Empirical Risk Minimization (ERM). The usual training goal is to maximize the
aggregate accuracy, optimized using the empirical risk w.r.t. a proxy loss function (Table 1, top).

Prior work: Group Robustness (GDRO). In our setting, aggregate performance is too coarse
a measure of risk, since classes have finer-grained groups of interest. This can be accounted for
by optimizing the worst-case performance over these groups. Letting Pz denote the conditional
distribution of examples associated with subgroup z ∈ Z , the robust accuracy can be quantified
by measuring the worst-case performance among all groups. This can be optimized by minimizing
the corresponding group robust risk (Table 1, middle right). A stochastic algorithm for this group
distributionally robust optimization (GDRO) objective was recently proposed (Sagawa et al., 2020).

Class-conditional Subgroup Robustness (SGDRO). The GDRO objective treats group structure
as a flat hierarchy. While this approach accounts for worst-case subgroup performance, it loses the
class-subgroup hierarchy of our setting. Tailored to this, we create the SGDRO training objective
(Table 1, bottom right) to optimize class-conditional worst-case subgroup robustness, aggregated over
all classes (Figure 2 right). To measure subgroup robustness, we define the subgroup performance
gap (Table 1, bottom left) for a class as the gap between its best and worst performing subgroups.

We note that both GDRO and SGDRO assume knowledge of the subgroups, which is a standard
assumption in group robustness (Arjovsky et al., 2019; Ganin et al., 2016; Sagawa et al., 2020).

2.2.2 SUBGROUP INVARIANCE USING A CONSISTENCY REGULARIZER

Standard models can learn to rely on spurious subgroup features when making predictions. Subgroup
consistency regularization targets this problem by enforcing consistency on subgroup-augmented
data, encouraging the classifier to become invariant to subgroup-features.
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Recall that Stage 2 connects to Stage 1 by receiving augmented data x̃Zy
, representing “imagined”

versions of an example x in all other subgroups z′ of its class y. We define the self-consistency loss
Ls and translation-consistency loss Lt as follows, where m̃ = 1

k

∑
z fθ(x̃z) denotes the average

output distribution on the augmented examples.

Ls(x, x̃Zy
; θ) =

1

k

∑
z∈Zy

KL (fθ(x̃z)‖m̃) (1) Lt(x, x̃Zy
; θ) = KL (fθ(x)‖m̃) (2)

The self-consistency loss is the more important component, encouraging predictions on augmented
examples to be consistent with each other. As these augmented examples correspond to one “imagined”
example per subgroup, self-consistency controls dependence on subgroup features. Translation
consistency additionally forces predictions on the original example to be similar to those of the
average CycleGAN-translated examples, ignoring potential artifacts that the CycleGANs generate.

We note that consistency losses have been used before, e.g. UDA (Xie et al., 2019) and Aug-
Mix (Hendrycks et al., 2019) use different combinations of KL divergences chosen empirically. Our
regularization (1) is tailored to the model patching setting, where it has a theoretical interpretation
relating to subgroup invariance (Section 3). We show empirical improvements over these alternate
consistency losses in Section 4.2.2.

Overall Objective. The total consistency loss averages over all examples,

Lc(θ) =
1

2
E(x,y)∼P

[
Ls(x, x̃Zy

; θ) + Lt(x, x̃Zy
; θ)
]
. (3)

Combining our SGDRO robust objective and the consistency loss with the consistency strength
hyper-parameter λ yields the final objective,

LCAMEL(θ) = LSGDRO(θ) + λLc(θ). (4)

3 AN INFORMATION THEORETIC ANALYSIS OF SUBGROUP INVARIANCE

We introduce a framework to analyze our end-to-end approach, showing that it induces subgroup
invariances in the model’s features. First, we review a common framework for treating robustness over
discrete groups that aims to create invariances, or independences between the learned model’s features
φ(X) and groups Z. We then define a new model for the distributional assumptions underlying the
subgroup setting, which allows us to analyze stronger invariance guarantees by minimizing a mutual
information (MI) upper bound. Formal definitions and full proofs are deferred to Appendix C.

Prior work: Class-conditioned Subgroup Invariance. Prior work (Ganin et al., 2016; Li et al.,
2018; Long et al., 2018) uses adversarial training to induce subgroup invariances of the form
(φ(X) ⊥ Z) | Y , so that within each class, the model’s features φ(X) appear the same across
subgroups Z. We call this general approach class-conditional domain adversarial training (CDAT).
Although these works are motivated by other theoretical properties, we show that they induce the
above invariance by minimizing a variational lower bound of the corresponding mutual information.
Lemma 1. CDAT minimizes a lower bound on the mutual information I(φ(X);Z | Y ).

Since the model’s features matter only insofar as they affect the output, for the rest of this discussion
we assume without loss of generality that φ(X) = Ŷ is simply the model’s prediction.

A Natural Distributional Assumption: Subgroup Invariance on Coupled Sets. Although prior
work generally has no requirements on how the data X among the groups Z relate to each other, we
note that a common implicit assumption is that there is a “correspondence” between examples among
different groups. We codify this distributional assumption explicitly.

Informally, we say that every example x belongs to a coupled set [x], containing one example per
subgroup in its (x’s) class (Figure 3) (Appendix C.3, Definition 1). [X] is the random variable for
coupled sets, i.e. it denotes sampling an example x and looking at its coupled set. Intuitively, x′ ∈ [x]
represent hidden examples in the world that have identical class features to x and differ only in their
subgroup features. These hidden examples may not be present in the train distribution and model
patching “hallucinates” them, allowing models to directly learn relevant class features.
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Figure 3: Coupled sets
for subgroups of the
Y = 7 class.

This idea of coupled sets underlies both stages of the framework and en-
ables stronger invariance guarantees. Given this notion, all examples x in
a coupled set [x] should have identical predictions in order to be robust
across subgroups, modeled by the desired invariance (Ŷ ⊥ Z) | [X].
Instead of Lemma 1, we aim to minimize I(Ŷ ;Z | [X]). Note that
I(Ŷ ;Z | [X]) ≥ I(Ŷ ;Z | Y ), which follows from the chain rule for
MI (proof in Appendix C), so this is a stronger notion of invariance than
CDAT permits. Additionally, the losses from the CycleGAN (Stage 1) and
consistency regularizer (Stage 2) combine to form an upper bound on the
mutual information rather than a lower bound, so that optimizing our loss is more appropriate.

Theorem 1. For a model fθ with outputs Ŷ , the MI I(Ŷ ;Z | [X]) is the Jensen-Shannon Divergence
(JSD) of predictions on coupled sets E[x]∼[X]JSD

(
fθ(x))x∈[x]

)
. In the case of k = 2 subgroups

per class, this can be upper bounded by the CycleGAN and consistency losses

E(x,y)∼(X,Y )

(
Ls(x; x̃Zy

; θ)
1
2 +

∑
z∈Zy

LzCG(x; θ)
1
2

)2
.

In particular, the global optimum of the trained CAMEL model induces Ŷ ⊥ Z | [X].

The main idea is that the conditional MI I(Ŷ ;Z | [X]) can be related to model’s predictions on
all elements in a coupled set [x] using properties of the JSD. However, since we do not have true
coupled sets, the consistency loss (3) only minimizes a proxy for this JSD using the augmentations
x̃Zy

. Using standard GAN results, the divergence between the true and augmented distributions can
be bounded by the loss of a discriminator, and the result follows from metric properties of the JSD.

Thus, the CycleGAN augmentations (Stage 1) and our consistency regularizer (Stage 2) combine to
provide an upper bound on our MI objective, tying together the model patching framework neatly.

4 EXPERIMENTS

We demonstrate that CAMEL can take advantage of the learned subgroup augmentations and consis-
tency regularizer to improve robust and aggregate accuracy, while reducing the subgroup performance
gap (defined in Table 1). We validate CAMEL against both standard training with no subgroup
knowledge (ERM) and other baselines aimed at improving group robustness across 4 datasets. We
also conduct extensive ablations to isolate the benefit of the learned inter-subgroup transformations
over standard augmentation, and the subgroup consistency regularizer over prior consistency losses.

Datasets. We briefly describe the datasets used, with details available in Appendix D.1.

MNIST-Correlation. We mix data from MNIST (LeCun et al., 1998) and MNIST-Corrupted (Mu
& Gilmer, 2019) to create a controlled setup for analyzing subgroup performance. Digit parity
classes Y ∈ {even, odd} are divided into subgroups Z ∈ {clean, zigzag} from MNIST and
MNIST-Corrupted. Y and Z are highly correlated, so that most even (odd) digits are clean (zigzag).

CelebA-Undersampled. Following Sagawa et al. (2020), we classify hair color Y ∈
{non-blonde,blonde} in the CelebA dataset (Liu et al., 2015). Subgroups are based on gender Z =
{female, male}. We subsample the set of non-blonde women so that most non-blonde (blonde)
examples are men (women).

Waterbirds. In this dataset to analyze spurious correlations (Sagawa et al., 2020), birds
Y ∈ {landbird,waterbird} are placed against image backgrounds Z ∈ {land,water}, with
waterbirds (landbirds) more commonly appearing against water (land).

ISIC. In this skin cancer dataset (Codella et al., 2018), we classify Y ∈ {benign, malignant}
cancers, with bandages Z appearing on ∼ 50% of only benign images.

Methods. CAMEL instantiates model patching as described in Section 2. We use the original
CycleGAN model with default hyperparameters (Appendix D.2). We compare against ERM and
GDRO (Table 1), which respectively minimize the standard risk and robust risk (over all subgroups)
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Table 2: A comparison between CAMEL and other methods on 3 benchmark datasets. Evaluation metrics
include robust & aggregate accuracy and the subgroup performance gap, calculated on the test set. Results are
averaged over 3 trials (one standard deviation indicated in parentheses).

Dataset Method Subgroup Y Aggregate Robust Subgroup Gap (%)
Acc. (%) Z Acc. (%) Acc. (%) Y

even even odd odd even oddclean zigzag clean zigzag

MNIST- ERM 86.96 73.51 71.47 75.21 76.75 (1.60) 71.47 (1.50) 13.45 3.73
Correlation IRM 94.68 69.30 81.77 93.53 84.85 (5.42) 69.30 (3.29) 25.38 11.76

CDAT 94.63 72.85 79.21 92.97 84.93 (5.84) 72.85 (3.47) 21.78 13.76
GDRO 98.10 93.31 96.82 97.15 96.35 (0.49) 93.31 (1.30) 4.79 0.79
CAMEL 98.85 97.89 97.98 97.87 97.55 (0.46) 97.77 (0.42) 0.96 0.17

non-blonde non-blonde blonde blonde non-blonde blondefemale male female male

CelebA- ERM 81.09 98.08 98.13 60.04 88.26 (1.88) 62.22 (6.83) 16.99 38.09
Undersampled GDRO 89.26 92.24 94.08 82.20 90.91 (0.78) 82.20 (3.13) 2.98 11.88

CAMEL 92.15 93.73 91.13 83.53 92.90 (0.35) 83.90 (1.31) 1.83 8.07
landbird landbird waterbird waterbird landbird waterbirdland water land water

Waterbirds ERM 98.92 75.12 72.71 94.95 86.31 (0.39) 72.71 (2.36) 23.80 22.24
GDRO 94.46 83.81 88.19 92.36 89.39 (0.19) 83.81 (0.39) 10.65 4.17
CAMEL 90.84 90.40 89.69 89.58 90.89 (0.87) 89.12 (0.36) 0.43 1.04

on the training set. On MNIST-Correlation, we additionally compare against the IRM (Arjovsky
et al., 2019) and CDAT (Li et al., 2018) baselines which target invariance assumptions (details
in Appendix D.6). All classifiers are fine-tuned using a ResNet-50 architecture, with pretrained
ImageNet weights. Detailed information about experimental setups are provided in Appendix D.

Metrics. We evaluate on aggregate accuracy, robust accuracy, and subgroup gap for a class y, which
are the metrics of interest for ERM, GDRO, and our subgroup robustness setting (Table 1).

4.1 SUBGROUP ROBUSTNESS AND INVARIANCE ON BENCHMARK DATASETS

We first compare all methods on the benchmark datasets, with results summarized in Table 2.

CAMEL increases aggregate and robust accuracy while closing the subgroup gap. On all
datasets, CAMEL improves both aggregate and robust accuracy by up to 5.3%, mitigating the tradeoff
that other methods experience. CAMEL also balances out the performance of subgroups within each
class, e.g., on Waterbirds, reducing this subgroup gap by 10.22% on landbirds compared to GDRO.

Table 3: Estimated MI between predictions and
subgroups computed on MNIST-Correlation.

ERM IRM CDAT GDRO CAMEL
MI Estimate 0.67 0.69 0.69 0.33 0.02

CAMEL learns subgroup-invariant representa-
tions. To measure the invariance of models, we re-
port an estimate of the mutual information defined in
Lemma 1, calculated using class-conditional domain
prediction heads (Appendix D.5). Table 3 illustrates
that CAMEL is the only method that successfully
makes the model invariant to subgroups.

4.2 MODEL PATCHING ABLATIONS

We perform ablations on the major components of our framework: (1) substituting learned augmenta-
tions with alternatives like heuristic augmentations in Stage 1, and (2) substituting prior consistency
losses for our subgroup consistency regularizer in Stage 2.

4.2.1 EFFECT OF LEARNED AUGMENTATIONS

We investigate the interaction between the type of augmentation used and the strength of consistency
regularization, by varying the consistency loss coefficient λ on Waterbirds (Table 4). We compare
to: (i) subgroup pairing, where consistency is directly enforced on subgroup examples from a class
without augmentation and (ii) heuristic augmentations, where the CycleGAN is substituted with a
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Table 4: Ablation analysis (Section 4.2.1) that varies the consistency penalty coefficient λ. For brevity, we
report the maximum subgroup performance gap over all classes.

Method
Robust Acc. (%)

Max Subgroup Gap
λ = 20 λ = 50 λ = 200

Subgroup
Pairing

74.22 71.88 74.22
19.53 23.43 23.06

Heuristic
Augmentation

87.50 88.54 79.17
6.95 6.48 37.50

CAMEL 82.03 83.33 89.06
12.50 10.84 3.13

CAMEL + Heuristic 89.06 90.62 53.45
0.21 1.30 19.39

state-of-the-art heuristic augmentation pipeline (Hendrycks et al., 2019) (Appendix D.6) containing
rotations, flips, cutout etc. Our goal is to validate our theoretical analysis, which suggests that
strong consistency training should help most when used with the coupled examples generated by
the CycleGAN. We expect that the ablations should benefit less from consistency training since, (i)
subgroup pairing enforces consistency on examples across subgroups that may not lie in the same
coupled set; and (ii) heuristic augmentations may not change subgroup membership at all, and may
even change class membership.

Strong consistency regularization enables CAMEL’s success. As λ increases from 20 to 200,
CAMEL’s robust accuracy rises by 7% while the subgroup gap is 9.37% lower. For both ablations,
performance deteriorates when λ is large. Subgroup pairing is substantially worse (14.84% lower)
since it does not use any augmentation, and as we expected does not benefit from increasing λ.
Heuristic augmentations (e.g. rotations, flips) are not targeted at subgroups and can distort class
information (e.g. color shifts in AugMix), and we observe that strongly enforcing consistency
(λ = 200) makes these models much worse. Overall, these results agree with our theoretical analysis.

CAMEL combines flexibly with other augmentations. Empirically, we find that using heuristic
augmentations in addition to the CycleGAN (method CAMEL + Heuristic) can actually be beneficial,
with a robust accuracy of 90.62% and a subgroup gap that is 1.83% lower than using CAMEL alone.

4.2.2 ANALYZING THE SUBGROUP CONSISTENCY REGULARIZER

Next, we investigate our choice of consistency regularizer, by substituting it for (i) a triplet Jensen-
Shannon loss (Hendrycks et al., 2019) and (ii) a KL-divergence loss (Xie et al., 2019) in CAMEL
(Figure 4). Our goal is to show that our theoretically justified regularizer reduces overfitting, and
better enforces subgroup invariance.

Consistency regularization reduces overfitting. Figure 4 illustrates the train and validation cross-
entropy loss curves for CAMEL and GDRO on the small (landbird,water) Waterbirds subgroup
(184 examples). Consistency regularization shrinks the gap between train and validation losses,
strongly reducing overfitting compared to GDRO.

Table 5: MNIST-Correlation results when
training to predict Z labels and testing on Y
labels. Test robust accuracy bolded.

Method Subgroup Accuracies

ERM 99.18 13.18 12.24 99.46
GDRO 99.02 84.00 94.20 98.78

Alternative consistency losses deteriorate perfor-
mance. As expected, substituting the subgroup consis-
tency loss with either the triplet-JS loss or the KL loss
in CAMEL reduces robust accuracy significantly (−2.5%
on Waterbirds). Interestingly, our subgroup consistency
regularizer improves over prior consistency losses even
when used with heuristic augmentations.

4.2.3 TRAINING WITH SUBGROUP INFORMATION

Since subgroup labels are available at train time, a natural
baseline to consider is training to predict the finer-grained
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CAMEL
CAMEL Learned Aug. Heuristic Aug.

Triplet JS KL Triplet JS KL

Performance
Change
(vs. CAMEL
Consistency Loss)

-2.50 -0.83 -2.08 -1.04

Figure 4: Consistency loss ablations on Waterbirds. (Left) loss curves on the (landbird, water) subgroup.
The addition of the CAMEL consistency loss to GDRO reduces overfitting. (Right) Robust accuracy decrease
with alternate consistency losses (Triplet JS (Hendrycks et al., 2019) and KL (Xie et al., 2019)) on CAMEL-
generated data or heuristic augmentations.

Z label using ERM or GDRO. Evaluation is still performed by comparing against the coarser-grained
Y label corresponding to the predicted Z value. We use MNIST-Correlation in the setting of Table 2.

In Table 5, we find that while both ERM and GDRO perform well on the larger subgroups, the
performance on minority subgroups drops compared to the simpler setting in Table 2 where they are
trained only with Y labels. These results are consistent with the intuition that being asked to predict
Z labels forces models to learn information about the spurious attributes instead of the real class, and
highlights the importance of erasing subgroup information in order to learn invariant representations.

4.2.4 ADDITIONAL GAN ABLATIONS

As the quality of images generated by GANs continues to improve, previous works highlighted in
Appendix B have considered them as data augmentation methods, where training an ERM classifier
on GAN-augmented images can improve model accuracy. However, in Appendix D.8, we show that
this does not improve robust accuracy. In contrast, we show that CAMEL can flexibly incorporate
three other GAN baselines as alternatives to CycleGAN in Stage 1, whereby combining them with
Stage 2 in the model patching pipeline improves robust accuracy by over 20 points.

4.3 REAL-WORLD APPLICATION IN SKIN CANCER CLASSIFICATION

We conclude by demonstrating that CAMEL can improve performance substantially on the real-world
ISIC (Codella et al., 2018) skin cancer dataset (Table 6). We augment only the benign class, which is
split into subgroups due to the presence of a colored bandage (Figure 1) while the malignant class
contains no subgroups. We also report AUROC, as is conventional in medical applications.

Table 6: Comparison on ISIC. Aver-
age of 3 trials (one standard deviation
indicated in parentheses).

Method Evaluation Metric
Robust Acc. AUROC

ERM 65.59 (1.17) 92.48 (0.80)
GDRO 64.97 (3.15) 89.50 (2.50)
CAMEL 77.45 (0.35) 92.47 (0.38)

CAMEL substantially improves robust accuracy by 11.7% and
importantly, increases accuracy on the critical malignant cancer
class from 65.59% (ERM) and 64.97% (GDRO) to 78.86%.
While standard ERM models spuriously correlate the presence
of the colored bandage with the benign class, CAMEL reduces
the model’s dependence on spurious features. We verify this by
constructing a modified ISIC subgroup (Appendix D.7) for the
malignant class that also contains bandages. Figure 1 illustrates
using GradCAM (Selvaraju et al., 2017) that CAMEL removes
the model’s reliance on the spurious bandage feature, shifting
attention to the skin lesion instead.

5 CONCLUSION

Domain experts face a common problem: how can classifiers that exhibit unequal performance on
different subgroups of data be fixed? To address this, we introduced model patching, a new frame-
work that improves a classifier’s subgroup robustness by encouraging subgroup-feature invariance.
Theoretical analysis and empirical validation suggest that model patching can be a useful tool for
domain experts in the future.
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A GLOSSARY OF NOTATION

We provide a glossary of notation used throughout the paper.

Table 7: Summary of notation used throughout this work.

Notation Description

Preliminaries x, y, z Example, class, subgroup
X,Y, Z Random variables for examples, classes, and subgroups
P The joint distribution for X,Y, Z
Py, Pz The distribution for X conditioned on class y or subgroup z
X ,Y,Z Domains for X,Y, Z
Zy ⊂ Z The subgroups belonging to class y
Yz ∈ Z The class of a subgroup z
fθ : X → ∆|Y| The parameterized class prediction model, returning a categorical distribution over Y
Ŷ A random variable with support Y indicating a random sample from the output of fθ

Coupled sets [x] A coupled set
and augmentations [X] Random variable for coupled sets

[x]z Example belonging to subgroup z in the coupled set [x]
xZy The coupled set (Definition 1) of examples in x’s class y. Same as [x].
[x̃] An augmented coupled set
[x̃]z, [x]z̃ Example belonging to subgroup z in the augmented coupled set [x̃]
x̃Zy

The augmented coupled set of examples in x̃’s class y. Same as [x̃].
k Number of subgroups in any (generic) class

Model components LCG Sum of CycleGAN consistency and identity losses
and losses Ls Self-consistency loss (Eq 1)

Lt Translation-consistency loss (Eq 2)
Lc Total consistency loss (Eq 3)
L : X 2 → R A distance function, used for CycleGAN consistency losses
λ Hyperparameter controlling the strength of the consistency loss
KL(·) The KL divergence
JS(·) The Jensen-Shannon divergence (Definition 2)
I(·) The Mutual Information

B EXTENDED RELATED WORK

We provide a comprehensive overview of related work and highlight connections to our work below.

B.1 OVERVIEW OF DATA AUGMENTATION

Data augmentation is widely used for improving the aggregate performance of machine learning models in
computer vision (Krizhevsky et al., 2012; Szegedy et al., 2014), natural language processing (Kolomiyets et al.,
2011; Sennrich et al., 2015; Zhang et al., 2015) and audio (Cui et al., 2015; Ko et al., 2015). The theoretical
motivation for data augmentation is largely based on the tangent propagation formalism (Dao et al., 2018; Simard
et al., 1991; 1992; 1998) which expresses the desired invariances induced by a data augmentation as tangent
constraints on the directional derivatives of the learned model.

Early work considered augmentations as image defects (Baird, 1992) or stroke warping (Yaeger et al., 1996) for
character recognition. Since then, augmentation is considered an essential ingredient in computer vision (LeCun
et al., 1998; Simard et al., 2003), with commonly used augmentations including random flips, rotations and
crops (He et al., 2016; Krizhevsky et al., 2012; Szegedy et al., 2014). Applications of augmentation in computer
vision include object detection (Dwibedi et al., 2017; Zoph et al., 2019) and scene understanding (Dvornik et al.,
2018)

In natural language processing, common data augmentation techniques include back-translation (Sennrich et al.,
2015; Yu et al., 2018), synonym or word substitution (Fadaee et al., 2017; Kobayashi, 2018; Kolomiyets et al.,
2011; Wang & Yang, 2015; Zhang et al., 2015), noising (Xie et al., 2017), grammar induction (Jia & Liang,
2016), text editing (Wei & Zou, 2019) and other heuristics (Deschacht & Moens, 2009; Silfverberg et al., 2017).
In speech and audio applications, augmentation is also commonly used, through techniques such as vocal
tract length warping (Jaitly & Hinton, 2013; Ko et al., 2015) and stochastic feature mapping (Cui et al., 2015;
Stylianou et al., 1998).

In this work, we perform an empirical evaluation on image classification tasks although our ideas can be extended
to classification of other modalities such as speech and text.

16



Published as a conference paper at ICLR 2021

B.2 AUGMENTATION PRIMITIVES AND PIPELINES

Next, we highlight the particular augmentation primitives that have been used in prior work. Our work is
differentiated by the use of learned augmentation primitives using CycleGANs (Zhu et al., 2017), as well as a
theoretical justification for this choice.

Hand-Crafted Augmentation Primitives. Commonly used primitives are typically heuristic transfor-
mations, such as rotations, flips or crops (Krizhevsky et al., 2012; Szegedy et al., 2014). Recent work has
hand-crafted more sophisticated primitives, such as Cutout (DeVries & Taylor, 2017), Mixup (Zhang et al.,
2017), CutMix (Yun et al., 2019) and MixMatch (Berthelot et al., 2019). While these primitives have culminated
in compelling performance gains (Cubuk et al., 2019a;b), they produce unnatural images and distort image
semantics.

Assembling Augmentation Pipelines. Recent work has explored learning augmentation policies – the
right subset of augmentation primitives, and the order in which they should be applied. The learning algorithm
used can be reinforcement learning (Cubuk et al., 2019a; Ratner et al., 2017a) or random sampling (Cubuk
et al., 2019b). More computationally efficient algorithms for learning augmentation policies have also been
proposed (Ho et al., 2019; Lim et al., 2019).

These pipelines are primarily derived from the fixed set of generic image transformations we discussed earlier,
and do not directly target specific attributes. By contrast, we consider learning augmentation primitives that
target subgroup robustness, and additionally demonstrate in Section 4.2.2 that heuristic augmentations can
complement CAMEL to yield additional performance gains.

Learned Augmentation Primitives. There is substantial prior work in learning image transformations
that produce semantic, rather than superficial changes to an image. A common paradigm is to learn a semanti-
cally meaningful data representation, and manipulate embeddings in this representation to produce a desired
transformation. Transformations can then be expressed as vector operations over embeddings (Reed et al., 2015;
Upchurch et al., 2017) or manifold traversals (Gardner et al., 2015; Reed et al., 2014). Alternative approaches
rely on training conditional generative models (Almahairi et al., 2018; Brock et al., 2016; Choi et al., 2018; Isola
et al., 2017; Zhu et al., 2017) that learn a mapping between two or more image distributions. Much of this prior
work is motivated by the need for sophisticated tools for image editing (Karras et al., 2018; Upchurch et al.,
2017) e.g. for creative applications of machine learning (Mazzone & Elgammal, 2019).

Closer to our setting is work that explores the use of these transformations for data augmentation. A prominent
use case focuses on imbalanced datasets, where learned augmentations are used to generate examples for
underrepresented classes or domains. Examples include BaGAN (Mariani et al., 2018), DAGAN (Antoniou
et al., 2017), TransferringGAN (Wang et al., 2018) and others (Beery et al., 2019; Hu et al., 2019; Molano et al.,
2018; Mounsaveng et al., 2019; Tran et al., 2017; Zhang et al., 2018). Applications to medical data (Pesteie
et al., 2019; Sandfort et al., 2019) and person re-identification (chen Sun et al., 2019) have also been explored.

Our model patching framework differs substantially from these papers, since we focus on robustness. We discuss
this intersection next.

B.3 DATA AUGMENTATION AND MODEL ROBUSTNESS

Prior work on model robustness has mostly focused on learning models that are robust to bounded `p-norm
perturbations (Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2018; Papernot et al., 2015; Szegedy et al.,
2013) using ideas such as adversarial training (Madry et al., 2017). A separate line of work considers consistency
training (Hendrycks et al., 2019; Kannan et al., 2018; Zheng et al., 2016), where predictions are made invariant
to input perturbations, often by minimizing a divergence between the predictions for the original and perturbed
examples. Consistency regularization has also been shown to be effective for semi-supervised learning (Xie
et al., 2019).

Consistency training. We contrast equation (3) with consistency losses from prior work. Unsupervised
Data Augmentation (UDA) (Xie et al., 2019) simply controls an asymmetric divergence between the original
example and each augmented example individually

∑
z KL(f(x)‖f(x̃z)). AugMix (Hendrycks et al., 2019)

uses a Jensen-Shannon divergence

1

k + 1

KL (f(x)‖m̃) +
∑
z∈Zy

KL (f(x̃z)‖m̃)


where m̃ = 1

k+1

[
f(x) +

∑
i f(x̃i)

]
. This can be seen as a version of our consistency, but with different

weights and a different mean distribution that the KL’s are being computed against. Our loss (3) has an important
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asymmetry between the original example x and the augmentations x̃i. One reason to prefer it is simply noting
that as the number k of subgroups grows, the AugMix loss tends to the second term, and does not control for the
discrepancy between predictions on the original domain f(x) and the augmented ones f(x̃i). Our consistency
regularization instead allows us to bound a mutual information objective between variables in the joint subgroup
distribution, yielding a tractable and interpretable objective (Section 3). In addition, we compare with these
consistency losses and provide empirical results in Section 4.2.2.

Robustness to more general augmentations has also been explored (Baluja & Fischer, 2017; Engstrom et al.,
2017; Kanbak et al., 2017; Odena et al., 2016; Qiu et al., 2019; Song et al., 2018; Xiao et al., 2018), but there is
limited work on making models more robust to semantic data augmentations. The only work we are aware of
is AdvMix (Gowal et al., 2019), which combines a disentangled generative model with adversarial training to
improve robustness.

Our work contributes to this area by introducing the model patching framework to improve robustness in
a targeted fashion. Specifically, under the data-generating model that we introduce, augmentation with a
CycleGAN (Zhu et al., 2017) model allows us to learn predictors that are invariant to subgroup identity.

B.4 LEARNING ROBUST PREDICTORS

Recent work (Sagawa et al., 2020) introduced GDRO, a distributionally robust optimization method to improve
worst-case accuracy among a set of pre-defined subgroups. However, optimizing the GDRO objective does not
necessarily prevent a model from learning subgroup-specific features. Instead, strong modeling assumptions on
the learned features may be required, e.g. Invariant Risk Minimization (Arjovsky et al., 2019) attempts to learn
an invariant predictor through a different regularization term. However, these assumptions are only appropriate
for specialized setups where extreme out-of-domain generalization is desired. Unfortunately, these approaches
still suffer from standard learning and generalization issues stemming from a small number of examples in the
underperforming subgroup(s) – even with perfect subgroup information. Additionally, they necessarily trade off
average (aggregate) accuracy against a different robust metric.

B.5 RELATIONSHIP TO SUBGROUP FAIRNESS

A common goal in subgroup fairness is to ensure statistical parity of predictions across groups, and a variety
of fairness criteria have been proposed (Mehrabi et al., 2019). Others have considered a theoretical setting
where the number of subgroups can be large (possibly infinite) (Kearns et al., 2018). Typically, this line of work
assumes that groups are common across classes, while in our setting, we consider the possibility of different
subgroups in each class. The bulk of this work focuses on prediction problems on small datasets, rather than
with high-dimensional image data.

C DETAILED ANALYSIS

We begin with background material on the CycleGAN (Appendix C.1) and the Jensen-Shannon Divergence
(Appendix C.2). Appendix C.3 contains a longer discussion of the modeling assumptions in Section 3, fleshing
out the distributional assumptions and definition of coupled sets. Appendix C.4 and Appendix C.5 completes the
proofs of the results in Section 3.

C.1 BACKGROUND: CYCLEGAN

Given two groups A and B, CycleGAN learns mappings F : B → A and G : A→ B given unpaired samples
a ∼ PA, b ∼ PB . Along with these generators, it has adversarial discriminators DA, DB trained with the
standard GAN objective, i.e. DA distinguishes samples a ∼ PA from generated samples F (b), where b ∼ PB .
In CAMEL, A and B correspond to data from a pair of subgroups z, z′ of a class.

CycleGAN uses a cycle consistency loss to ensure that the mappings F and G are nearly inverses of each other,
which biases the model toward learning meaningful cross-domain mappings. An additional identity loss is
sometimes used which also encourages the maps F,G to preserve their original domains i.e. F (a) ≈ a for a ∼
PA. These cycle consistency and identity losses can be modeled by respectively minimizing LCG(a, F (G(a)))
and LCG(a, F (a)) for some function LCG which measures some notion of distance on A (with analogous
losses for B). Figure 5 visualizes the CycleGAN model.
Definition 1. The sum of the CycleGAN cycle consistency LCG(a, F (G(a)) and identity LCG(a, F (a)) losses
on domain A is denoted LACG(a; θ) for overall CycleGAN parameters θ, and similarly for domain B. In the
context of Stage 1 of model patching, let LzCG(x; θ) denote the loss when the domain is one of the subgroups z.

The original CycleGAN uses the `1 distanceL(a, ã) = ‖a−ã‖1. However, we note that many other functions can
be used to enforce similarity. In particular, we point out that a pair-conditioned discriminator D{a, ã} 7→ [0, 1]2
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can also be used, which accepts a coupled pair of original and translated examples and assigns a probability
to each of being the original example. If the guesses for the true and translated examples are Da and Dã
respectively, then the distance is L(a, ã) = maxD logDa + log(1−Dã) + log 2. To sanity check that this has
properties of a distance, note that L decreases as a, ã are more similar, as the discriminator has trouble telling
them apart.

A B

!B

a

Cycle consistency loss:  Identity loss:  

G

F

F
a '

a"

(a,a") (a,a ')L LC I

!A

Figure 5: CycleGAN learns mappings on domains
A∪B, where F maps examples to A and G maps
to B. To model possible distribution shift intro-
duced by the generative model, we denote their
images as Im(F ) = Ã, Im(G) = B̃ respectively.
Semantically consistent mappings are encouraged
with the cycle consistency and identity losses, e.g.
to ensure that F (a) = a for all a ∈ A.

Intuitively, the discriminator loss is a measure of how sim-
ilar the original and generated distributions are, which will
be used in Section C.5 to prove our main result.

C.2 BACKGROUND: PROPERTIES
OF THE JENSEN-SHANNON DIVERGENCE

We define the Jensen-Shannon divergence (JSD) and its
properties that will be used in our method and analysis.

Definition 2. The Jensen-Shannon Divergence (JSD)
of distributions P1, . . . , Pk is JS(P1, . . . , Pk) =
1
k

∑k
i=1 KL(Pi‖M) where M = 1

k

∑k
i=1 Pi.

We overload the JS(·) function in the following ways. The
JSD of random variables X1, . . . , Xk is the JSD of their
laws (distributions).

Additionally, we define the JSD of vector-valued inputs if
they represent distributions from context. For example, for
a model f that outputs a vector representing a categorical
distribution, JS(fθ(x1), . . . , fθ(xk)) is the JSD of those
distributions.

We briefly review important properties of the JSD. Un-
like the KL divergence and other notions of distributional
distance, the JSD can be related to a metric.

Proposition 1. The JSD is the square of a metric. In
particular, any three distributions p, q, r satisfy JS(p, q)1/2 + JS(q, r)1/2 ≥ JS(p, r)1/2.

Finally, the following fact about the JSD relating it to the mutual information of a mixture distribution and its
indicator variable will be useful in our analysis.

Proposition 2. Let Z be a uniform categorical indicator variable with support [k] and Pi, i ∈ [k] be distribu-
tions. Let X ∼ Pz, z ∼ Z be the random variable associated with the mixture distribution of the Pi controlled
by the indicator Z. Then I(X;Z) = JS(P1, . . . , Pk).

Finally, we review standard results (e.g., from the GAN literature) on the relationship between discriminators
and the JS divergence, which relates the loss of an optimal discriminator to the JSD of the two distributions. We
include a proof for completeness.

Proposition 3. Consider two domains A and Ã (i.e., distributions on a common support A), with densities
p(a), p̃(a) respectively. Consider a discriminator D : A → R optimized to maximize the loss

L(D) =
1

2
Ea∼p(a) logD(a) +

1

2
Ea∼p̃(a) log(1−D(a)).

Then the value of this loss for the optimal discriminator D∗ is JS(A, Ã)− log 2.

Proof. Differentiate the loss with respect to the discriminator’s output D(a) for any example a ∈ A, which
yields

1

2
p(a)

1

D(a)
− 1

2
p̃(a)

1

1−D(a)
.
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The loss is maximized at D∗(a) = p(a)
p(a)+p̃(a)

. The result follows from plugging this discriminator into the loss
and using Definition 2:

L(D∗) =
1

2
Ea∼p(a) log

p(a)

p(a) + p̃(a)
+

1

2
Ea∼p̃(a)

p̃(a)

p(a) + p̃(a)

=
1

2
KL

(
A‖A+ Ã

2

)
+

1

2
KL

(
Ã‖A+ Ã

2

)
− log(2)

= JS(A, Ã)− log 2.

C.3 SUBGROUP INVARIANCE USING COUPLED DISTRIBUTIONS

A common framework for treating robustness over discrete groups aims to create invariances, or independencies
between the learned model’s features and these groups. We review this approach, before defining a new model
for the distributional assumptions used in this work. The notion of coupled sets we introduce underlies both
stages of the framework and allows for stronger invariance guarantees than previous approaches, which will be
analyzed in Appendix C.5.

Class-conditioned Subgroup Invariance. In order for a model to have the same performance over all
values of Z, intuitively it should learn “Z-invariant features”, which can be accomplished in a few ways.
Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) calls the Z labels environments and aims to induce
(Y | φ(X)) ⊥ Z, where φ(X) are the model’s features, so that the classifier does not depend on the environment.
Another line of work treats Z as domains and uses adversarial training to induce invariances of the form
(φ(X) ⊥ Z) | Y (Ganin et al., 2016; Li et al., 2018; Long et al., 2018), so that within each class, the model’s
features look the same across domains. We call this general approach class-conditional domain adversarial
training (CDAT), which attaches a domain Z prediction head per class Y , and adopts an adversarial minmax
objective so that the featurizer φ(X) erases Z related information and reduces the model’s dependence on Z.

Coupling-conditioned Subgroup Invariance. Although previous works generally make no assumptions
on how the data X among the groups Z relate to each other, we note that a common implicit requirement is that
there is a “correspondence” between examples among different groups. We codify this distributional assumption
explicitly with a notion of coupling, which allows us to define and analyze stronger invariances.

In particular, we assume that the underlying subgroups are paired or coupled, so that every example can be
translated into the other subgroups. Definition 1 formalizes our distributional notion of coupled sets.

Definition 1. For a given distribution P , a coupled set within class y is a set {xz}z∈Zy consisting of one
example from each subgroup of y, where each example has the same probability.2 A coupling for a distribution
P on (X,Y, Z) is a partition of all examples in X into coupled sets. For any example x ∈ X , let [x] denote its
coupled set. Let [x]1, . . . , [x]k denote the elements of a coupled set [x] in a class with k subgroups. Let [X]
denote the random variable that samples a coupled set; i.e. taking [x] for a random x sampled from any fixed
subgroup z.

Additionally, we say that a distribution is subgroup-coupled if it satisfies Definition 1, i.e. it has a coupling.

In the context of subgroups of a class y, this assumption entails that every example can be factored into its
subgroup and coupled set membership. All examples that are members of a particular coupled set can be thought
of as sharing a set of common features that signal membership in the class. Separately, examples that are
members of a particular subgroup can be thought to share common features that signal subgroup membership.
Together, these two pieces of information identify any example from class c.

We represent this assumption by letting the (unobserved) random variable [X] represent the “class identity” of
an example X , which can be thought of as the class features that aren’t specific to any subgroup. Thus, the full
generating process of the data distribution (X,Y, Z, [X]) consists of independently choosing a coupled set [X]
and subgroup Z within a class Y , which together control the actual example X . Note that [X] and Z are both
more fine-grained and thus carry more information than Y . This process is illustrated in Figure 6a. Figure 6b
illustrates this concept for the MNIST-Corrupted dataset (Mu & Gilmer, 2019). Given a digit class such as

2Note that this will typically not hold for the training distribution, since some subgroups may be underrepre-
sented, making it much less probable that examples from those subgroups are sampled in a coupled set. However,
we are concerned with robustness to a test distribution where the subgroups are of equal importance and equally
likely.
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Y = 3, subgroups correspond to corruptions such as zigzags and dotted lines applied to the digits. A coupled set
consists of these corruptions applied to a clean digit.

Definition 1 allows us to reason about the following stronger invariances. Given class y ∈ Y , every example in
subgroup z ∈ Zy implicitly has corresponding examples in all subgroups Zy within its class, and the learned
features for each of these coupled sets should be identical in order to equalize performance between subgroups.
Thus instead of the weaker goal (φ(X) ⊥ Z) | Y , we use the stronger coupling-conditioned invariance
(φ(X) ⊥ Z) | Y, [X] = (φ(X) ⊥ Z) | [X].

(a) Joint distribution of examplesX with their class
labels Y , subgroup labels Z, and coupled sets [X].

Y = 3

zigzag

[X] =

<latexit sha1_base64="xPbleGLxNFXQOsd9od9cjsMMvxA="></latexit>

subgroup

class

coupled set

Z =

<latexit sha1_base64="BS2P3FKCRU4dCLHsdZZOdGZnhGM="></latexit>

X =

<latexit sha1_base64="Dle2e7iwcupFjVDz/lZK23HfhiE="></latexit>

Ŷ =

<latexit sha1_base64="N4A5RojEo+0r9nVAJ8VwK/+2PTY="></latexit>

example prediction

(b) Illustration with the MNIST-Corrupted
dataset (Mu & Gilmer, 2019), where subgroups Z
are different types of corruptions.

Figure 6: Subgroup-coupled distributions separate the coupled set to which an example belongs (with
respect to their class), from its subgroup label.

Note that since features matter insofar as their effect on the final output Ŷ , it suffices to look at the case
φ(X) = Ŷ . We first show in Section C.4 that CDAT methods target the invariance (Ŷ ⊥ Z) | Y by minimizing
a lower bound for the conditional mutual information, I(Ŷ ;Z | Y ) (Lemma 1).

In Section C.5, we prove our main result: our combined objective function (4) targets the stronger invariance
(Ŷ ⊥ Z) | [X] by upper bounding the corresponding MI, which can be interpreted as forcing matching outputs
for the examples in every coupled set.

C.4 MI BOUNDS FOR CLASS-CONDITIONED INVARIANCE

Recall that the high-level goal of CDAT is to induce independencies between subgroup information and the
model’s feature representation. In order to induce the desired invariance (φ(X) ⊥ Z) | Y of class features
from subgroup identities, a natural approach is to minimize the conditional mutual information I(φ(X);Z | Y ),
which is minimized at 0 when the invariance is satisfied and grows when φ(X) and Z are predictive of each
other. This mutual information can be estimated using standard techniques.

Lemma 1. CDAT minimizes a lower bound on the mutual information I(φ(X);Z | Y ), where φ(X) is the
feature layer where the domain prediction head is attached.

Proof. We have

I(φ(X);Z | Y ) = H(Z | Y )−H(Z | φ(X), Y )

= H(Z | Y ) + Ex,y∼p(x,y)Ez∼p(z|φ(x),y) [log(p(z|φ(x), y))]

≥ H(Z | Y ) + Ex,y∼p(x,y)Ez∼p(z|φ(x),y) [log(pψ(z|φ(x), y))]

= H(Z | Y ) + Ey,z,φ(x) [log(pψ(z|φ(x), y))] ,

which bounds the MI variationally through a parametrized conditional model pψ . Up to an additive term
H(Z | Y ) which is a constant of the data distribution, this is simply the cross-entropy loss of a model trained on
top of the featurizer φ to predict Z from φ(X) and Y , which coincides with the domain adversarial training
approach.

By specializing φ(X) to Ŷ , we obtain

Corollary 1. If CDAT attaches a domain prediction head to the prediction layer Ŷ , it optimizes a lower bound
on I(Ŷ ;Z | Y ).

Thus, although approaches involving domain adversarial training (Ganin et al., 2016; Li et al., 2018) motivate
their approach through alternate concepts such asH-divergences and GAN-based adversarial games, we see that
they are implicitly minimizing a simple variational estimate for mutual information.

In Section 4, Table 3’s reported estimate of the mutual information uses Corollary 1.
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C.5 MI BOUNDS FOR COUPLING-CONDITIONED INVARIANCE

The stronger distributional assumptions of Definition 1 allow us to analyze the invariance φ(X) ⊥ Z | [X],
which can be interpreted as forcing matching features for the data in every coupled set.

True Coupled Sets. Given a subgroup-coupled distribution, access to coupled sets allows analysis of
stronger invariance assumptions.

First, we confirm that this is indeed a stronger notion of invariance, that is

I(Z;φ(X) | [X]) ≥ I(Z;φ(X) | Y ). (5)

This follows from the chain rule for mutual inequality:

I(Z;φ(X) | [X]) = I(Z;φ(X) | Y, [X])

= I(Z; [X] | Y ) + I(Z;φ(X) | Y, [X])

= I(Z; [X], φ(X) | Y )

= I(Z;φ(X) | Y ) + I(Z; [X] | Y, φ(X)).

(6)

Here, the first two equalities follow from Definition 1 (in particular, [X] and Z are more fine-grained than Y ),
and the last two follow from the chain rule for mutual information.

In particular, equation (5) quantifies the intuition that conditioning on an example’s coupled set reveals more
information then just conditioning on its class. Conversely, minimizing the LHS of (5) necessarily minimizes
the objective I(Z;φ(X) | Y ) in (Li et al., 2018), and an additional non-negative term I(Z; [X] | φ(X), Y )
relating the features and identity of examples.

Moreover, the features φ(X) are only relevant insofar as their ability to predict the label. Specializing φ(X),
this stronger conditional MI is related to the model’s predictions; it is exactly equal to the self-consistency
regularizer (1) if the model had access to true coupled sets [x].

Thus, in the case where φ(X) = Ŷ is simply the model’s prediction, this MI is simply the Jensen-Shannon
divergence of the model’s predictions.

Lemma 2.
I(Z; Ŷ | [X]) = E[x]∼[X]JS (fθ([x]1), . . . , fθ([x]k)) (7)

Proof. For any features φ, the mutual information can be written

I(Z;φ(X) | [X]) = E[X]I (E[Z | [X]];E[φ(X) | [X]])

= E[X]I (Z;E[φ(X) | [X]])

where the random variable E[φ(X) | [X]] denotes the formal conditional expectation. The second equality
follows since (Z ⊥ [X]) | Y .

Consider specializing this to the case when φ(X) = Ŷ , i.e. it represents the random variable where an output
class prediction Ŷ is sampled from the final class probability predictions fθ(X) of the model. Since this is
distributed as PŶ |Xz

= fθ(Xz), we obtain

I(Z; Ŷ | [X]) = E[x]∼[X]

I
Z;

1

k

∑
i∈[k]

fθ([x]i)


= E[x]∼[X]JS (fθ([x]1), . . . , fθ([x]k))

(8)

where the second equality follows by Proposition 2.

Augmented Coupled Sets. In practice, we may not have true coupled sets [x]. Instead, we use a gen-
erative model such as a CycleGAN as a proxy that provides noisy versions of the coupled set, denoted
[x̃] = ([x̃]1, . . . , [x̃]k) where [x̃]i are individual augmented examples per subgroup. However, the genera-
tive augmentation model may not perfectly model the subgroup distribution; for example, it may introduce
artifacts.

We can model this distributional assumption explicitly:

Definition 3. Each subgroup z, which has a distribution Pz over X , has a corresponding augmented subgroup
z̃ with distribution Pz̃ representing augmented examples through the generative model(s). In particular, we
suppose for any coupled set [x], it has realizations [x]z in subgroup z and [x̃]z in subgroup z̃.
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We also use the notation [x̃] for a generated coupled set and [x̃]z as its realization in subgroup z (a specific
augmented example). Note that [x̃] and the notation x̃Zy from Section 2.2 refer to the same thing, the set of
augmented examples.

Figure 5 also illustrates the concept of Definition 3: original domains A,B have corresponding domains Ã, B̃
that are the images of the generators F,G.

We can control the difference between augmented and true subgroup distribution in two ways. First, the
translation-loss Lt (2) regularizes the average predictions from the augmentations to match those of the original
example, constraining the prediction model to ignore general distribution shifts introduced by the generative
models.

Moreover, the discrepancy between the loss we are minimizing via CycleGAN-augmented examples Ls = Ex
JS (fθ([x̃]1), . . . , fθ([x̃]k)) (1) and the true objective JS (fθ([x]1), . . . , fθ([x]k)) can be bounded by the loss
of the pair-conditioned CycleGAN discriminators (Section 2.1), via metric properties of the JSD.

Models such as CycleGAN directly control the deviation of augmentions from the original examples, via the
GAN discriminators and consistency losses. The following Lemma says that CycleGAN discriminator loss is
the divergence between the original distribution in subgroup z, and the generated distribution of subgroup z,
paralleling standard GAN results (Goodfellow et al., 2014a).
Lemma 3. The optimal discriminator between original subgroup distribution Pz and augmented subgroup Pz̃
has loss L∗CG = E[x]∼[X]JS([x]z, [x̃]z)− log 2.

Proof of Lemma 3. By Proposition 3,

E[x]∼[X]JS([x]z, [x]z̃) = log 2 +
1

2
E[x]∼[X] logDz

[x]([x]z) +
1

2
E[x]∼[X] log(1−Dz

[x]([x̃]z))

whereDz
[x] is a discriminator for this coupled set (within subgroup z). Instead of training a separate discriminator

per example or coupled set, it is enough to train a single discriminator D conditioned on this specific coupled set
([x]z, [x]z̃). In other words this is a discriminator whose input is both the original example [x]z and a generated
version [x]z̃ , and for each input guesses its chance of being a real example. This is exactly the pair-conditioned
discriminator described in Section C.1.

Proof of Theorem 1. We finally put the pieces together to prove the main result, restated here for conve-
nience.
Theorem 1. For a model fθ with outputs Ŷ , the MI I(Ŷ ;Z | [X]) is the Jensen-Shannon Divergence (JSD) of
predictions on coupled sets E[x]∼[X]JSD

(
fθ(x))x∈[x]

)
. In the case of k = 2 subgroups per class, this can be

upper bounded by the CycleGAN and consistency losses

E(x,y)∼(X,Y )

(
Ls(x; x̃Zy ; θ)

1
2 +

∑
z∈Zy

LzCG(x; θ)
1
2
)2
.

In particular, the global optimum of the trained CAMEL model induces Ŷ ⊥ Z | [X].

First, the equivalence of the quantity we care about I(Z; Ŷ ; [X]) and the consistency loss on true coupled sets is
given by Lemma 2. It remains to bound EJS(fθ([x]1), fθ([x]2)), which can be bounded by the consistency loss
on augmented examples EJS(fθ([x̃]1), fθ([x̃]2)) and the optimal CycleGAN losses EJS(fθ([x]i), fθ([x̃]i))
by metric properties of the JSD.

Proof of Theorem 1. Consider any fixed subgroup z and let X̄z denote the R.V. from the mixture distribution of
Pz and Pz̃ , i.e. either a true example or an augmented example from subgroup z. Let W denote the (binary)
indicator of this mixture. Then

JS(fθ([x]z), fθ([x̃]z)) = I(W ; fθ(X̄z)) ≤ I(W ; X̄z) = JS([x]z, [x̃]z), (9)

where the equalities are Proposition 2 and the inequality is an application of the data processing inequality on
the Markov chain W → X̄z → fθ(X̄z).

Combining equation (9) with Lemma 3, applying the definition of LzCG, and summing over two groups
z = 1, z = 2 yields

JS(fθ([x]1), fθ([x̃]1))
1
2 + JS(fθ([x]2), fθ([x̃]2))

1
2

≤ Lz1CG(x; θ)
1
2 + Lz2CG(x; θ)

1
2

(10)

By definition of the self-consistency loss (1) and Definition 2,

JS(fθ([x̃]1), fθ([x̃]2)) = Ls(x, [x̃]; θ), (11)
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Table 8: Number of training, validation and test examples in each dataset.

Dataset Split Subgroup Size (Y, Z)

MNIST-Correlation

even, clean even, zigzag odd, clean odd, zigzag

train 9900 100 100 9900
validation 9900 100 100 9900
test 4926 4926 5074 5074

Waterbirds

landbird, land landbird, water waterbird, land waterbird, water

train 3498 184 56 1057
validation 467 466 133 133
test 2255 2255 642 642

CelebA-Undersampled

non-blonde, female non-blonde, male blonde, female blonde, male

train 4054 66874 22880 1387
validation 8535 8276 2874 182
test 9767 7535 2480 180

ISIC

benign, no bandage benign, bandage malignant, no bandage malignant, bandage

train 8062 7420 1843 0
validation 1034 936 204 0
test 1026 895 239 0

for any sample x and where [x̃] denotes the generated coupled set {F1(x), F2(x)} as usual. Denoting the right
hand side Ls(x; θ) for shorthand, summing equations (10) and (11), and using the metric property of the JSD
(Proposition 1) gives

JS(fθ([x]1), fθ([x]2))
1
2 ≤ Ls(x; θ)

1
2 + Lz1CG(x; θ)

1
2 + Lz2CG(x; θ)

1
2 .

Finally, squaring and averaging over the dataset and applying Lemma 2 gives the result of Theorem 1:

I(Ŷ ;Z | [X]) ≤ Ex∼X
(
Ls(x; θ)

1
2 + Lz1CG(x; θ)

1
2 + Lz2CG(x; θ)

1
2

)2
.

These pieces can be combined to show that the GAN-based modeling of subgroups (Stage 1) and the consistency
regularizer (Stage 2) together minimize the desired identity-conditioned mutual information, which completes
the proof of Theorem 1.

D EXPERIMENTAL DETAILS

We provide detailed information about our experimental protocol and setup for reproducibility, including dataset
information in D.1,

D.1 DATASET INFORMATION

We provide details for preprocessing and preparing all datasets in the paper. Table 8 summarizes the sizes of the
subgroups present in each dataset. All datasets will be made available for download.

MNIST-Correlation. We mix data from MNIST (LeCun et al., 1998) and MNIST-Corrupted (Mu & Gilmer,
2019) to create a controlled setup. We classify digit parity Y ∈ {even, odd}, where each class is divided
into subgroups Z ∈ {clean, zigzag}, drawing digits from MNIST and MNIST-Corrupted (with the zigzag
corruption) respectively.

To generate the dataset, we use the following procedure:

• Fix a total dataset size N , and a desired correlation ρ.

• Sample

–
⌊

(ρ+1)N
4

⌋
even digits from MNIST

– N
2
−
⌊

(ρ+1)N
4

⌋
even digits from MNIST-Corrupted

– N
2
−
⌊

(ρ+1)N
4

⌋
odd digits from MNIST
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–
⌊

(ρ+1)N
4

⌋
odd digits from MNIST-Corrupted

This generates a dataset with balanced Y and Z with size N
2

each. For our experiments, we useN = 40000, ρ =
0.98. This makes Y and Z highly correlated, so that most even (odd) digits are clean (zigzag). For validation,
we use 50% of the training data.

CelebA-Undersampled. We modify the CelebA dataset (Liu et al., 2015) by undersampling the
(Y = non-blonde, Z = female) subgroup in the training set. The original dataset contains 71629 exam-
ples in this training subgroup, and we keep a random subset of 4054 examples. This number is chosen to make
the ratio of subgroup sizes equal in both classes

(
4054
66874

≈ 1387
22880

)
. We do not modify the validation or test

datasets.

This modification introduces a spurious correlation between hair-color and gender, which makes the dataset
more appropriate for our setting. We preprocess images by resizing to 128× 128× 3 before use.

Waterbirds. We use the Waterbirds dataset (Sagawa et al., 2020) and resize images to 224× 224× 3 before
use. Note that this differs from the preprocessing used by (Sagawa et al., 2020), who first resize to 256×256×3
and then center-crop the image to 224× 224× 3. The preprocessing they use makes the task easier, since some
part of the (spurious) background is cropped out, while we retain the full image.

ISIC. We use the ISIC dataset (Codella et al., 2018) and resize images to 224× 224× 3 before use.

D.2 CYCLEGAN TRAINING DETAILS

We use the default hyperparameters suggested by (Zhu et al., 2017) for CycleGAN training, with batchnorm for
layer normalization. We use Adam for optimization (β1 = 0.5) with a constant learning rate of 0.0002 for both
generators and both discriminators.

MNIST-Correlation. Train on 200 images each from both MNIST and MNIST-Corrupted (100 images per
class) for 2500 epochs with a batch size of 25, cycle loss coefficient of 10.0 and identity loss coefficient of
1.0. We randomly rotate, pad and crop every image for training. Figure 8 shows some CycleGAN generated
examples.

CelebA-Undersampled. Train separate CycleGANs for both classes. Train on 1000 images each from
both subgroups within the class for 4000 epochs with a batch size of 16, cycle loss coefficient of 10.0 and
identity loss coefficient of 1.0. We flip inputs randomly (with probability 0.5) and randomly crop up to 10% of
every image. Due to instability during training, we visually inspected samples generated on the training set at
several checkpoints to pick the best model. Figure 9 shows some CycleGAN generated examples.

Waterbirds. Train separate CycleGANs for both classes. Train on 56 and 184 images each from both
subgroups for the landbird and waterbird classes respectively. Train for 4000 epochs with a batch size of 4,
cycle loss coefficient of 10.0 and identity loss coefficient of 1.0. We flip inputs randomly (with probability 0.5)
and randomly crop upto 10% of every image. Figure 10 shows some CycleGAN generated examples.

Figure 7: An example of data in MNIST-Correlation. Most even digits are clean while most odd
digits contain a zigzag corruption.
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(top) real images from MNIST
(bottom) CycleGAN generated images

(top) real images from MNIST-Correlation
(bottom) CycleGAN generated images

Figure 8: Results of inter-subgroup transformations on MNIST-Correlation.

ISIC. Train on 100 images each from both benign subgroups (with and without bandaids) for 4000 epochs
with a batch size of 4, cycle loss coefficient of 10.0 and identity loss coefficient of 10.0. We flip inputs randomly
(with probability 0.5) and randomly crop upto 10% of every image.

D.3 ARCHITECTURES AND TRAINING INFORMATION

All training code is written in Python with tensorflow-2.0. All models are trained with Stochastic Gradient
Descent (SGD), with a momentum of 0.9. In order to isolate the effect of our method, we do not use any data
augmentation (such as pad and crop operations or random flips) when training the classifier.

MNIST-Correlation. We train a convolutional neural network from scratch, initialized with random weights.
The architecture is provided below,
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(top) male image from CelebA
(bottom) CycleGAN generated female image

(top) female image from CelebA
(bottom) CycleGAN generated male image

Figure 9: Results of inter-subgroup transformations on CelebA-Undersampled. Generation examples
use the CycleGAN trained on the non-blonde class.

Conv2D(filters=32, kernel=3)→ ReLU→ Conv2D(32, 3)→ ReLU→ MaxPooling2D(pooling=2)
→ Dropout(p=0.25) → Conv2D(64, 3) → ReLU → Conv2D(64, 3) → ReLU →
MaxPooling2D(2)→ Dropout(0.25)
→ Flatten→ Dense(units=64)→ ReLU→ Dropout(0.5)→ Dense(10)→ Softmax.

Other datasets. All models are fine-tuned using a ResNet-50 architecture, with pretrained ImageNet
weights3. The only preprocessing common to all methods is standard ImageNet normalization using
µ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225].

D.4 HYPERPARAMETERS

For model selection, we use robust accuracy on the validation set4. The selected model’s hyperparameters are
then run 3 times, and the results averaged over these trials are reported in Table 2. Below, we provide details of
all hyperparameter sweeps, and in Table 12, we include the best hyperparameters found for each method and
dataset.

D.4.1 CELEBA-UNDERSAMPLED

We run sweeps for all methods over 50 epochs.

ERM. Sweep over learning rates {0.0001, 0.00005, 0.00002, 0.00001} with weight decay fixed to 0.05.

GDRO. Sweep over adjustment coefficients in {1.0, 3.0} and learning rates {0.0001, 0.00005} with weight
decay fixed to 0.05.

3The particular model used was taken from https://github.com/qubvel/classification_
models.

4For the ISIC dataset, we additionally performed model selection using AUROC, as illustrated in Table 6.
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(top) land background image from Waterbirds
(bottom) CycleGAN generated water background
image

(top) water background image from Waterbirds
(bottom) CycleGAN generated land background
image

Figure 10: Results of inter-subgroup transformations on Waterbirds. Generation examples use the
CycleGAN trained on the landbirds class.
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CAMEL. Sweep over consistency penalties in {5.0, 10.0, 20.0, 50.0}. Learning rate is fixed to 0.00005,
weight decay fixed to 0.05 and the adjustment coefficient is fixed to 3.0.

D.4.2 WATERBIRDS

We run sweeps for all methods over 500 epochs.

ERM. Sweep over learning rates {0.001, 0.0001, 0.00001} and weight decays {0.5, 0.001}.

GDRO. Sweep over learning rates {0.00001, 0.00005} and weight decays {0.5, 0.05} with adjustment
coefficient fixed to 1.0 and batch size 24. We also separately swept weight decays {1.0, 0.001} and adjustment
coefficients over {1.0, 2.0}.

CAMEL. Sweep over consistency penalties in {100.0, 200.0} and learning rates {0.00005, 0.0001}. Weight
decay fixed to 0.001 and adjustment coefficient is fixed to 2.0. Separately, we sweep over learning rates
{0.00001, 0.00002, 0.00005, 0.0001}, fixing the consistency penalty to 200.0, weight decay to 0.05 and ad-
justment coefficient to 1.0.

D.4.3 MNIST-CORRELATION

We run sweeps for all methods over 100 epochs.

ERM. Sweep over learning rates {0.0001, 0.0002, 0.0005, 0.001} and weight decays {0.0005, 0.05}.

GDRO. Sweep over learning rates {0.0001, 0.0002, 0.0005, 0.001} and weight decays {0.0005, 0.05}. Ad-
justment coefficient is fixed to 1.0.

CDAT. Sweep over domain loss coefficients {−0.1,−0.01, 0.1, 1.0}. We fix learning rate to 0.001 and
weight decay to 0.0005. We run CDAT for 400 epochs, since it takes much longer to converge.

IRM. Sweep over IRM penalty {0.01, 0.1, 1.0, 10, 100, 1000, 10000} and learning rates {0.0005, 0.001}.
Weight decay is fixed to 0.0005.

CAMEL. Sweep over consistency penalty weights {0.0, 2.0, 5.0, 10.0, 50.0}. Learning rate is fixed to 0.001
and weight decay is fixed to 0.0005.

D.4.4 ISIC

We run sweeps for all methods over 75 epochs.

ERM. Sweep over weight decays {0.5, 0.05, 0.00005}. Learning rate is fixed to 0.0001.

GDRO. Sweep over learning rates {0.0001, 0.00001} and weight decays {0.5, 0.05, 0.00005}. Adjustment
coefficient is fixed to 0.

CAMEL. Sweep over learning rates {0.0001, 0.00005}, weight decays {0.01, 0.05}, consistency penalties
{10.0, 50.0} and annealing rates {0.005, 0.002}.

D.5 MUTUAL INFORMATION MEASUREMENT

For the mutual information measurement experiment on MNIST-Correlation in Section 4.1, we additionally
attach a domain prediction head to the final feature layer. This domain prediction head is then used to predict
the subgroup z of any example x. Note that this domain prediction head does not pass back gradients to the
main model, it merely observes the learned representation and attempts to improve prediction accuracy of
the subgroups using this. Intuitively, this captures how much information about the subgroups is available to
be “squeezed-out” by the domain prediction head. This constitutes a use of Lemma 1 to estimate the mutual
information, and we report the average cross-entropy loss (added to log 2).

D.6 BASELINE COMPARISONS

We describe the baselines that we compare to, with implementations for each of these available in our code
release.
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Table 9: Ablation analysis (Section 4.2.1) that varies the consistency penalty coefficient λ on the MNIST-
Correlation dataset. For brevity, we report the maximum subgroup performance gap over all classes.

Method
Robust Acc. (%)

Max Subgroup Gap
λ = 1 λ = 2 λ = 5 λ = 10

Heuristic
Augmentation

91.90 92.29 92.08 93.22
4.37 3.95 4.94 3.88

CAMEL 97.88 97.02 98.31 98.40
1.16 1.16 1.28 1.21

D.6.1 METHODS

ERM. We use standard training with a cross-entropy loss. ERM cannot take advantage of knowledge of the
subgroups, so this constitutes a standard baseline that a practitioner might use to solve a task.

GDRO. This is our main baseline as described in Section 2, and uses a stochastic optimization method (Sagawa
et al., 2020). GDRO uses subgroup information to optimize the worst-case loss over all subgroups. We note that
GDRO requires the specification of an adjustment coefficient, and we describe the best found coefficients in
Table 12.

CDAT. We use a generic domain adversarial training approach using a domain prediction head attached to the
last feature layer of the model φ(X). The domain head predicts the subgroup identity of the given example,
and we use gradient reversal in order to erase domain information from the representation φ(X). We vary the
magnitude of the gradient reversal on the domain loss (which we call the domain loss coefficient in Table 12) in
order to find the best-performing model.

IRM. We implement the IRM penalty (Arjovsky et al., 2019), and treat the subgroups as separate environments
across which the model should perform well.

D.6.2 ABLATIONS

Subgroup Pairing. We simply take pairs of examples that lie in different subgroups and enforce consistency
on them.

Heuristic Augmentations. We build a pipeline inspired by AugMix (Hendrycks et al., 2019) using the
following operations: shearing, translation, rotation, flipping, contrast normalization, pixel inversion, histogram
equalization, solarization, posterization, contrast adjustment, color enhancement, brightness adjustment, sharp-
ness adjustment, cutout and mixup. We sample between 1 and 3 of these augmentations in a random order and
apply them to the image.

We include an additional ablation on the MNIST-Correlation dataset where we vary the consistency penalty
coefficient λ in Table 9. Compared to heuristic augmentations, CAMEL provides substantial improvements that
are stable across different values of λ.

D.7 ISIC SPURIOUS CORRELATIONS

For completeness, we include a detailed evaluation for the ISIC dataset in Table 10. Here, we highlight that
regardless of what criterion is used for model selection between robust accuracy and AUROC, CAMEL exceeds
the performance of the other methods.

For ISIC, we also create an alternate evaluation dataset with artificial images in order to test whether a model
spuriously correlates the presence of a bandage with the benign cancer class. To construct this dataset, we
use image segmentation to automatically extract images of the bandages from the benign cancer class, and
superimpose them on images with malignant cancers. This allows us to generate the artificial subgroup of the
malignant cancer class that would contain images with bandages. We use this dataset to highlight how CAMEL
improves the model’s dependence on this spurious feature in Figure 1.
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Table 10: Performance on the ISIC validation set.

Evaluation Method Model Selection Criterion
Metric Robust Acc. AUROC
Robust ERM 65.59 (1.17) 52.93 (10.27)
Acc. GDRO 64.97 (3.15) 51.23 (1.93)

CAMEL 77.45 (0.35) 66.67 (3.03)

AUROC ERM 92.48 (0.80) 93.38 (0.14)
GDRO 89.50 (2.50) 91.83 (0.11)
CAMEL 92.47 (0.38) 93.41 (0.52)

Table 11: Comparisons to GAN Baselines on Waterbirds and CelebA-Undersampled.

Dataset GAN Model Robust/Aggregate Acc.
GAN + ERM GAN + Model Patching

Waterbirds CycleGAN 76.88/91.75 89.12/90.89
Augmented CycleGAN 63.12/91.08 84.87/86.44
DAGAN 73.12/90.28 —

CelebA-Undersampled StarGAN v2 65.91/90.58 80.68/89.33

D.8 ALTERNATIVE GAN AUGMENTATION BASELINES

As noted in Section 2.1, Stage 1 of the model patching pipeline can be integrated with alternative domain
translation models. As an additional baseline, we compare to alternative GAN augmentation methods. Typically,
these methods are used as a data augmentation method, but not evaluated on robustness.

We consider the Augmented CycleGAN (Almahairi et al., 2018), Data Augmentation GAN (DAGAN) (Antoniou
et al., 2017) and StarGAN-v2 (Choi et al., 2020) models, either when used in combination with ERM, or when
as a part of the model patching baseline. When used as a part of model patching, we replace the CycleGAN in
Stage 1 with the alternative GAN model.

We used released code for Augmented CycleGAN and DAGAN to generate data for the Waterbirds dataset. For
StarGANv2, we used pre-trained models for Celeb-A. We note that DAGAN is meant to be a self-contained data
augmentation pipeline, so we did not consider it in conjunction with Model Patching.

The results of this comparison is are shown in 11. In particular, these alternate models have poor robust
performance when used purely for data augmentation. Their performance improves when integrated in the model
patching pipeline.

2The consistency penalty is increased linearly on every step, from 0 to λ with rates 0.002 and 0.005 for
λ = 50.0 and λ = 10.0 respectively.
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Table 12: The values of the best hyperparameters found for each dataset and method.

Method Dataset Hyperparameters
Learning Rate Weight Decay Batch Size

ERM

MNIST-Correlation 0.0001 0.05 100
CelebA-Undersampled 0.00005 0.05 16
Waterbirds 0.001 0.001 16
ISIC 0.0001 0.005 24

0.0001 0.00005 24

Learning Rate Weight Decay Batch Size GDRO Adjustment

GDRO

MNIST-Correlation 0.0005 0.0005 100 1.0
CelebA-Undersampled 0.0001 0.05 16 3.0
Waterbirds 0.00001 0.05 24 1.0
ISIC 0.0001 0.05 24 0.0

0.0001 0.00005 24 0.0

Learning Rate Weight Decay Batch Size GDRO Adjustment λ

CAMEL

MNIST-Correlation 0.001 0.0005 100 1.0 5.0
CelebA-Undersampled 0.00005 0.05 16 3.0 5.0
Waterbirds 0.0001 0.001 16 2.0 100.0
ISIC 0.0001 0.01 24 3.0 50.05

0.0001 0.01 24 3.0 10.02

Learning Rate Weight Decay Batch Size Domain Loss Coefficient
CDAT MNIST-Correlation 0.001 0.0005 100 -0.10

Learning Rate Weight Decay Batch Size IRM Anneal Steps IRM Penalty
IRM MNIST-Correlation 0.0005 0.0005 100 2000 0.1
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