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Abstract

A Clinical Decision Support System (CDSS) is designed to enhance clinician
decision-making by combining system-generated recommendations with medical
expertise. Given the high costs, intensive labor, and time-sensitive nature of medical
treatments, there is a pressing need for efficient decision support, especially in com-
plex emergency scenarios. In these scenarios, where information can be limited, an
advanced CDSS framework that leverages AI (artificial intelligence) models to effec-
tively reduce diagnostic uncertainty has utility. Such an AI-enabled CDSS framework
with quantified uncertainty promises to be practical and beneficial in the demanding
context of real-world medical care. In this study, we introduce the concept of Medical
Entropy, quantifying uncertainties in patient outcomes predicted by neural machine
translation based on the ICD-9 code of procedures. Our experimental results not only
show strong correlations between procedure and diagnosis sequences based on the
simple ICD-9 code but also demonstrate the promising capacity to model trends of
uncertainties during hospitalizations through a data-driven approach.

1 Introduction

When a patient presents for clinical care hospital, clinicians sometimes face the challenge of initial
uncertainty[1], necessitating more data from examinations and observations. This uncertainty is
often highest at the point of first presentation and can be addressed through a series of appropriate
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procedures. As treatment progresses, effective therapies can progressively reduce the unknown aspects
of the patient’s condition. The goal is to minimize this uncertainty with effective treatments, as
each illness presents several viable treatment options. However, the evolving nature of the patient’s
condition demands the identification of the most suitable treatment plan. In this context, a Clinical
Decision Support System (CDSS) becomes crucial, assisting clinicians in decision-making by efficiently
narrowing down uncertainties with limited information[2].

In this evolving landscape of clinical decision-making, the use of CDSS becomes pivotal. CDSSs help
clinicians navigate through the complexities of medical care, much like Automatic Speech Recognition
(ASR)[3] systems use phonemes as the minimal units to represent their semantic contents from the
speech signals in the acoustic models, then predict the combinations of plausible words in sentences
in the language models. In this study, we introduce a novel framework centered around reducing
uncertainty in clinical decision-making. The initial validation of this framework is conducted through a
retrospective review utilizing the International Classification of Diseases-Ninth Revision (ICD-9) and
Current Procedural Terminology (CPT) procedure codes. We emphasize that the use of ICD-9 and CPT
codes is instrumental for validation purposes, serving to corroborate our primary approach towards
entropy and uncertainty quantification, and ultimately, the reduction thereof. While these codes are
typically generated post patient stay, thus not providing prospective data, their utility in affirming the
validity of our uncertainty quantification/reduction framework is invaluable. Our approach in this study
harnesses the systematic structure of ICD-9 and CPT codes to encode the potential patients’ conditions
and further predict subsequent steps in a sequence, employing them like the elements of phoneme and
subword in ASR system to guide decision-making. This methodology enables CDSSs to efficiently
narrow down uncertainties with limited initial information, thereby assisting clinicians in making
informed decisions[2]. Furthermore, the design of a CDSS integrates these encoded guidelines with the
clinician’s medical expertise, forming a synergy that is crucial in time-critical and resource-intensive
medical scenarios. While standard operating procedures exist for inpatients, the dynamic and often
critical nature of hospital environments demands quick yet accurate decision-making. Here, the CDSS,
empowered by its encoded data akin to a linguistic system, plays a vital role in guiding clinicians
through complex medical situations.

CDSS can be classified as knowledge-based and non-knowledge based. For knowledge-based systems,
decisions are made based on predefined rules and medical guidelines[4]. In contrast, non-knowledge-
based systems facilitate physicians making precise arrangements by data-driven approaches based on
artificial intelligence (AI) / machine learning (ML) models [5]. Knowledge-based systems achieve
great success in diagnostic support when giving medical expertise on symptoms and side effects.
As for AI/ML models, despite their remarkable capacity to manipulate massive amounts of data in
non-knowledge-based systems, they are a black box[6]. Data availability might also restrict feature
extraction from provided data to represent the patient’s health condition[7]. In other words, features
obtained from vital signs, electrocardiograms, or laboratory results during a hospital stay might not be
viable when a patient is newly admitted to the hospital or when medical facilities are not applicable for
any reason.

Information entropy, also known as Shannon entropy[8], has demonstrated its utility in digital commu-
nication and data compression[9]. This idea of information entropy enables us to quantify the amount
of uncertainty (or variability) of quantities of interest (QoI) based on their probability distributions and
it has been also playing a central role in AI/ML.

Medical entropy has been previously applied to clinical calculators and has been proposed as a substitute
for sensitivity and specificity[10]. In this study, we propose a framework to measure medical uncertainty
at every stage during specific admissions by estimating the uncertainties caused by heterogeneous
factors such as medical history, multifarious etiology, or uncaptured data in medical scenarios. This aims
to optimize clinical decision-making by providing a more nuanced and comprehensive understanding
of patient-specific variables, ultimately leading to tailored, efficient, and effective patient care through
AI-enabled CDSS.

2 Materials and Methods

2.1 Data Source and Experiment Compute Resource

In this study, we focused on the Medical Information Mart for Intensive Care (MIMIC)-IV database[11],
particularly on the International Classification of Diseases (ICD) codes used for diagnosing and
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Figure 1: The proposed framework of entropy quantification includes Model Pre-Training Module
(MPM) and Diagnosis Predictor Module (DPM) by using the procedure and diagnosis ICD-9 codes in
the MIMIC-IV database.

documenting procedures during hospital admissions. Our experiments were conducted using cases
recorded with ICD-9 codes[12], encompassing a total of 155,933 admissions.

ICD codes provide a standardized framework for diagnosis, while CPT codes document the procedures
carried out. Although these codes may not directly mirror actual medical practices, they offer a clear
and structured way to understand the activities and decisions during a patient’s hospital stay[13]. This
structured approach is not only beneficial for clarity in clinical understanding but also proves invaluable
for AI/ML applications. The use of ICD codes for encoding diagnostic terms in clinical documentation
has been a focal point of research, underscoring their crucial role in efficiently extracting and analyzing
essential data from electronic health records[14]. This synergy between standardized medical coding
and AI/ML is a key aspect of our study.

All experiments in this study were conducted on a CPU, using an Apple MacBook Pro equipped with
the M1 Max chip. This setup not only provided sufficient computational power for processing the ICD-9
coded data and running the machine learning models, but also enabled us to carry out the experiments
with relative ease, without requiring additional high-performance computing resources such as GPUs
or cloud-based servers. This also ensured that the study remains reproducible on accessible hardware
for users with similar computational setups.

2.2 Model Frameworks

Figure 1 illustrates the proposed framework of entropy quantification during hospitalization, which
consists of two main modules: the Model Pre-training Module (MPM) and the Diagnosis Predictor
Module (DPM). To specify, the upstream MPM is for pre-training predictive models, and the down-
stream DPM takes the pre-trained model to obtain the output distribution while predicting diagnosis.
Given the testing procedure sequence, which can be arbitrary, the decoder in DPM can further predict
diagnosis. Meanwhile, we can obtain the entropy of the output distribution, which is also the confidence
of potential diagnosis.

In our framework’s application to a clinical setting, the process begins when a physician inputs
patient data accumulated since admission into the DPM. This model evaluates the data to estimate the
diagnostic likelihood, represented as a probability distribution across potential diagnoses. It’s important
to note that these diagnoses represent a combination of different health conditions at a specific stage,
rather than a single disease state.

Subsequently, the DPM calculates the information entropy derived from this diagnostic probability
distribution, presenting it as “medical entropy” to the clinician. This entropy serves as a quantitative
measure of uncertainty in the diagnosis. The physician, upon reviewing the medical entropy, can
then propose potential interventions for the subsequent stage of patient care, aiming at reducing this
uncertainty. This action allows the clinician to assess how these interventions might increase or decrease
the medical entropy, thereby refining or expanding the differential diagnosis.

Throughout this interactive process, the physician gains insights not only into the immediate medical
entropy linked to the current clinical query but also into a sequence of potential therapeutic options,
each with their respective posterior medical entropies. Moreover, by inputting various stages of patient
care into the system, the physician can analyze the trajectory of medical entropy, identifying key
interventions that substantially impact patient outcomes. This aspect of the framework is particularly
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Figure 2: Illustration of an implementation of the proposed model by adopting the seq2seq model as
the pre-trained model and an example of the entropy quantification of a procedure sequence.

beneficial for understanding the dynamic nature of medical decision-making over the course of a
patient’s hospital stay.

To make this framework workable in general use, we utilize the procedure sequences and diagnosis
sequences in the form of ICD codes as the observations in the hospital and the diagnoses of the current
stage. In this model, the sequence of procedure-related ICD codes constitutes the input for the MPM,
and the sequence of diagnostic ICD codes forms its output. Notably, this does not mean that the
proposed framework cannot apply features such as vital signs or lab results to the MPM. Instead, the
main reason we adopt the plain ICD codes as training data instead of utilizing the more complex feature
embedded in more information is that we focus on keeping the framework flexible and workable in
medical practice.

To address the issue of the capacity of the predictive model in MPM, we apply non-knowledge-based
decision-making for the CDSS strategy. Still, this predictive model can be substituted with a different
model architecture, should it be better suited for other settings. Since the source and target data are in
sequence, in the current study, we exploit the seq2seq models[15] as the diagnosis predictor in MPM to
duplicate a success for the tasks in the fields of natural language processing (NLP)[16, 17, 18, 19].

2.3 Model Overview

Figure 2 illustrates the models we apply to implement the proposed framework and the examples of
obtaining the entropy trend from a procedure sequence. In this study, we utilize the seq2seq model to
pre-train the model for diagnosis predictor. To construct the entropy trend of a procedure sequence we
desired, we feed the procedures to the encoder in order, then the decoder will output a distribution of
possible diagnoses. The distribution here is determined by the softmax function of the last hidden layer
of the seq2seq diagnosis predictor. Eventually, we then obtain the entropy based on a specific procedure
combination. Take the procedure sequence 8952-8744-8938 as an example, we first obtain an entropy
of 9.9174 by taking 8952 as the input of the diagnosis predictor. Further, we get the entropies of 7.4492
and 6.9336 by feeding the procedure combinations 8952, 8744 and 8952, 8744, 8938, respectively.

We adopt the seq2seq architecture model to predict suggestive diagnoses based on the procedures
received so far due to its similar characteristics to data in Natural Language Processing (NLP)-related
tasks. The data in both fields are in sequence and have varied lengths. However, there are still major
differences between the two. Each word in a source sentence could be crucial for predicting the target
sequence in machine translation. In contrast, the importance of a specific diagnosis code in diagnosis
sequences ranks by its order. Moreover, the procedure code can possess multiple significances for
different orders, combinations, and repetition frequencies.

On the other hand, the source and the target sequences in NLP-related tasks have vital cause-and-effect
relationships. On the contrary, it does not work for the procedure-diagnosis relationship. Namely,
the diagnosis for an admission can derive from the given procedures that a patient had received at a
specific moment. Yet, the bond between procedure and diagnosis becomes insignificant when reasoning
backward since identical procedure sequences can lead to various diagnosis combinations. This adverse
impact could be amplified if admissions with a single procedure are the vast majority in the dataset. Due
to the insufficiently informative input as a single procedure, it is explicit that it would be unreasonable
for the model to predict the diagnosis with ample information.
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In the admissions with the ICD-9 code we adopt in the MIMIC-IV dataset, there are 57,322 and
36,040 cases for the admissions with one and two procedures, respectively. This includes 59.9% of the
admissions in total. Take ICD code "9925" as an example, there are 1,947 admissions among admissions
with a single procedure. The code "9925" entails "Injection or infusion of cancer chemotherapeutic
substance," which means that we know that the patients come to the hospital for chemotherapy. It is
reasonable that the patients receive only one procedure; however, the diagnoses for these cases are
widely different.

2.4 Seq2seq diagnoses predictor

To predict diagnoses based on procedures during patient admission, we use a Seq2Seq model. Both
diagnosis and procedure codes are sequential, with procedure codes following a chronological order,
while the order of diagnosis codes reflects the severity of the patient’s condition. The Seq2Seq model
offers a flexible approach to capture this dynamic by processing variable-length sequences, making it
ideal for linking procedures to diagnoses.

The Seq2Seq framework, based on the encoder-decoder architecture [15], takes a source sequence as
input and generates a target sequence as output. The encoder processes the input sequence to create
a context vector, an embedding of the entire source sequence, which is then passed to the decoder
to generate the target sequence. In our case, the encoder processes the procedure sequence, and its
final hidden state serves as the context vector. The decoder uses this context to predict diagnoses
sequentially, with each prediction informing the next.

We also integrate an attention mechanism [20, 21] to allow the decoder to weigh and focus on the most
relevant hidden states from the encoder, enhancing prediction accuracy. To further improve training
efficiency and prevent error propagation, we apply the teacher-forcing technique [22], which inputs the
ground truth directly during training.

We focus on predicting the distribution of diagnoses at different stages of admission using ICD-9 codes.
The encoder is fed with procedure ICD-9 codes, while the decoder outputs diagnosis ICD-9 codes.
During evaluation, the softmax output of the decoder provides a probabilistic distribution of diagnoses,
aiding in entropy-based analyses.

2.5 Entropy Quantification in Admissions

For the downstream task of the diagnoses predictor, we now focus on the input procedures and decoder’s
softmax output of the pre-trained model. Given a procedure sequence P = {p1, p2, ..., pM} with M pro-
cedures during an admission, we have the predicted diagnosis sequence Dm = {dm,1, dm,2, ..., dm,n}
for every single step m in procedure sequence P , where m = 1, . . . ,M . For every diagnosis code d in
the predicted diagnosis sequence D, the decoder outputs the diagnosis based on the softmax function
sm,k of the last neural layer zm,n in the deep neural network of the decoder, where

sm,n = σ(zm,n), and (1)

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, ...,K and z = (z1, ..., zK) ∈ RK (2)

sm,k is a vector that signifies the confidence of all the potential diagnoses candidates. The dimension of
the sm,n is 6789 as there are 6789 codes in the dictionary of diagnoses ICD-9 codes in the MIMIC-IV
database. Here, we choose the corresponding softmax output sm,1 of the very first predicted diagnosis
dm,1, representing the probability distribution of all potential outcomes (i.e., diagnosis code). This
means that the softmax output sm,1 is directly determined by the context vector c that encodes all
procedures in order, which is used by the decoder to predict the most important diagnosis code.

As a consequence, we obtain the sequence of softmax output S = {s1,1, s2,1, ..., sM,1} as the confi-
dence of possible diagnoses by given cumulative input procedure sequence CPm = {p1, p2, ..., pm}.
During the hospitalization of a given patient, from admission to discharge, we update the corresponding
distribution after receiving every procedure. To further analyze the trends of the distributions, we
quantify the uncertainty of the predicted diagnosis code by calculating the information entropy of this
distribution. In this way, we have the entropy sequence E = {e1, e2, ..., em}, where
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Table 1: Model performance of Diagnosis Predictor as F1-score, Jaccard Index, and First-N-Accuracy
among different seq2seq model architectures.

Attention-based
seq2seq Diagnosis Predictor F1-score Jaccard

Index
First-N-Accuracy

N=1 N=2 N=3

no
teacher forcing

1-layer 1.08e-02 5.45e-03 0.2717 0.2236 0.1951
2-layer 9.94e-03 5.00e-03 0.2488 0.2019 0.1766
3-layer 6.35e-03 3.18e-03 0.1871 0.1669 0.1512

with
teacher forcing

1-layer 8.66e-03 4.35e-03 0.2884 0.2281 0.2025
2-layer 8.02e-03 4.02e-03 0.2321 0.1986 0.1847
3-layer 3.14e-03 1.57e-03 0.1505 0.1440 0.1341

ei = H(si,1) = −
∑

r∈si,1

p(r) log p(r) = E[−log p(si,1)] (3)

Despite the semantic differences between the diagnosis-procedure data and NLP-related data, we
assume that the seq2seq model still works as a diagnosis predictor since the diagnosis-procedure
settings share similar sequential behavior with typical seq2seq scenarios in NLP tasks. To ameliorate
the error propagation between the pre-trained model and the downstream entropy quantification, it
is necessary to expose how satisfyingly the diagnosis predictor could go among different model
architectures. Hence, defining the pertinent and reliable evaluation metrics for the diagnosis predictor
is crucial and needed.

2.6 Model Performance Evaluation

Various evaluation metrics are defined in the field of NLP to assess diverse aspects. However, widely
used evaluation metrics for the NLP area may not necessarily be suitable in our scenario. This is
because, unlike typical NLP models, the diagnosis predictor cares less about the N-gram terms of the
predicted diagnosis sequence. Many NLP evaluation metrics have a penalty term to ensure the model
decodes longer sequences, which is not applicable in our case. Moreover, the order of the diagnosis
sequence has imperative information about how important it is to the patient’s condition, which is not
the case in a natural language sequence.

For reasons stated above, instead of utilizing metrics such as the Word error rate (WER), Bilingual
Evaluation Understudy (BLEU)[23], or their variants[24], we utilize the f1 score and Jaccard index[25]
to examine the model performance of the seq2seq diagnosis predictor. Furthermore, we also propose
First-N-accuracy to assess the model’s capability of precisely predicting the most decisive diagnoses.
That is to say, if N equals three, the First-N-accuracy will be counting the percentage of the first three
predicted diagnoses appearing in the first three diagnoses in the ground truth.

To further assess the model’s ability to handle uncertainty, we focus on the entropy trend throughout
entire admissions from a global perspective. The dataset’s procedure and diagnosis sequence pairs,
reflecting real-world medical decisions, serve as ideal cases for examining entropy reduction. Every
action by physicians is considered an attempt at reducing entropy. Despite potential fluctuations in
individual entropy trends due to the unpredictable nature of hospital scenarios, the overall entropy trend
should consistently decrease, regardless of the patient outcomes, be it discharge or passing away. This
approach allows us to evaluate the model’s performance in a dynamic, real-world medical setting.

3 Results

Table 1 summarizes the performance of the proposed framework for various model architectures. As
can be seen in Table 1, the simplest 1-layer model surpasses other models in performance across all the
metrics used. A noteworthy observation is that the simpler 2-layer model significantly outperforms
the 3-layer model, while the performance gap between the 1-layer model and the 2-layer model is
relatively modest. Additionally, to compare the performance of these three model architectures with
and without teacher-forcing to investigate its impact on the overall performance. We trained the models
with identical hyperparameters, where the only difference was whether the teacher-forcing feature was
used or not[26]. The outcomes revealed that the models with teacher-forcing consistently mirrored the
performance trends of models without teacher forcing. Furthermore, it was observed that the addition
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Figure 3: Trends of average entropy for admission cases with five procedures. The three colors show the
entropy trends clustered by their primal diagnosis, which are diagnosis ICD-9 code 41401 (Coronary
atherosclerosis of native coronary artery), 78650 (Chest pain), and all admissions with 5 procedures.

of teacher forcing did not enhance the performance compared to the original models in the tested
scenarios.

Figure 3 shows the average entropy trend of 3 different clusters, grouped by their primal diagnosis
ICD codes. To better grasp the trends of uncertainty drops, we focus on the cases with the same
length. Specifically, we selected the cases of patients who received a total of five procedures during
their admissions. In the figure, "All" indicates the average entropy trends for all diseases, whereas
"41401" and "78650" are groups clustered by their primary diagnosis, "Coronary atherosclerosis of
native coronary artery" and "Chest pain," respectively. The total cases among the three clusters, All,
41401, and 78650, are 8,705, 679, and 220 admissions, respectively.

As shown in Figure 3, all the admissions have the same initial entropies at the very beginning of
the admissions. That is the condition when the patients arrive at the hospital without receiving any
procedure. To provide a reference for comparisons, we assume that the 6,984 potential procedures are
equally distributed. In this case, the initial entropy is set to 12.76. In another case, this initial entropy
will be 9.43 if we assume the potential procedures are distributed by their frequencies (estimated based
on the MIMIC-IV dataset). In all the figures in this paper, we set the initial entropy to 12.76, taking
that the initial distribution of procedures is uniform.

Note that the "entropy trend" mentioned in this paper reveals the entropy of the distributions of the
potential diagnoses when receiving a new procedure made by the physician during the hospitalization.
The entropy trend reflects how the medical entropy of patients changes from admission to discharge, as a
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Table 2: Entropy of most frequent first N=1 procedure.

# ICD-9 code Cases Frequency Entropy After Receiving
1st procedure

1 66 4528 2.90% 9.8625
2 8938 4036 2.59% 7.0969
3 741 3443 2.21% 7.6941
4 8952 3426 2.20% 9.9164
5 7569 3399 2.18% 6.3773
6 3893 3242 2.08% 9.1968
7 9925 3111 1.99% 7.2922
8 3995 3019 1.94% 8.4310
9 9671 2790 1.79% 10.2779
10 5491 2703 1.73% 8.4703

result of receiving procedures. If the patient received three procedures during the entire hospitalization,
for example, procedures A, B, and C, we would have four entropies in their entropy trend. The entropy
trend includes the initial entropy without receiving any procedure and the respective entropies of the
predicted diagnosis distributions by given procedure sequence {A}, {A,B}, and {A,B,C}. Overall,
Figure 3 clearly shows that the average entropy tends to decrease as the number of received procedures
increases for all three clusters.

Next, we investigated the entropy drop for the most frequent first N procedures (for N=1, 2, and 3)
since the very start of admission. These results are summarized in tables 2 to 4. Information theory
states that the more information we know about the world (or the patient’s state, in this study), the
smaller entropy we get as a result (i.e., less uncertainty regarding the patient’s diagnosis in the current
study). The drops of the entropies reveal the reduction of the uncertainties. As Figure 3 shows, the
entropy tends to decrease when every upcoming procedure arrives, it is imperative to examine how
entropy reduction acts among various procedures.

Table 2 demonstrates the entropy drops of the ten most frequent first procedures at the beginning of the
admission. The ICD-9 procedure code "7569"(ranked #5) has the lowest entropy of 6.37, describing
"Repair of other current obstetric laceration." In contrast, the ICD-9 procedure code "9671"(ranked
#9) has the highest entropy of 10.27 for "Continuous invasive mechanical ventilation for less than 96
consecutive hours."

To make the proposed framework applicable to real-world medical use, the entropy quantification of a
specific procedure sequence in any situation has to be more explainable and informative to physicians
instead of being a "black box". In other words, it is indispensable to analyze the entropy trends
individually. For better demonstration, we choose examples of actual cases in the MIMIC-IV dataset
with the same number of total received procedures and with similar final diagnoses.

Figure 4 presents the entropy trends of three cases with sepsis diagnosis, each undergoing six procedures.
Two cases were discharged from the hospital, and one passed away. These cases were selected from the
MIMIC-IV dataset due to their similar final diagnoses and received procedures. The entropy trends
are depicted for each admission: Admission #1 (blue dotted line), Admission #2 (orange line), and
Admission #3 (green line).

In Admission #1, a significant drop in entropy is observed after the first procedure, "4562 - Other
partial resection of small intestine." However, subsequent procedures do not further reduce the entropy
significantly. In Admission #2, the entropy initially drops dramatically after the first procedure, "5459 -
Other lysis of peritoneal adhesions," but rises after procedures 9604 and 9671, before decreasing again
following procedure 9915. In contrast, Admission #3 shows a gradual decrease in entropy, indicating a
more consistent reduction in uncertainty with each procedure.

4 Discussion

In this study, the focus was on assessing a framework designed to measure and manage medical entropy
during various stages of hospital admission. The findings suggest that the framework has potential in
quantifying and managing uncertainty in clinical decision-making, adapting to different stages of a
patient’s hospital stay.

The analysis of trends in Figure 3 demonstrates the effectiveness of the proposed entropy quantification
method in modeling changes in patient conditions. Among the three entropy trends, the trend with all
cases is the smoothest. Comparing the differences between the two diagnosis ICD-9 codes, "78650",
representing “chest pain” doesn’t decline as much as "41401" which denotes "Coronary atherosclerosis
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Figure 4: Entropy trends of three admissions with sepsis diagnosis.

Table 3: Entropy of most frequent first N=2 procedures

# ICD-9 code Cases Frequency Entropy After Receiving
1st procedure 2nd procedure

1 0066 3607 2920 18.72‰ 9.8504 7.3538
2 8952 8938 1507 9.66‰ 9.9137 7.3577
3 8952 8744 1323 8.48‰ 9.9196 7.4492
4 3722 8856 1316 8.44‰ 10.3795 4.5525
5 0066 3606 930 5.96‰ 9.8362 8.8169
6 9671 9604 925 5.93‰ 10.2844 9.3869
7 8938 8952 867 5.56‰ 7.0969 7.1663
8 3950 3990 696 4.46‰ 9.8251 9.3711
9 7569 734 631 4.05‰ 6.3829 5.8259

10 9604 9671 598 3.83‰ 10.4688 9.5779

of native coronary artery" does. Moreover, "78650" has a more significant standard deviation. This
could be attributed to the fact that the conditions related to chest pain are sometimes more uncertain than
coronary artery diseases. In addition, the boxplot showing the entropies of the first procedure of "78650"
seems to be very concentrated since more than 99% of the physicians’ order an electrocardiogram,
which is known as the fastest and most straightforward test to evaluate heart conditions.

The findings from Tables 2, 3, and 4 provide insights into how medical procedures influence diagnostic
uncertainty. For instance, Table2 highlights differences in uncertainty between procedures like "7569"
(related to delivery) and "9671" (used for respiratory failure). The former typically leads to more
straightforward diagnoses, while the latter involves more uncertainty due to various unknown factors.
Table 3 examines entropy drops for the first two procedures after admission. Interestingly, procedures
"0066" (PTCA) paired with either "3607" (drug-eluting stent) or "3606" (non-drug-eluting stent) show
that the framework can differentiate between these combinations. Additionally, the "3722-8856" pair

Table 4: Entropy of most frequent first N=3 procedures

# ICD-9 code Cases Frequency Entropy After Receiving
1st procedure 2nd procedure 3rd procedure

1 8952 8744 8938 989 6.3‰ 9.9174 7.4492 6.9336
2 0066 3607 3722 887 5.7‰ 9.7971 7.3538 4.3214
3 8952 8938 8744 769 4.9‰ 9.9189 7.3577 7.1235
4 0066 3607 0045 705 4.5‰ 9.8413 7.3538 6.0209
5 8938 8952 8744 489 3.1‰ 7.1029 7.1663 6.6327
6 3612 3615 3961 372 2.4‰ 9.0666 3.4497 1.4552
7 3613 3615 3961 359 2.3‰ 9.9924 4.3351 2.0094
8 0066 3607 0040 332 2.1‰ 9.8252 7.3538 6.2223
9 0066 3606 3722 306 2.0‰ 9.8325 8.8169 5.6517

10 0066 3607 0046 286 1.8‰ 9.8265 7.3538 5.6552
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("Left heart catheterization" and "Coronary arteriography") shows the largest entropy drop, reflecting
the detailed information provided by coronary arteriography. Table 4 extends this analysis to the
first three procedures. The entropy for triplet "3612-3615-3961" (critical coronary bypass surgeries)
drops significantly, while triplet "8952-8744-8938" (preliminary heart-related exams) shows only
a modest decline. This contrast underscores the importance of life-saving procedures in reducing
uncertainty. The entropy trends in Figure 4 demonstrate varied impacts of procedures on patient
outcomes. In Admission #1, initial entropy reduction reflects the effectiveness of the first procedure,
but later procedures contribute little, suggesting the severity of the condition. Admission #2 shows
fluctuating entropy, indicating varying effectiveness of the procedures, with a final drop suggesting more
informative interventions. Admission #3 displays a steady decrease in entropy, indicating consistent
reduction in uncertainty with each procedure.

These findings highlight the importance of procedure sequencing and selection in managing complex
cases like sepsis, where uncertainty is high. Understanding entropy trends can help physicians make
more informed decisions, offering a more transparent and explainable approach to medical practice.
The proposed framework, tested in both simulated and real-world scenarios, demonstrates its potential
usefulness across diverse medical cases. The use of ICD codes addresses issues like missing values
and outliers, promoting standardization and reliability. These insights have implications for enhancing
Clinical Decision Support Systems (CDSS) by integrating data-driven AI/ML models. By quantifying
medical entropy, the framework may assist clinicians in making robust, timely decisions, particularly
in high-uncertainty situations. However, this study has some limitations. The seq2seq model, while
effective here, may not be optimal in all clinical scenarios, and further exploration of alternative models
is necessary. Additionally, relying on ICD codes may limit the depth of analysis, as they are generated
after patient stays. Their use here is primarily for validation.

Future research could leverage Electronic Health Records (EHR) audit logs to provide a more granular
measure of entropy throughout hospital visits, capturing real-time decision-making processes. EHR
audit logs offer rich, sequential data that could enhance the predictive power and applicability of our
framework in clinical environments [27, 28, 29].

In summary, this study introduces a novel framework for addressing medical uncertainty in clinical
settings. While the approach shows promise in various scenarios, further research is needed to explore
its broader impact on healthcare, particularly in advancing Clinical Decision Support Systems.

5 Conclusion

In conclusion, this study presents an innovative framework for quantifying and managing medical
entropy during hospital admissions. The framework effectively quantifies and adapts to the dynamic
nature of clinical decision-making, providing a nuanced understanding of patient-specific variables
through the use of entropy quantification. Utilizing the MIMIC-IV dataset and focusing on ICD
codes, the study demonstrates how the proposed framework can aid clinicians in reducing diagnostic
uncertainty, particularly in complex and time-sensitive medical scenarios. While the seq2seq model
used has shown promise, the study acknowledges its potential limitations in certain clinical settings
and the need for further exploration of alternative predictive models. Overall, this research contributes
significantly to the enhancement of Clinical Decision Support Systems, offering a novel approach to
handling medical uncertainty and improving patient care outcomes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made about developing a
neural machine translation framework to predict medical diagnoses and quantify uncertainty.
The claims align well with the methods and results sections, reflecting the contributions made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses limitations, particularly regarding the reliance on ICD-9
codes and the seq2seq model’s suitability for clinical scenarios. It also notes that further
exploration of alternative predictive models is necessary (Discussion and Conclusion sections).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: The paper does not present formal theoretical results or proofs, as it focuses on
empirical and applied machine learning techniques.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the data sources (MIMIC-IV),
the model architecture (seq2seq), and entropy quantification methods. This information is
sufficient for reproducing the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: The MIMIC-IV dataset used in this study is a restricted-access resource. To
access the data, users must apply for credentialed access by completing specific training and
obtaining approval. Due to these restrictions, we are unable to provide open access to the
dataset or code used for the experiments. However, the instructions for accessing the data and
reproducing the experiments are detailed, and any credentialed user can follow the process
described to replicate the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper describes the data (ICD-9 codes), the seq2seq model used, and the
evaluation metrics (F1 score, Jaccard Index, and First-N accuracy). It specifies the number of
admissions and procedures in the dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This paper focuses on proposing the framework of medical entropy rather
than emphasizing model performance. Instead of reporting traditional experiment statistical
significance, we provide an in-depth discussion of the medical entropy trends, with error bars
and confidence intervals included to represent variability. Specifically, Figure 3 illustrates
the average entropy trends across different patient admissions, accompanied by error bars
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that reflect the standard deviation of entropy values at each stage. These visualizations help
quantify the uncertainty reduction as procedures are performed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: The paper specifies that all experiments were conducted on a CPU using an Apple
MacBook Pro with the M1 Max chip. This setup provided sufficient computational power
for processing ICD-9 data and running machine learning models. The information ensures
reproducibility on accessible hardware and indicates that no high-performance computing
resources, such as GPUs or cloud servers, were necessary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research aligns with NeurIPS’ ethical guidelines, as the paper focuses on
improving clinical decision-making through AI while acknowledging potential limitations
and transparency concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses the potential positive societal impacts, particularly the
enhancement of clinical decision support systems and the reduction of uncertainty in diagnosis.
The discussion section addresses both positive and potential negative consequences.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The models presented in the paper are unlikely to pose high risks for misuse, as
they are tailored toward medical diagnosis and uncertainty quantification.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
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Answer: [Yes]

Justification: The paper uses the MIMIC-IV database, which is a public dataset. The original
source of the data is credited, and the relevant references are provided.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:The paper does not introduce new datasets or models that require documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or direct research with human subjects.
It uses de-identified, publicly available clinical data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: As the paper relies on de-identified data from the MIMIC-IV dataset, IRB
approval is not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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