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Abstract

Recurrent neural networks (RNNs) are a widely used tool for sequential data analysis; how-
ever they are still often seen as black boxes. Visualizing the internal dynamics of RNNs is a
critical step in understanding the functional principles of these networks and developing ideal
model architectures and optimization strategies. Previous studies typically only emphasize
the network representation post-training, overlooking their evolution process throughout
training. Here, we present Multiway Multislice PHATE (MM-PHATE), a novel method for
visualizing the evolution of RNNs’ hidden states. MM-PHATE is a graph-based embedding
using structured kernels across the multiple dimensions spanned by RNNs: time, training
epoch, and units. We demonstrate on various datasets that MM-PHATE uniquely preserves
hidden representation community structure among units and identifies information process-
ing and compression phases during training. The embedding allows users to look under the
hood of RNNs across training and provides an intuitive and comprehensive strategy for un-
derstanding the network’s internal dynamics, such as why and how one model outperforms
another or how specific architectures impact an RNN’s learning ability.

1 Introduction

Recurrent neural networks (RNNs) are designed to handle sequential data by modeling input sequences and
retaining memory of past elements through recurrent connections or memory units (Lipton et al. |2015; Kaur
& Mohtal [2019). Unlike feedforward neural networks (FNNs), which process each input independently, RNNs
update their internal state dynamically, enabling them to capture contextual relationships across sequences.
This makes RNNs particularly effective for tasks that rely on the order and relationships between elements,
such as time-series analysis and action recognition (Hewamalage et al., [2021)).

Since gaining popularity in the 1990s, various RNN variants and training strategies have been developed
to improve training stability and long-range dependency learning. Architectures such as Long Short-Term
Memory (LSTM) networks (Hochreiter & Schmidhuber} |1996]) and Structurally Constrained Recurrent Net-
works (SCRN)(Mikolov et al.l 2014) were designed to address challenges like the vanishing gradient prob-
lem(Salehinejad et all 2018). Additionally, RNNs excel at handling irregular or incomplete sequential data
due to their flexibility with variable-length inputs. These properties, along with ongoing architectural im-
provements (Salehinejad et al.,|2018)), have enabled RNNs to achieve exceptional performance across domains
such as natural language processing (NLP), neuroscience, and biomedical signal processing (Barak} 2017}
Chen & Li, 2021; Khalifa et al., |2021)). Notably, RNNs remain the state-of-the-art for neural decoding in
intracortical brain-computer interfaces (Deo et al., 2024)).

Despite their extensive use, the learning dynamics and internal representations of RNNs remain difficult to
interpret. This opacity complicates performance evaluation, model design, and parameter selection, hindering
the development of more effective architectures. While significant progress has been made in interpreting
FNNs (Wang et al.|, [2021; [Yu et al.,[2014), similar advances for RNNs have been limited. Most RNN analyses
focus on either fixed-point analysis in dynamical systems (Sussillo & Barak, [2013) or performance evaluations
across different architectures and components (Chung et all 2014 |Greff et al., [2017). Consequently, there
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is a clear need for new methods that facilitate the interpretation of RNNs’ latent representations during
training.

In explainable deep learning, dimensionality reduction is widely used to visualize high-dimensional data,
helping researchers gain intuition about its structure and relationships (Karpathy et al.l 2015; [Hidaka &
Kurita, [2017; Rauber et al., [2016; |Gigante et al., |2019). However, existing techniques often have limita-
tions. Methods like t-SNE emphasize local structure at the expense of global patterns (Maaten & Hinton,
2008)), while methods such as PCA and Isomap focus on global structures and may miss important local de-
tails (Mackiewicz & Ratajczak, 1993} |Tenenbaum et al., 2000). These methods can also be sensitive to noise
and outliers (Moon et al., [2019). Visualizing RNNs is particularly challenging since they require preserving
structures across multiple dimensions, including time, epochs, and hidden units. Consequently, traditional
dimensionality reduction techniques often fail to capture the complexity of RNN learning dynamics.

To address these challenges, Gigante et al.(Gigante et al., 2019) introduced Multislice PHATE (M-PHATE),
which visualizes FNN hidden states during training. M-PHATE constructs a multislice graph where each
slice represents the network’s state at a specific training epoch, capturing both temporal relationships and
community structures through PHATE(Moon et al., 2019)). This approach effectively captures performance-
related features, such as task-related specialization, without requiring external validation data, making it
particularly useful in data-limited settings.

However, M-PHATE is designed for FNNs and does not account for the sequential nature of RNNs, where
hidden states across all time steps play a critical role in representation learning (Su & Shlizerman, |2020)). To
address this limitation, we propose Multiway Multislice PHATE (MM-PHATE), which extends M-PHATE
by capturing RNN hidden states across both time steps and epochs. MM-PHATE provides a comprehensive
view of RNN learning dynamics, offering deeper insights into how information is processed and represented
during training. Our results demonstrate that MM-PHATE preserves more dynamic details essential for
understanding RNN performance compared to existing methods such as PCA, t-SNE, Isomap, Locally Linear
Embedding (LLE), UMAP, and M-PHATE.

Our main contributions are as follows:

e We introduce MM-PHATE, a novel framework for visualizing the hidden dynamics of RNNs across
both time steps and epochs. This method provides new insights into the learning trajectory, learned
representations, and model performance.

e We show that MM-PHATE preserves the community structure of hidden units by tracking their
learning trajectories and capturing correlations among their activations throughout training.

e MM-PHATE reveals phases of information processing and compression during training, consistent
with the information bottleneck theory. We perform experiments to quantitatively confirm that the
information retained by the network is reflected in the MM-PHATE embedding.

2 Related Work

Existing methods for interpreting RNNs can be categorized into performance-oriented and application-
oriented post-training analyses. Performance-oriented approaches focus on evaluating network-level perfor-
mance by comparing architectural components and training parameters. For example, |Chung et al.| (2014)
compared gated RNNs (e.g., GRUs and LSTMs), while (Greff et al| (2017)) conducted a detailed analysis of
LSTM components. However, these studies primarily emphasize performance outcomes and provide limited
insights into the hidden state dynamics and learned representations within RNNs.

In contrast, application-oriented approaches focus on visualizing and interpreting hidden state activations
after training, often in the context of specific tasks. In NLP, Karpathy et al. (2015)) overlaid activation
maps on texts, revealing interpretable unit behaviors such as tracking text structure. |Li et al.| (2016]) used
saliency heat maps to identify critical words in learned representations, while Strobelt et al. and Ming et
al. developed interactive tools to correlate hidden state patterns with phrases (Strobelt et al., 2018} [Ming
et al.,|2017)). Similar techniques have been applied to domains such as speech recognition (Tang et al., [2017)),
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earth sciences (Titos et al.l|2022)), and medical applications (Kwon et al., 2019). While these studies provide
intuitive, task-specific insights, they often lack generalizability and do not capture training dynamics over
time.

Other works have explored general RNN behavior using techniques such as Proper Orthogonal Decomposition
(POD) to analyze Seq2Seq internal states (Su & Shlizerman) 2020) and PCA to link recurrent activations to
model generalization (Farrell et al., 2022)). However, these approaches focus on post-training analysis and do
not visualize how hidden states evolve across both time-steps and epochs during training. To our knowledge,
no existing methods provide a unified view of RNN hidden dynamics over temporal and training dimensions.

3 Background

PHATE: PHATE is a data visualization technique that can capture both the local and global struc-
ture of data using diffusion processes (Moon et al., 2019). The PHATE algorithm optimizes the diffusion
kernel (Coifman & Lafon, 2006) for the visualization of high-dimensional data. Let x; be a point in a high-
dimensional dataset. PHATE begins by computing the Euclidean distance matrix E between all data points,

where E;; = ||z;—x;||2. These distances are then transformed into affinities using an adaptive a-decay kernel
[e3% [}
Ky o(zi,z;) = %exp (— (e,ﬁai)) ) + %exp (— (6:?;’3)) ), which adapts to the data density around each

point and captures local information. The parameters €;(z;) and € (z;) are the k-nearest-neighbor distance
of z; and z;, and a controls the decay rate. The affinities are then row-normalized to obtain the diffusion
operator P = D™'Kj, , that represents the single-step transition probabilities between data points, where
D is a diagonal matrix whose entries are row sums of Ky .. PHATE calculates the information distance

between points based on their transition probabilities: dist;; = ,/[/log P{ —log Pf||?, where P* captures

the transition probabilities of a diffusion process on the data over t steps and ¢ and j are rows in the ma-
trix. These distances are embedded into low dimensions using Multidimensional Scaling (MDS) (Ramsay,
1966) for visualization. Local and global distances within the data’s manifold are represented in PHATE by
multistep diffusion probabilities. The diffusion probability of each point captures its local context, enabling
pairwise comparisons between all points (both neighboring and distant points) that represent the entire
global context. For further details, see (Moon et al., 2019). We will use PHATE to embed RNN training
dynamics, however we alter the initial graph construction to emphasize certain structures in the data we
wish to visualize.

M-PHATE: |Gigante et al.|(2019) model the evolution of the hidden units in a feedforward neural network
and their community structure using a multislice graph. Each slice corresponds to the network at an epoch
during training, and the collection of graphs represents the dynamical system resulting from the evolution
of the network’s hidden states. Let F' be an FNN with a total of m hidden units, and let F(7) be the
representation of the network after being trained for 7 € {1,...,n} epochs on the training data X sampled
from a larger dataset IT. The algorithm first calculates a shared feature space using the normalized activations
of all hidden units ¢ € {1,...,m} on the input data, as a 3-dimensional tensor:
() 1 ()
Tiryigy = OB 2B (09
Var,[F{” (¥;)]

where E(T)(Yk) : RY — R denotes the activation of the i-th hidden unit of F for the k-th sample from input
data Y. Here, Y is a subset of p samples from the d-dimensional training data X, with an equal number
of samples from each input class, and p < | X|. This activation tensor T is then used to calculate intraslice
affinities between pairs of hidden units within an epoch 7 during the training, as well as the interslice affinities
between a hidden unit ¢ and itself at different epochs:

KO (i) = exp (—IIT(T, i) - T(m’)llé")

intraslice o
(7,1)

Ki(rizerslice(T’ U) = €xp (

—T (%) — T(W’)II%)

€2
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where « is the a-decay parameter, o, ;) is the intraslice bandwidth for unit 7 in epoch 7, and € is the fixed
interslice bandwidth. These matrices are combined to form an nm x nm multislice kernel matrix K, which
is then symmetrized, row-normalized, and visualized using PHATE in 2D or 3D.

4 Multiway Multislice PHATE

Ki(nzl?:rslcp((’r‘ UJ) ('l? V))

Figure 1: Example schematic of the multiway multislice graph used in MM-PHATE for RNNs. The intrastep
kernels represent the similarities between the graph nodes at the same time-steps. The interstep kernels
represent the similarities between the nodes and themselves at different time-steps and epochs.

M-PHATE was shown to be a powerful tool for visualizing FNNs. However, to effectively visualize the
evolution of RNNs’ hidden representations, we need to consider hidden state dynamics across time-steps
within the sequence and training epochs concurrently (Su & Shlizerman) 2020)). In RNNs, the output from
previous time-steps is fed as an input to current time-steps. This is useful in the treatment of sequences
and building a memory of the previous inputs into the network. The network iteratively updates a hidden
state h. At each time-step t, the next hidden state h;i; is computed using the input z; and the current
hidden state h;. Importantly, the network uses the same weights W and biases b for each time-step. Thus
the output y; at time-step t is y¢ = f(W - hy +b), where f is some activation function.

Let R(™) be the representation of an m-unit RNN after being trained for 7 € {1,...,n} epochs on the
training data X C II. We denote R\ (Y3) : R? — R the activation of the i-th hidden unit of R at time-step

T,W
w € {1,...,s} in epoch 7 for the k-th sample of Y, where Y consists of p samples from the training data
X. We construct the 4-way tensor T' using the hidden unit activations as a shared feature space, which we
use to calculate unit affinities across all epochs and time-steps. The tensor T is an n X § X m X p tensor
containing the activations at each epoch 7 € {1...n} and time-step w € {1...s} of each hidden unit R;
(1 € {1...m}) with respect to each sample Y;, C X. To eliminate the variability in T due to the bias term

b, we z-score the activation of each hidden unit at time-step w and epoch 7:

R v -1y, Ry,
T(T,w,i,k’) _ z,w( k) D Zé z,w( E).

(1)
Var R (v;)]

T,W

We construct a kernel over T utilizing our prior knowledge of the temporal aspect of T' to capture its
dynamics over epochs and time-steps. This constructed kernel, denoted K, represents the weighted edges in
the multislice graph of the hidden units(Fig. . In this representation, each unit has two types of connections:
edges between the unit to itself across epochs and time steps and, within a fixed epoch and time-step, edges
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between a unit and its community—the other units which have the most similar representation. The edges
are weighted by the similarity in activation pattern. We define K as a nsm x nsm kernel matrix between all
m hidden units at all s time-steps in all n training epochs. The ((7 — 1)sm + (w — 1)m + j)s, row or column
of K refers to the jy, unit at time-step w in epoch 7. We henceforth refer to the row as K((7,w, j),:) and
the column as K (:, (7,w,j)). In order to capture the evolution of hidden units of R across time-steps and
epochs, while preserving the unit’s community structure, we construct a multiway multislice kernel matrix
reflecting two types of connections simultaneously. Given the a-decay parameter «, the intrastep bandwidth
for unit ¢ at time-step w and epoch 7: (., ;), and the fixed interstep bandwidth ¢, we define:

o Intrastep affinities between hidden units ¢ and j at time-step w in epoch 7:

g .
(T,w,1)

T,w . H T(T7wai) — T(T7w7j) ||a
Ki(ntra)step (Z7j) = €xp <_ P 2

o Interstep affinities between a hidden unit 7 and itself at different time-steps and epochs:

T w, i) =T, v, i) ||§)

€2

Ki(rizerstep((T7 W), (n’ V)) = exXp (

The bandwidth o, ;) of the a-decay kernel is set to be the distance of unit 7 at time-step w from epoch
n to its k-th nearest neighbor across units at that time-step and epoch: o(,, ;) = di(T(7,w, %), T(7,w,)),
where dj(z,Z) denotes the {5 distance from z to its k-th nearest neighbor in Z. We used k£ = 5 in all
the results presented. The use of this adaptive bandwidth means the kernel is not symmetric and thus

requires symmetrization. In the interstep affinities Ki(rfgerstep, we use a fixed-bandwidth Gaussian kernel

e = N 3 S dk(T(,w,i),T(:,:,4)), the average across all time-steps in all epochs and all

nsm T=1
units of the distance of unit ¢ at time-step ¢ to its ky, nearest neighbor among the set consisting of the same

unit 7 at all steps.

The combined kernel matrix of these two matrices contains one row and column for each unit at each time-
step in each epoch, such that the intrastep affinities form a block diagonal matrix and the interstep affinities
form off-diagonal blocks composed of diagonal matrices (Fig. [A.1)).

Ki(rz_—t’g)step(i?j) if (T’ OJ) = (777 V)
K((7,0,0), (0,1,4) = { Kiilerstep(T,0), (0,0)) if i = j 2)
0 otherwise

We symmetrize this final kernel as K’ = %(K + K7T), and row-normalize it to obtain P = D~'K’, where
D is a diagonal matrix whose entries are row sums of K’ and which P represents a random walk over
all units at all time-steps in all epochs, where propagating from one state to another is conditional on the
transition probabilities between time-step w in epoch 7 and time-step v in epoch 1. PHATE is applied to
P to visualize the tensor T in two or three dimensions. This resulting visualization thus simultaneously
captures information regarding the evolution of the units across both time-steps and epochs.

5 Results

We demonstrate the ability of MM-PHATE to capture useful properties of RNN learning on two datasets: 1)
The Area2Bump dataset (Chowdhury et al., 2022) consisting of neural activity recorded from Brodmann’s
area 2 of the somatosensory cortex while macaque monkeys performed a slightly modified version of a
standard center-out reaching task and 2) The Human Activity Recognition (HAR) Using Smartphones
dataset (Reyes-Ortiz et all 2012), kinematic recordings of 30 subjects performing daily activities with a
smartphone embedded with an inertial measurement unit.
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Figure 2: Area2Bump: Visualization of a 20-unit LSTM network trained for 200 epochs. The visualizations
are generated using MM-PHATE, PCA, t-SNE, Isomap, Locally Linear Embedding(LLE), and Uniform
Manifold Approximation and Projection(UMAP) from left to right, respectively. Points are colored based
on epoch (top row) or time-step (bottom row).

5.1 Neural activity

We begin with the Area2Bump dataset, which consists of spiking activity data from macaques
. To analyze the learning dynamics of an LSTM network, we trained a single-layer, 20-unit LSTM
on the Area2Bump dataset to classify arm-reaching directions. We then applied MM-PHATE to visualize
how its hidden representations evolved during training. In an example session where our network achieved
a validation accuracy of 74%, we applied the MM-PHATE visualization to the tensor T' that consisted of
the network activations of all 20 units over 600 time-steps for each of 200 training epochs. In practice, we
sampled time-steps and epochs to reduce memory load. Each point in the visualization represents a hidden
unit at a given time-step in a given epoch (Fig.[2)). Here we compare MM-PHATE to five other dimensionality
reduction techniques: PCA, t-SNE, Isomap, LLE, UMAP, as well as M-PHATE in the supplement (Fig. ,
using the same T tensor. We first flattened T' along the epoch, time-step, and unit axis, and embedded it
with each of the dimensionality reduction methods.

Notably, the MM-PHATE visualization reveals a distinct split in representations during the later time-steps
and epochs, highlighting unique learning patterns as the model converges. For instance, there should be
visible shifts in representation before epoch 100, corresponding to the significant performance change during
the initial training phase (Fig. . PCA and Isomap, while capturing a seemingly smooth transition, fail to
reveal distinct differences between early and late epochs. In contrast, t-SNE produced a visualization that
lacked continuity across time steps and epochs, likely due to its high sensitivity to noise. Both LLE and
UMAP were more effective at clustering each hidden unit’s trajectory. However, like PCA and Isomap, these
methods do not clearly highlight the transformation in representation between early and late epochs.

5.1.1 Intra-step entropy

To evaluate the effectiveness of our embedding in capturing meaningful structures within the network’s hidden
dynamics, we next analyzed the flow of information during training (Fig. . Specifically, we aimed to analyze
the spread of points in the MM-PHATE space, which corresponds to the diversity of the network’s internal
representations. To quantify this property, we computed the entropy between hidden units in the embedded
space at each time-step w and compared these intra-step entropies with the accuracy and loss metrics recorded
at the end of each training epoch. Conceptually, we model a general RNN trained on dataset X with label
L as a Markov chain (L — X — R). This allows us to estimate the mutual information between X and
Ras I(X,R) = H(R) — H(R|X), where H(R) and H(R|X) are the marginal and conditional entropies.
Given the deterministic nature of RNNs, H(R|X) equates to zero, indicating that H(R) at each time-step
w reflects the input information the network retains during training (Tishby & Zaslavsky, [2015; |Cheng et al.l

2019).
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Figure 3: Intra-step entropy of all hidden units in embedding space at each time-step in each epoch, compared
to training and validation accuracy (top) and losses (bottom), comparing embeddings of MM-PHATE, PCA,
t-SNE, Isomap, LLE, and UMAP.

Our analysis of the MM-PHATE embedding revealed a general increase in entropy (Fig. [3)) around epoch
100, where the network begins to overfit. We hypothesize that this rise is due to the memorization of
noise or other nuisance variance in the training data. Changes in entropy at specific time steps and epochs
coincided with shifts in model performance, suggesting that MM-PHATE effectively captures and retains
dynamic information critical to the learning process. For example, fluctuations in validation accuracy before
epoch 30 were not reflected in the training loss curve but were detected by MM-PHATE. This indicates that
MM-PHATE offers insights beyond those provided by accuracy and loss metrics alone.

MM-PHATE also highlights information processing patterns across time steps, which are inaccessible through
epoch-level accuracy and loss measurements. By generating intra-step entropy plots for each time step, MM-
PHATE enables comparisons of temporal dynamics within the network. We observed that entropy at earlier
time steps increases and plateaus around epoch 100, while later time steps show spiking activity around the
same epoch before returning to earlier levels. Although the reason behind these diverging patterns remains
unclear, MM-PHATE clearly reveals additional insights into the network’s internal dynamics.

We conducted the same intra-step entropy analysis using other dimensionality reduction methods (Fig. |3).
MM-PHATE captures an earlier rise in entropy compared to PCA and Isomap, which only show entropy
changes after overfitting has begun, thus reflecting a more nuanced transition into memorization. PCA failed
to capture early performance transitions, likely due to its linear nature and emphasis on global structure.
Similarly, Isomap, LLE, and UMAP did not detect significant performance-related dynamics before overfit-
ting. Although PCA and Isomap showed an increase in entropy, this occurred only after the training loss
had plateaued. By contrast, MM-PHATE detected an earlier rise in entropy, corresponding to the transition
into the plateau phase and more accurately reflecting the underlying dynamics. Meanwhile, t-SNE struggled
to capture both global structure and entropy changes, underscoring MM-PHATE’s superior ability to reveal
hidden learning dynamics.

Additionally, to verify that the MM-PHATE embedding and intra-step entropy indeed reflect the information
retained by the network, we conducted a random label analysis. Inspired by the experiments in
, which link mutual information to model performance and robustness, we manipulated the level
of overfitting by training models with varying degrees of label shuffling. We then tracked changes in the
representation structure over training. With minimal or no shuffling, the embeddings formed distinct clusters
representing meaningful class structure. As overfitting increased, these clusters blurred and eventually
collapsed, reflecting a loss of task-relevant information (Fig. . This was further quantified using Jensen-
Shannon Divergence (JSD) and Total Variation Distance (TVD) (Fig. [A.6). Additional details and results
are provided in Appendix [A74]
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Figure 4: a) Inter-step entropy of each hidden unit across epochs, alongside model accuracy (left) and loss
(right). b) Clusters of hidden units from the model’s inter-step entropy trajectories across epochs. Left:
Trajectories of the units in cluster 0 (12 units) and cluster 1 (8 units). Right: cluster center trajectories

across epochs. ¢-d) Confusion matrices of clusters on training and validation data.

5.1.2 Inter-step entropy

To further evaluate the quality of our embedding, we quantified the inter-step entropy of hidden unit acti-
vations across various time steps w (Fig. @) While intra-step entropy measures diversity within a single
time step, inter-step entropy tracks how unit activations change across time. This allows us to identify units
that contribute more to temporal dependencies. Our analysis revealed distinct patterns among these units.
Certain units exhibited significantly higher inter-step entropy, indicating greater sensitivity to input changes
over time and a potential role in capturing temporal dependencies. These units peaked in inter-step entropy
around epoch 80, aligning with peaks in intra-step entropy at later time steps, suggesting their contribution
to increased mutual information during these periods.

To validate these findings, we clustered the hidden units into two groups using k-means clustering with the
Dynamic Time Warping (DTW) metric, expecting one cluster to exhibit higher inter-step entropy (Fig. )
Clustering revealed distinct inter-step entropy trajectories across epochs. Cluster 1 (8 units) consisted of the
high-entropy units identified earlier, while units in cluster 0 (12 units) showed a sharp decline in inter-step
entropy around epoch 100.

To further explore these clusters, we created sub-networks based on the units from each cluster, maintaining
the original network architecture. We assessed their learning capabilities by comparing confusion matrices
and evaluating their performance on both training and validation data (Fig. —d). Interestingly, despite
having fewer units, cluster 1 achieved significantly better performance on both datasets. This supports
our earlier hypothesis that cluster 1 captures more complex temporal dependencies from the input. These
results demonstrate that our visualization and clustering approach effectively reveals critical differences in
how information is processed and represented within the network.

Previous studies have emphasized the importance of clustering hidden unit activations to understand the
quality of learned representations (Su & Shlizerman| [2020} Oliva & Lago-Ferndndez, 2021; [Ming et al.| [2017).
Our findings highlight the importance of capturing each unit’s temporal dynamics and community structure,
as well as how these structures evolve across time steps and epochs.

Comparisons with other dimensionality reduction techniques revealed significant limitations (Fig. [A.14]).
PCA, Isomap, LLE, and UMAP were unable to capture subtle dynamic variations, particularly during the
early epochs before overfitting. While t-SNE reflected general performance transitions, its trajectories were
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noisy and lacked precision. Most importantly, none of these methods effectively differentiated the learning
behavior of individual units or captured their community structure. These results underscore the superior
ability of MM-PHATE to preserve and reveal the hidden dynamics of RNNs during training.

In the appendix, we present results for different RNN architectures, namely GRU and Vanilla RNN
, both with 20 hidden units. Using the Area2Bump dataset, we additionally tried different LSTM
sizes (10, 20, 30, 40, 50) . We observed consistent visualizations when varying network size. Changing
the learning rate helped confirm that the visualization indeed reflects the model learning, i.e. the resulting
change of entropies should always follow the change of model performance.

5.2 Analysis with Human Activity Recognition Model
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Figure 5: a) MM-PHATE visualization of a 30-unit LSTM network trained on HAR data, colored by epoch
(left) and time-step (right). b) Intra-step entropy, c) and inter-step entropy.
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Figure 6: PCA on the 2 datasets. The Area2Bump data requires 35 PCs (left) to cover 95% of the variance.
The HAR data (right) requires 6 PCs to cover 95% of variance.

We next analyzed an action recognition dataset by training a 30-unit LSTM network designed for kinematics-
based Human Activity Recognition (HAR) (Reyes-Ortiz et all),2012). The model was trained for 1000 epochs,
achieving a final validation accuracy of 84% (Fig. . We applied MM-PHATE to the tensor of hidden unit
activations and repeated the analysis performed on the Area2Bump dataset.

Similar to the Area2Bump model, the HAR network exhibited an increase in intra-step entropy at the
onset of overfitting. Notably, entropy gradually increased across time steps before epoch 300. After this
point, entropy at later time steps dropped significantly, while entropy at earlier time steps remained stable
throughout training. This pattern suggests a reduction in mutual information between the input and hidden
states as the network processed more input over time. This behavior aligns with findings by
, who reported similar dynamics of information expansion and compression in trained RNNs. Their
work demonstrated how gradient-based learning mechanisms balance expansion and compression processes
to develop robust representations.

Inter-step entropy analysis provided further insights. Entropy in many hidden units began to increase
sharply around epoch 300, coinciding with a decrease in intra-step entropy and an improvement in model
performance. High inter-step entropy suggests that these units become more sensitive to input changes
across time and play a critical role in learning complex dependencies. Despite this increase in time-dependent
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information, the network appears to compress this information into a more compact overall representation.
This process is consistent with the information bottleneck theory, which posits that deep networks undergo a
fitting phase followed by a compression phase to distill useful information and improve generalization (Cheng
et al.| |2019; [Tishby & Zaslavsky, |2015; Butakov et al., |2023]).

Given these observations, this raises the question of why the Area2Bump model does not exhibit a similar
compression phase. (Cheng et al.| (2019)) suggest that models with limited generalizability often fail to display
a compression phase, particularly when applied to complex datasets with relatively simple network architec-
tures. Since both models have comparable structures, we examined the complexity of the two datasets by
analyzing the number of principal components (PCs) needed to explain 95% of the variance. The Area2Bump
data required 35 PCs, compared to only 6 for the HAR data (Fig. @ This significant difference in data
complexity likely accounts for the absence of a compression phase in the Area2Bump model.

Our analysis demonstrates that information compression in RNNs occurs both across time steps and epochs,
closely aligning with performance improvements. These findings affirm the utility of the information bot-
tleneck theory in understanding RNN learning dynamics and confirm that MM-PHATE effectively uncovers
detailed insights into the evolution of hidden representations. This aligns with insights from the conditional
entropy bottleneck framework, which suggests that balancing the retention of essential input information
while discarding irrelevant noise is crucial for improving both model generalization and robustness (Fischer,
2020).

6 Conclusion

In this paper, we introduced MM-PHATE, a dimensionality reduction technique designed to visualize the
hidden dynamics of RNNs during training. MM-PHATE captures the evolution of these dynamics across
both time steps and epochs, offering insights beyond traditional metrics like accuracy and loss curves, as
well as other dimensionality reduction methods. Our entropy-based analysis shows that MM-PHATE can
reveal distinct learning behaviors and the roles of hidden units in information flow, consistent with principles
from the information bottleneck theory. We also quantitatively confirmed that the information retained by
the network is reflected in the MM-PHATE embedding. This approach is particularly valuable in data-
limited settings, as it does not require validation data. Additionally, by analyzing the hidden state dynamics
throughout training, MM-PHATE provides deeper insights into the model’s learning trajectory and the
evolving structure of its representation.

Despite its strengths, our approach relies on several assumptions. One key assumption is the continuity of
time and epochs, encoded through the structured graph kernel. This assumption may not hold in cases of
large learning rates, multiple significant restarts, or discontinuous activation functions, potentially leading
to less informative visualizations (Moon et al., 2019).

Additionally, while MM-PHATE builds on a computationally efficient PHATE implementation, the memory
complexity of its multiway-multislice kernel poses challenges when scaling to larger architectures or datasets.
However, PHATE has been shown to be robust to sub-sampling, maintaining strong correlations even with
significant data reduction (Moon et al.||2019)). For example, their results indicate that PHATE performs well
with as little as 5% of data points retained. This supports kernel sub-sampling as a practical strategy for
improving scalability. Other solutions, such as graph partitioning and data point merging (Kuchroo et al.
2022; Holtz et al., [2022), can further alleviate memory issues without compromising structural integrity.

Furthermore, MM-PHATE does not yet incorporate internal model structures such as attention mechanisms
found in transformers (Vaswani et all 2017). Extending MM-PHATE to analyze transformers—mnow domi-
nant in sequential data analysis—remains a promising area for future work. However, RNNs continue to play
a crucial role in many fields (Deo et al.l|2024), particularly in scenarios with limited data where transformers
may be impractical. Therefore, while MM-PHATE is optimized for RNNs, future adaptations could offer
new insights into the hidden dynamics of transformer architectures.
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A Appendix

A.1 Datasets

We employed two datasets.

1. The Area2Bump dataset (Chowdhury et al., [2022)) consists of neural activity recorded from Brod-
mann’s area 2 of the somatosensory cortex while macaque monkeys performed a slightly modified
version of a standard center-out reaching task. Dataset license: CCO 1.0. According to the au-
thors, data was collected consistently "with the guide for the care and use of laboratory animals
and approved by the institutional animal care and use committee of Northwestern University un-
der protocol #IS00000367". This dataset, collected from monkeys thus does not contain personally
identifiable information. Since it is neural data, we do not consider it to be offensive content.

Data Statistics: The dataset includes 193 samples, split into 115 training samples and 78 testing
samples. Each sample consists of 600 time steps with 65 features per time step. For the training set,
the mean values across features range from 0.0001 to 0.03, with standard deviations between 0.001
and 0.02, and maximum values ranging from 0.003 to 0.12. In the test set, the mean values range
from 0.00008 to 0.03, standard deviations from 0.0007 to 0.018, and maximum values from 0.0007
to 0.13.

2. The Human Activity Recognition (HAR) Using Smartphones dataset (Reyes-Ortiz et al. 2012),
kinematic recordings of 30 subjects performing daily living activities with a smartphone embedded
with an inertial measurement unit. Dataset license: CC BY 4.0. Information relating to participant
consent was not found relating to this dataset. This dataset does not reveal participant name
or identifiable information. The kinematics contained in the dataset are not considered offensive
content.

Data Details: The dataset includes six activity classes (e.g., Walking, Sitting) based on accelerometer
and gyroscope data sampled at 50 Hz. The sensor data has been pre-processed with noise filtering
and separated into gravitational and body motion components. Data is windowed into 2.56-second
segments (128 data points) with 50% overlap, resulting in 561-dimensional feature vectors per win-
dow. The dataset is split into 70% training (21 subjects, 7352 samples) and 30% testing (9 subjects,
2947 samples).

Data Statistics: For the training set, mean values across features range from -0.0008 to 0.8, with
standard deviations between 0.1 and 0.41, and values spanning from -5.97 to 5.75. For the test set,
mean values range from -0.013 to 0.8, with standard deviations between 0.095 and 0.41, and values
spanning from -3.43 to 3.47.

A.2 Model Training

We used TensorFlow’s Keras API for all model training and validation.
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The network in Section [5.1] was trained as follows. The Area2Bump dataset was randomly split into training
and validation subsets containing an equal number of samples for each input class with an 8 to 2 ratio.
Additional samples that would have made the training data uneven were added back to the validation subset
to utilize all available samples. The network consists of an LSTM layer with 20 units. This is followed
by a Flatten layer that converts the LSTM’s output into a one-dimensional vector. Finally, a Dense layer
with 8 units and a softmax activation function produces the output for the 8-class classification tasks. The
network was trained with a batch size of 64. We used an Adam optimizer with a learning rate of le .
During the training process, we recorded the activations from the LSTM layer into the activation tensor T’
for visualization.

The network in Section [5.2] was trained as follows. The HAR dataset was preprocessed and split by the
authors into training and validation subsets according to the subjects with a 7 to 3 ratio. The network
consists of an LSTM layer with 30 units and a Dense layer with 6 units and a softmax activation function
produces the output for the 6-class classification tasks. The network was trained with a batch size of 32.
We used an Adam optimizer with a learning rate of 2e~5. During the training process, we recorded the
activations from the LSTM layer into the activation tensor T for visualization.

A.3 Implementation of visualization methods

T,w), (n, V)

()
interstep((

), (

(T, w) ..
intrastep(ll-/)

Figure A.1: Example schematic of the multiway multislice kernel used in MM-PHATE for RNNs. The
intrastep kernels represent the similarities between the graph nodes at the same time-steps. The interstep
kernels represent the similarities between the nodes and themselves at different time-steps and epochs.

A3.1 MM-PHATE

Due to memory constraints, we only used a subset of the tensor T for MM-PHATE computation. Specifically,
for the Area2Bump model in section epochs were sampled using an array combining the first 29 epochs
with every 5th epoch thereafter to cover the initial rapid learning phase, and intrinsic steps were sampled
using a linear space from 0 to the end (600), resulting in 100 evenly spaced steps. For the HAR model
in Section we sampled the epochs using an array combining the first 29 epochs with every 10th epoch
thereafter. We utilized the M-PHATE package to construct our multiway multislice graphs and for the
application of PHATE.

A.3.2 PCA
PCA was performed using the "PCA" class from the "sklearn.decomposition" package to reduce the dimen-

sionality of the time trace tensor T—recorded during training of the Area2Bump model—to three principal
components.
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A.3.3 t-SNE

In this analysis, we first conducted an initial dimensionality reduction on the same time trace tensor T with
PCA to 15 principal components, which explains 99.93% of the variance in the activations. Subsequently,
t-SNE with the Barnes-Hut approximation was performed using the "sklearn.manifold. TSNE" class.

A.3.4 Isomap

Due to memory constraints, we only used a subset of the tensor T for Isomap computation. Specifically,
epochs were sampled using an array combining the first 29 epochs with every 10th epoch thereafter, and in-
trinsic steps were sampled using a linear space from 0 to the end (600), resulting in 50 evenly spaced steps. We
first conducted an initial dimensionality reduction on the sampled tensor with PCA to 15 principal compo-
nents using "sklearn.decomposition.PCA" package. Then, we applied Isomap using "sklearn.manifold.Isomap"
class to reduce the dimensionality to 3.

A.4 Random Label Analysis
A.4.1 Experimental Setup

To investigate the effects of overfitting on hidden unit representations, we conducted a random label analysis,
inspired by experiments in [Fischer| (2020). The goal was to observe how varying levels of label shuffling
influence both the information retained in the network and the structure of the hidden representations, as
captured by MM-PHATE embeddings and intra-step entropy measures.

We trained multiple LSTM models (1 layer, 100 hidden units) under different levels of label shuffling. For
each experiment, a specified number of classes had their labels randomly reassigned, increasing the noise in
the target variable. We randomly selected 10 combinations of shuffled classes for each condition. Models
were trained using a learning rate of 0.0001, with other hyperparameters held constant. After 200 training
epochs, most models achieved 0 training loss. We evaluated representations in the last training epoch across
600 time steps. The following metrics were extracted: Mean entropy and variance of entropy at each time
step, computed over all hidden unit activations. We also looked at the maximum entropy and the entropy of
the last time-step in the last epoch. Jensen-Shannon Divergence (JSD) and Total Variation Distance (TVD)
of the entropy distribution compared to a reference model trained with correct labels.

A.4.2 Metrics and Analysis

Intra-step Entropy: Entropy at each time step was calculated to quantify the uncertainty in hidden unit
activations. Mean entropy reflects the overall uncertainty, while variance of entropy indicates how much this
uncertainty fluctuates over time.

Jensen-Shannon Divergence (JSD): JSD was used to measure the distributional divergence of entropy between
models with shuffled and correct labels. Higher JSD values indicate that the network’s representations have
deviated significantly due to overfitting.

Total Variation Distance (TVD): TVD quantifies the absolute shift in entropy distribution. Like JSD, higher
TVD values imply that the model’s representation has undergone drastic changes, suggesting increased
memorization.

A.4.3 Results

The results confirmed our hypothesis that overfitting reduces representation quality:

MM-PHATE embeddings: With minimal or no shuffling, the embeddings formed distinct clusters repre-
senting meaningful class structure. As overfitting increased, these clusters blurred and eventually collapsed,
reflecting a loss of task-relevant information (Fig. . The inter-step entropy ( shows that the hidden
units become more and more sensitive to temporal change in the input sequence as the level of overfitting
increases.
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Figure A.2: Random Label: Visualization of 100-unit LSTM networks trained for 200 epochs on training
data with different percentages of random labels. The number indicates the number of shuffled classes. Each
point represents a hidden unit at a specific time-step in a given epoch throughout the entire training process.
Points are colored based on epoch (top row) or time-step (bottom row)
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Figure A.3: Random Label: Intra-step entropy of the MM-PHATE embedding of 100-unit LSTM networks
trained for 200 epochs on training data with different percentages of random label. The number indicates
the number of shuffled classes. Each line represents the entropy at a given time-step across training epochs.
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Figure A.4: Random Label: Inter-step entropy of the MM-PHATE embedding of 100-unit LSTM networks
trained for 200 epochs on training data with different percentages of random label. The number indicates the
number of shuffled classes. Each line represents the entropy of a hidden unit across time-steps at different
epochs.

Intra-step entropy trends: Maximum, mean entropy, last-timestep intra-step entropy and variance decreased
as more classes were shuffled, indicating that the network became increasingly rigid and deterministic
(Fig. [AJ5).

Divergence metrics: We calculated JSD and TVD on both the MM-PHATE embedding and the entropy
distribution across time-steps in the last epoch. Both JSD and TVD increased with shuffling, confirming
significant shifts in the entropy distribution. These metrics demonstrate that overfitting alters the model’s

capacity to maintain structured representations, and that MM-PHATE successfully retained these dynamics
in the lower dimension space (Fig. |A.6]).

A5 M-PHATE

M-PHATE was applied to the same 20-unit LSTM network trained on the Area2Bump dataset. The al-
gorithm only incorporated the final state, or time-step, from each epoch. While the resulting visualization
captures smooth transitions across epochs, it omits critical information from earlier time-steps. This loss of
temporal resolution obscures insights into how the network processes input sequences over time—an essen-
tial aspect for understanding RNNs, for instance, how much sequential input information is retained by the
network.

A.6 Area2Bump with GRU

Here is the same analysis as section using GRU (Fig. A.10). Other parameters were kept the

Saime.

From these figures, it is evident that PCA and t-SNE present similar visualizations of the hidden dynamics
across different network architectures, while MM-PHATE distinctly captures the unique learning behaviors
of each model. Consistent with Section [5.1} PCA displays an increasing intra-step entropy even after model
accuracy has plateaued, and t-SNE produces a noisy visualization. In contrast, MM-PHATE uniquely aligns
its transitions well with the learning curve. Notably, the GRU model’s representation appears more compact
and organized compared to the LSTM model, potentially reflecting its superior performance and reduced
overfitting.
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Figure A.5: Maximum, mean, last time-step intra-step entropy at the last epoch for models trained with
different label shuffling levels.

A.7 Area2Bump with Vanilla RNN

Here is the same analysis as section using vanilla RNN (Fig. [A.11] [A.12] [A.13)). Other parameters were
kept the same.

From these figures, it is evident that regardless of the network architectures, PCA exhibits a revolving pattern
with overly smooth transitions across epochs, while t-SNE produces a noisy visualization. In contrast, the
MM-PHATE visualization reveals that the Vanilla RNN displays a more chaotic pattern compared to the
LSTM and GRU models, which is likely associated with its reduced performance and increased overfitting.
Furthermore, the intra-step entropies of MM-PHATE show reduced variation across time-steps, indicating
that the model struggles to process the input data effectively to generate meaningful representations.

A.8 Area2Bump with LSTM of Various Sizes

Here we repeat the same MM-PHATE analysis as in section 5.1 using LSTM of various sizes (Fig.
. Other parameters were kept the same. These results demonstrate that MM-PHATE consistently
captures smooth yet distinct transitions across epochs and time steps, regardless of the LSTM network
size. The intra- and inter-step entropy analyses further reveal that these transitions closely correlate with
performance changes throughout training. Specifically, we observe a general increase in intra-step entropy as
models begin to overfit, suggesting that the networks increasingly memorize input information. In contrast,
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Figure A.6: JSD and TVD of the MM-PHATE embedding and intra-step entropy distribution in the last
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epoch for models trained with different label shuffling levels.

inter-step entropy shows a significant decline as overfitting progresses, reflecting a loss of sensitivity to input
changes over time. The loss curve shows worse overfitting as the network size increases, and the networks’
inter-step entropy becomes less structured.

B Computing Infrastructure

All but the t-SNE computation was carried out on a 14-core laptop running Windows 11 Home with a
NVIDIA GeForce RTX 3070 Ti Laptop graphics card and 40GB of RAM. The t-SNE visualization was
conducted on a single 95-core internal cluster running Ubuntu 18.04.6 LTS with 10 Quadro RTX 5000

graphics cards and 755GB of RAM.
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Figure A.7: M-PHATE on Area2Bump LSTM: Visualization of a 20-unit LSTM network trained for 200
epochs. Each point represents a hidden unit at the last time-step in a given epoch throughout the entire
training process. The points are colored based on epoch (left) or hidden unit (right).
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Figure A.8: Area2Bump GRU: Visualization of a 20-unit GRU network trained for 200 epochs. Each point
represents a hidden unit at a specific time-step in a given epoch throughout the entire training process. The
visualizations are generated using MM-PHATE, PCA, and t-SNE, from left to right, respectively. Points are

colored based on epoch (top row) or time-step (bottom row)

21



Under review as submission to TMLR

MM-PHATE PCA 1e-7+6.77374e~1 -SNE

1.0
g% 085 600
5 080+ 0.80-] g
P 55 500
70751 0.75- 42
8 400
2
= 0.70 0.70 STl s bbb AP [-0.2 g
300
1e~7+6.77374e~1 £
£
§o.35— 085 200
£ 0.80 0.80-] 100
o X
70751 0.75 Ay 0
£ LLNRL BN S22\ a va
£ 070 N 2 < Fos |— va
o0 070 - TR AT Y " Tan
0 50 100 150 200 0 50 100 150 200
Epoch Epoch

Figure A.9: Area2Bump GRU: Intra-step entropy of all hidden units in embedding space at each time-step in
each epoch, compared to training and validation accuracy (top) and losses (bottom), comparing embeddings
of MM-PHATE, PCA, and t-SNE.
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Figure A.10: Area2Bump GRU: Inter-step entropy of all hidden units in embedding space of the Area2Bump
model at each time-step in each epoch, compared to training and accuracies (top) and losses (bottom). From
left to right, the dimensionality reduction metrics used are MM-PHATE, PCA, and t-SNE.
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Figure A.11: Area2Bump Vanilla: Visualization of a 20-unit Vanilla RNN trained for 200 epochs. Each point
represents a hidden unit at a specific time-step in a given epoch throughout the entire training process. The
visualizations are generated using MM-PHATE, PCA, and t-SNE, from left to right, respectively. Points are
colored based on epoch (top row) or time-step (bottom-row)
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Figure A.12: Area2Bump Vanilla: Intra-step entropy of all hidden units in embedding space at each time-
step in each epoch, compared to training and validation accuracy (top) and losses (bottom), comparing
embeddings of MM-PHATE, PCA, and t-SNE.
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Figure A.13: Area2Bump Vanilla: Inter-step entropy of all hidden units in embedding space of the
Area2Bump model at each time-step in each epoch, compared to training and accuracies (top) and losses
(bottom). From left to right, the dimensionality reduction metrics used are MM-PHATE, PCA| and t-SNE.
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Figure A.14: Area2Bump: Inter-step entropy of all hidden units in embedding space of the Area2Bump
model at each time-step in each epoch, compared to training and accuracies (top) and losses (bottom).
From left to right, the dimensionality reduction metrics used are MM-PHATE, PCA, t-SNE, Isomap, LLE,
and UMAP.
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Figure A.15: Area2Bump LSTM: MM-PHATE visualization of networks of size 10 to 50 (left to right). Each
point represents a hidden unit at a specific time-step in a given epoch. Points are colored based on epoch

(top) or time-step (bottom).
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Figure A.16: Area2Bump LSTM: Intra-step entropy of all hidden units in MM-PHATE embedding space at
each time-step in each epoch, compared to accuracies (top) and losses (bottom). Network sizes range from

10 to 50 (left to right).
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Figure A.17: Area2Bump LSTM: Inter-step entropy of all hidden units in MM-PHATE embedding space
of the Area2Bump model at each time-step for each unit in each epoch, compared to accuracies (top) and
losses (bottom). Network sizes range from 10 to 50 (left to right).
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C Mathematical Notations

Notation Definition
x Point in high dimensional space
E Euclidean distance matrix between all data points
K Affinity kernel matrix
ex(x;) k-nearest-neighbor distance of x;
« Parameter controlling the decay rate
P Diffusion operator
D Diagonal matrix of row sums of K
P! Transition probabilities of a diffusion process over t steps
n Total number of epochs the network is trained for
F Feed-forward neural network
m Total number of hidden units in the network
X Training data, subset of II
II Larger dataset
T Activation tensor
Y Input data, subset of X with equal number of samples per class
P Number of samples in Y
Ki(;t)mshce(i, 7) Intraslice affinities between pairs of hidden units within an epoch 7
o eralice (Ts V) Interslice affinities between a hidden unit ¢ and itself at different epochs
O(ri) Intraslice bandwidth for unit ¢ in epoch 7
€ Fixed interslice bandwidth
T Index for given epoch
i, Index for given hidden unit
In RNN hidden state at time step ¢
W RNN weights
b RNN biases
Yt RNN output at time step ¢
f RNN activation function
R Recurrent neural network
w Index for given time step
s Total number of time steps in the RNN
Ki(;t’fa)step(i, 7) Intrastep affinities between hidden units ¢ and j at time-step w in epoch 7
K i(ﬁzerstep( (t,w),(n,v)) Interstep affinities between a hidden unit 7 and itself at different time-steps and epochs
O (r0,i) Intrastep bandwidth for unit i at time-step w and epoch 7
Number of nearest neighbors
L Labels of X

Table 1: Notations
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